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Indecent Proposals

We have been running this journal for 10 years now. We try to keep its quality as high
as possible, publishing papers connected with at least two mathematical disciplines, one of
which is rooted in discrete mathematics. We are still receiving too many papers that barely
fit the scope of the journal, however, and we will address this in the near future.

But there is another matter that we would like to share with you today. Every so often
we receive requests to do something that is not usual in our culture. We call these indecent
proposals. Below we quote some of the must unusual of them, received from individuals
we have never heard of before:

• “Dear Editor, I would like to become a member of the editorial board. Please find my
CV enclosed.”

• “Dear Editor, I do not understand why my paper has been rejected. Please consider the
fact that I am willing to pay article processing charges if you reverse your ruling. You
do not have to print the paper. It is sufficient that you put it on-line.”

• “Dear Editor, We are looking for cooperation. We will secure 20 to 30 peer-reviewed
papers that we would like to publish in your journal. We will pay 200 USD per paper.”

• “Dear Editor, we are organising a conference on a charming little island. We would like
to publish the proceedings as a special issue of your journal that we want to guest edit.”

We consider any such unsolicited letters as faux pas and ignore them.
On the other hand, we would like to point out an important strategy we follow in our

journal that might differ from the strategies of some other journals. We encourage authors
to list in their cover letter some renowned mathematicians who are specialists in the field
of their paper and could be regarded as objective referees. This is even more important if
the topic of the submitted paper is not one with which our editors are familiar.

Of course, this might be considered an “indecent proposal” by some other journals! In
practice it does not mean that we will choose referees from the list provided by the author.
But such a list can be of considerable help to us in when we are seeking the right people to
referee a paper, consistent with our stated aim of maintaining a high quality journal.

Dragan Marušič and Tomaž Pisanski
Editors In Chief
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Abstract

A graph G is hypohamiltonian if G is non-hamiltonian and G − v is hamiltonian for
every v ∈ V (G). In the following, every graph is assumed to be hypohamiltonian. Aldred,
Wormald, and McKay gave a list of all graphs of order at most 17. In this article, we present
an algorithm to generate all graphs of a given order and apply it to prove that there exist
exactly 14 graphs of order 18 and 34 graphs of order 19. We also extend their results in the
cubic case. Furthermore, we show that (i) the smallest graph of girth 6 has order 25, (ii) the
smallest planar graph has order at least 23, (iii) the smallest cubic planar graph has order at
least 54, and (iv) the smallest cubic planar graph of girth 5 with non-trivial automorphism
group has order 78.

Keywords: Hamiltonian, hypohamiltonian, planar, girth, cubic graph, exhaustive generation.

Math. Subj. Class.: 05C10, 05C38, 05C45, 05C85

1 Introduction
Throughout this paper all graphs are undirected, finite, connected, and neither contain loops
nor multiple edges, unless explicitly stated otherwise. A graph is hamiltonian if it contains
a cycle visiting every vertex of the graph. Such a cycle or path is called hamiltonian. A
graph G is hypohamiltonian if G is non-hamiltonian, and for every v ∈ V (G) the graph
G− v is hamiltonian.
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We call a vertex cubic if it has degree 3, and a graph cubic if all of its vertices are
cubic. Let G be a graph. We use deg(v) to denote the degree of a vertex v and ∆(G) =
maxv∈V (G) deg(v). The girth of a graph is the length of its shortest cycle. A cycle of
length k will be called a k-cycle. For S ⊂ V (G), G[S] shall denote the graph induced by
S. A subgraph G′ = (V ′, E′) ⊂ G = (V,E) is spanning if V ′ = V . For a set X , we
denote by |X| its cardinality. We refer to [14] for undefined notions.

The study of hypohamiltonian graphs was initiated in the early sixties by Sousse-
lier [33], and Thomassen made numerous important contributions [34–38]; for further de-
tails, see the survey of Holton and Sheehan [21, Chapter 7] from 1993. For more recent
results and new references not contained in the survey, we refer to the article of Jooyandeh,
McKay, Östergård, Pettersson, and the second author [22].

In 1973, Chvátal showed [11] that if we choose n to be sufficiently large, then there
exists a hypohamiltonian graph of order n. We now know that for every n ≥ 18 there
exists such a graph of order n, and that 18 is optimal, since Aldred, McKay, and Wormald
showed that there is no hypohamiltonian graph on 17 vertices [2]. Their paper fully settled
the question for which orders hypohamiltonian graphs exist and for which they do not exist.
For more details, see [21, Chapter 7].

They also provide a complete list of hypohamiltonian graphs with at most 17 vertices.
There are seven such graphs: exactly one for each of the orders 10 (the Petersen graph), 13,
and 15, four of order 16 (among them Sousselier’s graph), and none of order 17. Aldred,
McKay, and Wormald [2] showed that there exist at least thirteen hypohamiltonian graphs
with 18 vertices, but the exact number was unknown. In [25], McKay lists all known
hypohamiltonian graphs up to 26 vertices (recall that the lists with 18 or more vertices
may be incomplete). He also lists all cubic hypohamiltonian graphs up to 26 vertices as
well as the cubic hypohamiltonian graphs with girth at least 5 and girth at least 6 on 28 and
30 vertices, respectively. In Section 2.3 we extend the results both for the general and cubic
case.

The main contributions of this manuscript are: (i) an algorithm A to generate all pair-
wise non-isomorphic hypohamiltonian graphs of a given order, (ii) the results of applying
this algorithm, and (iii) an up-to-date overview of the best currently available lower and
upper bounds on the order of the smallest hypohamiltonian graphs satisfying various ad-
ditional properties, see Table 1. The algorithm A is based on the algorithm of Aldred,
McKay, and Wormald from [2], but is extended with several additional bounding criteria
which speed it up substantially. Furthermore, A also allows to generate planar hypohamil-
tonian graphs and hypohamiltonian graphs with a given lower bound on the girth far more
efficiently.

We present A in Section 2 and showcase the new complete lists of hypohamiltonian
graphs we obtained with it. In Section 3 we illustrate how A can be extended to generate
planar hypohamiltonian graphs and show how we applied A to improve the lower bounds
on the order of the smallest planar hypohamiltonian graph. (In the following, unless stated
otherwise, when we say that a graph is “smaller” or “the smallest”, we always refer to
its order.) Using the program plantri [9], we also give a new lower bound for the order
of the smallest cubic planar hypohamiltonian graph. In an upcoming paper [15], we will
adapt the approach used in the algorithm A to generate almost hypohamiltonian graphs [43]
efficiently. (A graph G is almost hypohamiltonian, if it is non-hamiltonian and there exists
a vertex w such that G − w is non-hamiltonian, but G − v is hamiltonian for every vertex
v 6= w.)
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Table 1: Bounds for the order of the smallest hypohamiltonian graph with additional prop-
erties. The bold numbers are new bounds obtained in this manuscript; if an entry contains
two lines, the upper line indicates the new bounds, while the lower line shows the previ-
ous bounds. The symbol “–” designates an impossible combination of properties and a..b
means that the number is at least a and at most b. b = ∞ signifies that no graph with the
given properties is known.

girth 3 4 5 6 7 8 9

general 18 18 10 25
18..28

28
18..28

36..∞
18..∞

61..∞
18..∞

cubic – 24 10 28 28 50..∞
30..∞

66..∞
58..∞

planar 23..240
18..240

25..40
18..40 45 – – – –

planar & cubic – 54..70
44..70 76 – – – –

We now discuss the numbers given in Table 1 and start with the first row. For girth 3,
Aldred, McKay, and Wormald [2] showed that there is no hypohamiltonian graph of girth 3
and order smaller than 18, and Collier and Schmeichel [12] showed already in 1977 that
there exists such a graph on 18 vertices. For girth 4, the results of [2] imply that there
is no such graph on fewer than 18 vertices, and the hypohamiltonian graph presented in
Figure 1 (b) from Section 2.3 provides an example of order 18—this graph was given earlier
and independently by McKay [25]. The third number is due to the Petersen graph, for which
it is well-known that it is the smallest hypohamiltonian graph, see e.g. [19]. The smallest
hypohamiltonian graph of girth 6 was obtained by the application of A and is shown in
Figure 2. For girth 7, Coxeter’s graph provides the smallest example. Its minimality as
well as the new lower bound for girth 8 follows from the application of A. The bound for
girth 9 follows from an argument given at the end of the following paragraph. Note that, as
Máčajová and Škoviera mention in [24], no hypohamiltonian graphs of girth greater than 7
are known, and Coxeter’s graph is the only known cyclically 7-connected hypohamiltonian
graph of girth 7.

Concerning the second row, Thomassen [38] showed that there exists a cubic hypo-
hamiltonian graph of girth 4 and order 24. Petersen’s graph is responsible for the second
value, Isaacs’ flower snark J7 and Coxeter’s graph give the upper bounds for girth 6 and
7, respectively. Through an exhaustive computer-search, McKay was able to determine the
order of the smallest cubic hypohamiltonian graph of girth 4, 5, 6, and 7, establishing that
the aforementioned graphs turned out to be the smallest of a fixed girth, see [25]. (Note
that McKay does not state this explicitly, and that these results were verified independently
by the first author.) We obtained the improved lower bounds for girth 8 and 9 through an
exhaustive computer-search (see Section 2.3 for more details). Now let G be a hypohamil-
tonian graph of girth 9 containing a non-cubic vertex v. Then {w ∈ V (G) : d(v, w) ≤ 4},
where d(v, w) denotes the number of edges in a shortest path between vertices v and w,
consists of pairwise different vertices, so |V (G)| ≥ 61. (Recall that as is shown in Table 1,
if G is a cubic hypohamiltonian graph of girth 9, then |V (G)| ≥ 66.)

In the third row, the first upper bound is due to Thomassen, see [36], while the second
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one is due to Jooyandeh, McKay, Östergård, Pettersson, and the second author [22]. The
previous best lower bounds were provided by [2]—although that paper does not address
planarity—while the current best lower bounds are proven using A, see Section 3. In [22]
it was also shown that there exists a planar hypohamiltonian graph of girth 5 on 45 vertices,
and that there is no smaller such graph.

The upper bound for the smallest cubic planar hypohamiltonian graph of girth 4 was
established by Araya and Wiener [3]. The best available lower bound prior to this paper
can be found in the same article [3] and was 44. We improved this to 54 with the program
plantri [9] as described in Section 3.3. Finally, McKay [28] recently proved that the order
of the smallest cubic planar hypohamiltonian graph of girth 5 is 76.

In Table 1, we denote by “–” an impossible combination of properties. There are two
arguments from which these impossibilities follow. Firstly, a cubic hypohamiltonian graph
cannot contain triangles, as proven by Collier and Schmeichel [13]. Secondly, it follows
from Euler’s formula that a planar 3-connected graph—it is easy to see that every hypo-
hamiltonian graph is 3-connected—has girth at most 5.

2 Generating hypohamiltonian graphs
2.1 Preparation

In this section we present our algorithm A to generate all non-isomorphic hypohamiltonian
graphs of a given order. A is based on work of Aldred, McKay, and Wormald [2], but
contains essential additional bounding criteria. It is easy to see that hypohamiltonian graphs
are 3-connected and cyclically 4-connected.

We follow Aldred, McKay and Wormald [2] and say that a graph G is hypocyclic if
for every v ∈ V (G), the graph G − v is hamiltonian. Hamiltonian hypocyclic graphs are
usually called “1-hamiltonian” (see e.g. [10]), so the family of all hypocyclic graphs is the
disjoint union of the families of all 1-hamiltonian and hypohamiltonian graphs.

We now present several lemmas with necessary conditions for a graph to be hypocyclic
or hypohamiltonian. We then use a selection of these lemmas to prune the search in the
generation algorithm. This selection, i.e. whether to use a certain lemma or not and the
order in which these lemmas should be applied, is based on experimental evidence. The
efficiency of the algorithm strongly depends on the strength of these pruning criteria.

To avoid confusion, we will generally use the same terminology as Aldred, McKay,
and Wormald did in [2] (that is: e.g. type A, B, and C obstructions). Let G be a possibly
disconnected graph. We will denote by p(G) the minimum number of disjoint paths needed
to cover all vertices of G, by V1(G) the vertices of degree 1 in G, and by I(G) the set of
all isolated vertices and all isolated edges of G. Put

k(G) =


0 if G is empty,

max
{

1,
⌈
|V1|
2

⌉}
if I(G) = ∅ but G is not empty,

|I(G)|+ k(G− I(G)) else.

Lemma 2.1 (Aldred, McKay, and Wormald [2]). Given a hypocyclic graph G, for any
partition (W,X) of the vertices of G with |W | > 1 and |X| > 1, we have that

p(G[W ]) < |X| and k(G[W ]) < |X|.



J. Goedgebeur and C. T. Zamfirescu: Improved bounds for hypohamiltonian graphs 239

Now consider a graphG containing a partition (W,X) of its vertices with |W | > 1 and
|X| > 1. If p(G[W ]) ≥ |X|, then we call (W,X) a type A obstruction, and if k(G[W ]) ≥
|X|, then we speak of a type B obstruction. For efficiency reasons we only consider type A
obstructions where G[W ] is a union of disjoint paths.

Lemma 2.2 (Aldred, McKay, and Wormald [2]). Let G be a hypocyclic graph, and con-
sider a partition (W,X) of the vertices of G with |W | > 1 and |X| > 1 such that W is an
independent set. Furthermore, for some vertex v ∈ X , define n1 and n2 to be the number
of vertices of X − v joined to one or more than one vertex of W , respectively. Then we
have 2n2 + n1 ≥ 2|W | for every v ∈ X .

If all assumptions of Lemma 2.2 are met and 2n2 + n1 < 2|W | for some v ∈ X , we
call (W,X, v) a type C obstruction.

Intuitively, by a good Y -edge (for Y ∈ {A,B,C}) we mean an edge which works
towards the destruction of a type Y obstruction. We will now formally define these good
Y -edges.

We use Lemma 2.1 as follows. Assume G′ is a hypohamiltonian graph and that G is
a spanning subgraph of G′ which contains a type A obstruction (W,X) (where G[W ] is a
union of disjoint paths). SinceG′ is hypohamiltonian it cannot contain a type A obstruction,
so there must be an edge e in E(G′) \ E(G) whose endpoints are in different components
of G[W ] and for which at least one of the endpoints has degree at most one in G[W ]. We
call such an edge a good A-edge for (W,X).

Aldred, McKay, and Wormald [2] did use this obstruction, but they did not require these
good A-edges to have an endpoint of degree at most one in G[W ] (which turns out to be
far more restrictive). Similarly, a good B-edge for a type B obstruction (W,X) in G is a
non-edge of G that joins two vertices of W where at least one of those vertices has degree
at most one in G[W ]. Finally, a good C-edge for a type C obstruction (W,X, v) in G is a
non-edge e of G for which one of the two following conditions holds:

(i) Both endpoints of e are in W .

(ii) One endpoint of e is in W and the other endpoint is in X − v and has at most one
neighbour in W .

We leave the straightforward verification that this is the only way to destroy a type
B/C obstruction to the reader. Likewise, it is elementary to see that every hypohamiltonian
graph has minimum degree 3—we are mentioning this explicitly, since we will later make
use of the fact that hypohamiltonian graphs do not contain vertices of degree 2—and that it
is not bipartite. However, for every k ≥ 23 there exists a hypohamiltonian graph containing
the complete bipartite graph K2k−44,2k−44, as proven by Thomassen [38].

Lemma 2.3 (Collier and Schmeichel [13]). Let G be a hypohamiltonian graph containing
a triangle T . Then every vertex of T has degree at least 4.

A diamond is aK4 minus an edge and the central edge of a diamond is the edge between
the two cubic vertices.

Proposition 2.4. Let G be a hypohamiltonian graph containing a diamond with vertices
a, b, c, d and central edge ac. Then the degrees of a and c (in G) are at least 5.
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Proof. It follows from Lemma 2.3 that a is not cubic. Let a have degree 4. Since G is
hypocyclic, G− c contains a hamiltonian cycle h. h must contain ab or ad (possibly both),
say ab. But then (h− ab) ∪ acb is a hamiltonian cycle in G, a contradiction.

Note that in Proposition 2.4, the edge bd may or may not be present in the graph. We
have already mentioned that hypohamiltonian graphs are cyclically 4-connected. We can
strengthen this in the following way.

Lemma 2.5. One of the two components obtained when deleting a 3-edge-cut from a hy-
pohamiltonian graph must be K1.

Proof. Consider a 3-edge-cutC in a hypohamiltonian graphG. G−C has two components
A and B with |V (A)| ≤ |V (B)|. We put C = {a1b1, a2b2, a3b3}, where ai ∈ V (A) and
bi ∈ V (B). Assume A 6= K1. In this situation, since G is 3-connected, the elements of the
set {a1, a2, a3, b1, b2, b3} are pairwise distinct, as otherwise we would have a 2-cut.

Since G is hypohamiltonian, G − b3 is hamiltonian, so there is a hamiltonian path pA
in A with end-vertices a1 and a2. As G− a3 is hamiltonian, there is a hamiltonian path pB
in B with end-vertices b1 and b2. Now pA ∪ pB + a1b1 + a2b2 is a hamiltonian cycle in G,
a contradiction.

Proposition 2.6. Let G be a hypohamiltonian graph containing a 3-cut M = {u, v, w}.

(i) We have uv, vw,wu /∈ E(G).

(ii) If M is not the neighbourhood of a vertex, then maxx∈M deg(x) ≥ 4.

Proof. (i) Note that (i) was also already shown by Thomassen in [36], but here we give
an alternative proof. Assume that uv ∈ E(G). Since G is hypohamiltonian, there exists
a hamiltonian cycle h in G − u. Let A and B be the components of G −M (we leave
to the reader the easy proof that there are exactly two components in G − M ) and put
pA = h ∩G[V (A) ∪M ].

Case 1: A 6= K1 and B 6= K1. Since M is a 3-cut, pA has end-vertices v and w.
Analogously there exists a hamiltonian path pB in G[V (B) ∪M ] with end-vertices u and
w. Now pA ∪ pB + uv is a hamiltonian cycle in G, a contradiction.

Case 2: A = K1. We have V (A) = {a}, so M = N(a). Now auv is a triangle
containing the cubic vertex a, in contradiction to Lemma 2.3.

(ii) follows directly from Lemma 2.5. Note that the neighbourhood condition is neces-
sary, since cubic hypohamiltonian graphs—such as the Petersen graph—do exist.

Corollary 2.7. In a cubic hypohamiltonian graph, every 3-cut must be the neighbourhood
of a vertex.

2.2 The enumeration algorithm

The pseudocode of the enumeration algorithm A is given in Algorithm 1 and Algorithm 2.
In order to generate all hypohamiltonian graphs with n vertices we start from a graph

G which consists of an (n− 1)-cycle and an isolated vertex h (disjoint from the cycle), so
G − h is hamiltonian. Both in Algorithm 1 and Algorithm 2 we only add edges between
existing vertices of the graph. So if a graph is hamiltonian, all graphs obtained from it will
also be hamiltonian. Thus we can prune the search when a hamiltonian graph is constructed
(cf. line 1 of Algorithm 2).
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In Algorithm 1 we connect h to D vertices of the (n − 1)-cycle in all possible ways
and then perform Algorithm 2 on these graphs which will continue to recursively add edges
without increasing the maximum degree of the graph.

It is essential for the efficiency of the algorithm that as few as possible edges are added
(i.e. that as few as possible graphs are constructed), while still guaranteeing that all hypo-
hamiltonian graphs are found by the algorithm. If a generated graph contains an obstruction
for hypohamiltonicity, it clearly cannot be hypohamiltonian and hence we only add edges
which destroy (or work towards the destruction of) that obstruction.

In the following theorem we show that this algorithm indeed finds all hypohamiltonian
graphs.

Theorem 2.8. If Algorithm 1 terminates, the list of graphsH outputted by the algorithm is
the list of all hypohamiltonian graphs with n vertices.

Proof. It follows from line 23 of Algorithm 2 thatH only contains hypohamiltonian graphs.
Now we will show thatH indeed contains all hypohamiltonian graphs with n vertices.

Consider a hypohamiltonian graph G with n vertices. It follows from the definition of
hypohamiltonicity that there is a spanning subgraph G0 of G which consists of an (n− 1)-
cycle C and a vertex v disjoint from C which is connected to ∆(G) vertices of C. Since
Algorithm 1 connects the vertex h with D vertices of an (n− 1)-cycle in all possible ways,
it will also construct a graph which is isomorphic to G0.

We will now show by induction that Algorithm 2 produces a graph isomorphic to a
spanning subgraph G with i edges for every |E(G0)| ≤ i ≤ |E(G)|.

Assume this claim holds for some i with |E(G0)| ≤ i ≤ |E(G)| − 1 and call the graph
produced by Algorithm 2 which is isomorphic to a spanning subgraph of G with i edges
G′.

Assume that G′ contains a type A obstruction (W,X). By Lemma 2.1, G does not
contain a type A obstruction, so there is a good A-edge e for (W,X) in E(G) \ E(G′). It
follows from line 4 of Algorithm 2 that Construct(G′ + e,D) is called and G′ + e will be
accepted by the algorithm since G is non-hamiltonian.

We omit the discussion of the cases where G′ contains a type B or C obstruction (i.e.
lines 18 and 10, respectively) as this is completely analogous.

So assume that G′ does not contain a type A obstruction, but contains a vertex v of
degree two (note that G′ cannot contain vertices of degree less than two). Since a hy-
pohamiltonian graph has minimum degree 3, there is an edge e ∈ E(G) \ E(G′) which
contains v as an endpoint. It follows from line 8 of Algorithm 2 that Construct(G′ + e,D)
is called.

The case where G′ contains a cubic vertex which is part of a triangle (i.e. line 14) is
completely analogous.

If none of the criteria is applicable, Algorithm 2 adds an edge e to G′ in all possible
ways (without increasing the maximum degree) and calls Construct(G′ + e,D) for each e.
Since |E(G′)| < |E(G)|, at least one of the graphs G′ + e will be a spanning subgraph of
G with i+ 1 edges.

To make sure no isomorphic graphs are accepted, we use the program nauty [26, 30].
In principle more sophisticated isomorphism rejection techniques are known (such as the
canonical construction path method [27]), but these methods are not compatible with the
destruction of obstructions for hypohamiltonicity. Furthermore, isomorphism rejection is
not a bottleneck in our implementation of this algorithm.



242 Ars Math. Contemp. 13 (2017) 235–257

Algorithm 1 Generate all hypohamiltonian graphs with n vertices

1: letH be an empty list
2: let G := Cn−1 + h
3: for all 3 ≤ D ≤ n− 1 do
4: // Generate all hypohamiltonian graphs with ∆ = D
5: for every way of connecting h of G with D vertices of the Cn−1 do
6: Call the resulting graph G′

7: Construct(G′, D) // i.e. perform Algorithm 2
8: end for
9: end for

10: OutputH

Also note that we only have to perform the hypohamiltonicity test (which can be com-
putationally very expensive) if the graph does not contain any obstructions for hypohamil-
tonicity (cf. line 23 of Algorithm 2). Therefore, the hypohamiltonicity test is not a bottle-
neck in the algorithm.

Since our algorithm only adds edges and never removes any vertices or edges, all graphs
obtained by the algorithm from a graph with a g-cycle will have a cycle of length at most g.
So in case we only want to generate hypohamiltonian graphs with a given lower bound k
on the girth, we can prune the construction when a graph with a cycle with length less than
k is constructed.

The order in which the bounding criteria of Algorithm 2 are tested is vital for the ef-
ficiency of the algorithm. By performing various extensive experiments, it turned out that
the order in which the bounding criteria are listed in Algorithm 2 is the most efficient.

We also note that even though Aldred, McKay, and Wormald mentioned type C ob-
structions in their paper [2], they did not use them in their algorithm. However, our experi-
mental results show that type C obstructions are significantly more helpful than e.g. type B
obstructions.

2.3 Results

2.3.1 The general case

We implemented the algorithm A in C and used it to generate all pairwise non-isomorphic
hypohamiltonian graphs of a given order (with a given lower bound on the girth). Our
implementation of this algorithm is called GenHypohamiltonian, and can be downloaded
from [16].

Table 2 shows the counts of the complete lists hypohamiltonian graphs which were
generated by our program. We generated all hypohamiltonian graphs up to 19 vertices and
also went several steps further for hypohamiltonian graphs with a given lower bound on
the girth. Recall that previously the complete lists of hypohamiltonian graphs were only
known up to 17 vertices. For more information about the previous bounds and results, we
refer to Table 1 from Section 1.

In [2] Aldred, McKay, and Wormald also produced a sample of 13 hypohamiltonian
graphs with 18 vertices. It follows from our results that there are exactly 14 hypohamilto-
nian graphs with 18 vertices. These graphs are shown in Figure 1. The fourteenth graph
which was not already known has girth 5 and is shown in Figure 1 (n). It has automorphism
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Algorithm 2 Construct(Graph G, int D)

1: if G is non-hamiltonian AND not generated before then
2: if G contains a type A obstruction (W,X) then
3: for every good A-edge e /∈ E(G) for (W,X) for which ∆(G+ e) = D do
4: Construct(G+ e,D)
5: end for
6: else if G contains a vertex v of degree 2 then
7: for every edge e /∈ E(G) which contains v as an endpoint for which ∆(G+ e) =

D do
8: Construct(G+ e,D)
9: end for

10: else if G contains a type C obstruction (W,X, v) then
11: for every good C-edge e /∈ E(G) for (W,X, v) for which ∆(G+ e) = D do
12: Construct(G+ e,D)
13: end for
14: else if G contains a vertex v of degree 3 which is part of a triangle then
15: for every edge e /∈ E(G) which contains v as an endpoint for which

∆(G+ e) = D do
16: Construct(G+ e,D)
17: end for
18: else if G contains a type B obstruction (W,X) then
19: for every good B-edge e /∈ E(G) for (W,X) for which ∆(G+ e) = D do
20: Construct(G+ e,D)
21: end for
22: else
23: if G is hypohamiltonian then
24: add G to the listH
25: end if
26: for every edge e /∈ E(G) for which ∆(G+ e) = D do
27: Construct(G+ e,D)
28: end for
29: end if
30: end if

group size 36 and it has the largest group size among the hypohamiltonian graphs with 18
vertices. Using A, we also showed that there are exactly 34 hypohamiltonian graphs with
19 vertices. As can be seen from Table 2, all 34 of them have girth 5.

All graphs from Table 2 can also be downloaded from the House of Graphs [5] at
http://hog.grinvin.org/Hypohamiltonian and also be inspected in the data-
base of interesting graphs by searching for the keywords “hypohamiltonian * 2016”.

Tables 3-5 list the running times of the algorithm. The column “Max. nr. edges added”
denotes the maximum number of edges added by Algorithm 2 to a graph constructed by
Algorithm 1 (i.e. the maximum number of recursive calls of Construct()).

The reported running times were obtained by executing our implementation of Algo-
rithm 1 on an Intel Xeon CPU E5-2690 CPU at 2.90GHz. For the larger cases we did
not include any running times in Tables 3-5 since these were executed on a heterogeneous
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Table 2: The number of hypohamiltonian graphs. The columns with a header of the form
g ≥ k contain the number of hypohamiltonian graphs with girth at least k. The counts of
cases indicated with a ’≥’ are possibly incomplete; all other cases are complete.

Order # hypoham. g ≥ 4 g ≥ 5 g ≥ 6 g ≥ 7 g ≥ 8

0− 9 0 0 0 0 0 0
10 1 1 1 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 1 1 1 0 0 0
14 0 0 0 0 0 0
15 1 1 1 0 0 0
16 4 4 4 0 0 0
17 0 0 0 0 0 0
18 14 13 8 0 0 0
19 34 34 34 0 0 0
20 ? ≥ 98 4 0 0 0
21 ? ? 85 0 0 0
22 ? ? 420 0 0 0
23 ? ? 85 0 0 0
24 ? ? 2 530 0 0 0
25 ? ? ? 1 0 0
26 ? ? ? 0 0 0
27 ? ? ? ? 0 0
28 ? ? ? ≥ 2 1 0
29 ? ? ? ? 0 0
30 ? ? ? ? 0 0

31− 35 ? ? ? ? ? 0
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

Figure 1: All 14 hypohamiltonian graphs of order 18. Graph (a) is the smallest hypohamil-
tonian graph of girth 3, while graphs (b)–(f) are the smallest hypohamiltonian graphs of
girth 4.
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cluster and the parallelisation also caused a significant overhead. However in each case we
went as far as computationally possible (most of the largest cases took between 1 and 10
CPU years).

Since the running times and number of intermediate graphs generated by the algorithm
grows that fast, it seems very unlikely that these bounds can be improved in the near future
using only faster computers.

Starting from girth at least 7, the bottleneck is the case where the generated graphs
have maximum degree 3 (so here we are generating cubic hypohamiltonian graphs). (Also
for girth 6, the cubic case forms a significant part of the total running time.) Algorithm 1
can also be used to generate only cubic hypohamiltonian graphs (and we also did this for
correctness testing, see Section 2.4). But here it is much more efficient to use a generator
for cubic graphs with a given lower bound on the girth and testing if the generated graphs
are hypohamiltonian as a filter. So for the generation of hypohamiltonian graphs with girth
at least 6, we used Algorithm 1 only to construct hypohamiltonian graphs with maximum
degree at least 4 and did the cubic case separately by using a generator for cubic graphs.
More results on the cubic case can be found in Section 2.3.2.

Using Algorithm 1, we have also determined the smallest hypohamiltonian graph of
girth 6. It has 25 vertices and is shown in Figure 2.

Table 3: Counts and generation times for hypohamiltonian graphs.

Order # hypoham. Time (s) Increase Max. nr. edges added
16 4 9 15
17 0 189 21.00 16
18 14 18 339 97.03 18
19 34

Table 4: Counts and generation times for hypohamiltonian graphs with girth at least 4.

Order # hypoham. g ≥ 4 Time (s) Increase Max. nr. edges added
16 4 2 11
17 0 19 9.50 12
18 13 683 35.95 18
19 34 10 816 15.84 19

Table 5: Counts and generation times for hypohamiltonian graphs with girth at least 5.

Order # hypoham. g ≥ 5 Time (s) Increase Max. nr. edges added
17 0 1 8
18 8 9 9.00 9
19 34 81 9.00 10
20 4 1 125 13.89 11
21 85 11 470 10.20 12
22 420
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Figure 2: The smallest hypohamiltonian graph of girth 6. It has 25 vertices.

2.3.2 The cubic case

As already mentioned in the introduction, Aldred, McKay, and Wormald [2] determined
all cubic hypohamiltonian graphs up to 26 vertices and all cubic hypohamiltonian graphs
with girth at least 5 and girth at least 6 on 28 and 30 vertices, respectively. In Table 6 we
extend these results. We used the program snarkhunter [6, 8] to generate all cubic graphs
with girth at least k for 4 ≤ k ≤ 7, the program genreg [31] for k = 8 and the program of
McKay et al. [29] for k = 9. (Note that by Lemma 2.3 cubic hypohamiltonian graphs must
have girth at least 4.)

For girth at least k for k = 7, 8, 9 we obtained the following results:

Theorem 2.9. By generating all cubic graphs with a given lower bound on the girth and
testing them for hamiltonicity we obtained the following:

(i) The 28-vertex Coxeter graph is the only non-hamiltonian cubic graph with girth 7
up to at least 42 vertices.

(ii) The smallest non-hamiltonian cubic graph with girth 8 has at least 50 vertices.

(iii) The smallest non-hamiltonian cubic graph with girth 9 has at least 66 vertices.

Since hypohamiltonian graphs are non-hamiltonian, Theorem 2.9 also implies improved
lower bounds for cubic hypohamiltonian graphs (see Table 1).

All hypohamiltonian graphs from Table 6 can also be downloaded from the House of
Graphs [5] at http://hog.grinvin.org/Hypohamiltonian.

2.4 Correctness testing

To make sure that our implementation of Algorithm 1 did not contain any programming
errors, we performed various correctness tests which we will describe in this section.

Previously, all hypohamiltonian graphs up to 17 vertices were known. We verified that
our program yields exactly the same graphs. Aldred, McKay, and Wormald also produced a
sample of 13 hypohamiltonian graphs with 18 vertices and a sample of 10 hypohamiltonian
graphs with girth 5 and 22 vertices (see [25]). We verified that our program indeed also
finds these graphs.
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Table 6: Counts of hypohamiltonian graphs among cubic graphs. g stands for girth.

Order g ≥ 4
Non-ham. Hypoham. Hypoham. Hypoham. Hypoham.
and g ≥ 4 and g ≥ 5 and g ≥ 6 and g ≥ 7

10 6 1 1 1 0 0
12 22 0 0 0 0 0
14 110 2 0 0 0 0
16 792 8 0 0 0 0
18 7 805 59 2 2 0 0
20 97 546 425 1 1 0 0
22 1 435 720 3 862 3 3 0 0
24 23 780 814 41 293 1 0 0 0
26 432 757 568 518 159 100 96 0 0
28 8 542 471 494 7 398 734 52 34 2 1
30 181 492 137 812 117 963 348 202 139 1 0
32 4 127 077 143 862 2 069 516 990 304 28 0 0

Our program can also be restricted to generate cubic hypohamiltonian graphs. To find
cubic hypohamiltonian graphs of larger orders it is actually much more efficient to use a
generator for cubic graphs and then test the generated graphs for hypohamiltonicity as a fil-
ter. However we used our program to generate cubic hypohamiltonian graphs as a correct-
ness test. We used it to generate all cubic hypohamiltonian graphs up to 22 vertices—note
that these graphs must have girth at least 4 due to Lemma 2.3—and all cubic hypohamilto-
nian graphs with girth at least 5 up to 24 vertices. These results were in complete agreement
with the known results for cubic graphs from Section 2.3.2.

Our routines for testing hamiltonicity and hypohamiltonicity were already extensively
used and tested before (for example they were used in [7] to search for hypohamiltonian
snarks). We also used multiple independent programs to test hamiltonicity and hypohamil-
tonicity—one of those programs was kindly provided to us by Gunnar Brinkmann—and in
each case the results were in complete agreement.

Furthermore, our implementation of Algorithm 1 (i.e. the program GenHypohamilto-
nian) is released as open source software and the code can be downloaded and inspected
at [16].

3 Generating planar hypohamiltonian graphs
In the early seventies, Chvátal [11] raised the problem whether planar hypohamiltonian
graphs exist and Grünbaum conjectured that they do not exist [17]. In 1976, Thomassen [36]
constructed infinitely many such graphs, the smallest among them having order 105. Sub-
sequently, smaller planar hypohamiltonian graphs were found by Hatzel [18] (order 57),
the second author and Zamfirescu [44] (order 48), Araya and Wiener [41] (order 42), and
Jooyandeh, McKay, Östergård, Pettersson, and the second author [22] (order 40). The latter
three graphs are shown in Figure 3. The 40-vertex example is the smallest known planar
hypohamiltonian graph, together with other 24 graphs of the same order [22].

3.1 The general case

Jooyandeh, McKay, Östergård, Pettersson, and the second author [22] showed that the
smallest planar hypohamiltonian graph of girth 5 has order 45, and that the graph with
these properties is unique; see Figure 4.
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Figure 3: Planar hypohamiltonian graphs of order 48 [44], 42 [41], and 40 [22], respec-
tively.

Figure 4: The unique planar hypohamiltonian graph of order 45 and girth 5. It was shown
in [22] that there is no smaller planar hypohamiltonian graph of girth 5.
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Since planar hypohamiltonian graphs have girth at most 5 (due to Euler’s formula),
the smallest planar hypohamiltonian graph must have girth either 3 or 4. Thomassen [35]
proved that, rather surprisingly, hypohamiltonian graphs of girth 3 exist. In [36], Thomassen
mentions how his approach from [35] can be applied to obtain a planar hypohamiltonian
graph of girth 3. Using one of the aforementioned planar hypohamiltonian graphs of or-
der 40 constructed in [22], one can obtain a planar hypohamiltonian graph of girth 3 and
order 240. No smaller example is known.

Aldred, McKay, and Wormald [2] showed that the smallest planar hypohamiltonian has
order at least 18. Up until now, 18 was also the best lower bound for the order of the
smallest planar hypohamiltonian graph. Jooyandeh, McKay, Östergård, Pettersson, and
the second author [22] recently improved the upper bound from 42 to 40. In [22], the
authors emphasise that no extensive computer search had been carried out to increase the
lower bound for the smallest planar hypohamiltonian graph. This was one of the principal
motivations of the present work.

Since the algorithm for generating all hypohamiltonian graphs presented in Section 2
only adds edges and never removes any vertices or edges, all graphs obtained by the algo-
rithm from a non-planar graph will remain non-planar. So in case we only want to generate
planar hypohamiltonian graphs, we can prune the construction when a non-planar graph is
constructed.

To this end we add a test for planarity on line 1 of Algorithm 2. We used Boyer and
Myrvold’s algorithm [4] to test if a graph is planar.

3.2 Additional properties of planar hypohamiltonian graphs

(a) Using a theorem of Whitney [39], Thomassen showed [38] that a planar hypohamil-
tonian graph does not contain a maximal planar graph G, where G 6= K3.

(b) Let G be a planar hypohamiltonian graph. Let κ(G), λ(G), and δ(G) denote the
vertex-connectivity, minimum degree, and edge-connectivity of G, respectively.
Then κ(G) = λ(G) = δ(G) = 3 (for a proof, see [22]).

We also present a result from [22] which restricts the family of polyhedra in which the
smallest planar hypohamiltonian graph must reside. For further details, see [22]. In that
article, the operation 4-face deflater FD4 is defined which squeezes a 4-face of a plane
graph into a path of length 2. The inverse of this operation is called a 2-path inflater PI2,
which expands a path of length 2 into a 4-face. Let D5(f) be the set of all plane graphs
with f faces and minimum degree at least 5. Let G? denote the dual of a planar graph G,
and put

M4
f (n) =

{
{G? : G ∈ D5(n)} f = 0⋃

G∈M4
f−1(n−1)

PI2(G) f > 0
and M4

f =
⋃
n

M4
f (n).

Theorem 3.1 (Jooyandeh et al. [22]). LetG be the smallest planar hypohamiltonian graph.
Then G /∈M4

f .

We extended our algorithm from Section 2 to generate planar hypohamiltonian graphs
and obtained the following results with it.

Theorem 3.2. The smallest planar hypohamiltonian graph has at least 23 vertices.



J. Goedgebeur and C. T. Zamfirescu: Improved bounds for hypohamiltonian graphs 251

Theorem 3.3. The smallest planar hypohamiltonian graph with girth at least 4 has at least
27 vertices.

When we combine this with the known upper bounds, we get the following corollary.

Corollary 3.4. Let h (hg) denote the order of the smallest planar hypohamiltonian graph
(of girth g). We have

23 ≤ h ≤ 40, 23 ≤ h3 ≤ 240, 27 ≤ h4 ≤ 40, and h5 = 45.

The running times of our implementation of this algorithm restricted to planar graphs
is given in Tables 7 and 8. For the larger cases we did not include any running times since
these were executed on a heterogeneous cluster and the parallelisation also caused a non-
negligible overhead. The column “Max. nr. edges added” denotes the maximum number
of edges added by Algorithm 2 to a graph constructed by Algorithm 1.

Table 7: Counts and generation times for planar hypohamiltonian graphs.

Order # hypoham. Time (s) Increase Max. nr. edges added
16 0 4 9
17 0 35 8.75 11
18 0 235 6.71 14
19 0 1 245 5.30 16
20 0 13 517 10.86 17
21 0 109 294 8.09 19
22 0

Table 8: Counts and generation times for planar hypohamiltonian graphs with girth at
least 4.

Order # hypoham. g ≥ 4 Time (s) Increase Max. nr. edges added
16 0 2 6
17 0 11 5.50 7
18 0 35 3.18 8
19 0 231 6.60 10
20 0 1 649 7.14 10
21 0 9 545 5.79 12
22 0 53 253 5.58 12
23 0
24 0

3.3 The cubic case

Chvátal [11] asked in 1973 whether cubic planar hypohamiltonian graphs exist. His ques-
tion was settled in 1981 by Thomassen [38], who constructed such graphs of order 94 + 4k
for every k ≥ 0. However, the following two questions raised in [21, Chapter 7] remained
open: (i) Are there smaller cubic planar hypohamiltonian graphs? (ii) Does there exist a
positive integer n0 such that for every even n ≥ n0 there exists a cubic planar hypohamil-
tonian graph of order n? Araya and Wiener answered both of these questions affirmatively
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in [3]. Concerning (i), they showed that there exists a cubic planar hypohamiltonian graph
of order 70. No smaller such graph is known. Regarding (ii), Araya and Wiener [3] showed
that there exists a cubic planar hypohamiltonian graph of order n for every even n ≥ 86.
The second author [43] improved this result by showing that such graphs exist for every
even n ≥ 74.

Until recently, all known cubic planar hypohamiltonian graphs had girth 4. (Recall
that by Lemma 2.3 cubic hypohamiltonian graphs must have girth at least 4). Due to
a recent result of McKay [28], we now know that cubic planar hyohamiltonian graphs
of girth 5 exist, and that the smallest ones have order 76. So the smallest cubic planar
hypohamiltonian must have girth exactly 4.

From the results of Aldred, Bau, Holton, and McKay [1] it follows that there is no cu-
bic planar hypohamiltonian graph on 42 or fewer vertices. (Completing the work of many
researchers, Holton and McKay [20] showed that the order of the smallest non-hamiltonian
cubic planar 3-connected graph is 38; one of the graphs realising this minimum is the fa-
mous Lederberg-Bosák-Barnette graph). Moreover, all 42-vertex graphs presented in [1]
have exactly one face whose size is not congruent to 2 modulo 3, and it was already ob-
served by Thomassen [34] that such a graph cannot be hypohamiltonian. Summarising,
prior to this work we knew that the smallest planar hypohamiltonian graph has girth 4 and
order at least 44 and at most 70.

3.4 Additional properties of cubic planar hypohamiltonian graphs

We now also mention obstructions specifically for cubic planar hypohamiltonian graphs.
For the first obstruction below, we call a face F a k-face if size(F ) = k mod 3. Let G be
a cubic planar hypohamiltonian graph.

(a) Araya and Wiener [3] extended a remark of Thomassen [34] and showed that (i) G
contains at least three non-2-faces, (ii) if G has exactly three non-2-faces, then these
three non-2-faces do not have a common vertex, and (iii) two 1-faces or a 1-face and
a 0-face cannot be adjacent.

(b) Kardoš [23] has recently proven Barnette’s conjecture which states that every cubic
planar 3-connected graph in which each face has size at most 6 is hamiltonian. Thus,
G must contain a face of size at least 7.

By using the program plantri [9] we generated all cubic planar cyclically 4-connected
graphs with girth 4 up to 52 vertices and tested them for hypohamiltonicity. (Note that
prior to our result, the best lower bound for the order of the smallest cubic planar hypo-
hamiltonian graph was 44, see [3]). No hypohamiltonian graphs were found, so we have in
summary the following.

Theorem 3.5. The smallest cubic planar hypohamiltonian graph has girth 4, at least 54
and at most 70 vertices.

As mentioned earlier, McKay [28] recently showed that there exist no cubic planar
hypohamiltonian graphs of girth 5 with less than 76 vertices, and exactly three such graphs
of order 76. All three graphs have trivial automorphism group. In that paper the natural
question is raised whether infinitely many such graphs exist. Using the program plantri [9]
we generated all cubic planar cyclically 4-connected graphs with girth 5 with 78 vertices
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and tested them for hypohamiltonicity. This yielded exactly one such graph. Although we
are not able to settle McKay’s question, in the following theorem we make a first step.

Theorem 3.6. There is exactly one cubic planar hypohamiltonian graph of order 78 and
girth 5. This graph is shown in Figure 5. It is the smallest cubic planar hypohamiltonian
graph of girth 5 with a non-trivial automorphism group and has D3h symmetry (as an
abstract group, this is the dihedral group of order 12).

The graph from Theorem 3.6 can also be downloaded and inspected at the database
of interesting graphs from the House of Graphs [5] by searching for the keywords “hypo-
hamiltonian * D3h”.

(a) (b)

Figure 5: The smallest cubic planar hypohamiltonian graph of girth 5 with a non-trivial
automorphism group. It has 78 vertices and D3h symmetry. Both Figure 5a and Figure 5b
show different symmetries of the same graph.

4 Outlook
We would like to conclude with comments and open questions which might be worth pur-
suing as future work.

1. We have seen that the order of the smallest planar hypohamiltonian graph must lie be-
tween 23 and 40. Let us read “being planar” as “having crossing number 0”. It is not
difficult to show that the Petersen graph is the smallest hypohamiltonian graph with
crossing number 2, see e.g. [42]. The second author showed in [42] that there exists a
hypohamiltonian graph with crossing number 1 and order 46. Recently, Wiener [40]
constructed a hypohamiltonian graph with crossing number 1 and order 36. This is
the smallest example up to date—so we ask here: what is the order of the smallest
hypohamiltonian graph with crossing number 1?

2. In the deep and technical paper [32], Sanders defines a graphG to be almost hamilto-
nian if every subset of |V (G)| − 1 vertices is contained in a cycle. Every hypocyclic
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(and thus every hypohamiltonian) graph is almost hamiltonian, but the converse is
not necessarily true: take a hamiltonian graphG in which there exists a vertex v such
that G − v is not hamiltonian. Sanders characterises almost hamiltonian graphs in
terms of circuit injections and binary matroids (for the definitions, see [32]). Possibly
an algorithmic implementation of Sanders’ characterisation is worth pursuing.

3. Ad finem, we discuss the order of the smallest planar hypohamiltonian graph. In this
article, we have increased the lower bound from 18 to 23, but there is still a con-
siderable gap to 40, the best available upper bound [22]. As mentioned in [22], it
would be somewhat surprising if every extremal graph would have trivial automor-
phism group—note that the smallest planar hypohamiltonian graphs we know of, the
40-vertex graphs from [22], all have only identity as automorphism. An exhaus-
tive search for graphs with prescribed automorphisms might lead to smaller planar
hypohamiltonian graphs.
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AGH University, Department of Discrete Mathematics,
al. Mickiewicza 30, 30-059 Krakow, Poland

Received 27 November 2015, accepted 13 February 2017, published online 6 March 2017

Abstract

The distinguishing index of a graphG, denoted byD′(G), is the least number of colours
in an edge colouring of G not preserved by any non-trivial automorphism. We characterize
all connected graphs G with D′(G) ≥ ∆(G). We show that D′(G) ≤ 2 if G is a traceable
graph of order at least seven, and D′(G) ≤ 3 if G is either claw-free or 3-connected and
planar. We also investigate the Nordhaus-Gaddum type relation: 2 ≤ D′(G) + D′(G) ≤
max{∆(G),∆(G)}+ 2 and we confirm it for some classes of graphs.

Keywords: Edge colouring, symmetry breaking in graph, distinguishing index, claw-free graph, pla-
nar graph.
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1 Introduction
We follow standard terminology and notation of graph theory (cf. [12]). In this paper, we
consider general, i.e. not necessarily proper, edge colourings of graphs. Such a colouring
f of a graph G breaks an automorphism ϕ ∈ Aut(G) if ϕ does not preserve colours of f .
The distinguishing index D′(G) of a graph G is the least number d such that G admits an
edge colouring with d colours that breaks all non-trivial automorphisms (such a colouring is
called a distinguishing edge d-colouring). Clearly, D′(K2) is not defined, so in this paper,
a graph G is called admissible if neither G nor G contains K2 as a connected component.

The definition of D′(G) introduced by Kalinowski and Pilśniak in [17] was inspired
by the distinguishing number D(G) which was defined for general vertex colourings by
Albertson and Collins [1]. Another concept is the distinguishing chromatic number χD(G)
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introduced by Collins and Trenk [7] for proper vertex colourings. Both numbers,D(G) and
χD(G), have been intensively investigated by many authors in recent years [4, 5, 6, 9, 16].

Our investigation was motivated by the renowned result of Nordhaus-Gaddum [18] who
proved in 1956 the following lower and upper bounds for the sum of the chromatic numbers
of a graph and its complement (actually, the upper bound was first proved by Zykov [22] in
1949).

Theorem 1.1 ([18]). If G is a graph of order n with the chromatic number χ(G), then

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1.

Since then, Nordhaus-Gaddum type bounds were obtained for many graph invariants.
An exhaustive survey is given in [2]. Here, we adduce only those closely related to the
topic of our paper.

In 1964, Vizing [20] considered proper edge colourings and he proved Nordhaus-
Gaddum type bounds for the chromatic index of a graph.

Theorem 1.2 ([20]). If G is a graph of order n with the chromatic index χ′(G), then

n− 1 ≤ χ′(G) + χ′(G) ≤ 2(n− 1).

In 2013, Collins and Trenk [8] proved Nordhaus-Gaddum type inequalities for the dis-
tinguishing chromatic number.

Theorem 1.3 ([8]). For every graph of order n and distinguishing number D(G) the fol-
lowing inequalities are satisfied

2
√
n ≤ χD(G) + χD(G) ≤ n+D(G).

Kalinowski and Pilśniak [17] also introduced a distinguishing chromatic index χ′D(G)
of a graph G as the least number of colours in a proper edge colouring that breaks all
non-trivial automorphisms of G. They proved the following somewhat unexpected result.

Theorem 1.4 ([17]). If G is a connected graph of order n ≥ 3, then

χ′D(G) ≤ ∆(G) + 1

unless G ∈ {C4,K4, C6,K3,3} when χ′D(G) ≤ ∆(G) + 2.

The following Nordhaus-Gaddum type inequalities for the distinguishing chromatic
index are the same as in Theorem 1.2 but we have to be more careful in the proof.

Theorem 1.5. If G is an admissible graph of order n ≥ 3, then

n− 1 ≤ χ′D(G) + χ′D(G) ≤ 2(n− 1)

with the only exception K1,4.

Proof. Without loss of generality we may assume that G is connected. It can be eas-
ily checked that the conclusion holds if G ∈ {K4, C6, C6,K3,3}. Otherwise, χ′D(G) ≤
∆(G) + 1. Suppose first that G is also connected. By Theorem 1.4,

∆(G) + ∆(G) ≤ χ′D(G) + χ′D(G) ≤ ∆(G) + ∆(G) + 2.
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Clearly, n− 1 ≤ ∆(G) + ∆(G) ≤ 2(n− 2) since both G and G are connected.
Now, let G be disconnected (but admissible). If there are two nonisomorphic compo-

nents of G of orders k1 and k2 such that 3 ≤ k1 ≤ k2, then ∆(G) ≤ n− k1 − 1 ≤ n− 4,
so χ′D(G) ≤ n − 2. If G has t ≥ 2 components isomorphic to a graph H of order at least
three, then χ′D(H) ≤ n

t + 1 as ∆(H) ≤ n
t − 1. Even if we wastefully add an extra colour

for each additional copy of H , we get χ′D(tH) ≤ n
t + 1 + t− 1 = n

t + t ≤ n− 2 unless
G = K3,3 but this we already checked.

To complete the proof it is enough to settle the case whenG has only one componentH
of order at least three and some isolated vertices. Hence, ∆(H) ≤ n−2. It is easy to check
that χ′D(G) + χ′D(G) ≤ 2(n− 1) for H ∈ {K4, C6, C6,K3,3} except for H = K4 when
G = K1,4. Otherwise, χ′D(G) ≤ n − 1 and the conclusion holds unless |G| = |H| + 1
and ∆(H) = n − 2. But then G has a unique vertex x of degree n − 1 (hence, x is fixed
by every automorphism of G) with a pendant edge. The graph G − x has a distinguishing
colouring with n−1 colours by Theorem 1.4 since ∆(G−x) ≤ n−2. It suffices to colour
the pendant edge with a colour missing at x to see that χ′D(G) ≤ n− 1.

Collins and Trenk observed in [8] that the Nordhaus-Gaddum type relation is trivial
for the distinguishing number, as D(G) + D(G) = 2D(G) since Aut(G) = Aut(G) and
every colouring of V (G) breaking all non-trivial automorphisms of G also breaks those of
G.

In Section 4 we formulate and discuss the following conjecture.

Conjecture 1.6. Let G be an admissible graph of order n ≥ 7, and let ∆ = max{∆(G),
∆(G)}. Then

2 ≤ D′(G) +D′(G) ≤ ∆ + 2.

In Section 2 we characterize graphs G which need exactly ∆(G) colours to break all
non-trivial automorphisms. In Section 3 we give upper bounds for the distinguishing index
of traceable graphs, claw-free graphs, planar graphs and 2-connected graphs.

2 Improved general upper bound
In the sequel, we make use of some facts proved in [17].

Proposition 2.1 ([17]). D′(Pn) = 2 for every n ≥ 3.

Proposition 2.2 ([17]). D′(Cn) = 3 for n ≤ 5, and D′(Cn) = 2 for n ≥ 6.

Proposition 2.3 ([17]). D′(Kn) = 3 if 3 ≤ n ≤ 5, and D′(Kn) = 2 if n ≥ 6.

Proposition 2.4 ([17]). D′(K3,3) = 3, and D′(Kn,n) = 2 if n ≥ 4.

By the well-known theorem of Jordan (cf. [12]), every finite tree T has either a central
vertex or a central edge, which is fixed by every automorphism of T . In the proof of Theo-
rem 2.8, which is the main result of this section, we use Lemma 2.5, a simple generalization
of the theorem of Jordan. Recall that the eccentricity of a vertex v in a connected graph G
is the number

εG(v) = max{d(v, u) : u ∈ V (G)}.
The center of a graph G is the set Z(G) of vertices with minimum eccentricity. Clearly,
the center of G is setwise fixed by every automorphism ϕ ∈ Aut(G), i.e. ϕ(v) ∈ Z(G) if
v ∈ Z(G). A proper subgraph H of G is called pendant if it has only one vertex adjacent
to vertices outside H .
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Lemma 2.5. Let G be a connected graph such that every cycle is contained in a clique.
Then the center of G is either a single vertex or a maximal clique.

Proof. The claim is true if G is a clique Kk of order k ≥ 1. Otherwise, κ(G) = 1, and
each block of G is a clique of order at least two. We then modify the standard proof of the
theorem of Jordan for trees. Let G− be a graph obtained from G by deleting k− 1 vertices
of degree k − 1 in every pendant clique Kk with k ≥ 2. Clearly, εG−(v) = εG(v)− 1 for
each v ∈ V (G−). Consequently, Z(G−) = Z(G). We continue this process until only one
clique Kk is left for some k ≥ 1. This clique is maximal whenever k ≥ 2.

A symmetric tree, denoted by Th,d, is a tree with a central vertex v0, all leaves at
the same distance h from v0 and all vertices that are not leaves of equal degree d. A
bisymmetric tree, denoted by T ′′h,d, is a tree with a central edge e0, all leaves at the same
distance h from the edge e0 and all vertices which are not leaves of equal degree d.

Theorem 2.6 ([17]). If T is a tree of order n ≥ 3, thenD′(T ) ≤ ∆(T ). Moreover, equality
is achieved if and only if T is either a symmetric or a bisymmetric tree.

For connected graphs in general there is the following upper bound for D′(G).

Theorem 2.7 ([17]). If G is a connected graph of order n ≥ 3, then

D′(G) ≤ ∆(G)

unless G is C3, C4 or C5.

It follows for connected graphs that D′(G) > ∆(G) if and only if D′(G) = ∆(G) + 1
and G is a cycle of length at most 5. The equality D′(G) = ∆(G) holds for cycles of
length at least 6, for K4, K3,3 and for all symmetric or bisymmetric trees. Now, we show
that D′(G) < ∆(G) for all other connected graphs. A palette of a vertex is the multiset of
colours of edges incident to it.

Theorem 2.8. Let G be a connected graph that is neither a symmetric nor a bisymmetric
tree. If the maximum degree of G is at least 3, then

D′(G) ≤ ∆(G)− 1

unless G is K4 or K3,3.

Proof. Denote ∆ = ∆(G). The conclusion holds for trees due to Theorem 2.6. Then
assume that G contains a cycle. The general idea of the proof is the following. If G does
not contain a cycle of length greater than three, then we define G′ as an empty graph.
Otherwise, we consecutively delete pendant trees and pendant triangles until we obtain a
subgraph G′. Then, we construct an edge colouring f with ∆ − 1 colours stabilizing all
vertices of G′ by every automorphism preserving f . Finally, we colour pendant subtrees
and pendant triangles to complete a distinguishing colouring with ∆ − 1 colours of the
whole graph G.

If ∆(G′) = 2, then G′ is a cycle Cp having a distinguishing colouring with ∆ − 1
colours unless p ∈ {4, 5} and ∆ = 3. In this case, it can be easily checked that the
graph G′+ induced by Cp and the independent edges of G incident to Cp can always be
coloured with two colours such that the vertices of Cp are fixed by every colour preserving
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automorphism. So we can assume that ∆(G′) ≥ 3. If G′ ∈ {K4,K3,3}, then G′ 6= G due
to the assumption, hence ∆ ≥ 4, so we can stabilize K4 or K3,3 with three colours.

LetNi(v) denote the i-th sphere in v, i.e. the set of vertices of distance i from the vertex
v. Let x be a vertex with maximum degree in G′. We colour with 1 all edges incident with
x. In our edge colouring f of the graph G′, the vertex x will be the unique vertex of
maximum degree with the monochromatic palette {1, . . . , 1}. Hence, x will be fixed by
every automorphism ϕ preserving f . Consequently, ϕ maps each sphere Ni(x) onto itself.

The first sphere N1(x) can be partitioned into subsets Mk, for k = 0, . . . ,∆ − 1,
defined as

Mk = {v ∈ N1(x) : |N1(v) ∩N2(x)| = k}.

Denote Mk = {v1, . . . , vlk}. Thus, l0 + l1 + . . .+ l∆−1 = ∆.
We want to find a colouring f of the edges of G′[N1(x) ∪ N2(x)] and, if necessary,

of some subsequent spheres, such that each vertex of N1(x) ∪ N2(x) is fixed by every
automorphism preserving this colouring. To do this, we proceed in a number of steps Mk,
for k = 0, . . . ,∆ − 1. In each step Mk, we find a colouring that fixes the vertices of Mk

and their neighbours in N2(x).
Step M0. First we consider the case when the subgraphG′[M0] induced by the vertices

ofM0 is connected. Observe that ∆(G′[M0]) ≤ ∆−1 and, by Theorem 2.7, we can colour
distinguishingly the edges of G′[M0] with ∆ − 1 colours, even if G′[M0] is a short cycle
Cp with 3 ≤ p ≤ 5. Indeed, if G′[M0] = C3 and ∆ = 3, then we would have G = K4,
but K4 is excluded. Otherwise, ∆ ≥ 4 and we can use a third colour in a short cycle Cp.
It may happen that there exists a vertex v ∈ M0 of degree ∆ in G′ (so |M0| = ∆) with a
monochromatic palette {1, . . . , 1} in a colouring of G′[M0] given by Theorem 2.7. In this
case, either G is a complete graph Kn with n ≥ 5 so D′(Kn) ≤ ∆ − 1 by Proposition
2.3, or it is not difficult to see that there exists a colour c such that there is no vertex with
all incident edges coloured with c; whence we can exchange c and 1 in this colouring of
G′[M0].

Now, let G′[M0] be disconnected. Let z1, . . . , zs be isolated vertices or end-vertices of
isolated edges in G′[M0]. Clearly, s ≤ ∆ − 1 by the definition of G′. If s = ∆ − 1, then
we colour with i every edge ziu, where u ∈ N1(x) \M0. Otherwise, we colour ziu with
i + 1 for i = 1, . . . , s. Thus, we avoid a monochromatic palette of {1, . . . , 1} at another
vertex of maximum degree in G′.

We also have to distinguish all isomorphic components of G′[M0] of order greater
than 2. Denote such a component by H and suppose that G′[M0] contains t components
isomorphic to H , for some t ≥ 2. Hence t ≤ ∆

3 and ∆(H) ≤ ∆
t − 1. Therefore, we can

choose distinct sets of ∆
t colours for every component since(

∆− 1
∆
t

)
≥
(

∆− 1

3

)
≥ ∆

3
≥ t.

Thus each vertex of M0 is fixed.
Step M1. For every i = 1, . . . , l1, we colour the edge viu, where u ∈ N2(x), with a

distinct colour from {1, . . . ,∆ − 1}. This is impossible only if l1 = ∆, when we have to
have two vertices a, b ∈M1 with the same colour of edges aa′ and bb′, where a′ and b′ are
neighbours of a and b in N2(x), respectively. If G′[M1] contains an edge e, then we colour
it with 1, and all other edges of G′[M1] with 2. Then we choose exactly one of the vertices
a, b incident to e. We proceed analogously when G′[N2(x)] contains an edge. Then all
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vertices of M1 are fixed unless l1 = ∆ and neither G′[N1(x)] nor G′[N2(x)] contains an
edge.

If |N2(x)| = 1, thenG′ is isomorphic toK2,∆. It is easy to see thatD′(K2,∆) ≤ ∆−1
for ∆ ≥ 3 (for ∆ ≥ 4 this immediately follows from Lemma 3.1 and Corollary 3.8). If
2 ≤ |N2(x)| ≤ ∆ − 1, then choosing a and b such that a′ has at least two neighbours in
N1(x) and b′ 6= a′ yields a colouring fixing N1(x) ∪N2(x).

Suppose |N2(x)| = ∆. If there is a vertex v ∈ N2(x) with less than ∆− 1 neighbours
in N3(x), then we choose a such that a′ = v, and it suffices to reserve a unique set of
colours for the edges between a′ and N3(x).

Hence, assume that every vertex of N2(x) has ∆ − 1 neighbours in N3(x). We select
two vertices a, b ∈ M1 and assume that the colours of the edges aa′ and bb′ are the same.
Next, we implement the following Procedure SUBTREES (a, b), which we also use in
subsequent steps.

Procedure SUBTREES (a, b)
We are given two vertices a, b ∈ N1(x) such that each their neighbour in N2(x) is adjacent
to ∆− 1 vertices of N3(x).

Let Ta be a maximal subtree of the graph G′[{a} ∪
⋃

i≥2Ni(x)], rooted at a, such that
all leaves of Ta belong to the same sphere Nl−1(x) and each vertex of V (Ta) ∩ Ni−1(x)
has ∆− 1 neighbours in Ni(x) for i = 3, . . . , l. Thus l ≥ 3. Define a graph

T̃a = G′[
⋃

v∈V (Ta)\{a}

N(v)],

i.e. T̃a is a graph obtained from Ta by adding all edges incident with the leaves of Ta.
Analogously, we define a tree Tb and a graph T̃b. Observe that the trees Ta and Tb are
disjoint and non-empty.

The edges incident to the roots a and b are already coloured. For every other vertex
of Ta and Tb, we colour its incident edges going to the next sphere with distinct colours
from {1, . . . ,∆− 1}. Thus we obtain an edge colouring f . The only automorphism of Ta
(as well as of Tb) preserving f is the identity. The vertex x will be fixed by every colour
preserving automorphism ϕ. Consequently, ϕ maps T̃a onto T̃b whenever ϕ(a) = b. Thus,
if T̃a and T̃b are not isomorphic, then f distinguishes all vertices in V (Ta)∪V (Tb). Hence,
assume that the rooted graphs T̃a and T̃b are isomorphic. Observe that there exists exactly
one non-trivial isomorphism ψ0 : V (Ta) → V (Tb) preserving f since each vertex in Ta
has a distinct coloured path from the root a.

Denote Wl = (V (T̃a)∪ V (T̃b))∩Nl(x). By our choice of G′, all vertices in Wl are of
degree at least two in G′. It follows that one of the following three cases has to hold.

Case 1. There exist vertices in Wl adjacent to more than one vertex of Wl−1. Then we
modify f by colouring again all edges between such vertices and Wl−1 in order to break
any possible permutation of Wl. A permutation of a set L ⊆ Wl can be extended to an
automorphism of G′ that fixes all leaves of T̃a ∪ T̃b only if every vertex from L have the
same set of neighbours U = {u1, . . . , ud} in Wl−1. Such a set L contains at most ∆ − 1
leaves since the number of edges joining U to Wl equals d(∆ − 1). Every permutation of
L will be broken whenever for every vertex w ∈ L the multiset of colours of the edges
wu1, . . . , wud will be distinct. Clearly, d ≤ ∆. There are

(
∆+d−2

d

)
such possible multisets

of ∆− 1 colours. Clearly,
(

∆+d−2
d

)
− 1 ≥ ∆− 1 for ∆ ≥ 3 and d ≥ 2. We can exclude a



M. Pilśniak: Improving upper bounds for the distinguishing index 265

a

Figure 1: An example of the subgraph T̃a for ∆ = 4 and l = 4. The edges of T̃a between
W3 and W4 that do not belong to the tree Ta are dashed.

rainbow multisetP = {1, . . . , d} (or an almost rainbow multisetP = {1, . . . ,∆−1,∆−1}
if d = ∆) and we still have enough multisets to colour the edges incident with vertices of
L. Moreover, for d = ∆ we can also exclude a monochromatic palette {1, . . . , 1} since(

2∆−2
∆

)
− 2 ≥ ∆− 1 for ∆ ≥ 3.

We partition the set Wl into maximal subsets L with the same set of neighbours and
assign suitable multisets of colours to each set L. We thus obtain a colouring fixing all
vertices fromWl unless ψ0 can be extended to an isomorphism ψ̃0 of T̃a onto T̃b preserving
this colouring. To break every such possible extension ψ̃0, it suffices to assign the excluded
multiset P to one vertex of one set L.

Case 2. Every vertex in Wl has only one neighbour in Wl−1 and the set of edges
F = E(G′[Wl]) is non-empty. Then we colour one edge of F with 1, and all other edges
in F with 2. This colouring fixes all vertices of T̃a and T̃a unless all edges in F are of the
form wψ̃0(w), where wψ̃0(w) is one of possible extensions of ψ0 to an isomorphism of T̃a
onto T̃b. In such a case, we choose one edge ww′ ∈ F and exchange colours of the edge
wu, where u ∈Wl−1, with another edge between u and Wl.

Case 3. Every vertex in Wl has only one neighbour in Wl−1 and no neighbours in
Wl. By the maximality of the trees Ta and Tb and the definition of G′, each vertex in
Wl has at least one neighbour in Nl+1(x) and there exists a vertex w0 ∈ Wl with s <
∆− 1 neighbours y1, . . . , ys ∈ Nl+1(x). We colour each edge w0yj with colour j + 1 for
j = 1, . . . , s. Next, for every vertex w ∈ Wl, we colour the set of edges between w and
Nl+1(x) with a set of ∆− 1 colours excluding the set {2, . . . , s+ 1}.

We thus obtained a colouring f of the edges of G′[V (T̃a) ∪ V (T̃b)], and the edges
incident to Wl in Case 3, fixing all vertices of T̃a and T̃b.

End of Procedure SUBTREES (a, b)

Step M2. For every i = 1, . . . , l2, we colour the edges viu1
i , viu2

i where {u1
i , u

2
i } ⊆

N2(x), with distinct sets of colours from among
(

∆−1
2

)
sets. This is impossible only in the

following three cases (in each case, we can assume that neither G′[N1(x)] nor G′[N2(x)]
contains an edge, otherwise we could construct a distinguishing colouring f ofG′[N1(x)∪
N2(x)] analogously as in step M1):
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a) l2 = ∆ = 4. If there exist two vertices a and b in M2 such that N(a) ∩ N(b) ∩
N2(x) 6= ∅, then we colour with 2 both edges incident with b, and for the remaining
vertices in M2 we have distinct sets of colours from among

(
3
2

)
sets. If for every two

vertices a, b ∈ M2, the set N(a) ∩N(b) ∩N2(x) is empty, then two vertices a and
b are assign the same pair of distinct colours, and we can distinguish them in next
spheres using the procedure SUBTREES (a, b).

b) l2 = ∆ − 1 and ∆ = 3. Let M2 = {a, b}. If N(a) ∩ N(b) ∩ N2(x) 6= ∅, then
we colour edges incident with a with colours 1 and 2, and both edges incident with
b with 2. If the set N(a) ∩ N(b) ∩ N2(x) is empty, then a and b get the same pair
of distinct colours and we can distinguish them in next spheres by the procedure
SUBTREES (a, b).

c) l2 = ∆ = 3. Let M2 = {a, b, c}. If for two vertices of M2, say a and b, the set
N(a) ∩N(b) ∩N2(x) is non-empty, then we can colour with 2 both edges incident
with b and we colour edges incident with the remaining vertices of M2 with a couple
{1, 2}. It is not difficult to verify that this way, for every configuration of neighbours
of M2, we can obtain colouring fixing the vertices of N1(x)∪N2(x) unless |N(a)∩
N(b) ∩N(c) ∩N2(x)| = 2. But then G′ = G = K3,3, contrary to the assumption.
If every vertex of N2(x) is adjacent only to one vertex of M2, then the pairs of edges
incident to a and b are assign the same pair of colours {1, 2}, and we distinguish
them using the procedure SUBTREES (a, b). Both edges cu1, cu2 incident with c
are coloured with 2, and to distinguish them, we split c into two vertices c1 and c2,
each joined by an edge coloured with 2 to u1 and u2, respectively, and apply the
procedure SUBTREES (c1, c2).

Step Mk, for k ≥ 3. For every i = 1, . . . , lk, we colour the edges between vi and
N2(x) with distinct sets of k colours from among

(
∆−1
k

)
sets. It is always possible when-

ever
(

∆−1
k

)
≥ lk. This inequality does not hold only in two cases:

a) k = ∆− 2 and lk = ∆. In this case we define a colouring with ∆− 1 colours like in
step M2 a). Namely, if either a vertex of Mk or its neighbour in N2(x) is adjacent to
a vertex in the same sphere, then we can define a colouring fixing all these vertices
analogously as in step M1 and step M2. Also, if there are two vertices a, b ∈M∆−2

with a common neighbour in N2(x), we can assign the same palette to a and b as in
the previous steps. Otherwise, two vertices a, b ∈M∆−2 are assign the same palette
of ∆− 2 colours and we distinguish them using Procedure SUBTREES (a, b).

b) k = ∆ − 1 and lk ≥ 2. Hence, ∆ ≥ 4. For every i = 1, . . . , lk, the set of edges
between vi ∈M∆−1 and N2(x) will be assign a distinct multiset P i of colours from
the set {1, . . . ,∆− 1}, where only colour i appears twice. Moreover, one vertex can
assign a rainbow palette {1, . . . ,∆ − 1}. Thus every vertex of M∆−1 will have a
distinct palette, and hence will be stabilized. To stabilize the two vertices of N2(x)
joined to vi by edges of colour i, we examine the vertices v1, . . . , v∆−1 of M∆−1 in
the following order.

First, we consider each vertex vi that have a neighbour wi ∈ N2(x) with at least one
but at most ∆− 2 neighbours in N3(x). We choose another neighbour w′i ∈ N2(x)
of vi and assign two distinct sets of colours for the edges going toN3(x) fromwi and
w′i, respectively. We colour the edges viwi and viw′i with the same colour i. Thus all
neighbours of vi are stabilized.
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In the next stage, we consider every vertex vi with every neighbour inN2(x) adjacent
to ∆ − 1 vertices of N3(x). We colour the set of edges between vi and N2(x) with
the palette P i, where two edges viu1, viu2 are coloured with i. Then we delete vi
and introduce two vertices v1

i , v
2
i and edges v1

i u1 and v2
i u2 coloured with i. Then we

use the procedure SUBTREES (v1
i , v

2
i ) to stabilize u1 and u2.

Further, we consider each vertex vi with a neighbour wi ∈ N2(x) incident to an
edge wiu, where u ∈ N2(x). First, we look for such an edge wiu, which is already
coloured. If there is no such edge, we take an uncoloured wiu and colour it with
colour 3. In both cases, we put colour i on the edge viwi and another edge viw with
w 6= u. After we examine each such vertex vi, we colour with 2 all remaining edges
contained in N2(x).

Finally, we are left with at most ∆ vertices vi such that every neighbour of vi is
adjacent only to (at least two) vertices of N1(x). We take a first such vertex vi and
assign colour i to two its incident edges viwi and viw′i. Thus all neighbours of vi are
stabilized unless common neighbours of wi and w′i were not considered yet. Then
we take such a neighbour vj and colour its incident edges with the palette P j such
that the edges vjwi and vjw′i have distinct colours. We repeat this procedure until
only one vertex of M∆−1 is left. We put a rainbow palette {1, . . . ,∆ − 1} on its
incident edges.

After we accomplish steps M0, . . . ,M∆−1, we colour all uncoloured edges in sub-
graphs G′[N1(x)] and G′[N2(x)] with 2. Each vertex of N1(x) ∪ N2(x) is now fixed by
every automorphism preserving our colouring f of edges of G′[{x}∪N1(x)∪N2(x)], and
of some edges between next spheres, if the procedure SUBTREES was used.

Then we recursively colour all yet uncoloured edges incident to consecutive spheres
Ni(x) as follows: for v ∈ Ni(x), i ≥ 2, we colour all edges vu, where u ∈ Ni+1(x),
with distinct colours from {1, . . . ,∆ − 1}. This is always possible since every vertex of
Ni(x) has at most ∆ − 1 neighbours in Ni+1(x). Finally, we colour all uncoloured edges
with end-vertices in the same sphere with 2. Hence, all vertices of G′ are fixed by any
automorphism preserving our colouring f . It is also easily seen that the already coloured
edges can save their colours. Moreover, it is not difficult to observe that x is the unique
vertex of maximum degree with a monochromatic palette {1, . . . , 1}. Thus, the whole
subgraph G′ (or G′+) is fixed.

To end the proof, we colour pendant trees and triangles deleted fromG at the beginning.
First assume that G′ is not empty. Let Ni(G

′), for i ≥ 0, be the set of vertices of distance
i from G′. Then we recursively colour the edges incident to consecutive spheres Ni(G

′) in
the following way: for v ∈ Ni(G

′), i ≥ 0, we colour all edges vu, where u ∈ Ni+1(G′),
with distinct colours from {1, . . . ,∆−1} and the remaining edges incident to v, contained
in Ni(x), with 2. Hence, all vertices of G will be fixed by any automorphism preserving
our colouring f .

If G′ is empty, then we start with the centre Z(G) that is setwise fixed by every auto-
morphism. It follows from Lemma 2.5 that Z(G) either induces K3, or K2 (not contained
in K3), or K1. Let first Z(G) induce a triangle K3. If ∆ = 3, then we stabilize Z(G)
by colouring with two colours all edges incident with vertices of Z(G). When ∆ ≥ 4, we
can colour the edges of the triangle Z(G) with three colours. Next, we recursively colour
edges incident to subsequent spheres Ni(Z(G)) with ∆− 1 colours.

If Z(G) is an edge e, then G − e has two components. We distinguish each of them
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by colouring subsequent spheres Ni(Z(G)) with ∆ − 1 colours. If the components are
isomorphic, then by assumption, each of them has a triangle. We colour two edges of these
triangles contained in a sphere Ni(Z(G)), for some i ≥ 2, with two distinct colours.

Finally, let Z(G) be a single vertex z. Hence,G−z has q ≥ 2 components, each joined
to z by one or two edges. If q < ∆, then we can easily colour distinguishingly the edges
incident with subsequent spheres Ni(z), i ≥ 0, with ∆ − 1 colours. If q = ∆, then we
choose two components of G− z, at least one of them with a triangle, and colour their two
edges incident with z with the same colour. Then we distinguish these two components by
an edge of the triangle.

3 Some classes of graphs
A graph G is called asymmetric if its automorphism group is trivial. Then obviously
D′(G) = 1.

We say that a graph G is almost spanned by a subgraph H (not necessarily connected)
ifG−v is spanned byH for some v ∈ V (G). The following observation will play a crucial
role in this section.

Lemma 3.1. If a graph G is spanned or almost spanned by a subgraph H , then

D′(G) ≤ D′(H) + 1.

Proof. We colour the edges of H with colours 1, . . . , D′(H), and all other edges of G
with an additional colour 0. If ϕ is an automorphism of G preserving this colouring, then
ϕ(x) = x, for each x ∈ V (H). Moreover, if H is a spanning subgraph of G− v, then also
ϕ(v) = v. Therefore, ϕ is the identity.

3.1 Traceable graphs

Recall that a graph is traceable if it contains a Hamiltonian path.

Theorem 3.2. If G is a traceable graph of order n ≥ 7, then D′(G) ≤ 2.

Proof. Let Pn = v1v2 . . . vn be a Hamiltonian path of G. If G = Pn, then the conclusion
follows from Proposition 2.1. IfG is isomorphic to Pn+v1v3, then we colour the edge v1v3

with 1, and all other edges with 2 breaking all non-trivial automorphisms of G. So suppose
that G contains an edge vivj distinct from v1v3 and vn−2vn with i < j − 1. Without
loss of generality we may assume that i − 1 ≤ n − j (otherwise we reverse the labeling).
It is easy to see that at least one of the graphs Pn + vivj − vj−1vj , Pn + vivj − vj−1 or
Pn+vivj−vn is an asymmetric spanning or almost spanning subgraph ofG for any n ≥ 7.
The conclusion follows from Lemma 3.1.

The assumption n ≥ 7 is substantial in Theorem 3.2 as D′(K3,3) = 3.

3.2 Claw-free graphs

A K1,3-free graph, called also a claw-free graph, is a graph containing no copy of K1,3

as an induced subgraph. Claw-free graphs have numerous applications, e.g., in operations
research and scheduling theory. For a survey of claw-free graphs and their applications
consult [10].

A k-tree of a connected graph is its spanning tree with maximum degree at most k.
Win [21] investigated spanning trees in 1-tough graphs and proved the following result.
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Theorem 3.3 ([21]). A 2-connected claw-free graph has a 3-tree.

We use this result to give an upper bound for the distinguishing number of claw-free
graphs.

Theorem 3.4. If G is a connected claw-free graph, then D′(G) ≤ 3.

Proof. Assume first that G is 2-connected. By Theorem 3.3, G contains a 3-tree T . By
Theorem 2.6, we have D′(T ) ≤ 2 if T is neither symmetric nor bisymmetric tree. In such
a case, D′(G) ≤ 3 by Lemma 3.1.

Let T be a symmetric tree Th,3. Denote a central vertex of T by x and its neighbours
by a, b, c. Since G is a claw-free graph, there exists in G at least one edge, say bc, in the
neighbourhood of x in T . Define a subgraph T̃ = T + bc. We colour bc, xa and xb with
1, and xc with 2. Thus all vertices a, b, c, x are fixed by every non-trivial automorphism of
T̃ . We now colour the remaining edges in T̃ starting from the edges incident to a, b, c in
such a way that two uncoloured adjacent edges obtain two different colours 1 and 2. This
2-colouring breaks all non-trivial automorphisms of T̃ . Hence, D′(G) ≤ 3 by Lemma 3.1.

Let T be a bisymmetric tree T ′′h,3. Denote a central edge by xy and its neighbours by
a, b adjacent to x, and c, d adjacent to y. We colour xy, xa and yc with 1, and xb and yd
with 2. Since G is claw-free, there exists in G either at least one of the edges by, cx (or
symmetrically dx or ay) or both ab and cd. We define a subgraph T̃ obtained from the tree
T by adding either one of the edges by, cx (or symmetrically, dx or ay) or both ab and
cd. In the first case we colour by or cx (or symmetrically, dx or ay) with 1, in the second
case we colour ab with 1 and cd with 2. Now all vertices a, b, c, d, x, y are fixed by every
non-trivial automorphism of T̃ . We then colour the remaining edges of T̃ as above, and we
obtain the claim.

If a graphG is not 2-connected, then its graph of blocks and cut-vertices is a path, since
G is claw-free. We colour every block according to the rules described above. Then to
break all non-trivial automorphisms of G, it is enough to break a possible automorphism
ψ ∈ Aut(G) that exchanges two terminal blocks. Let z be a cut-vertex that belongs to a
terminal block B0. It follows that z and its neighbours in B0 induce a clique K of order
k ≥ 2. We have three colours in our disposal, so it is easily seen that we can permute the
colours to obtain a nonisomorphic colouring of K, thus breaking ψ.

The theorem is sharp for graphs of order at most 5. We conjecture that the distinguish-
ing index of claw-free graphs of order big enough is 2.

3.3 Planar graphs

First, recall that by the famous Theorem of Tutte [19], every 4-connected planar graph G
is Hamiltonian. Hence, its distinguishing index is at most 2, by Theorem 3.2, whenever
|G| ≥ 7. A similar result as for claw-free graphs we obtain for 3-connected planar graphs.
In the proof, we use the following result of Barnette about spanning trees of such graphs.

Theorem 3.5 ([3]). Every 3-connected planar graph has a 3-tree.

Using a similar method as in the proof of Theorem 3.4, we obtain the following.

Theorem 3.6. If G is 3-connected planar graph, then D′(G) ≤ 3.
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Proof. Let T be a 3-tree of G. It follows from Theorem 2.6 that D′(T ) ≤ 2 and hence,
D′(G) ≤ 3 by Lemma 3.1, if T is neither a symmetric nor a bisymmetric tree.

Let then T be a symmetric tree Th,3. Denote the central vertex by x, and by Ta, Tb and
Tc the connected components of T − x which are trees rooted at the neighbours a, b, c of
a vertex x, respectively. Since G is 3-connected, there exist an edge e between Ta and Tb
in G. Consider a spanning subgraph T̃ = T + e. Then we colour xa and xc with 1, and
xb with 2, and extend this colouring as in the proof of Theorem 3.4 to a colouring of T̃
breaking all non-trivial automorphisms of T̃ (the colour of e is irrelevant). Consequently,
D′(G) ≤ 3 by Lemma 3.1.

If T is a bisymmetric tree T ′′h,3 with the central edge xy, then we can add to T one edge
in a subtree of T − xy rooted at x, and such a graph can be easily distinguished by two
colours. Again, our claim follows from Lemma 3.1.

3.4 2-connected graphs

For a 2-connected planar graph G, the distinguishing index may attain 1 +
⌈√

∆(G)
⌉

as it

is shown by the complete bipartite graph K2,q with q = r2 for a positive integer r. In this
case, D′(K2,q) = r + 1 as it follows from the result obtained independently by Fisher and
Isaak [11] and by Imrich, Jerebic and Klavžar [14]. They proved the following theorem.
Actually, they formulated it for the distinguishing number D(Kp2Kq) of the Cartesian
product of complete graphs, but D′(Kp,q) = D(Kp2Kq).

Theorem 3.7 ([11, 14]). Let p, q, d be integers such that d ≥ 2 and (d − 1)p < q ≤ dp .
Then

D′(Kp,q) =

{
d, if q ≤ dp − dlogd pe − 1,

d+ 1, if q ≥ dp − dlogd pe+ 1.

If q = dp − dlogd pe then the distinguishing index D′(Kp,q) is either d or d + 1 and can
be computed recursively in O(log∗(q)) time.

In the next section, we make use of the following immediate corollary.

Corollary 3.8. If p ≤ q, then D′(Kp,q) ≤ d p
√
qe+ 1.

In the proof of Proposition 3.10 we also make use of an earlier result of Imrich and
Klavžar [15] which is a slightly weaker version of Theorem 3.7 for d = 2.

Theorem 3.9 ([15]). If 2 ≤ p ≤ q ≤ 2p − p+ 1, then D′(Kp,q) = 2.

Proposition 3.10. If p ≤ q ≤ 2p − p+ 1 and p+ q ≥ 7, then there exists a distinguishing
edge 2-colouring ofKp,q such that the edges in one of colours induce a connected spanning
or almost spanning, asymmetric subgraph of Kp,q .

Proof. The assumptions imply that p ≥ 3, and D′(Kp,q) = 2 by Theorem 3.9. Let P and
Q be the two sets of bipartition of Kp,q with |P | = p and |Q| = q. If p = q, then p ≥ 4,
and there exists a spanning asymmetric tree of Kp,p (see [17]). If p < q ≤ 2p − p + 1,
then for the proof of Theorem 3.9, Imrich and Klavžar in [15] constructed a distinguishing
vertex 2-colouring of Kp2Kq that corresponds to a distinguishing edge 2-colouring f of
Kp,q , where a colouring of vertices in a Kq-layer can be represented by a sequence from
{1, 2}q and it corresponds to a colouring of edges incident to a vertex in P (the same is true
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for Kp-layers and vertices in Q). We wish to show that this colouring yields a connected
asymmetric subgraph of Kp,q which is spanning or almost spanning.

First assume that q = 2p − p + 1. In the coloring f , every vertex in P has distinct
positive number of edges coloured with 1, and there exists a vertex v1 with all incident
edges coloured with 1. Moreover, distinct vertices from Q have distinct sets of neighbours
joined by edges coloured with 1, and there exists a vertex, say v2, with all incident edges
coloured with 2. Let S be a subgraph induced by edges coloured with 1. Then S is an
almost spanning subgraph since v2 is the only vertex outside S. The graph S is connected
because v1 is adjacent to every vertex in Q, and every vertex in P is joined to a vertex in Q
by an edge coloured with 1. Moreover, S is also asymmetric since f breaks all non-trivial
automorphisms of Kp,q and any automorphism interchanging some parts of the sets P and
Q does not preserve distances in S.

Following [15] for p < q < 2p − p+ 1, we exclude a relevant number of such pairs of
sequences of colours that the sum of them is a sequence (3, . . . , 3). Additionally, if both q
and p are odd, we exclude the sequence (0, . . . , 0). Again, we obtain a connected spanning
(or almost spanning) asymmetric subgraph S ofKp,q induced by the edges coloured with 1.

Proposition 3.10 and Lemma 3.1 immediately imply the following.

Corollary 3.11. If a graphG of order at least 7 is spanned byKp,q and p ≤ q ≤ 2p−p+1,
then D′(G) ≤ 2.

In general, for 2-connected graphs we conjecture that the complete bipartite graph
K2,r2 is the worst case, i.e. attains the highest value of the distinguishing index.

Conjecture 3.12. If G is a 2-connected graph, then

D′(G) ≤ 1 +
⌈√

∆(G)
⌉
.

4 Nordhaus-Gaddum inequalities for D′

In this section, we discuss Conjecture 1.6, formulated at the end of Introduction, stating
that

2 ≤ D′(G) +D′(G) ≤ ∆ + 2

for every admissible graph G of order n ≥ 7, where ∆ = max{∆(G),∆(G)}.
The left-hand inequality is obvious. Indeed, if a graph G is asymmetric, then so is G.

Thus we are only interested in the right-hand inequality D′(G) + D′(G) ≤ ∆ + 2. Note
also that at least one of the graphs G and G is connected.

The bound ∆ + 2 cannot be improved. To see this, consider a star K1,n−1 of any
order n ≥ 7. As K1,n−1 is a disjoint union of a complete graph Kn−1 and an isolated
vertex, it follows from Proposition 2.3 that D′(K1,n−1) = 2. Therefore, D′(K1,n−1) +
D′(K1,n−1) = n− 1 + 2 = ∆ + 2.

If T is a tree, then ∆(T ) can be much smaller than ∆ = ∆(T ) = n− 1. However, the
following holds.

Proposition 4.1. If T is a tree of order n ≥ 7, then

D′(T ) +D′(T ) ≤ ∆(T ) + 2.
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Proof. As it was shown above, the conclusion holds for stars. If T is not a star, then
D′(T ) ≤ 2 by Lemma 3.1. Indeed, as it was proved by Hedetniemi et al. in [13], a
complete graph Kn contains edge disjoint copies of any two trees of order n distinct from
a star K1,n−1. Thus, the complement T contains a spanning asymmetric tree. By Theorem
2.6, we have the inequality D′(T ) +D′(T ) ≤ ∆(T ) + 2.

This fact emboldened us to formulate the following stronger conjecture.

Conjecture 4.2. Every connected admissible graphG of order n ≥ 7 satisfies the inequal-
ity

D′(G) +D′(G) ≤ ∆(G) + 2.

Now we show that Conjecture 1.6 holds not only for trees, but also for some other
classes of graphs. To do this we use the following fact.

Theorem 4.3. Let G be a connected admissible graph of order n ≥ 7. If either G or every
connected component of G has the distinguishing index at most 3, then

D′(G) +D′(G) ≤ ∆ + 2,

where ∆ = max{∆(G),∆(G)}.

Proof. Our claim is true for trees by Proposition 4.1. Observe also, that it is true if G is
a path or a cycle of order at least 7 since its complement G is Hamiltonian, and D′(G) +
D′(G) ≤ 4. So, now we can assume that ∆(G) ≥ 3 and neither G nor G is a tree. We
consider two cases.

Case A. Every component H of G satisfies D′(H) ≤ 3.
Then D′(G) ≤ ∆(G) − 1 by Theorem 2.8, and if G is connected, then our claim holds.
Assume now that G is disconnected. Then G is spanned by Kp,q with p ≤ q and ∆ ≥ q,
where p + q = |V (G)|. Suppose that the graph G has t isomorphic components. If we
had a distinct set of three colours for every component, then D′(G) ≤ d 3

√
6te. We then

consider two cases:

a) If q ≤ 2p − p + 1, then D′(G) = 2 by Corollary 3.11. Moreover, we then have at
most n

3 components of G, so D′(G) ≤ d 3
√

2ne. And we can easily see that

d 3
√

2ne+ 2 ≤ n

2
+ 2

for every n ≥ 4.

b) If q ≥ 2p − p + 1, then there exists a big component (of order q) in G and we
can assume that t ≤ p

3 remaining components are isomorphic. In this case, by
assumptions we have p ≤ dlog2(q + p− 1)e, therefore

D′(G) ≤ d 3
√

6te ≤ 3
√

2dlog2(q + p− 1)e.

On the other hand, D′(G) ≤ d p
√
qe + 2 by Corollary 3.8 and Theorem 3.1. Then it

is not difficult to check that for q ≥ 2p − p+ 1

3
√

2dlog2(q + p− 1)e+ d p
√
qe+ 2 ≤ q + 2

what finishes the proof in Case A.
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Case B. D′(G) ≤ 3.
If graph G is connected, then the claim follows immediately from Theorem 2.7 whenever
D′(G) = 2 or D′(G) = 2, and it follows from Theorem 2.8 if D′(G) = 3. Assume now
that G has t ≥ 2 components. Then ∆ ≥ n

2 and, in the worst case, all components of G
are isomorphic. Observe that maximal degree of every component is at most n

t − 1. If we
assign one extra colour to every component, then we need at most n

t − 1 + (t− 1) colours
to distinguish G. Hence, if

n

t
+ t ≤ n

2
− 1,

then D′(G) ≤ ∆− 1, and our claim is true. The above inequality holds unless t = 2.
If there exist two isomorphic components in G, then D′(G) ≤ 2 due to Corollary 3.11

since G is spanned by Kn
2 ,n2

. Then D′(G) ≤ n
2 , and finally D′(G) +D′(G) ≤ n

2 + 2.

Now we can formulate some consequences of Theorem 4.3 and suitable results proved
in Section 3.

Corollary 4.4. Let G be an admissible graph of order n ≥ 7. If G satisfies at least one of
the following conditions:

i) G is a traceable graph, or

ii) G is a claw-free graph, or

iii) G is a triangle-free graph, or

iv) G is a 3-connected planar graph,

then
D′(G) +D′(G) ≤ ∆ + 2,

where ∆ = max{∆(G),∆(G)}.

Proof. It suffices to apply Theorem 4.3 together with Theorem 3.2, Theorem 3.4 and The-
orem 3.6, respectively. Observe also that if the girth of a graph G is at least 4, i.e., G is
triangle-free, then its complement G is claw-free.

Finally, it has to be noted that there exist graphs of order less than 7 such that the right-
hand inequality in Conjecture 1.6 is not satisfied. For example, for the graph K3,3 we have
D′(K3,3) = 3, D′(K3,3) = D′(2K3) = 4 and ∆ = 3, hence D′(K3,3) + D′(K3,3) =
∆ + 4. Also, D′(C5) +D′(C5) = 3 + 3 = ∆ + 4, and D′(K1,i) +D′(K1,i) = ∆ + 3 for
i = 3, 4, 5.
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[17] R. Kalinowski and M. Pilśniak, Distinguishing graphs by edge-colourings, European J. Com-
bin. 45 (2015), 124–131, doi:10.1016/j.ejc.2014.11.003.

[18] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956),
175–177, doi:10.2307/2306658.

[19] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99–116, doi:
10.2307/1992980.

[20] V. G. Vizing, The chromatic class of a multigraph, Kibernetika 1 (1965), 29–39, doi:10.1007/
bf01885700.

[21] S. Win, On a connection between the existence of k-trees and the toughness of a graph, Graphs
Combin. 5 (1989), 201–205, doi:10.1007/bf01788671.

[22] A. A. Zykov, On some properties of linear complexes, Mat. Sbornik (N. S.) 24 (1949), 163–188,
http://mi.mathnet.ru/eng/msb5974.



Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 13 (2017) 275–291

Large circulant graphs of fixed diameter and
arbitrary degree

David Bevan
University of Strathclyde, Glasgow, U.K.

Grahame Erskine , Robert Lewis
Open University, Milton Keynes, U.K.

Received 9 November 2015, accepted 24 February 2017, published online 9 March 2017

Abstract

We consider the degree-diameter problem for undirected and directed circulant graphs.
To date, attempts to generate families of large circulant graphs of arbitrary degree for a
given diameter have concentrated mainly on the diameter 2 case. We present a direct prod-
uct construction yielding improved bounds for small diameters and introduce a new general
technique for “stitching” together circulant graphs which enables us to improve the current
best known asymptotic orders for every diameter. As an application, we use our construc-
tions in the directed case to obtain upper bounds on the minimum size of a subset A of a
cyclic group of order n such that the k-fold sumset kA is equal to the whole group. We also
present a revised table of largest known circulant graphs of small degree and diameter.
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1 Introduction
The goal of the degree-diameter problem is to identify the largest possible number n(d, k)
of vertices in a graph having diameter k and maximum degree d. This paper considers the
problem for the restricted category of circulant graphs, which we view as Cayley graphs
of cyclic groups. We consider both undirected and directed versions of the problem in this
paper. For a history and more complete summary of the degree-diameter problem, see the
survey paper by Miller and Širáň [5].

E-mail address: david.bevan@strath.ac.uk (David Bevan), grahame.erskine@open.ac.uk (Grahame
Erskine), robert.lewis@open.ac.uk (Robert Lewis)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



276 Ars Math. Contemp. 13 (2017) 275–291

All groups considered in this paper are Abelian (indeed cyclic) and hence we use ad-
ditive notation for the group operation. With this convention we define a Cayley graph as
follows.

LetG be an Abelian group and S ⊆ G a subset such that 0 /∈ S. Then the Cayley graph
Cay(G,S) has the elements of G as its vertex set and each vertex g has an edge to g + s
for each s ∈ S. The following properties of Cay(G,S) are immediate from the definition:

• Cay(G,S) has order |G| and is a regular graph of degree |S|.
• Cay(G,S) has diameter at most k if and only if every element ofG can be expressed

as a sum of no more than k elements of S.

• Cay(G,S) is an undirected graph if S = −S; otherwise it is a directed graph.

A circulant graph is a Cayley graph of a cyclic group, and we use these terms inter-
changeably.

Throughout the paper we use the following notation:

• CC(d, k) is the largest order of an undirected circulant graph with degree d and
diameter k.

• DCC(d, k) is the largest order of a directed circulant graph with degree d and diam-
eter k.

For a given diameter k, we are interested in determining the asymptotics of CC(d, k)
and DCC(d, k) as the degree d tends to infinity. We make use of the following limits:

• L−C(k) = lim inf
d→∞

CC(d, k)/dk; L+
C(k) = lim sup

d→∞
CC(d, k)/dk.

• L−D(k) = lim inf
d→∞

DCC(d, k)/dk; L+
D(k) = lim sup

d→∞
DCC(d, k)/dk.

We begin with some trivial bounds on L− and L+. The following asymptotic upper
bound is easily obtained; see for example the survey paper [5]:

Observation 1.1 (Trivial upper bound). L+
C(k) ≤ L+

D(k) ≤ 1
k! .

For a lower bound, consider Zrk with generators {hr` : |h| ≤
⌊
r
2

⌋
, 0 ≤ ` < k}:

Observation 1.2 (Trivial lower bound). L−D(k) ≥ L−C(k) ≥ 1
kk

.

In this paper, we present constructions which yield, for each k ≥ 2, lower bounds on
L−C(k) andL−D(k) that are greater than the trivial 1/kk bound. No such bounds were known
previously. Our results include the following (see Corollary 4.6):

• For any diameter k ≥ 2 and any degree d large enough, CC(d, k) >
(
1.14775 dk

)k
.

• For any diameter k that is a multiple of 5 or sufficiently large, and any degree d large
enough, CC(d, k) >

(
1.20431 dk

)k
.

• For any diameter k ≥ 2 and any degree d large enough,DCC(d, k) >
(
1.22474 dk

)k
.

• For any diameter k that is a multiple of 6 or sufficiently large, and any degree d large
enough, DCC(d, k) >

(
1.27378 dk

)k
.
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We also deduce a result concerning sumsets covering Zn, and use our techniques to con-
struct a revised table of the largest known circulant graphs of small degree and diameter.

For larger diameters, the trivial bounds become numerically small, and the ratio be-
tween the upper and lower bound becomes arbitrarily large. Therefore, in order more
easily to assess the success of our constructions, we make use of the following measure
which records improvement over the trivial lower bound.

Let R−C(k) = kL−C(k)1/k, and define R+
C(k), R−D(k) and R+

D(k) analogously. Thus,
R−C(k) ≥ 1, with equality if the trivial lower bound is approached asymptotically for large
degrees. For each k, these R values thus provide a useful indication of the success of our
constructions in exceeding the trivial lower bound. In Section 4, we show how to construct
a cyclic Cayley graph from two smaller ones in such a way that the R values are preserved.

The R values are bounded above by Rmax(k) = k(k!)−1/k. Using the asymptotic
version of Stirling’s approximation, log k! ∼ k log k− k, we see that as the diameter tends
to infinity,

1 ≤ lim inf
k→∞

R−C(k) ≤ lim inf
k→∞

R+
C(k) ≤ e,

and similarly for R−D(k) and R+
D(k).

In the next section, we extend a result of Vetrı́k [7] to deduce new lower bounds for
L−C(2) and R−C(2). In Section 3, we describe a direct product construction and use it to
build large cyclic Cayley graphs of small diameter and arbitrarily large degree. We also
prove that this construction is unable to yield values that exceed the trivial lower bound
for large diameter. However, in Section 4, we demonstrate a method of building a circu-
lant graph by “stitching” together two smaller ones, and show how the application of this
method to the constructions from Section 3 enables us to exceed the trivial lower bound for
every diameter.

Section 5 contains an application of our constructions to obtain upper bounds on the
minimum size of a set A ⊆ Zn such that the k-fold sumset kA is equal to Zn. We con-
clude, in Section 6, by presenting a revised table of the largest known circulant graphs of
small degree and diameter, including a number of new largest orders resulting from our
constructions.

2 Diameter 2 bounds for all large degrees
Much of the study of this problem to date has concentrated on the diameter 2 undirected
case. In this instance, the trivial lower bound on L−C(2) is 1/4 and the trivial upper bound
on L+

C(2) is 1/2. Vetrı́k [7] (building on Macbeth, Šiagiová & Širáň [4]) presents a con-
struction that proves that L+

C(2) ≥ 13
36 ≈ 0.36111, and thus R+

C(2) > 1.20185.
In this section, we begin by extending this result to yield bounds for L−C(2) and R−C(2).

This argument can also be found in Lewis [3]. We reproduce it here for completeness, since
we make use of the resulting bounds below.

Vetrı́k’s theorem applies only to values of the degree d of the form 6p− 2, where p is a
prime such that p 6= 13, p 6≡ 1 (mod 13). We extend this result to give a slightly weaker
bound valid for all sufficiently large values of d. The strategy is as follows:

• Given a value of d, we select the largest prime p in the allowable congruence classes
such that 6p− 2 ≤ d.

• We construct the graph of Vetrı́k [7] using this value of p.
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• We add generators to the Vetrı́k construction (and hence edges to the Cayley graph)
to obtain a new graph of degree d which still has diameter 2.

Note that the graphs in the Vetrı́k construction always have even order and hence we may
obtain an odd degree d by adding the unique element of order 2 to the generator set.

Success of this method relies on being able to find a prime p sufficiently close to the
optimal value so that we need only add asymptotically few edges to our graph. We use
recent results of Cullinan & Hajir [1] following Ramaré & Rumely [6].

Lemma 2.1 (Cullinan & Hajir [1], Ramaré & Rumely [6]). Let δ = 0.004049. For any
x0 ≥ 10100 there exists a prime p ≡ 2 (mod 13) in the interval [x0, x0 + δx0].

Proof. We use the method of Cullinan and Hajir [1, Theorem 1]. This method begins by
using the tables of Ramaré and Rumely [6] to find a value ε corresponding to k = 13, a =
2, x0 = 10100. Following the proof of Cullinan and Hajir [1, Theorem 1], if δ > 2ε

1−ε it
follows that there must exist a prime p ≡ 2 (mod 13) in the interval [x0, x0 + δx0]. From
Table 1, Ramaré and Rumely [6] we find ε = 0.002020 and hence δ = 0.004049 will
suffice.

Our improved bound for circulant graphs of diameter 2 follows:

Theorem 2.2 (see [3, Theorem 6]). L−C(2) > 0.35820, and hence R−C(2) > 1.19700.

Proof. Let δ = 0.004049 and let d > 10101. We seek the largest prime p ≡ 2 (mod 13)
such that 6p − 2 ≤ d. By the result of Lemma 2.1, there exists such a p with p ≥ (d +
2)/6(1 + δ). Let d′ = 6p− 2. Then by the result of Vetrı́k [7] we can construct a circulant
graph of degree d′, diameter 2 and order n = 13

36 (d′ + 2)(d′ − 4). We can add d − d′

generators to this construction to obtain a graph of degree d and diameter 2, with the same
order n.

Since n = 13
36d

2/(1 + δ)2 +O(d) ≈ 0.358204d2 +O(d) the result follows.

3 Direct product constructions for small diameters
In this section, we construct large undirected circulant graphs of diameters k = 3, 4, 5
and arbitrary large degree. We also construct large directed circulant graphs of diameters
k = 2, . . . , 9 and arbitrary large degree. We then prove that the approach used is insufficient
to yield values that exceed the trivial lower bound for large diameter.

3.1 Preliminaries

The diameter 2 constructions of Macbeth, Šiagiová & Širáň and of Vetrı́k both have the
form F+

p × F ∗p × Zw for some fixed w and variable p, where F+
p and F ∗p are the additive

and multiplicative groups of the Galois fieldGF (p). Thus the first two components of their
constructions are very tightly coupled, and this coupling is a key to their success. However,
a significant limitation of this method is that it is only applicable in the diameter 2 case.

In contrast, the constructions considered here have components that are as loosely cou-
pled as possible. For diameter k, they have the form Zr1 ×Zr2 × . . .×Zrk ×Zw for some
fixed w and variable pairwise coprime ri. This gives us greater flexibility, especially in
terms of the diameters we can achieve. The price for this is that we lose the inherent struc-
ture of the finite field, which consequently places limits on the bounds we can achieve.
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The constructions in this section make use of the following result concerning the rep-
resentation of each element of the cyclic group T = Zr × Zs (r and s coprime) as the sum
of a small multiple of the element (1, 1) and a small multiple of another element (u, v). It
can be helpful to envisage T as a group of vectors on the r × s discrete torus.

Lemma 3.1. Let u, d, s and m be positive integers with s > 1 and coprime to md. Let
v = u+ d. Suppose s ≥ mv(u− 1). Then, for every element (x, y) of T = Zs+md × Zs,
there exist nonnegative integers h < s + mv and ` < s − m(u − 1) such that (x, y) =
h(1, 1) + `(u, v).

Observe that the construction ensures that (s + mv)(1, 1) = m(u, v). Figure 1 illus-
trates the case with parameters u = 2, v = 5, s = 11, m = 2.

Figure 1: Every element of Z17 × Z11 is the sum of one of the 21 solid elements and one
of the 9 circled elements.

Proof. Let t = s − m(u − 1). Since s is coprime to md, (1, 1) generates T. Hence,
it suffices to show that, in the list (0, 0), (1, 1), (2, 2), . . ., the gaps between members of
{`(u, v) : 0 ≤ ` < t} are not “too large”.

Specifically, we need to show that, for each nonnegative ` < t, there is some positive
h′ ≤ s+mv and nonnegative `′ < t such that `(u, v) + h′(1, 1) = `′(u, v).

There are two cases. If ` < t−m, then we can take h′ = s+mv and `′ = `+m:

`(u, v) + (s+mv)(1, 1) = (`u+ s+mu+md, `v + s+mv)
= (`u +mu, `v +mv)
= (`+m)(u, v).

If ` ≥ t−m, then we can take h′ = muv and `′ = `+m− t = `+mu− s:

`(u, v) + muv(1, 1) = (`u+mu2 +mud, `v +muv)
= (`u+mu2 +mud− u(s+md), `v +muv − vs)
= (`+mu− s)(u, v).

The requirement that muv ≤ s + mv is clearly equivalent to the condition on s in the
statement of the lemma.
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In our direct product constructions, we make use of Lemma 3.1 via the following crucial
lemma. Our strategy is to construct a cyclic group of the form T = Zr1 × Zr2 × . . .× Zrk
such that r1 > r2 > . . . > rk > 1, and for each pair Zri × Zrj for i < j we will bring
Lemma 3.1 to bear. In the notation of that lemma we will set u = i, d = j − i, s = rj ,
s+md = ri. The conditions of Lemma 3.2 below are designed to ensure that for each pair
i, j we can find m = mi,j to make this work.

Lemma 3.2. Let k > 1 and let r1 > r2 > . . . > rk be pairwise coprime integers greater
than 1 such that ri is coprime to i for all 1 ≤ i ≤ k. Suppose that for each i, j with
1 ≤ i < j ≤ k there exists a positive integer mi,j such that:

• ri − rj = mi,j(j − i)
• rj ≥ mi,j(i− 1)j.

Let T = Zr1 × Zr2 × . . .× Zrk . Let o = (1, 1, . . . , 1), u = (1, 2, . . . , k) and, for each
i, ei = (0, . . . , 1, . . . , 0) be elements of T, where only the ith coordinate of ei is 1, and let
the set A consist of these k + 2 elements.

Let co = maxi<j(rj + jmi,j), cu = r1, and for each i, cei = ri.
Then, for every element x of T and every k-element subset S of A, there exist nonneg-

ative integers hs < cs for each s ∈ S, such that x =
∑

s hss.

Proof. There are four cases. If S contains neither o nor u, the result follows trivially.
If S contains o but not u, omitting ei, then we can choose ho to be the ith coordinate

of x. Note that, as required, co ≥ r2 + 2(r1 − r2) = r1 + (r1 − r2) > ri for all i.
If S contains u but not o, omitting ei, then, since i and ri are coprime, we can choose

hu such that ihu (mod ri) is the ith coordinate of x.
Finally, if S contains both o and u, omitting ei and ej , then we can choose ho and hu

by applying Lemma 3.1 to Zri × Zrj with (u, v) = (i, j).

We note that the conditions of Lemma 3.2 imply that at most one of the ri can be even,
and if k ≥ 4 then all ri must be odd.

3.2 Undirected constructions

We can use Lemma 3.2 to construct undirected circulant graphs of any diameter by means
of the following theorem:

Theorem 3.3. Let w and k be positive integers and suppose that there exist sets B and T
of positive integers with the following properties:

• B = {b1, . . . , bk+2} has cardinality k + 2 and the property that every element of
Zw can be expressed as the sum of exactly k distinct elements of B ∪ −B, no two of
which are inverses.

• T = {r1, r2, . . . , rk} has cardinality k and the properties that all its elements are
coprime to w, and satisfies the requirements of Lemma 3.2, i.e. for each i < j:

(a) ri > rj

(b) gcd(ri, rj) = 1

(c) gcd(ri, i) = 1
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(d) There is a positive integer mi,j such that equalities ri − rj = mi,j(j − i) and
rj ≥ mi,j(i− 1)j hold.

Let co = maxi<j(rj + jmi,j) and cu = r1 as in Lemma 3.2.
Then there exists an undirected circulant graph of order w

∏k
i=1 ri, degree at most

2
(∑k

i=1 ri + co + cu

)
and diameter k.

Proof. Let T = Zr1 ×Zr2 × . . .×Zrk ×Zw. Then T is a cyclic group since all its factors
have coprime orders.

Let X be the generating set consisting of the following elements:

• (x, 0, 0, . . . , 0,±b1), x ∈ Zr1
• (0, x, 0, . . . , 0,±b2), x ∈ Zr2

...

• (0, 0, . . . , 0, x,±bk), x ∈ Zrk
• ±(x, x, . . . , x, x, bk+1), 0 ≤ x < co

• ±(x, 2x, . . . , (k − 1)x, kx, bk+2), 0 ≤ x < cu

Then by construction and by Lemma 3.2, every element of T is the sum of at most k
elements of X . Since |T| = w

∏k
i=1 ri and |X| = 2

(∑k
i=1 ri + co + cu

)
, the result

follows.

For small diameters this technique results in the following asymptotic bounds:

Theorem 3.4. For diameters k = 3, 4, 5, we have the following lower bounds:

(a) L+
C(3) ≥ 57

1000 and L−C(3) ≥ 7
125 , so R+

C(3) > 1.15455 and R−C(3) > 1.14775.

(b) L+
C(4) ≥ L−C(4) ≥ 25

3456 , so R+
C(4) ≥ R−C(4) > 1.16654.

(c) L+
C(5) ≥ L−C(5) ≥ 109

134456 , so R+
C(5) ≥ R−C(5) > 1.20431.

Proof. Given a diameter k, the strategy is to find an optimal value of w which admits a
set B satisfying the conditions of Theorem 3.3. We then seek an infinite family of positive
integers q and a set ∆ = {δ1, δ2, . . . , δk−1} such that for each of our values of q, the set
T = {q, q − δ1, . . . , q − δk−1} satisfies the conditions of the theorem. We illustrate for
k = 3.

To prove (a) we take w = 57 and B = {1, 2, 7, 8, 27}. It is easily checked that every
element of Z57 is the sum of three distinct elements of B ∪ −B, no two of which are
inverses. Now we let ∆ = {4, 6}. For any q ≥ 17, q ≡ 5 (mod 6), q 6≡ 0, 4, 6 (mod 19)
it is straightforward to verify that the set T = {q, q − 4, q − 6} satisfies the conditions of
Theorem 3.3. In the notation of Lemma 3.2, we have co = q + 4.

Taking a generating setX as defined in Theorem 3.3 we may construct a circulant graph
of diameter 3, degree d = |X| = 10q − 12 and order 57q(q − 4)(q − 6) = 57

1000 (d + 12)
(d− 28)(d− 48).

We can do this for an infinite number of values of q, and hence for an infinite number
of values of d = 10q − 12 we have

CC(d, 3) ≥ 57

1000
(d+ 12)(d− 28)(d− 48).
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This yields L+
C(3) ≥ 57

1000 . Now we need to consider L−C(3). The strategy will be to try to
add “few” edges to our graphs to cover all possible degrees. Observe that we can use this
construction for any q ≡ 17 (mod 114) and hence for any d ≡ 158 (mod 1140). Given
any arbitrary even degree d, we can therefore find some d′ no smaller than d − 1140 for
which the construction works. We can then add d − d′ generators to our graph to obtain a
graph of the same order, degree d and diameter 3.

However our graphs always have odd order, and so we are unable to obtain an odd
degree graph by this method. To get round this problem we may use w = 56, B =
{1, 2, 7, 14, 15}, ∆ = {2, 4} and co = q + 2. Again it is easy to check that the relevant
conditions are satisfied for any q ≥ 15 such that q ≡ 3, 5 (mod 6) and q ≡ 1, 3, 5, 6
(mod 7). Then for d = 10q−8 we can construct a graph of order 7

25 (d+8)(d−12)(d−32),
degree d and diameter 3. We can do this for any q ≡ 15 (mod 42) and hence for any
d ≡ 142 (mod 420). So given any arbitrary degree d, we can therefore find some d′ no
smaller than d − 420 for which the construction works, and then add d − d′ generators to
our graph to obtain a graph of the same order and diameter 3. (Since our graphs now have
even order it is possible to add an odd number of generators.) Since the number of added
generators is bounded above (by 419), the order of the graph is 7

125d
3 +O(d2). Result (a)

for L−C(3) follows.
For (b) and (c) we adopt a similar method, except that in both cases the graphs used

have even order and so our bounds on L+ and L− are equal. For brevity we show only the
relevant sets in the construction, summarised as follows:

(b) (k = 4) – Take w = 150, B = {1, 7, 16, 26, 41, 61} and ∆ = {6, 8, 12} so co =
q + 6. Then for q ≥ 49, q ≡ 19 (mod 30) and d = 12q − 40, we have

CC(d, 4) ≥ 25

3456
(d+ 40)(d− 32)(d− 56)(d− 104).

(c) (k = 5) – Take w = 436, B = {1, 15, 43, 48, 77, 109, 152} and ∆ = {0, 4, 10, 12,
16} so co = q + 8. Then for q ≥ 77, q ≡ 5 (mod 6), q 6≡ 0, 1 (mod 5), q 6≡
0, 4, 10, 12, 16 (mod 109) and d = 14q − 68, we have

CC(d, 5) ≥ 109

134456
(d+ 68)(d+ 12)(d− 72)(d− 100)(d− 156).

3.3 Directed constructions

An analogous method yields directed circulant graphs via the following theorem:

Theorem 3.5. Let w and k be positive integers and suppose that there exist sets B and T
of non-negative integers with the following properties:

• B = {0, b2, . . . , bk+2} has cardinality k + 2 and the property that every element of
Zw can be expressed as the sum of exactly k distinct elements of B.

• T = {r1, r2, . . . , rk} has cardinality k and the properties that all its elements are
coprime to w, and it satisfies the requirements of Lemma 3.2, i.e. for each i < j:

(a) ri > rj
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(b) gcd(ri, rj) = 1

(c) gcd(ri, i) = 1

(d) There is a positive integer mi,j such that equalities ri − rj = mi,j(j − i) and
rj ≥ mi,j(i− 1)j hold.

Let co = maxi<j(rj + jmi,j) and cu = r1 as in Lemma 3.2.
Then we may construct a directed circulant graph of order w

∏k
i=1 ri, degree at most∑k

i=1 ri + co + cu − 1 and diameter k.

Proof. Let T = Zr1 ×Zr2 × . . .×Zrk ×Zw. Then T is a cyclic group since all its factors
have coprime orders.

Let X be the generating set consisting of the following elements:

• (x, 0, 0, . . . , 0, 0), x ∈ Zr1 \ {0}
• (0, x, 0, . . . , 0, b2), x ∈ Zr2

...

• (0, 0, . . . , 0, x, bk), x ∈ Zrk
• (x, x, . . . , x, x, bk+1), 0 ≤ x < co

• (x, 2x, . . . , (k − 1)x, kx, bk+2), 0 ≤ x < cu

Then by construction and by Lemma 3.2, every element of T is the sum of at most k
elements of X . Since |T| = w

∏k
i=1 ri and |X| =

∑k
i=1 ri + co + cu − 1, the result

follows.

For small diameters this technique results in the following asymptotic bounds:

Theorem 3.6. For diameters k = 2, . . . , 9, we have the following lower bounds on L−D(k)
and R−D(k):

(a) L−D(2) ≥ 3
8 , so R−D(2) > 1.22474.

(b) L−D(3) ≥ 9
125 , so R−D(3) > 1.24805.

(c) L−D(4) ≥ 13
1296 , so R−D(4) > 1.26588.

(d) L−D(5) ≥ 17
16807 , so R−D(5) > 1.25881.

(e) L−D(6) ≥ 3
32768 , so R−D(6) > 1.27378.

(f) L−D(7) ≥ 10
1594323 , so R−D(7) > 1.26436.

(g) L−D(8) ≥ 9
25000000 , so R−D(8) > 1.25206.

(h) L−D(9) ≥ 42
2357947691 , so R−D(9) > 1.23939.

Proof. The method is exactly the same as the proof of Theorem 3.4 and we summarise as
follows:
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(a) (k = 2) – Take w = 6, B = {0, 1, 2, 4} and ∆ = {2} so co = q + 2. Then for q ≥ 7,
q ≡ 1 (mod 6) and d = 4q − 1, we have

DCC(d, 2) ≥ 3

8
(d+ 1)(d− 7).

(b) (k = 3) – Take w = 9, B = {0, 1, 2, 3, 6} and ∆ = {4, 6} so co = q + 4. Then for
q ≥ 17, q ≡ 5 (mod 6) and d = 5q − 7, we have

DCC(d, 3) ≥ 9

125
(d+ 7)(d− 13)(d− 23).

(c) (k = 4) – Take w = 13, B = {0, 1, 3, 5, 7, 8} and ∆ = {2, 4, 6} so co = q + 2. Then
for q ≥ 23, q ≡ 5 (mod 6), q 6≡ 0, 2, 4, 6 (mod 13) and d = 6q − 11, we have

DCC(d, 4) ≥ 13

1296
(d+ 11)(d− 1)(d− 13)(d− 25).

(d) (k = 5) – Take w = 17, B = {0, 1, 2, 3, 4, 8, 13} and ∆ = {4, 10, 12, 16} so co =
q + 8. Then for q ≥ 77, q ≡ 5 (mod 6), q 6≡ 0, 1 (mod 5), q 6≡ 0, 4, 10, 12, 16
(mod 17) and d = 7q − 35, we have

DCC(d, 5) ≥ 17

16807
(d+ 35)(d+ 7)(d− 35)(d− 49)(d− 77).

(e) (k = 6) – Take w = 24, B = {0, 1, 2, 4, 8, 13, 18, 22} and ∆ = {6, 12, 18, 24, 30} so
co = q+ 6. Then for q ≥ 181, q ≡ 1, 5 (mod 6), q 6≡ 0, 4 (mod 5) and d = 8q− 85,
we have

DCC(d, 6) ≥ 3

32768
(d+ 85)(d+ 37)(d− 11)(d− 59)(d− 107)(d− 155).

(f) (k = 7) – Take w = 30, B = {0, 1, 2, 6, 9, 12, 16, 17, 18} and ∆ = {0, 2, 6, 18, 20,
30, 42} so co = q+42. Then for q ≥ 529, q ≡ 1 (mod 6), q ≡ 4 (mod 5), q 6≡ 0, 2, 6
(mod 7), q 6≡ 9 (mod 11) and d = 9q − 77, we have

DCC(d, 7) ≥ 10

1594323
(d+77)(d+59)(d+23)(d−85)(d−103)(d−193)(d−301).

(g) (k = 8) – Take w = 36, B = {0, 1, 2, 3, 6, 12, 19, 20, 27, 33} and ∆ = {0, 6, 12,
18, 24, 30, 36, 42} so co = q + 6. Then for q ≥ 353, q ≡ 1, 5 (mod 6), q ≡ 3
(mod 5), q 6≡ 0, 1 (mod 7) and d = 10q − 163, we have

DCC(d, 8) ≥ 9

25000000
(d+ 163)(d+ 103)(d+ 43)(d− 17)

(d− 77)(d− 137)(d− 197)(d− 257).

(h) (k = 9) – Take w = 42, B = {0, 1, 2, 3, 4, 9, 16, 20, 26, 30, 37} and ∆ = {0, 2, 6,
12, 20, 30, 42, 56, 72} so co = q + 72. Then for q ≥ 1093, q ≡ 1 (mod 6), q ≡ 3, 4
(mod 5), q ≡ 1, 3, 4 (mod 7), q 6≡ 1, 6, 9 (mod 11), q 6≡ 4, 7 (mod 13) and d =
11q − 169, we have

DCC(d, 9) ≥ 42

2357947691
(d+ 169)(d+ 147)(d+ 103)(d+ 37)(d− 51)

(d− 161)(d− 293)(d− 447)(d− 623).
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3.4 Limitations

In [3], Lewis showed that an analogous class of constructions using finite fields to create
graphs of diameter 2 is limited by the bound L−C(2) ≤ 3

8 . The constructions in this section
have a similar limitation:

Observation 3.7. Let k be a positive integer. The direct product constructions of Theo-
rems 3.3 and 3.5 can never yield a lower bound onL−C(k) orL−D(k) that exceeds k+1

2(k+2)k−1 .

Proof. First we consider the undirected case. Suppose the requirements of Theorem 3.3
hold and for each i = 1, . . . , k, we have ri = q − ai, where a1 < a2 < . . . < ak. Let
T = Zq−a1× . . .×Zq−ak×Zw andX be its generating set as in the proof of Theorem 3.3.

Since every element of Zw is a sum of k distinct elements of B, no pair of which are
inverses, we must have w ≤

(
k+2
k

)
2k = (k + 1)(k + 2)2k−1.

By the requirements of Lemma 3.2, for any i < j, we have mi,j ≤ ri − rj and
co = maxi<j(rj + jmi,j). Hence, since ri = q − ai, we have mi,j ≤ ak − a1, and so
co ≤ q + kak.

Thus X is the generating set for a Cayley graph on T with diameter k, degree d no
greater than 2(k+2)q−2

∑k
i=1 ai+2kak−2a1, and order n = w(q−a1)(q−a2) . . . (q−

ak).
Hence, n = w

(2(k+2))k
dk+O(dk−1) ≤ (k+1)(k+2)2k−1

(2(k+2))k
dk+O(dk−1) = k+1

2(k+2)k−1 d
k+

O(dk−1), as required.
The directed case is analogous. We follow Theorem 3.5 and its proof. In this case, every

element of Zw is the sum of k distinct elements of B, so w ≤
(
k+2
k

)
= (k + 1)(k + 2)/2,

and X is the generating set for a Cayley graph on T with diameter k, degree d ≤ (k +

2)q −
∑k
i=1 ai + kak − a1 − 1, and order n = w(q − a1)(q − a2) . . . (q − ak).

Hence, n = w
(k+2)k

dk + O(dk−1) ≤ (k+1)(k+2)
2(k+2)k

dk + O(dk−1) = k+1
2(k+2)k−1 d

k +

O(dk−1).

Observe that, in the limit,

lim
k→∞

k

(
k + 1

2(k + 2)k−1

)1/k

= 1.

As a consequence, these direct product constructions themselves can never yield an im-
provement on the trivial lower bound for the limiting value of R−C(k) or R−D(k). However,
it is possible to combine graphs of small diameter to produce larger graphs in such a way
that we can improve on the trivial lower bound in the limit as the diameter increases. The
next section introduces this idea.

4 A general graph product construction
The following theorem gives a simple way to combine two cyclic Cayley graphs to obtain
a third cyclic Cayley graph. It is valid in both the directed and undirected cases.

Theorem 4.1. Let G1 and G2 be two cyclic Cayley graphs of diameters k1 and k2, orders
n1 and n2, and degrees d1 and d2 respectively. In the case of undirected graphs where d1
and d2 are both odd let δ = 1, otherwise δ = 0. In the directed case let δ = 0 always.
Then there exists a cyclic Cayley graph with diameter k1 + k2, degree at most d1 + d2 + δ,
and order n1n2.
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Proof. Let S1 be the connection set of G1 so that |S1| = d1 and similarly for G2. For
convenience we consider each Si to consist of elements within the interval (−ni/2, ni/2].
Let G be the cyclic group Zn1n2

and consider the connection set S′ = n2S1 ∪ S2. Then
|S′| ≤ n1 + n2.

We now construct a connection set S for the group G such that the Cayley graph
Cay(G,S) has diameter k1 + k2. In the directed case we may simply take S = S′. In
the undirected case we need to ensure that S = −S. If at least one of d1, d2 is even we
may assume without loss of generality that d2 is even and then we may again let S = S′

and S = −S by construction.
It remains to consider the undirected case when d1 and d2 are both odd (the case δ = 1).

In that case we know n2/2 ∈ S2 ⊂ S′ and we let S = S′ ∪ {−n/2} so that S = −S.
It is then clear that the Cayley graph Cay(G,S) has degree at most d1+d2+δ, diameter

k1 + k2 and order n1n2.

We can use this “stitching” construction to obtain lower bounds on our L and R values
for large diameters, given values for smaller diameters.

Corollary 4.2. If L(k) is one of L−C(k), L+
C(k), L−D(k) or L+

D(k) and R(k) is one of
R−C(k), R+

C(k), R−D(k) or R+
D(k), then

(a) L(k1 + k2) ≥ L(k1)L(k2)kk11 kk22
(k1 + k2)k1+k2

,

(b) R(k1 + k2) ≥
(
R(k1)k1R(k2)k2

) 1
k1+k2 .

Proof. (a) Let d > 1. For i = 1, 2 we may construct graphs Γi of diameter ki, degree kid
and order L(ki)(kid)ki + o(dki). Theorem 4.1 yields a product graph of diameter k1 + k2,
degree at most (k1 + k2)d+ 1 and order L(k1)L(k2)kk11 k

k2
2 d

k1+k2 + o(dk1+k2).
Part (b) follows by straightforward algebraic manipulation.

In particular, we note that the stitching construction of Theorem 4.1 preserves lower
bounds on the R values: R(mk) ≥ R(k) for every positive integer m.

We may use this idea to obtain better bounds for some particular diameters; for example
we may improve on the undirected diameter 4 construction in Theorem 3.4:

Corollary 4.3.

(a) L+
C(4) ≥ 169

20736 ≈ 0.0081501, and hence R+
C(4) > 1.20185.

(b) L−C(4) > 0.0080194, and hence R−C(4) > 1.19700.

Proof. For statement (a) we note R+
C(2) ≥ 13

36 from Vetrı́k [7] and apply Corollary 4.2
with k1 = k2 = 2. For (b) we use the same method starting with Theorem 2.2.

The stitching process of Theorem 4.1 can be iterated to produce a construction for
any desired diameter, and Corollary 4.2 then gives us a lower bound for the R values for
that diameter. We illustrate the results for small diameter k in Table 1. As an indica-
tor of progress we show also the largest possible value of R for a particular k, given by
Rmax(k) = k(k!)−1/k.

It is worth noting that the method of Corollary 4.2 may be used to produce values of R
which are larger than those achievable from the direct product constructions of Section 3.
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Table 1: The best R values for diameter k ≤ 9.

Diameter (k)
2 3 4 5 6 7 8 9

Rmax(k) ≈ 1.41421 1.65096 1.80720 1.91926 2.00415 2.07100 2.12520 2.17016

R+
C(k) > 1.20185a 1.15455d 1.20185c 1.20431d 1.20185f 1.20360f 1.20185f 1.20321f

R−C (k) > 1.19700b 1.14775d 1.19700c 1.20431d 1.19700f 1.20222f 1.19700f 1.20105f

R−D(k) > 1.22474e 1.24805e 1.26588e 1.25881e 1.27378e 1.26436e 1.26588f 1.26514f

a. Vetrı́k [7]; b. Theorem 2.2; c. Corollary 4.3; d. Theorem 3.4; e. Theorem 3.6; f . Corollary 4.2

For example, the limitations noted in Observation 3.7 show that the maximum possible
value ofR−D(10) we could achieve using Theorem 3.5 is approximately 1.26699. However,
combining the results for diameters 4 and 6 in Table 1 yields R−D(10) > 1.27061.

Next we use our previous results to show that R is well-behaved in the limit.

Theorem 4.4. Let L(k) be one of L−C(k), L+
C(k), L−D(k) or L+

D(k), and let R(k) =
kL(k)1/k. The limit R = lim

k→∞
R(k) exists and is equal to supR(k).

Proof. R(k) is bounded above (by e), so s = supR(k) is finite. Hence, given ε > 0, we
can choose k so that s − R(k) < ε/2. By Corollary 4.2 (b), R(mk) ≥ R(k) for every
positive integer m. Moreover, for any fixed j < k, since R(j) ≥ 1, we have R(mk+ j) ≥
R(k)mk/(mk+j) ≥ R(k)m/(m+1), which, by choosing m large enough, can be made to
differ from R(k) by no more than ε/2.

Corollary 4.5.

(a) lim
k→∞

R−C(k) ≥ 5× 1091/5

7× 23/5
> 1.20431

(b) lim
k→∞

R−D(k) ≥ 37/6

23/2
> 1.27378

Proof. We choose the largest entry in the relevant row in Table 1. For (a) we know from
Theorem 3.4 that L−C(5) ≥ 109

23×75 . For (b) we know from Theorem 3.6 that L−D(6) ≥
3

215 .

We conclude this section by using the foregoing to derive new lower bounds for the
maximum possible orders of circulant graphs of given diameter and sufficiently large de-
gree.

Corollary 4.6.

(a) For any diameter k ≥ 2 and any degree d large enough, CC(d, k) >
(
1.14775 dk

)k
.

(b) For any diameter k that is a multiple of 5 or sufficiently large, and any degree d large
enough, CC(d, k) >

(
1.20431 dk

)k
.

(c) For any diameter k ≥ 2 and any degree d large enough, DCC(d, k) >
(
1.22474 dk

)k
.

(d) For any diameter k that is a multiple of 6 or sufficiently large, and any degree d large
enough, DCC(d, k) >

(
1.27378 dk

)k
.
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Proof.

(a) From Theorem 4.4 and Corollary 4.2, we know thatR−C(k) always exceeds the smallest
value in the R−C row of Table 1, which is 1.14775.

(b) For k a multiple of 5, we know from Theorem 3.4 and Corollary 4.2 that R−C(k) >
1.20431. The result for sufficiently large k follows from Corollary 4.5.

(c) and (d) follow by using similar logic in the directed case.

These represent significant improvements over the trivial bound of
(
d
k

)k
.

5 Sumsets covering Zn

Our constructions of directed circulant graphs can be used to obtain an upper bound on the
minimum size, SS(n, k), of a set A ⊂ Zn for which the sumset

kA = A+A+ . . .+A︸ ︷︷ ︸
k

= Zn.

The trivial bound is SS(n, k) ≤ kn1/k which follows in the same way as the trivial lower
bound for the directed circulant graph (see Observation 1.2). Improvements to this trivial
bound do not appear to have been investigated in the literature.

The idea is that, given S ⊆ Zn such that Cay(Zn, S) has diameter k, if we let A =
S ∪ {0} then kA = Zn. Our constructions thus enable us to bound SS(n, k) for fixed k
and infinitely many values of n. For example, if we let L−S (k) = lim inf

n→∞
SS(n, k)/n1/k,

then the following new result for k = 2 follows from Theorem 3.6 (a):

Corollary 5.1. L−S (2) ≤
√

8
3 ≈ 1.63299.

More generally, Corollary 4.5 shows that for large enough k and infinitely many values
of n, SS(n, k) is at least 21 percent smaller than the trivial bound:

Corollary 5.2. lim
k→∞

k−1L−S (k) ≤ 23/2

37/6
≈ 0.78506.

6 Largest graphs of small degree and diameter
We can use the construction of Theorem 4.1 to obtain large undirected circulant graphs
for small degrees and diameters. Recently in [2], Feria-Puron, Pérez-Rosés and Ryan pub-
lished a table of largest known circulant graphs with degree up to 16 and diameter up to 10.
Their method uses a construction based on graph Cartesian products which is somewhat
similar to ours. In contrast, however, Theorem 4.1 does not in general result in a graph iso-
morphic to the Cartesian product of the constituents. Furthermore, our construction does
not require the constituent graph orders to be coprime, which allows more graphs to be
constructed.

Using Theorem 4.1 allowed us to improve many of the entries in the published table.
However, at the same time we developed a computer search which allows us to find circu-
lant graphs of given degree, diameter and order. It turns out that this search is able to find



D. Bevan et al.: Large circulant graphs of fixed diameter and arbitrary degree 289

larger graphs (at least in the range d ≤ 16, k ≤ 10) than the Theorem 4.1 method. We
therefore present a much improved table of largest known circulant graphs based on the
outputs of this search.

In Table 2, we show the largest known circulant graphs of degree d ≤ 16 and diameter
k ≤ 10. In Table 3 we give a reduced generating set for each new record largest graph found
by the search. The computer search has been completed as an exhaustive search in the
diameter 2 case up to degree 23, and these results are included in Table 3 for completeness.

Table 2: Largest known circulant graphs of degree d ≤ 16 and diameter k ≤ 10.

d \ k 1 2 3 4 5 6 7 8 9 10
2 3 5 7 9 11 13 15 17 19 21
3 4 8 12 16 20 24 28 32 36 40
4 5 13 25 41 61 85 113 145 181 221
5 6 16 36 64 100 144 196 256 324 400
6 7 21 55 117 203 333 515 737 1027 1393
7 8 26 76 160 308 536 828 1232 1764 2392
8 9 35 104 248 528 984 1712 2768 4280 6320
9 10 42 130 320 700 1416 2548 4304 6804 10320

10 11 51 177 457 1099 2380† 4551† 8288† 14099† 22805†

11 12 56 210 576 1428† 3200† 6652† 12416† 21572† 35880†

12 13 67 275 819† 2040† 4283† 8828† 16439† 29308† 51154†

13 14 80 312 970† 2548† 5598† 12176† 22198† 40720† 72608†

14 15 90 381 1229† 3244† 7815† 17389† 35929† 71748† 126109†

15 16 96 448 1420† 3980† 9860† 22584† 48408† 93804† 177302†

16 17 112 518† 1717† 5024† 13380† 32731† 71731† 148385† 298105†

† new record largest value

Table 3: Largest circulant graphs of small degree d and diameter k found by computer
search.

d k Order Generators
6 2 21* 1, 2, 8
6 3 55* 1, 5, 21
6 4 117* 1, 16, 22
6 5 203* 1, 7, 57
6 6 333* 1, 9, 73
6 7 515* 1, 46, 56
6 8 737* 1, 11, 133
6 9 1027* 1, 13, 157
6 10 1393* 1, 92, 106
7 2 26* 1, 2, 8
7 3 76* 1, 27, 31
7 4 160* 1, 5, 31
7 5 308* 1, 7, 43
7 6 536* 1, 231, 239
7 7 828* 1, 9, 91
7 8 1232* 1, 11, 111
7 9 1764* 1, 803, 815
7 10 2392* 1, 13, 183

Continues on next page
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Table 3 – continued from previous page
d k Order Generators
8 2 35* 1, 6, 7, 10
8 3 104* 1, 16, 20, 27
8 4 248* 1, 61, 72, 76
8 5 528* 1, 89, 156, 162
8 6 984* 1, 163, 348, 354
8 7 1712* 1, 215, 608, 616
8 8 2768 1, 345, 1072, 1080
8 9 4280 1, 429, 1660, 1670
8 10 6320 1, 631, 2580, 2590
9 2 42* 1, 5, 14, 17
9 3 130* 1, 8, 14, 47
9 4 320* 1, 15, 25, 83
9 5 700* 1, 5, 197, 223
9 6 1416 1, 7, 575, 611
9 7 2548 1, 7, 521, 571
9 8 4304 1, 9, 1855, 1919
9 9 6804 1, 9, 1849, 1931
9 10 10320 1, 11, 4599, 4699

10 2 51* 1, 2, 10, 16, 23
10 3 177* 1, 12, 19, 27, 87
10 4 457* 1, 20, 130, 147, 191
10 5 1099* 1, 53, 207, 272, 536
10 6 2380 1, 555, 860, 951, 970
10 7 4551 1, 739, 1178, 1295, 1301
10 8 8288 1, 987, 2367, 2534, 3528
10 9 14099 1, 1440, 3660, 3668, 6247
10 10 22805 1, 218, 1970, 6819, 6827
11 2 56* 1, 2, 10, 15, 22
11 3 210* 1, 49, 59, 84, 89
11 4 576* 1, 9, 75, 155, 179
11 5 1428 1, 169, 285, 289, 387
11 6 3200 1, 259, 325, 329, 1229
11 7 6652 1, 107, 647, 2235, 2769
11 8 12416 1, 145, 863, 4163, 5177
11 9 21572 1, 663, 6257, 10003, 10011
11 10 35880 1, 2209, 5127, 5135, 12537
12 2 67* 1, 2, 3, 13, 21, 30
12 3 275* 1, 16, 19, 29, 86, 110
12 4 819 7, 26, 119, 143, 377, 385
12 5 2040 1, 20, 24, 152, 511, 628
12 6 4283 1, 19, 100, 431, 874, 1028
12 7 8828 1, 29, 420, 741, 2727, 3185
12 8 16439 1, 151, 840, 1278, 2182, 2913
12 9 29308 1, 219, 1011, 1509, 6948, 8506
12 10 51154 1, 39, 1378, 3775, 5447, 24629
13 2 80* 1, 3, 9, 20, 25, 33
13 3 312* 1, 14, 74, 77, 130, 138
13 4 970 1, 23, 40, 76, 172, 395
13 5 2548 1, 117, 121, 391, 481, 1101
13 6 5598 1, 12, 216, 450, 1204, 2708
13 7 12176 1, 45, 454, 1120, 1632, 1899
13 8 22198 1, 156, 1166, 2362, 5999, 9756
13 9 40720 1, 242, 3091, 4615, 5162, 13571
13 10 72608 1, 259, 4815, 8501, 8623, 23023
14 2 90* 1, 4, 10, 17, 26, 29, 41
14 3 381* 1, 11, 103, 120, 155, 161, 187
14 4 1229 1, 8, 105, 148, 160, 379, 502

Continues on next page
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Table 3 – continued from previous page
d k Order Generators

14 5 3244 1, 108, 244, 506, 709, 920, 1252
14 6 7815 1, 197, 460, 696, 975, 2164, 3032
14 7 17389 1, 123, 955, 1683, 1772, 2399, 8362
14 8 35929 1, 796, 1088, 3082, 3814, 13947, 14721
14 9 71748 1, 1223, 3156, 4147, 5439, 11841, 25120
14 10 126109 1, 503, 4548, 7762, 9210, 9234, 49414
15 2 96* 1, 2, 3, 14, 21, 31, 39
15 3 448* 1, 10, 127, 150, 176, 189, 217
15 4 1420 1, 20, 111, 196, 264, 340, 343
15 5 3980 1, 264, 300, 382, 668, 774, 1437
15 6 9860 1, 438, 805, 1131, 1255, 3041, 3254
15 7 22584 1, 1396, 2226, 2309, 2329, 4582, 9436
15 8 48408 1, 472, 2421, 3827, 4885, 5114, 12628
15 9 93804 1, 3304, 4679, 9140, 10144, 10160, 13845
15 10 177302 1, 2193, 8578, 18202, 23704, 23716, 54925
16 2 112* 1, 4, 10, 17, 29, 36, 45, 52
16 3 518 1, 8, 36, 46, 75, 133, 183, 247
16 4 1717 1, 46, 144, 272, 297, 480, 582, 601
16 5 5024 1, 380, 451, 811, 1093, 1202, 1492, 1677
16 6 13380 1, 395, 567, 1238, 1420, 1544, 2526, 4580
16 7 32731 1, 316, 1150, 1797, 2909, 4460, 4836, 16047
16 8 71731 1, 749, 4314, 7798, 10918, 11338, 11471, 25094
16 9 148385 1, 6094, 6964, 10683, 11704, 14274, 14332, 54076
16 10 298105 1, 5860, 11313, 15833, 21207, 26491, 26722, 99924
17 2 130* 1, 7, 26, 37, 47, 49, 52, 61
18 2 138* 1, 9, 12, 15, 22, 42, 27, 51, 68
19 2 156* 1, 15, 21, 23, 26, 33, 52, 61, 65
20 2 171* 1, 11, 31, 36, 37, 50, 54, 47, 65, 81
21 2 192* 1, 3, 15, 23, 32, 51, 57, 64, 85, 91
22 2 210* 2, 7, 12, 18, 32, 35, 63, 70, 78, 91, 92
23 2 216* 1, 3, 5, 17, 27, 36, 43, 57, 72, 83, 95

* proven extremal
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Koroška cesta 160, Maribor, Slovenia

Bert L. Hartnell
Department of Mathematics and Computing Science, Saint Mary’s University,

Halifax, Nova Scotia, B3H 3C3, Canada

Douglas F. Rall ‡

Department of Mathematics, Furman University, Greenville, SC, USA

Received 11 January 2016, accepted 2 March 2017, published online 9 March 2017

Abstract

A set D of vertices in a graph G is called a dissociation set if every vertex in D has
at most one neighbor in D. We call a graph G uniformly dissociated if all maximal disso-
ciation sets are of the same cardinality. Characterizations of uniformly dissociated graphs
with small cardinalities of dissociation sets are proven; in particular, the graphs in which
all maximal dissociation sets are of cardinality 2 are the complete graphs on at least two
vertices from which possibly a matching is removed, while the graphs in which all maximal
dissociation sets are of cardinality 3 are the complements of the K4-free geodetic graphs
with diameter 2. A general construction by which any graph can be embedded as an in-
duced subgraph of a uniformly dissociated graph is also presented. In the main result we
characterize uniformly dissociated graphs with girth at least 7 to be either isomorphic to
C7, or obtainable from an arbitrary graph H with girth at least 7 by identifying each vertex
of H with a leaf of a copy of P3.
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1 Introduction
A set D of vertices in a graph G is called a dissociation set if the subgraph induced by
vertices of D has maximum degree at most 1. The cardinality of a maximum dissociation
set D in a graph G is called the dissociation number of G, and is denoted by diss(G). The
dissociation number was introduced by Papadimitriou and Yannakakis [14] in relation with
the complexity of the so-called restricted spanning tree problem. Another closely related
concept is the k-path vertex cover, which was introduced in [5] and studied in several
papers [4, 10]; the corresponding invariant, the k-path vertex cover number of an arbitrary
graph G, is denoted by ψk(G). As it turns out, dissociation sets are complements of 3-path
vertex covers of G, and so the following relation holds:

diss(G) = |V (G)| − ψ3(G),

where ψ3(G) is the size of a minimum 3-path vertex cover. The decision version of the
k-path vertex cover number is NP-complete [5], moreover, in the case k = 3 it is NP-
complete even in bipartite graphs which are C4-free and have maximum degree 3 [2]; cf.
also [13] for further strengthening of this result and [12] for an approximation algorithm.

Are there any graphs in which the dissociation number is easily computable? The
approach taken in this paper will be similar to the one related to well-covered graphs,
as introduced by Plummer in 1970 [15]. These are the graphs in which every maximal
independent set of vertices is of the same size, and hence maximum. Whereas determining
the independence number of an arbitrary graph is also NP-complete, it is easy for a well-
covered graph since a greedy algorithm will produce the desired result. One approach to
deciding if a graph is well-covered has been to restrict the girth [7]. We shall employ
that technique in this paper and characterize the graphs of girth 7 or more in which every
maximal dissociation set is maximum. Such an approach has been used also on other
similar problems, notably the limited packing problem [8] and equipackable graphs [9].

We say that a graph G is a uniformly dissociated graph if all maximal dissociation sets
are of the same size; in other words, every maximal dissociation set in G is of cardinality
diss(G). In particular, this implies that a greedy algorithm, in which vertices are being
added to the set, taking care that a newly added vertex is adjacent to at most one vertex
of degree 0 and to no vertex of degree 1 in the subgraph induced by the previously added
vertices, at the end always gives a dissociation set of maximum cardinality.

The paper is organized as follows. In the next section we study the uniformly disso-
ciated graphs whose maximal dissociation sets are of cardinalities 1, 2 or 3. For the latter
class of graphs we present two characterizations, one of which states that they are pre-
cisely the complements of the K4-free geodetic graphs with diameter 2 (geodetic graphs
with diameter 2 have been studied in several papers, and in the triangle-free case coincide
with the well-known Moore graphs; graphs in this class that have triangles include another
known family—the polarity graphs). In Section 3 we introduce the concept of extendable
vertices with respect to uniformly dissociated graphs, by following a similar approach as
is known for building bigger well-covered graphs using extendable vertices with respect to
the well-covered notion. We prove that from an arbitrary graph G by attaching an extend-
able vertex of a uniformly dissociated graph to each vertex of G one obtains a uniformly
dissociated graph. Section 4 contains our main result, a characterization of uniformly dis-
sociated graphs with girth at least 7. Notably, they are precisely the graphs of which each
connected component is either isomorphic to C7, or can be obtained from an arbitrary con-
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nected graph H with girth at least 7, by identifying each vertex of H with a leaf of a copy
of P3.

We conclude this section by presenting the notation used throughout the paper.
Let G be a graph and S ⊂ V (G). We write G[S] for the subgraph of G induced by S

and write G− S for the subgraph of G induced by the set V (G) \ S. On the other hand, if
F ⊂ E(G), thenG−F is the subgraph ofG obtained fromG by removing the edges of F .
LetNG(v) denote the (open) neighborhood inG of a vertex v, whileNG[v] = NG(v)∪{v}
is its closed neighborhood in G. When the graph G is clear from the context we omit the
subscript. If S ⊂ V (G), thenNG[S] =

⋃
v∈S NG[v]. The degree of a vertex v is defined to

be |NG(v)|. We call a vertex of degree 1 a leaf, while the neighbor of a leaf will be called
a stem. A matching M in a graph G is a set of edges in G having the property that no two
edges in M have a common endvertex. Given a matching M in G, we denote by V (M)
the set of endvertices of edges from M . Recall that a matching M is an induced matching
if the only edges in G[V (M)] are the edges in M itself. We denote the cardinality of the
largest independent set of vertices by α(G). The girth, g(G), is the length of a shortest
cycle in G. Given a graph G, the complement of G is the graph Ḡ that has the same vertex
set as G, while the edge set of Ḡ is the complement of the edge set of G.

2 Classes of uniformly dissociated graphs
Let Dk be the set of uniformly dissociated graphs G such that diss(G) = k. Suppose that
G ∈ Dk and that H is an induced subgraph of G. Since any dissociation set of H is also
a dissociation set of G, it follows that diss(H) ≤ k. However, it need not be the case that
H ∈ Dk. For example, the path P4 is an induced subgraph of C5 and C5 ∈ D3, but P4 has
maximal dissociation sets of orders 2 and 3.

ClearlyD1 = {K1}. In fact,K1 is the only graph with dissociation number 1. Consider
now the classD2. Since the only maximal dissociation set of order 1 in a graph is an isolated
vertex, we see that a graph has dissociation number 2 if and only if it belongs to the class
D2. It is also clear that complete graphs Kn, for n ≥ 2, are in the class, because any
pair of (adjacent) vertices forms a maximal dissociation set. Furthermore, if a matching
M is removed from Kn, then every set consisting of a vertex is extended to a maximal
dissociation set, consisting either of two adjacent or two non-adjacent vertices. We claim
that these graphs are precisely all the graphs from D2. Suppose that G is not in the class
of graphs obtained from complete graphs Kn with n ≥ 2, by removing a (possibly empty)
matching M from G. In this case G contains a vertex, say x, which is not adjacent to
two vertices from G, say y and z. It is clear that {x, y, z} is a (not necessarily maximal)
dissociation set, and hence G is not in D2. We have proved the following statement.

Observation 2.1. D2 = {Kn −M | n ≥ 2,M a (possibly empty) matching in Kn}.

Note that the path P3 is one of the graphs from D2. In particular, as we will see in The-
orem 3.2, this graph can be used in constructing infinite families of uniformly dissociated
trees.

Next, we present two characterizations of the graphs in D3. The following lemma will
be used in several proofs in the paper.

Lemma 2.2. Let G be a nontrivial uniformly dissociated graph and M an induced match-
ing in G. If 2|M | < k and G ∈ Dk, then G−N [V (M)] ∈ Dk−2|M |.
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Proof. Assume thatG ∈ Dk. LetM be an induced matching inG and assume that 2|M | <
k. Let S1 and S2 be any maximal dissociation sets of G − N [V (M)]. It is clear that
V (M)∪S1 and V (M)∪S2 are maximal dissociation sets of G, and consequently 2|M |+
|S1| = k = 2|M | + S2. This implies that |S1| = |S2|, and therefore G − N [V (M)] ∈
Dk−2|M |.

Theorem 2.3. A graph G with at least one edge is in D3 if and only if

(1) for every xy ∈ E(G) we have |V (G) \N [{x, y}]| = 1; and

(2) for every uv /∈ E(G) we have |V (G) \ N [{u, v}]| ≤ 1, and if {u, v} is a maximal
independent set of G, then N(u) 6= N(v).

Proof. Suppose thatG is a uniformly dissociated graph with diss(G) = 3. That means that
regardless of how we build a maximal dissociation set we end up with 3 vertices in it. Let
xy ∈ E(G). By Lemma 2.2, G−N [{x, y}] ∈ D1, which implies property (1), becauseD1

contains only K1. Suppose u and v are two non-adjacent vertices. If |V (G)\N [{u, v}]| >
1, then there exists a dissociation set, consisting of u, v, and two vertices from V (G) \
N [{u, v}], a contradiction with diss(G) = 3. This proves that |V (G) \ N [{u, v}]| ≤ 1.
Now, assume that {u, v} is a maximal independent set of G. If N(u) = N(v), then {u, v}
is a maximal dissociation set, a contradiction, which completes the proof of one direction.

For the converse, assume that G satisfies properties (1) and (2). Consider any maximal
dissociation set S of G. If S contains two adjacent vertices, then property (1) shows that
S contains exactly three elements. Otherwise, S consists of an independent set of vertices,
which is by (1) of size at least 2 (we can use (1), sinceG has an edge). Let u and v belong to
S, C be the set of common neighbors of u and v,A = N(u)\N(v), andB = N(v)\N(u).

By (2), |V (G) \N [{u, v}]| ≤ 1; so first consider the case that G−N [{u, v}] = {w}.
Note that (1) ensures that each vertex, say x, in A must be adjacent to every vertex in B,
since if not, G−N [{u, x}] is not isomorphic to K1. Also observe that w must be adjacent
to all vertices of A (resp. B). Suppose that w is not adjacent to u′, where u′ ∈ A. Then
G−N [{u, u′}] contains v and w, which contradicts (1) (we derive a similar contradiction,
if v′ ∈ B is not adjacent tow). Now, note that since u and v belong to the independent set S
no vertex in A ∪B ∪C does. Because S is maximal, we infer that S = {u, v, w}. Finally,
consider the case when |V (G) \ N [{u, v}]| = 0. This means that {u, v} is a maximal
independent set, and using property (2) we see that {u, v} is not a maximal dissociation set
and |S| = 3.

Now, we present another characterization of the graphs from D3. If a graph G belongs
to D3, then in its complement, which we denote by H , every pair of vertices that are non-
adjacent have exactly one common neighbor (using condition (1) of Theorem 2.3 expressed
in the complement ofG). Condition (2) of the theorem expressed inH is that for every pair
u and v of vertices that are adjacent in H there is at most one common neighbor of u and
v. In other words, any edge of H belongs to at most one triangle. Hence H is diamond-
free, and the second part of condition (2) implies that either u or v must have some other
neighbor, which readily implies that H must be connected.

The described conditions for the graphH are equivalent to the definition of the so-called
geodetic graphs with diameter 2 that are diamond-free. (Recall that a graph is geodetic, if
between any pair of vertices there is a unique shortest path.) Since in geodetic graphs
any cycle on 4 vertices lies in the complete graph on the same 4 vertices, we derive the
following characterization of graphs from D3.
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Theorem 2.4. A graph G is in D3 if and only if its complement Ḡ is a connected K4-free
geodetic graph with diameter 2.

Geodetic graphs with diameter 2 were studied by Stemple [16], (see also the mono-
graph [6], where these graphs were further classified) who proved in [16, Result II] that
triangle-free geodetic graphs with diameter 2 are precisely the Moore graphs with diameter
2 (and girth 5). There are three known graphs of this type – C5, the Petersen graph and the
Hoffman-Singleton graph, which is a 7-regular graph on 50 vertices. It is one of the big
open problems, whether there exist other Moore graphs. As the analysis shows, the only
possible candidates for other Moore graphs are regular with degree 57 on 3250 vertices. If
there exists such a Moore graph, it might not be unique. Note that the complement of any
such graph (if it exists) is in D3.

The complement of a graph fromD3 cannot have any 4-cycle as a subgraph, because the
existence of an induced C4 or a diamond contradicts the characteristic property of geodetic
graphs, and K4 is also forbidden. Now, if one forbids 4-cycles as subgraphs in a graph of
diameter 2, then any two vertices that are not adjacent have exactly one common neighbor.
Therefore, these are exactly the geodetic graphs with diameter 2, that is, the complements
of graphs from D3. Bondy, Erdős, and Fajtlowicz characterized in [3] the graphs with
diameter 2 that have no 4-cycles as the graphs H that fall into three different families:

(i) ∆(H) = |V (H)| − 1 and H has no 4-cycles,

(ii) H is a Moore graph,

(iii) H is a polarity graph.

The first family are the graphs having a universal vertex, and all other vertices have
degree at most 2. Clearly, the complement of any such graph is the disjoint union of a
graph from D2 and K1. While Moore graphs are well-known, let us focus on the third
family – polarity graphs. The study of these graphs started in the context of projective
geometries by Kantor [11], and they were later considered in several papers. See the recent
study [1]. For a formal definition of polarity graphs we present some notions from finite
geometries.

Let P and L be disjoint, finite sets, and let I ⊂ P × L. The triple (P,L, I) is called a
finite geometry, elements of P are called points, while elements of L are lines. A polarity
of the geometry is a bijection from P ∪ L to P ∪ L that sends points to lines, sends lines
to points, is an involution, and respects the incidence structure. Given a finite geometry
(P,L, I) and a polarity π, the polarity graph Gπ is the graph with vertex set V (Gπ) = P ,
and pq ∈ E(Gπ) whenever p and q are points such that (p, π(q)) ∈ I.

Alternatively, for any prime power q, let PG(2, q) denote the standard projective geom-
etry over the Galois field GF (q), where points are represented by projective triples, see [1]
for details. The vertex set of the corresponding polarity graph consists of (q2 + q + 1)
points of PG(2, q), which are adjacent whenever the corresponding triples are orthogonal.
In particular, for any prime power q there exists a (unique) polarity graph, which readily
implies that there are also infinitely many graphs in D3. From the result of Bondy, Erdős,
and Fajtlowicz [3] and our discussion we derive another characterization of these graphs.

Corollary 2.5. A graph G is in D3 if and only if either G is the disjoint union of a graph
from D2 and the D1-graph, or G is the complement of a Moore graph, or G is the comple-
ment of a polarity graph.
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In order to present some small examples of connected graphs in D3 we performed a
structural analysis of these graphs, which results in the following proposition, the proof of
which is omitted.

Proposition 2.6. Let G be a connected graph in D3 having minimum degree k.

(1) If k ≤ 2, then G = C5.

(2) If k ≥ 3 and v is a vertex inG such that deg(v) = k, then the open neighborhood of v
partitions into ` subsets S1, . . . , S` such that |Si| = m for all i, k = `m, andm+1 ≤
` ≤ m+ 2. In addition, B = V (G) \N [v] = {b1, . . . , b`}, N(bi)∩Si = ∅ and bi is
adjacent to every vertex in Sj for j 6= i. The subgraphs G[B], G[S1], . . . , G[S`] all
belong to D2.

In the case that G[B] is a complete graph we are able to deduce that each G[Si] is also
a complete graph. Indeed, let δ(G[B]) = `− 1, let 1 ≤ i ≤ ` and let s be any vertex in Si.
For i 6= j, |V (G) \N [{s, bj}]| = 1 and hence s is adjacent to exactly m− 1 vertices in Sj .
If e denotes the number of neighbors of s in G[Si], then

m` = k ≤ deg(s) = 1 + e+ (`− 1) + (`− 1)(m− 1) .

From this it follows that e = m− 1, and we see that G[Si] is a complete subgraph.
When k ≥ 3, ` > m, and k = `m, it follows that ` ≥ 3. Next we find all graphs in D3

with ` = 3. Note that in this case m is either 1 or 2. Let A = N(v) where v is a vertex of
minimum degree as in the statement of Proposition 2.6(2).

v

Figure 1: The only graph in D3 with ` = 3 and m = 1.

Suppose first that m = 1. In this case k = ` and the subgraph G[A] is isomorphic to
the complement of G[B]. Since G[B] ∈ D2, it follows that the maximum degree of G[A]
is at most 1. If A is an independent set, then we get that G is isomorphic to the graph
in Figure 1. On the other hand, if ∆(G[A]) = 1, then G is isomorphic to the graph in
Figure 2, which is, in turn, isomorphic to the graph in Figure 1.

Next suppose that m = 2, and hence ` = m + 1 = 3. As above, G[B] = K3 and
G[Si] = K2 for 1 ≤ i ≤ 3. As it turns out, the only possibility that yields a graph from
D3 is that the subgraph G[A] is isomorphic to K2�K3; we derive that G is the graph in
Figure 3. (Note that it is the complement of the Petersen graph.)

Stemple proved [16, Result X] that the order of a geodetic graph H with diameter 2,
which has triangles but no complete subgraphs of order 4, is ∆2 − ∆ + 1, where ∆ is
maximum degree of H . Note that ∆ is equal to the maximum number of non-neighbors
of vertices in G from D3, which is, by the construction from Proposition 2.6, equal to `.
Hence `(m + 1) = ∆(∆ − 1). We deduce that unless the complement of G is triangle-
free (and thus a Moore graph), we have ` = m + 2. For ` = m + 2 = 3 this is exactly
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v

Figure 2: A graph isomorphic to the one in Figure 1.

Figure 3: The only graph in D3 with ` = 3 and m = 2.

the graph in Figure 1. When ` = m + 2 = 4 we have the graph in Figure 4. As in the
description of the connected graphs inD3 from above, the vertex v is adjacent to all vertices
in S = S1 ∪ S2 ∪ S3 ∪ S4. For 1 ≤ i ≤ 4, bi is adjacent to every vertex in S − Si. The
subgraph induced by B is a complete graph of order 4 with the matching edges b1b2 and
b3b4 removed. This graph, G[B], is in D2.

S1 S4S2 S3

v

B
b1 b2 b3 b4

Figure 4: Graph in D3 of order 13.

Let us only mention that the path P6 and the cycle C7 belong to D4, while a special
family of graphs in D2k, where k ≥ 3, will be presented in the next section.

3 Extendable vertices
The term extendable vertices of graphs was coined in the context of well-covered graphs,
where such vertices were used as attachment vertices to build bigger graphs from smaller
well-covered building blocks [7]. We will use a similar approach, and introduce extendable
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vertices in the context of uniformly dissociated graphs.
Let G be a uniformly dissociated graph with diss(G) = k. We say that x ∈ V (G) is

Dk-extendable, if the following two properties hold:

(i) (G− x) ∈ Dk and

(ii) (G−N [x]) ∈ Dk−1.

Since in this paper we use only this version of extendability, we will often simplify the
wording by calling Dk-extendable vertices just extendable vertices. It is clear that the only
vertex of K1 (which is the only graph of D1) is not extendable in the above sense. On the
other hand, it is easy to verify that all graphs from D2, except the complete graphs, contain
an extendable vertex.

Proposition 3.1. Let G be any graph in D2, and G not a complete graph. Any vertex that
is not universal in G, is D2-extendable.

The application of this concept in constructing large families of uniformly dissociated
graphs is presented in the next result.

Theorem 3.2. Let G be an arbitrary graph, having vertices denoted by x1, . . . , xn; let
G1, . . . , Gn be (not necessarily different) uniformly dissociated graphs, each having an
extendable vertex. If G∗ is obtained from G by identifying xi with an extendable vertex of
Gi for all i ∈ {1, . . . , n}, then G∗ is a uniformly dissociated graph.

The proof of the theorem follows directly from the construction ofG∗ and the definition
of extendable vertices. In particular, Theorem 3.2 shows that every graph is an induced
subgraph of a uniformly dissociated graph. (Since non-complete graphs in D2 form an
infinite family, every graph is an induced subgraph of infinitely many uniformly dissociated
graphs.)

In the rest of this section, we shed some more light on the uniformly dissociated graphs,
(not) having extendable vertices.

Proposition 3.3. No vertex of a connected graph from D3 is extendable.

Proof. Let G be a connected graph in D3, and assume that w ∈ V (G) is an extendable
vertex of G. If there exists an edge xy ∈ E(G) such that w is adjacent to neither x nor to
y, then by property (1) from Theorem 2.3, we infer that {x, y} is a maximal dissociation
set of G − w, a contradiction with G − w ∈ D3. Hence G − N [w] does not contain any
edge, which implies that degG(w) ≥ |V (G)|−3 (for otherwise V (G)\N(w) would be an
independent set of cardinality at least 4). Now, if V (G)\N [w] consisted of only one vertex,
say y, then w and a neighbor of y would form a maximal dissociation set of G of size 2,
again a contradiction. This implies that there exist exactly two vertices in the complement
of N [w], and let us denote them by y and z.

If y and z had a common neighbor x, then again we derive a contradiction withG ∈ D3

(because {w, x} would be a maximal dissociation set of G). This implies that N(y) ∩
N(z) = ∅, and each of N(y) and N(z) is non-empty, since G is connected. If there exists
a vertex a ∈ N(w) such that {y, z} ∩N(a) = ∅, then {y, z} ⊆ V (G) \N [{w, a}], which
contradicts property (1) of Theorem 2.3. Thus N(y), N(z) is a partition of N(w). Now,
if there exists y′ ∈ N(y) and z′ ∈ N(z) such that y′z′ /∈ E(G), then {y, y′, z, z′} is a
dissociation set of G of cardinality 4, a contradiction. Otherwise, the set {y′, z′}, where
y′ ∈ N(y) and z′ ∈ N(z), is a maximal dissociation set of G of cardinality 2, which is the
final contradiction, showing that w is not an extendable vertex of G.
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There are many Dk-extendable vertices, where k is an even number; in fact, any vertex
in the construction of a graphG∗ from Theorem 3.2, which corresponds to a vertex from the
initial graph G, is extendable. On the other hand, we know of no example of a connected
Dk-extendable vertex for k being odd. More precisely, we know that there are no D3-
extendable vertices in connected graphs, and, in addition, we do not know if any connected
D2`+1-extendable graphs exist, when ` > 1. Therefore we pose the following question.

Question 3.4. Are there any connected graphs in Dk, where k is an odd number greater
than 3? If there are, does there exist a Dk-extendable vertex for some such k.

It would be interesting to know, if any connected graphs in D2t+1, for t > 1 exist, also
because they would present a natural common extension of the classes of Moore graphs
with diameter 2 and polarity graphs.

4 Uniformly dissociated graphs with girth at least 7
Suppose that each of the graphs G1, . . . , Gn is isomorphic to P3. The construction given
in Theorem 3.2 presents a large family of uniformly dissociated graphs, each of which has
many leaves (in fact, a third of the vertices have degree 1). Note that in these graphs each
neighbor of a leaf has degree 2, and is in particular adjacent to only one leaf. This latter
property holds in all uniformly dissociated graphs that have minimum degree 1 and order
at least 4, as the following lemma shows.

Lemma 4.1. Let G be a connected uniformly dissociated graph on more than three ver-
tices. If x is a stem, then it has exactly one leaf as a neighbor.

Proof. Let G be a connected uniformly dissociated graph with |V (G)| > 3. For the pur-
poses of reaching a contradiction, let us assume that there exists a vertex x, which is adja-
cent to more than one leaf. Let x1, . . . , xk, where k ≥ 2, be the leaves adjacent to x. If G
is the star K1,k, then {x, x1} is a maximal dissociation set of size 2, and {x1, . . . , xk} a
maximal dissociation set of size k, where k ≥ 3, because G has at least 4 vertices. Hence
G is not uniformly dissociated.

If G is not a star, then there exists a neighbor y of x, which is not a leaf. Let S be a
maximal dissociation set that contains vertices x and y (such a set always exists, because
we can start a greedy procedure of obtaining a dissociation set by picking the endvertices
of the edge xy). Note that the leaves x1, . . . , xk are not in S, and, moreover, x and y are the
only vertices from N [{x, y}] that are in S. Let S′ = S \ {x, y}. Clearly, S′ is a (maximal)
dissociation set of G − N [{x, y}]. Now, let S be the set S′ ∪ {y, x1, . . . , xk}. Note that
S is a dissociation set of G (not necessarily maximal), and |S| ≥ |S′| + 3 > |S|. Since S
lies in a maximal dissociation set, we derive that G is not a uniformly dissociated graph, a
contradiction, which shows that G contains no vertex adjacent to more than one leaf.

Lemma 4.2. If G is a uniformly dissociated graph of order at least 3, then no two stems of
G are adjacent.

Proof. Let G ∈ Dm for some m ≥ 2. If |V (G)| = 3, then G does not have two stems, so
we may assume that G is of order greater than 3. Now, if m = 2, then G is isomorphic to a
complete graph from which a (possibly empty) matching is removed (by Observation 2.1).
Hence G has no leaves, and consequently also no stems. We may thus assume that G is a
graph of order greater than 3, and G ∈ Dm, for m ≥ 3.
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Assume that G has two stems u and v that are adjacent. Let us denote by x and y
the leaves that are adjacent to u and v, respectively. By Lemma 4.1 each stem is adjacent
to exactly one leaf. Let D1 be a maximal dissociation set that contains vertices u and v.
By Lemma 2.2, as u and v form a vertex set of a trivial induced matching in G, we have
G − N [{u, v}] ∈ Dm−2. Now, note that D2 = D1 ∪ {x, y} \ {v} is a dissociation set of
G, which is not necessarily maximal. Hence, there exists a maximal dissociation set in G
that contains D2 and is of cardinality at least m+ 1, a contradiction with G ∈ Dm.

In the rest of this section we restrict ourselves to graphs with girth at least 7.

Lemma 4.3. If G is a uniformly dissociated graph with g(G) ≥ 7, then no two stems of G
are at distance 2.

Proof. Let G be a uniformly dissociated graph, that is G ∈ Dm for some m ≥ 2, and
let g(G) ≥ 7. Assume that G has two stems v and w that are at distance 2, and let u be
their common neighbor. Let us denote by x and y the leaves that are adjacent to v and w,
respectively (by Lemma 4.1 each stem has only one leaf).

Denote by z1, . . . , zp the neighbors of w, different from u, and note that they are not
stems and not leaves, by Lemma 4.2. Hence each of them has a neighbor, and let us denote
them by x1,1, . . . , x1,j1 , . . . , xp,1 . . . , xp,jp , where xi,j are the neighbors of zi for all i ∈
{1, . . . , p}. Since xi,j are not leaves, each of them has another neighbor, and let us denote
the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Now,
we build an induced matching M , consisted of edges xi,jyi,j,k in the following way. As
long as this is possible, for each zi choose a j from {1, . . . , ji}, and add an edge xi,jyi,j,k
to M , so that it does not destroy the property of M being an induced matching. Note that
since the girth is at least 7, the only possibility for destroying the property of M being
an induced matching is that some vertex yi,j,k is adjacent to a vertex yi′,j′,k′ , which is
already in V (M). More precisely, the procedure can end before an edge xi,jyi,j,k has
been added to M for all zi, only if for some zi and for all of its neighbors xi,j all of their
neighbors yi,j,k cannot be chosen, because each of them is adjacent to some yi′,j′,k′ that is
an endvertex of an edge from M . In this case, by using Lemma 2.2, we infer that since M
is an induced matching in G, and 2|M | < m, we have G −N [V (M)] ∈ Dm−2|M |. Now,
this implies that all neighbors of xi,1, . . . , xi,ji (except for zi) are in N [V (M)] and thus
in G − N [V (M)] all xi,1, . . . , xi,ji are leaves. Hence zi is a stem in G − N [V (M)] and
is adjacent to w, which is also a stem in G −N [V (M)]. Now, this is a contradiction with
Lemma 4.2, because G − N [V (M)] is a uniformly dissociated graph with two adjacent
stems.

Hence, the only possibility is that the procedure of building an induced matching M
consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one edge xi,jyi,j,k
to belong toM . SinceM is an induced matching and 2|M | < m, we haveG−N [V (M)] ∈
Dm−2|M | by Lemma 2.2. Note that inG−N [V (M)],w is a stem of degree 2 (adjacent only
to u and the leaf y), and v also belongs toG−N [V (M)] because an edge between v and any
yi,j,k in G would imply the existence of a 6-cycle. Now, let D1 be a maximal dissociation
set of G − N [V (M)], which contains v, u and y, and let D2 = D1 ∪ {x,w} \ {u}.
Clearly,D2 is a dissociation set (not necessarily maximal) of cardinality |D1|+1, which is a
contradiction with G−N [V (M)] being uniformly dissociated. The proof is complete.

Lemma 4.4. If G is a uniformly dissociated graph with g(G) ≥ 7, then for each stem v,
deg(v) = 2.
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Proof. Let G ∈ Dm for some m ≥ 2, and assume that v is a stem adjacent to the leaf
x, and v has at least two other neighbors, which we denote by w and w′. Now, we use a
similar idea as in the proof of Lemma 4.3.

Denote by z1, . . . , zp the neighbors of w, different from v, which are not stems and
not leaves, by Lemma 4.2. Hence each of them has a neighbor, and let us denote them by
x1,1, . . . , x1,j1 , . . . , xp,1, . . . , xp,jp , where xi,j are the neighbors of zi for all i∈{1, . . . , p},
j ∈ {1, . . . , ji}. Since xi,j are not leaves, each of them has another neighbor, and let us de-
note the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}.
Now, we build an induced matching M , consisted of edges xi,jyi,j,k in the following
way. As long as this is possible, for each zi choose a j from {1, . . . , ji}, and add an edge
xi,jyi,j,k to M , so that it does not destroy the property of M being an induced matching.
Note that since girth is 7, the only possibility for destroying the property of M being an
induced matching is that some vertex yi,j,k is adjacent to a vertex yi′,j′,k′ , which is already
in M . More precisely, the procedure can end before an edge xi,jyi,j,k has been added to
M for all zi, only if for some zi and for all of its neighbors xi,j all of their neighbors yi,j,k
cannot be chosen, because each of them is adjacent to some yi′,j′,k′ that is an endvertex of
an edge from M . In this case, by using Lemma 2.2, we infer that since M is an induced
matching inG, and 2|M | < m, we haveG−N [V (M)] ∈ Dm−2|M |. Now, this implies that
all neighbors of xi,1, . . . , xi,ji (except for zi) are in N [V (M)] and thus in G−N [V (M)]
all xi,1, . . . , xi,ji are leaves. Hence zi is a stem in G − N [V (M)], which is at distance 2
from another stem v, a contradiction with Lemma 4.3.

Hence, the only possibility is that the procedure of building an induced matching M
consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one edge xi,jyi,j,k
to belong toM . SinceM is an induced matching and 2|M | < m, we haveG−N [V (M)] ∈
Dm−2|M | by Lemma 2.2. Note that in G−N [V (M)], w is a leaf, adjacent only to v. Thus
v is a stem, which is adjacent to two leaves, a contradiction with Lemma 4.1.

Lemma 4.5. If G is a uniformly dissociated graph with g(G) ≥ 7 and has a leaf, then
each vertex of G is either a leaf, or a stem or is adjacent to a stem.

Proof. Let G ∈ Dm for some m ≥ 2 with g(G) ≥ 7 and with a leaf. We may assume that
G is a connected graph. Suppose that there exists a vertex inG that is not a leaf, not a stem,
and not adjacent to a stem. Since G is connected, there exists such a vertex w, which is, in
addition, adjacent to u, which is in turn adjacent to a stem v.

Denote by z1, . . . , zp the neighbors of w, different from u, which are not leaves and
not stems by our assumption. Hence each of them has a neighbor, and let us denote
them by x1,1, . . . , x1,j1 , . . . , xp,1 . . . , xp,jp , where xi,j are the neighbors of zi for all
i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Since xi,j are not leaves (because zi are not stems), each
of them has another neighbor, and let us denote the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j
for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Now, we build an induced matching M , consisted
of edges xi,jyi,j,k in the following way. As long as this is possible, for each zi choose a
j from {1, . . . , ji}, and add an edge xi,jyi,j,k to M , so that it does not destroy the prop-
erty of M being an induced matching. Suppose that the procedure of building an induced
matching M consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one
edge xi,jyi,j,k to belong to M . Since M is an induced matching and 2|M | < m, we have
G − N [V (M)] ∈ Dm−2|M | by Lemma 2.2. Note that in G − N [V (M)], w is a leaf, ad-
jacent to u; thus u and v are two adjacent stems, a contradiction with Lemma 4.2. Thus
the procedure of building an induced matching M such that all zi would be in N [V (M)]
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ends before each zi has a neighbor xi,j added to V (M). Let zi′ be such a vertex that for
all neighbors xi′,j′ all of their neighbors yi′,j′,k′ cannot be chosen, because each of them is
adjacent to some yi,j,k that is an endvertex of an edge from M .

Suppose deg(zi′) > 2. Note that for all neighbors xi′,j′ all of their neighbors yi′,j′,k′
are adjacent to a vertex yi,j,k ∈ V (M). Since M an induced matching in G, and 2|M | <
m, we haveG−N [V (M)] ∈ Dm−2|M |. This implies that all neighbors of xi′,1, . . . , xi′,ji′
(except for zi′ ) are in N [V (M)] and thus in G−N [V (M)] all xi′,1, . . . , xi′,ji′ are leaves.
Hence zi′ is a stem in G − N [V (M)], which has at least two leaves, a contradiction with
Lemma 4.1.

We may thus assume that deg(zi′) = 2, and let xi′ be the neighbor of zi′ , different
from w. Suppose that deg(xi′) > 2. By selecting the matching M ′, consisting only of
the edge uv, we infer by Lemma 2.2 that G − N [V (M ′)] ∈ Dm−2. Yet zi′ is a leaf in
G − N [V (M ′)], and so xi′ is a stem, whose degree is more than 2, a contradiction with
Lemma 4.4. Hence, we infer that also deg(xi′) = 2, and let yi′ be another neighbor of
xi′ . By the property of M , established above, we know that yi′ is adjacent to some yi,j,k,
which is at distance 3 from w. Now, let M ′′ be the matching consisting only of the edge
yi′yi,j,k. Hence, G−N [V (M ′′)] ∈ Dm−2, but in G−N [V (M ′′)] the vertex zi′ is a leaf,
and so w is a stem. We derive that w and v are two stems in the uniformly dissociated
graph G−N [V (M ′′)], which are at distance 2, contradicting Lemma 4.3.

We join the previous lemmas into the following fact.

Observation 4.6. IfG is a uniformly dissociated graph with g(G) ≥ 7 and has a leaf, then
every vertex that is not a stem nor a leaf, is adjacent to exactly one stem. Note that in that
case G has the structure as presented in the construction from Theorem 3.2, where each
of the extendable graphs, identified with a vertex from an arbitrary graph, is isomorphic
to P3.

The above observation is correct, because if a vertex were adjacent to two stems, these
two stems would be at distance 2, which is a contradiction with Lemma 4.3.

Lemma 4.7. IfG is a connected uniformly dissociated graph with g(G) ≥ 7 and δ(G) ≥ 2,
then G is isomorphic to C7.

Proof. Let G ∈ Dm for some m ≥ 2, g(G) ≥ 7, and δ(G) ≥ 2. Assume that there exists
a vertex v, with deg(v) ≥ 3.

Suppose that there exists a neighbor w of v, with deg(w) = 2. Let z be the neighbor of
w, different from v; further let x be a neighbor of z, and y a neighbor of x, different from z.
Note that y is not adjacent to v nor to any of its neighbors, due to the girth restriction. Let
M be the matching consisting only of the edge xy. Hence, G−N [V (M)] ∈ Dm−2, but in
G−N [V (M)] the vertex w is a leaf, and so v is a stem. Since degG−N [V (M)](v) ≥ 3 we
are in contradiction with Lemma 4.4.

The remaining possibility is that all neighbors of v have degree at least 3. Since G is
connected, we derive that every vertex in G has degree at least 3. We conclude the proof
by using the base technique from the proofs of previous lemmas.

Let v ∈ V (G), w one of its neighbors, and denote by z1, . . . , zp the neighbors of w,
different from v. Each of them has a neighbor, which we denote by

x1,1, . . . , x1,j1 , . . . , xp,1 . . . , xp,jp ,
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where xi,j are the neighbors of zi for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Each of xi,j
has another neighbor, and let us denote the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j for all
i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Now, we build an induced matching M , consisted of
edges xi,jyi,j,k in the following way. As long as this is possible, for each zi choose a j
from {1, . . . , ji}, and add an edge xi,jyi,j,k toM , so that it does not destroy the property of
M being an induced matching. Note that since girth is 7, the only possibility for destroying
the property of M being an induced matching is that some vertex yi,j,k is adjacent to
a vertex yi′,j′,k′ , which is already in M . More precisely, the procedure can end before an
edge xi,jyi,j,k has been added toM for all zi, only if for some zi and for all of its neighbors
xi,j all of their neighbors yi,j,k cannot be chosen, because each of them is adjacent to some
yi′,j′,k′ that is an endvertex of an edge from M . In this case, by using Lemma 2.2, we
infer that since M an induced matching in G, and 2|M | < m, we have G − N [V (M)] ∈
Dm−2|M |. Now, this implies that all neighbors of xi,1, . . . , xi,ji (except for zi) are in
N [V (M)] and thus in G − N [V (M)] all xi,1, . . . , xi,ji are leaves. Hence zi is a stem in
G−N [V (M)], which has degree at least 3, a contradiction with Lemma 4.4.

Hence, the only possibility is that the procedure of building an induced matching M
consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one edge xi,jyi,j,k
to belong toM . SinceM is an induced matching and 2|M | < m, we haveG−N [V (M)] ∈
Dm−2|M | by Lemma 2.2. Note that in G−N [V (M)], w is a leaf, adjacent only to v. Thus
v is a stem with degree at least 3, again the contradiction with Lemma 4.4.

As a result of this we now conclude thatG is a connected, uniformly dissociated, regular
graph of degree 2 and girth at least 7. It is straightforward to check that C7 is the only cycle
of order seven or more that is uniformly dissociated.

We are ready to state the main theorem.

Theorem 4.8. If G is a uniformly dissociated graph with g(G) ≥ 7, then each connected
component ofG is either isomorphic toC7, or can be obtained from an arbitrary connected
graph H with girth at least 7, by identifying each vertex of H with a leaf of a copy of P3.
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Abstract

We discuss functions from the edges and vertices of a directed graph to an Abelian
group. A function is called balanced if the sum of its values along any cycle is zero. The
set of all balanced functions forms an Abelian group under addition. We study this group in
two cases: when we are allowed to walk against the direction of an edge taking the opposite
value of the function and when we are not allowed to walk against the direction.

Keywords: Consistent graphs, balanced signed graphs, balanced labelings of graphs, gain graphs,
weighted graphs.

Math. Subj. Class.: 05C22

1 Introduction
Let A be an Abelian group with the group operation denoted by + and the identity element
denoted by 0. Let G be a graph. Roughly speaking, an A-valued function f on vertices
and/or edges of G is called balanced if the sum of its values along any cycle of G is 0. Our
cycles are not permitted to have repeating edges.

The study of balanced functions can be conducted in three cases:
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1. The graph G is directed with the set of vertices V and the set of directed edges E.
When traveling between the vertices, we are allowed to travel with or against the
direction of the edges. The value of a function f on ē, which represents traveling the
edge e against its direction, is equal to −f(e). In this context, when the function is
defined on edges only, the pair (G, f) is called a network or a directed network. In
this paper we shall call this the flexible case, meaning that the direction of an edge
does not forbid us to walk against it. The notion of balanced functions on edges for
the flexible case, for functions taking values only on the edges, is introduced in the
literature under different names. Thus, for example, in [1] the set of such functions is
exactly Im(d), where d is the “exterior differential”, which maps a function f defined
on vertices to the function df on edges defined by the equality (df)(e) = f(e+) −
f(e−), where e− and e+ are the origin and the end of a directed edge e. In [11], in
somewhat different language, that set is referred to as the set of consistent graphs.
In [13] such functions have been introduced under the name “color-coboundaries”.
They also appear in literature under the name “tensions”. They have been extensively
studied, recent examples include [3, 4, 6, 10, 14]. In [5] balanced functions on edges
appear in a certain connection with geometric representations of the Coxeter group
associated to a graph. In a rather common terminology introduced by Zaslavsky, [15],
a pair of a graph and such a function on the edges of a graph is called a “gain graph”.

2. The graph G is directed with the set of vertices V and the set of directed edges E,
but we are only allowed to travel with the direction of the edges. In this paper we
shall call this the rigid case. When f takes values only on the edges then in some
literature, following Serre, [12], the flexible case is described as a particular instance
of the rigid case by introducing the set E as the new set of directed edges of G (the
cardinality of E is twice that of E), denoting by ē ∈ E the inverse of the directed
edge e ∈ E and requiring f(ē) = −f(e), [1, 12].

3. The graph G is undirected. The value of a function f on an edge e does not depend on
the direction of the travel on e. The case of balanced functions f : E → R is studied
in [2], where these functions are called “cycle-vanishing edge valuations”. The case
of balanced functions f : E → A is studied in [7]. The case of balanced functions
f : V

⋃
E → A is first introduced and studied in [9]. The group structure of the

groups of balanced functions on the edges, balanceable functions on the vertices and
balanced functions on the vertices and edges of an undirected graph with values in
an Abelian group is studied in [7].

The subject of this paper is the group structure and the relations between groups of
functions associated with the notion of balance on a directed graph. Namely, we study the
group structures of the groups of balanced functions for the flexible and the rigid cases and
the relations between these two cases.

In this article we calculate the groups of balanced functions on the edges, balanceable
functions on the vertices and balanced functions on the vertices and edges of a directed
graph with values in an Abelian group for both flexible and rigid cases.

In what follows, we say that a directed graph is connected if its underlying undirected
graph is connected, and strongly connected whenever there exists a directed path between
any ordered pair of vertices.

For the basics of Graph Theory we refer to [8].
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2 The flexible case
Let G = (V,E) be a connected directed graph, possibly with loops and multiple edges. Let
v and w be two vertices connected by an edge e; v is the origin of e and w is the endpoint
of e. For e ∈ E denote by ē the same edge as e but taken in the opposite direction. Thus ē
goes from w to v. Let E = {e, ē | e ∈ E}.

Definition 2.1. A path from a vertex x to a vertex y is an alternating sequence v1, e1, v2,
e2,...,vn, en of vertices from V and different edges from E such that v1 = x and each ej ,
for j = 1, ..., n − 1, goes from vj to vj+1 and en goes from vn to y. We permit the same
edge e to appear in a path twice - one time along and one time against its direction, since
this is regarded as using two different edges from E.

We require our graphs to be connected. Namely, any two different vertices of the graph
G can be connected by a path.

Definition 2.2. A cycle is a path from a vertex to itself.

We permit the trivial cycle, which is the empty sequence containing no vertices and no
edges.

Definition 2.3. The length of a cycle is the number of its edges.

Definition 2.4. A function f : E → A such that f(ē) = −f(e) is balanced if the sum
f(e1) + ... + f(en) of the values of f over all the edges of any cycle of G is equal to 0.

Definition 2.5. The set of all the balanced functions f : E→ A is denoted by HF(E, A).
HF(E, A) is a subgroup of the Abelian group AE of all the functions from E to A.

Definition 2.6. A function g : V → A is balanceable if there exists some f : E→ A such
that f(ē) = −f(e) and the sum of all the values g(v1) + f(e1) + g(v2) + f(e2) + ... +
g(vn) + f(en) along any cycle of G is zero. We say that this function f : E→ A balances
the function g : V → A.

Definition 2.7. The set of all the balanceable functions g : V →A is denoted by BF(V,A).
The group BF(V,A) is a subgroup of the free Abelian group AV of all the functions from
V to A.

Definition 2.8. A function h : V
⋃
E → A, which takes both vertices and edges of G to

some elements of A, is balanced if h(ē) = −h(e) and the sum of its values h(v1)+h(e1)+
h(v2) + h(e2) + ... + h(vn) + h(en) along any cycle of G is zero.

Definition 2.9. The set of all the balanced functions h : V
⋃
E → A is denoted by

WF(G,A). The group WF(G,A) is a subgroup of the Abelian group AV
⋃

E of all the
functions from V

⋃
E to A.

Clearly, any balanced function f ∈ HF(E, A) can be viewed as a balanced function
from V

⋃
E to A, which takes zero value on every vertex of G. Thus, we will regard

HF(E, A) as a subgroup ofWF(V
⋃
E, A).

Proposition 2.10. The quotient WF(V
⋃
E, A)/HF(E, A) is naturally isomorphic to

BF(V,A).
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Proof. The natural isomorphism is defined by “forgetting” the values of h ∈ WF(V
⋃

E,
A) on the edges of G and regarding it just as a balanceable function from V to A.

We review some basic definitions and facts regarding Abelian groups.

Definition 2.11. A natural number k is the order of an element a ∈ A if it is the minimal
positive integer such that k · a = 0.

Definition 2.12. The set of all elements of A of order 2 is denoted by A2. The set A2 is a
subgroup of A.

We provide a proof of a folklore result which describes the structure of the group
HF(E, A).

Proposition 2.13. The groupHF(E, A) is isomorphic to A|V |−1.

Proof. Select a vertex v and consider the following bijection between the group of all A-
valued functions g on V with g(v) = 0 and the group HF(E, A). For any such g, since
each edge e ∈ E goes from some vertex x to some vertex y, we define f(e) = g(y)− g(x).
A straightforward calculation shows that f ∈ HF(E, A). In the other direction of the
bijection, for f ∈ HF(E, A) we inductively construct the function g as follows: we set
g(v) = 0; if g(u) has been defined for a vertex u then for every vertex w, for which there
exists some edge e from u to w, we define g(w) = g(u) + f(e). Since f ∈ HF(E, A),
any two calculations of the value of g on any vertex u will produce the same result. The
connectivity implies that every vertex indeed receives a value. Thus, our g is well-defined.
Obviously, the bijection, constructed above, is a group isomorphism.

Now we can state and prove one of our main results.

Theorem 2.14. Let G = (V,E) be a connected directed graph and G′ be its underlying
undirected graph. Then:

1. If G′ is bipartite, then the groupWF(V
⋃
E, A) is isomorphic to A|V |.

2. If G′ is not bipartite, thenWF(V
⋃
E, A) is isomorphic to A2 ×A|V |−1.

Proof. If G consists only of one vertex then part (1) of our theorem is trivial. Otherwise,
let us look at any one non-loop edge of G as it is depicted in Fig. 1:

a b
p //

Figure 1: An edge with values on it and on its origin and end.

The letters on the edge and the vertices denote the values of a function h : V
⋃

E→ A.
Assume that h is balanced, that is, h ∈ WF(V

⋃
E, A). Then for the cycle obtained by

walking along this edge and returning back along it we have the following equation:

a + p + b− p = 0 ,

which immediately implies that
b = −a .
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Thus h must have opposite values on any two vertices of G connected by an edge. Assume
that G′ is bipartite, which implies that G has no cycles of odd length. Then h, restricted to
the edges, must be equal to some balanced function f ∈ HF(E, A) on the edges, since val-
ues a and −a on the vertices of an even-length cycle appear equally often. Now select any
vertex v ∈ V . We can construct a balanced function h on vertices and edges by: for any el-
ement a ∈ A define h(v) = a and then define h for all the neighbors of v to be−a and then
for all the neighbors of the neighbors of v define h to be a and so on. Continuing this way
we will assign values a or−a to all the vertices of G. Since all the cycles are of even length,
we will not get a contradiction in that process. Next we choose any function f ∈ HF(E, A)
and we set h on the edges to be equal to f . Hence, we have constructed a bijection between
WF(V

⋃
E, A) and the group of pairs {(a, f) | a ∈ A, f ∈ HF(E, A)}. This bijection is

obviously also a group isomorphism. In addition, {(a, f) | a ∈ A, f ∈ HF(E, A)} is iso-
morphic to A|V |, since the groupHF(E, A) is isomorphic to A|V |−1 by Proposition 2.13.

Now assume that G′ is not bipartite, that is, G has a cycle of odd length. As we have
already seen above, the values of a balanced function h ∈ WF(V

⋃
E, A) on the vertices

must be a and −a for some a ∈ A. But walking along a cycle of odd length with vertices
v1, v2,...,vn, we get h(v1) = a, h(v2) = −a,..., h(vn) = a, h(v1) = −a, so a = −a,
that is, 2a = 0, which exactly means that a ∈ A2. Thus we construct a bijection between
WF(V

⋃
E, A) and the group of pairs {(a, f) | a ∈ A2, f ∈ HF(E, A)} mapping h ∈

WF(V
⋃
E, A) to the pair (a, f), where a ∈ A2 is the value of h on any vertex, and f is a

balanced function on edges defined as f(e) = h(e)+a for every edge e; conversely, from a
given a ∈ A2 and a balanced function f ∈ HF(E, A), we can construct a balanced function
h ∈ WF(V

⋃
E, A) assuming h(v) = a for any vertex v and h(e) = f(e)+a for any edge

e. This bijection is a group isomorphism. In addition, {(a, f) | a ∈ A2, f ∈ HF(E, A)}
is isomorphic to A2 × A|V |−1, since the group HF(E, A) is isomorphic to A|V |−1 by
Proposition 2.13.

Remark 2.15. Let G = (V,E) be a connected directed graph and G′ be its underlying
undirected graph. Notice that if the graph G′ is bipartite, then the group of balanceable
functions BF(V,A) is isomorphic to A and if G′ is not bipartite, then the group of bal-
anceable functions BF(V,A) is isomorphic to A2 - the group of involutions of A.

3 The rigid case
Let G = (V,E) be a connected directed graph. Recall that in the rigid case we are allowed
to walk only in the direction of an edge but not against it. It naturally changes the notion of
a path and of a cycle in comparison with the flexible case.

Definition 3.1. A path from a vertex x to a vertex y is an alternating sequence v1, e1, v2,
e2,...,vn, en of vertices from V and different edges from E (and not E) such that v1 = x
and each ej , for j = 1, ..., n− 1, goes from vj to vj+1 and en goes from vn to y.

For example, the triangle depicted in Fig. 2 is a cycle in the flexible case but is not a
cycle in the rigid case.

Similarly to the flexible case denote by BR(V,A), HR(E,A) and WR(V
⋃
E,A)

the groups of balanceable functions on vertices, balanced functions on edges and balanced
functions of the entire graph G (vertices and edges), respectively.
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Figure 2: A flexible cycle, which is not a rigid cycle.

Proposition 3.2. Every function on the set of vertices is balanceable. That is,

BR(V,A) = AV .

Proof. Let us take a function g : V → A. Define the function h : V
⋃

E → A in the
following way: h(v) = g(v) for each vertex v ∈ V , h(e) = −g(v) for all the edges e ∈ E
which start at v. Obviously h is a balanced function.

Definition 3.3. Two vertices x and y of G are strongly connected if there exists a path P1

from x to y and a path P2 from y to x. We also say that every vertex is strongly connected
to itself.

Notice that we allow P1 and P2 to have common edges.

Definition 3.4. A cycle is a path P from a vertex x to itself.

Notice that, since the paths P1 and P2 mentioned above might have common edges, P1

followed by P2 may not be a cycle. It can even happen, that there exists no cycle, which
contains both x and y. To illustrate it, consider the following.

Example 3.5. Consider the graph G depicted in Fig. 3 with V (G) = {x, v, w, y} and
E(G) = {e1, e2, e3, e4, e5}. The path P1 = x, e1, v, e5, w, e4 is the only path which goes
from x to y and the path P2 = y, e2, v, e5, w, e3 is the only path which goes from y to x.
They have a common edge e5. Thus, according to Definitions 3.1 and 3.4, there exists no
cycle containing both x and y.

x

v y

w

e1

OO

e5

��

e4

OO

e3
oo

e2oo

Figure 3: The vertices x, y are strongly connected but no cycle contains both of them.

Strong connectivity defines an equivalence relation on the vertices of G. The equiva-
lence classes of strongly connected vertices, together with all the edges between the vertices
of each class, are called the strongly connected components of G. We denote the number
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of strongly connected components of G by k̄(G). Obviously, G is strongly connected if
and only if k̄(G) = 1.

Lemma 3.6. If G is strongly connected, then the groupHR(E,A) is isomorphic to A|V |−1,
just like in the flexible case.

Proof. Let E = {e1, ..., en}. The edge e1 goes from some x to some y. There is a path P
which goes from y to x and does not contain e1, since if P contains e1 we can just delete
this e1 and all the vertices and edges that come after it from P . Thus, the sum of values
of any f ∈ HR(E,A) along P must be equal to −f(e1). Hence, we can add a new edge
ē1 to G which goes from y to x and we can extend the function f to a balanced function
on the edges of the new G if and only if we set f(ē1) = −f(e1). So the group of the
balanced functions on the edges of G after the addition of ē1 is naturally isomorphic to the
original group of the balanced functions on the edges of G before the addition. Repeating
this process for all the edges of E we reduce G to the flexible case, while not changing the
group of the balanced functions on the edges of G.

Theorem 3.7. The group HR(E,A) is isomorphic to A|V |−k̄(G)+r(G), where k̄(G) is the
number of strongly connected components of G, and r(G) is the number of all the edges
in G which go from a vertex in one strongly connected component of G to a vertex in a
different strongly connected component of G.

Proof. Let V1, ..., Vt be the equivalence classes of vertices of G with respect to strong
connectivity. Denote the set of edges between the vertices of Vj by Ej . Obviously, f ∈
HR(E,A) if and only if f |Ej ∈ HR(Ej , A) for each j, 1 6 j 6 t. Thus, HR(E,A) =
HR(E1, A) × · · · × HR(Et, A) × AU , where U is the set of all the edges between the
vertices in different strongly connected components of G. By Lemma 3.6 we conclude that
HR(E,A) is isomorphic to A|V1|−1+|V2|−1+···+|Vt|−1+r(G) = A|V |−k̄(G)+r(G).

Theorem 3.8. The groupWR(V
⋃
E,A) is isomorphic to A2|V |−k̄(G)+r(G), where k̄(G)

is the number of strongly connected components of G, and r(G) is the number of all the
edges in G which go from a vertex in one strongly connected component of G to a vertex in
a different strongly connected component of G.

Proof. To each h ∈ WR(V
⋃
E,A) there corresponds the pair (g, f), where g ∈ BR(V,

A) is just the restriction of h on the vertex set, and the value of f ∈ HR(E,A) on every
edge e is equal to h(e) + h(v), where the vertex v is the origin of the edge e. Such a
function f is obviously a balanced function on the edge set since its value along any path
is equal to the value of h along that path. This correspondence between the elements of
WR(V

⋃
E,A) and the pairs from BR(V,A) × HR(E,A) is a bijection. Indeed, for a

given pair (g, f), where g is any function on the vertex set and f is a balanced function
on the edge set, we can construct h : V

⋃
E → A as follows: h(v) = g(v) for all

v ∈ V and h(e) = f(e) − g(v) for all e ∈ E, where the vertex v is the origin of the
edge e. The constructed bijection is obviously a group isomorphism between the group
WR(V

⋃
E,A) and the group BR(V,A) × HR(E,A), which is isomorphic to A|V | ×

A|V |−k̄(G)+r(G).

Thus, the flexible problem for a graph G = (V,E) can be regarded as the rigid problem
for the graph G′ = (V,E), where E = {e, ē | e ∈ E}. Vice versa, the rigid problem for a
graph G can be regarded as a free product of the rigid problems for the strongly connected
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components of G also multiplied by Ar(G) where r(G) is the number of edges between
different strongly connected components of G.

The following simple claim connects this work to [7].

Proposition 3.9. Let G be an undirected connected graph and let Gdir be a directed
graph obtained from G by any assignment of directions to the edges of G. Denote by
H(E,A) the group of A-valued balanced functions on edges of G. Choose any order
on edges of G and embed H(E,A) and HR(E(Gdir), A) into A|E|. For an undirected
graph G the group of balanced functions on edges of G is equal to the intersection of
all the groups HR(E(Gdir), A), where Gdir runs over all directed graphs for all 2|E|

possible direction assignments to the edges of G. The same is true for the groups of bal-
anced functions on the entire graph (both vertices and edges). Namely, W (V

⋃
E,A) =⋂

WR(V
⋃
E(Gdir), A).

Proof. Let Cyc = v1, e1, ..., vk, ek be a cycle in the undirected graph G. There exists a
directed graph Gdir for which c is also a cycle. So any f ∈

⋂
HR(E(Gdir), A) must

satisfy the equation
∑k

i=1 f (ei) = 0. Therefore f ∈ H(E,A), since Cyc is an arbitrary
cycle of G. Hence,

H(E,A) ⊇
⋂
HR(E(Gdir), A) .

The opposite inclusion is obvious, since any cycle of any Gdir is a cycle of G. The proof
of the second statement of the proposition is similar.
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Abstract

The acyclic number a(G) of a graphG is the maximum order of an induced forest inG.
The purpose of this short paper is to propose a conjecture that a(G) ≥

(
1− 3

2g

)
n holds

for every planar graphG of girth g and order n, which captures three known conjectures on
the topic. In support of this conjecture, we prove a weaker result that a(G) ≥

(
1− 3

g

)
n

holds. In addition, we give a construction showing that the constant 3
2 from the conjecture

cannot be decreased.

Keywords: Induced forest, acyclic number, planar graph, girth.
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1 Introduction
Throughout the paper n and g, respectively, stand for the order and girth of a (finite, simple,
undirected) graph G. For other standard terminology and notation of graph theory we
simply refer to [5]. The acyclic number of G, denoted a(G), is the maximum order of an
induced forest in G. This parameter has been well investigated (see e.g. [1, 4, 9, 10]), and
its determination is NP-hard even in the case of planar graphs [7]. In [2], Albertson and
Berman proposed the following lower bound for it.
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Conjecture 1.1. If G is a planar graph, then

a(G) ≥ n

2
.

This conjecture has drawn much attention since it implies that every planar graph has a
stable set on at least a quarter of its vertices, a fact known to be true only as a consequence
of the Four Color Theorem. It holds for planar graphs of girth at least 4 as Salavatipour [10]
(see also [4]) proved that a(G) ≥ 17n+24

32 whenever G is such a graph. The best known
lower bound for a(G) over the class of all planar graphs G is the inequality a(G) ≥ 2n

5 ,
which can be readily deduced from the acyclic 5-colorability of planar graphs (proven by
Borodin in [6]). A similar problem to Conjecture 1.1 is Conjecture 1.2 below, raised by
Akiyama and Watanabe [1].

Conjecture 1.2. If G is a bipartite planar graph, then

a(G) ≥ 5n

8
.

Motivated by the last conjecture, the existence of large induced acyclic subgraphs in
sparse bipartite graphs (resp. sparse graphs) was considered by Alon et al. in [3] (resp. [4]).
Inspired by the fact that the dodecahedron attains the minimum possible ratio of order to
size among all connected planar graphs of girth at least 5, Kowalik et al. [8] conjectured
the following.

Conjecture 1.3. If G is a planar graph of girth g ≥ 5, then

a(G) ≥ 7n

10
.

The main purpose of this note is to generalize Conjectures 1.1, 1.2 and 1.3 through the
following.

Conjecture 1.4. If G is a planar graph of girth g, then

a(G) ≥
(

1− 3

2g

)
n.

In particular, our conjecture reduces to Conjecture 1.1 (resp. Conjecture 1.3) for g =
3 (resp. g = 5), and for g = 4 strengthens Conjecture 1.2 by allowing odd 5+-cycles.
Moreover, it suggests a lower bound a(G) ≥ 3n

4 if g ≥ 6, a(G) ≥ 11n
14 if g ≥ 7, etc.

Another way of stating Conjecture 1.4 is to claim that every non-acyclic planar graph G
satisfies the inequality (

1− a(G)

n

)
g ≤ 3

2
. (1.1)

Equivalently, we are looking for the smallest possible constant C, so that(
1− a(G)

n

)
g ≤ C, (1.2)

holds for every planar graph of order n and finite girth g. If true, our conjecture is best
possible in the sense that no excluding of a finite set of graphs could yield a better bound.
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Indeed, take a tree T and let K be K4, Q3 or the dodecahedron. For any graph G obtained
by blowing up every vertex of T to a copy of K, (1.1) becomes an equality.

In support to Conjecture 1.4, in the next section we prove that C = 3 is sufficient for
(1.2).

Theorem 1.5. If G is a planar graph of order n and girth g = g(G) <∞, then

a(G) >

(
1− 3

g

)
n. (1.3)

Moreover, for every integer g ≥ 3 there exists a planar graph G of girth g for which

a(G) =

⌈(
1− 3

2g

)
n

⌉
. (1.4)

Notice that the first part of Theorem 1.5 implies Conjectures 1.1, 1.2, and 1.3, respec-
tively, for girths g ≥ 6, g ≥ 8, and g ≥ 10.

2 Proof of Theorem 1.5
The proof relies on an auxiliary result. Before stating it, let us recall some terminology. We
use k-vertex and k+-vertex to refer to a vertex of degree k and a vertex of degree at least
k, respectively. Given a plane graph G = (V,E), a face f is a region of R2\(V ∪

⋃
E),

and its length deg(f) is the degree of the corresponding vertex in the geometric dual G∗

(thus every bridge incident to f is counted twice in the length); we speak of an `-face
f if deg(f) = `, and an `+-face is a face of length at least `. Recall that in case of a
bridgeless plane graph, every cut-vertex is a 4+-vertex and for every face f it holds that
deg(f) = |E(f)| (since its topological boundary ∂(f) is a union of simple curves). As
usual, we say that a face f is incident with a vertex v if v ∈ V (f). Here is our auxiliary
result.

Lemma 2.1. If G is a simple 2-edge-connected triangle-free plane graph with δ(G) ≥ 3,
then there exists a face f ∈ F (G) such that either:

(i) f is a 4-face incident with at least one 3-vertex; or

(ii) f is a 5-face incident with at least four distinct 3-vertices.

Proof. We use the discharging method. By the Euler formula, it holds that∑
v∈V (G)

(deg(v)− 4) +
∑

f∈F (G)

(deg(f)− 4) = −8, (2.1)

which leads to the following initial charge w0(x) for each x ∈ V (G) ∪ F (G):

w0(x) = deg(x)− 4. (2.2)

By (2.1), the total charge is negative. On the other hand, (2.2) tells us that only the 3-
vertices are with negative initial charge (equal to −1). Next, redistribute the initial charge
according to the following simple rule:

(R) Every 5+-face sends a charge of 1
3 to each of its incident 3-vertices.
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Let w1(x) denote the new charge of every x ∈ V (G)∪F (G) after applying (R). Assuming
that a face satisfying (i) of Lemma 2.1 does not exist, for every v ∈ V (G) it holds that
w1(v) ≥ 0 (since G is bridgeless, any 3-vertex lies on the boundary of three faces, thus
receives a combined charge of 1). The fact that the total charge remains negative implies
the existence of a face f with w1(f) < 0. Moreover, from

0 > w1(f) ≥ w0(f)− deg(f)

3
=

2

3
(deg(f)− 6),

it follows that every such f must be a 5-face incident with at least four 3-vertices. This
completes the proof of the lemma.

Proof of Theorem 1.5. We show (1.3) by contradiction. Suppose G is a minimal (under
inclusion) counter-example to (1.3) among all non-acyclic planar graphs. ThenG is clearly
connected, of finite girth g ≥ 4 and ∆(G) ≥ 3.

Claim 1: G is bridgeless. For otherwise, let e be a bridge and denote by G1, G2 the
components of G− e. The choice of G combined with the fact that both subgraphs G1, G2

are of girth at least g, implies that a(Gi) >
(

1− 3
g

)
n(Gi) for i = 1, 2. Summing up leads

to the desired contradiction (1.3).
Let G̃ be a plane embedding of the graph obtained by suppressing every 2-vertex in G.

Then G̃ is bridgeless and δ(G̃) ≥ 3. Next we show that G̃ meets all the requirements of
Lemma 2.1.

Claim 2: G̃ is simple and triangle-free. Supposing the opposite, there is a cycle C of G
passing through at most three 3+-vertices. Denote by S the set of 2-vertices in V (C) and
set s = |S|. In the graphG′ = G−V (C), letM be a maximum acyclic set. ThenM ∪S is
an acyclic set of G, hence a(G) ≥ a(G′) + s. Combined with the choice of G, this would
imply that (

1− 3

g

)
(n− s− 3) + s <

(
1− 3

g

)
n,

which is equivalent to s+ 3 < g. However, the last inequality contradicts that the length of
C is at least g, and thus settles the claim.

Our aim of contradicting the existence of G is now achievable. Select an f ∈ F (G̃)
as in Lemma 2.1, and denote ` = deg(f). For this choice of f we can certainly find
an independent (seen in G̃) (` − 3)-subset T ⊆ V (f) consisting entirely of 3-vertices.
Indeed, in case ` = 4 the last assertion is trivial; as for ` = 5, it is enough to consider four
consecutive 3-vertices v1, v2, v3, v4 on f and observe that, by planarity, v1, v3 or v2, v4
form an independent pair.

Returning back to G, every boundary edge of f becomes a path of G whose interior
consists entirely of 2-vertices. Let V2(f) be the collection of all 2-vertices lying on f , and
denote r = |V2(f)|. Take from the graph G′ = G − (V (f) ∪ V2(f)) a maximum acyclic
set M . Then M ∪ V2(F )∪ T is an acyclic set of G, giving that a(G) ≥ a(G′) + r+ `− 3.
Similarly to before, the last inequality would imply(

1− 3

g

)
(n− r − `) + r + `− 3 <

(
1− 3

g

)
n,

which is in turn equivalent to r + ` < g. The last inequality is clearly impossible and thus
validates (1.3).
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(a) k = 3, r = 0 (b) k = 3, r = 1 (c) k = 3, r = 2

Figure 1: Three cases for G (edges coming from M bolded) when k = 3.

In regard to the second assertion of Theorem 1.5, we provide a constructive proof based
on the fact that the removal of any two vertices decycles K4: thus every subdivision of K4

with order n has acyclic number a = n−2. Given an integer g ≥ 3, it is of the form 3k+r
where r equals either 0, 1 or 2. Construct the graph G as follows. Consider a copy of K4

and select a perfect matching M . If r = 0, then subdivide k − 1 times every e ∈ E(K4);
else if r = 1, then subdivide k times each e ∈M and every other edge k− 1 times; finally,
if r = 2, then subdivide k− 1 times each e ∈M and every other edge k times (see Fig. 1).
In either case the constructed subdivision G has the desired girth g. Moreover, as can be
readily checked, its order n = 6k+ 2(r− 1) and acyclic number a = 6k+ 2(r− 2) satisfy(

1− 3

2g

)
n = a− 1 +

3

g
, (2.3)

since both sides of (2.3) are equal to (6k + 2r − 3)(3k + r − 1)/(3k + r). Thus, it holds
that

a =

⌈(
1− 3

2g

)
n

⌉
. (2.4)

Additionally, observe that for g = 3, (2.3) becomes equal to a, which confirms that the
left-hand side of (1.2) is at least 3

2 . This completes the proof of the theorem.

3 Concluding remarks and further work
We are fully aware that a technically more involved argument could lower the boundC ≤ 3
in (1.2), however that was not our main objective.
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[6] O. V. Borodin, A proof of B. Grünbaum’s conjecture on the acyclic 5-colorability of planar
graphs, Dokl. Akad. Nauk SSSR 231 (1976), 18–20.

[7] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher and
J. D. Bohlinger (eds.), Complexity of Computer Computations, Plenum Press, New York, The
IBM Research Symposia Series, pp. 85–103, 1972, doi:10.1007/978-1-4684-2001-2 9.
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Abstract

Herradon has recently provided an example of a regular dessin d’enfant whose field
of moduli is the non-abelian extension Q( 3

√
2) answering in this way a question due to

Conder, Jones, Streit and Wolfart. In this paper we observe that Herradon’s example be-
longs naturally to an infinite series of such kind of examples; for each prime integer p ≥ 3
we construct a regular dessin d’enfant whose field of moduli is the non-abelian extension
Q( p
√

2); for p = 3 it coincides with Herradon’s example.

Keywords: Dessins d’enfants, Riemann surfaces, field of moduli and field of definition.

Math. Subj. Class.: 14H57, 30F10, 11G32

1 Introduction
A dessin d’enfant (or hypermap) of genus g, as defined by Grothendick in his Esquisse
d’un Programme [8], is a bipartite map (vertices come in black and white colors and ver-
tices of the same color are non-adjacent) on a closed orientable surface of genus g. The
degree of the dessin d’enfant is the number of its edges. As a consequence of the classical
uniformization theorem, a dessin d’enfant can also be seen as a pair (S, β), where S is a
closed Riemann surface and β : S → Ĉ is a non-constant meromorphic map whose branch
values are contained in the set {∞, 0, 1}; the degree of the dessin is the same as the degree
of β. A dessin d’enfant (S, β) is called regular if β is a regular branched covering.

The signature of the dessin d’enfant is the tripe (a, b, c), where a (respectively, b and c)
is the least common multiple of the local degrees of β at each preimage of 0 (respectively,
1 and∞). In terms of the bipartite map, a is the least common multiple of the degrees of
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black vertices, b is the least common multiple of the degrees of white vertices and c is the
least common multiple of the degrees of the faces (recall that a face of the dessin d’enfant
must have an even number 2δ of boundary edges, where internal edges are counted twice;
in this case δ is the degree of the face).

Two dessins d’enfant (S1, β1) and (S2, β2) are said to be equivalent (denoted this by the
symbol (S1, β1) ∼ (S2, β2)) if there is an isomorphisms f : S1 → S2 so that β1 = β2 ◦ f .
Clearly, the signature is an invariant under this equivalence relation.

There is a natural bijection between dessins d’enfants (respectively, regular dessins
d’enfants), of signature (a, b, c) and degree d, and conjugacy classes of subgroups (respec-
tively, normal subgroups) of index d of the triangular group

∆(a, b, c) = 〈x, y : ya = xb = (xy)c = 1〉.

By Belyi’s theorem [2], each dessin d’enfant is equivalent to a dessin d’enfant (C, β)
where C is an algebraic curve and β a rational map, both defined over the field Q of alge-
braic numbers. This provides a natural action of the absolute Galois group Gal(Q/Q) on
the set of (equivalence classes of) dessins d’enfants as follows. Start with a dessin d’enfant
(C, β), defined algebraically over Q and let σ ∈ Gal(Q/Q). Assume C is defined by
the polynomials P1, . . . , Pr and that β = Q1/Q2, where all polynomials have coefficients
in Q. Let Pσj and Qσk be the polynomials obtained by applying σ to the coefficients of
Pj and Qk, respectively. If Cσ is the algebraic curve defined by the polynomials Pσj and
βσ = Qσ1/Q

σ
2 , then (Cσ, βσ) still a dessin d’enfant. It is well known that the above action

of the absolute Galois group is faithful [4, 5, 8, 12]. For many years, it was an open and dif-
ficult question if the absolute Galois group also acts faithfuly on the set of regular dessins
d’enfants. Last year, this problem was solved by González-Diez and Jaikin-Zapirain in [6]
and in a slightly weaker form by Bauer, Catanese and Grunewald in [1].

The field of moduli of a dessin d’enfant (C, β) is the fixed field of the subgroup of
Gal(Q/Q) consisting of those σ for which (Cσ, βσ) ∼ (C, β) (i.e., the field of definition
of the equivalence class of the dessin d’enfant). The field of moduli is contained in any
field of definition of the dessin (it is in fact the intersection of all of them by results due
to Koizumi [10]), but there are examples for which the field of moduli is not a field of
definition of it.

In [15], Wolfart observed that regular dessins d’enfants are definable over its field of
moduli. The only explicit examples for such Galois Belyi actions were however known
only for curves and dessins defined over abelian extensions of Q. A question posed by
Conder, Jones, Streit and Wolfart in [3] was if there were examples of regular dessins
d’enfant with field of moduli being a non-abelian extension of Q. In [9] Herradon answered
the above positively by constructing a regular dessin d’enfant with field of moduli being
Q
(

3
√

2
)
. Herradon starts with the following genus one non-uniform dessin d’enfant of

signature (4, 6, 12)(
C : y2 = x (x− 1)

(
x− 3
√

2
)
, β(x, y) = x3(2− x3)

)
,

whose field of moduli is Q( 3
√

2), and then he observes that its normalizing regular dessin
d’enfant has the same field of moduli (he also constructs another regular dessin d’enfant
with the same property, this being a quotient of the previous one).

In this paper we observe that Herradon’s example belongs to a infinite family with the
same property which we proceed to describe in Section 3.
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2 Preliminaries on triangle groups
If l,m, n ≥ 2 are integers so that l ≤ m ≤ n and l−1 +m−1 +n−1 < 1, then the triangular
group

∆(l,m, n) = 〈x, y : yl = xm = (xy)n = 1〉
can be seen as a discrete group of isometries of the hyperbolic plane H, that is a triangular
Fuchsian group. In this case, H/∆(l,m, n) is an orbifold of genus zero having exactly
three cone points of respective orders l, m and n. The triple (l,m, n) is called the signature
of ∆(l,m, n).

A triangular Fuchsian group ∆ is maximal if it is not a proper subgroup of finite index
of another triangle group [7]. In [13], Singerman proved that ∆(l,m, n) is maximal if and
only if

(l,m, n) /∈ {(l, l, l), (l, l, n), (l,m,m), (2,m, 2m), (3,m, 3m)} .
A Fuchsian group ∆ is called non-arithmetic if the commensurate group

Comm(∆) = {γ ∈ Aut(H) : [∆ : ∆ ∩ γ∆γ−1] <∞, [γ∆γ−1 : ∆ ∩ γ∆γ−1] <∞}

is discrete. This is not the original definition of a non-arithmetic group but it is equivalent
due to a result of Margulis in [11]. The list of all the triples (l,m, n) for which ∆ is
arithmetic has been provided by Takeuchi in [14] (there are 76 such triples):

(2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10), (2, 3, 11), (2, 3, 12), (2, 3, 14), (2, 3, 16),

(2, 3, 18), (2, 3, 24), (2, 3, 30), (2, 4, 5), (2, 4, 6), (2, 4, 7), (2, 4, 8), (2, 4, 10),

(2, 4, 12), (2, 4, 18), (2, 5, 5), (2, 5, 6), (2, 5, 8), (2, 5, 10), (2, 5, 20), (2, 5, 30),

(2, 6, 6), (2, 6, 8), (2, 6, 12), (2, 7, 7), (2, 7, 14), (2, 8, 8), (2, 8, 16), (2, 9, 18),

(2, 10, 10), (2, 12, 12), (2, 12, 24), (2, 15, 30), (2, 18, 18), (3, 3, 4), (3, 3, 5), (3, 3, 6),

(3, 3, 7), (3, 3, 8), (3, 3, 9), (3, 3, 12), (3, 3, 15), (3, 4, 4), (3, 4, 6), (3, 4, 12),

(3, 5, 5), (3, 6, 6), (3, 6, 18), (3, 8, 8), (3, 8, 24), (3, 10, 30), (3, 12, 12), (4, 4, 4),

(4, 4, 5), (4, 4, 6), (4, 4, 9), (4, 5, 5), (4, 6, 6), (4, 8, 8), (4, 16, 16), (5, 5, 5),

(5, 5, 10), (5, 5, 15), (5, 10, 10), (6, 6, 6), (6, 12, 12), (6, 24, .24), (7, 7, 7),

(8, 8, 8), (9, 9, 9), (9, 18, 18), (12, 12, 12), (15, 15, 15).

All the above asserts the following simple fact.

Lemma 2.1. If p ≥ 3 is a prime integer, then ∆(4, 2p, 4p) is maximal and non-arithmetic.
In particular, Comm(∆(4, 2p, 4p)) = ∆(4, 2p, 4p) and, if there is a finite index subgroup
Γ of ∆(4, 2p, 4p) and there is some γ ∈ Aut(H) so that γΓγ−1 ∈ ∆(4, 2p, 4p), then
γ ∈ ∆(4, 2p, 4p).

Proof. It follows from the above lists that ∆:=∆(4, 2p, 4p) is maximal and non-arithmetic
one. The non-arithmetic property asserts that Comm(∆) is a Fuchsian triangular group
containing ∆; and by the maximal property, it must then follows the equality. Now, let Γ
be a finite index subgroup of ∆ and let γ ∈ Aut(H) so that γΓγ−1 ∈ ∆. As γΓγ−1 is a
finite index subgroup of γ∆γ−1 and also of ∆, and γΓγ−1 < ∆ ∩ γ∆γ−1, it follows that
γ ∈ Comm(∆) = ∆.
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3 Regular dessin d’enfants with field of moduli Q( p
√
2)

Let p ≥ 3 be a prime integer and let us consider the elliptic curve

C0 : y2 = x(x− 1)
(
x− p
√

2
)
.

It is well known that the field of moduli of C0 is Q
(
j
(

p
√

2
))

= Q
(

p
√

2
)
, where j is

the elliptic modular function

j(λ) = (1− λ+ λ2)3/λ2(1− λ)2.

On C0 we consider the Belyi map

β(x, y) = xp(2− xp).

The dessin d’enfant (C0, β) has signature (4, 2p, 4p), which is, by Lemma 2.1, maximal
and non-arithmetic. This dessin d’enfant is non-uniform, in particular, it is non-regular (see
Figure 1).

3p

1
1

2
p+2

p
2p

2p+1
2p+1

p+1

p+1 3p+1

3p+1

3p+2
2p+2

4p

Figure 1: The dessin d’enfant (C0, β)

The monodromy of the dessin (C0, β) is

ω0 : ∆ = 〈x, y : y4 = x2p = (xy)4p = 1〉 → S4p,

ω0(x) = (1, 2, . . . , p, 2p+ 1, 2p+ 2, . . . , 3p)(p+ 1, 3p+ 1),

ω0(y)

||

(2, p+ 2)(3, p+ 3) · · · (p, 2p)(2p+ 2, 3p+ 2)(2p+ 3, 3p+ 3) · · · (3p, 4p)
(1, 3p+ 1, 2p+ 1, p+ 1),

and the dessin d’enfant corresponds to the ∆-conjugacy class of the subgroup

F0 = ω−1
0

(
Stabω0(∆)(1)

)
.

Let us set Γ0 = ker(ω0).
Next we list some properties of ω0, the first three of them are immediate from its defi-

nition.
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Lemma 3.1.

1. ω0(x)p = (1, 2p+ 1)(2, 2p+ 2) · · · (p+ 1, 3p+ 1).

2. ω0(y)2 = (1, 2p+ 1)(p+ 1, 3p+ 1).

3. ω0(xy) has order 4p.

4. ω0(∆) is a group of order 22pp2.

5.
p−1∏
j=0

x−j
(
xpy2

)
xj ∈ Γ0.

Proof. Parts (1), (2) and (3) are direct to see from the definition of ω0. Part (4) it is a little
more difficult to see, but as we do not need it in the rest, we leave it to the reader. To check
part (5) we only need to observe the following equalities:

ω0(x)pω0(y)2 = (2, 2p+ 2) · · · (p, 3p),

ω0(x)−1
(
ω0(x)pω0(y)2

)
ω0(x) = (1, 2p+ 1)(3, 2p+ 3) · · · (p, 3p),

ω0(x)−2
(
ω0(x)pω0(y)2

)
ω0(x)2 = (1, 2p+ 1)(2, 2p+ 2)(4, 2p+ 4) · · · (p, 3p),

...

ω0(x)−(p−1)
(
ω0(x)pω0(y)2

)
ω0(x)p−1 = (1, 2p+ 1)(2, 2p+ 2) · · · (p− 1, 3p− 1).

The normal subgroup Γ0 corresponds to a regular dessin d’enfant (C̃0, β̃0) with signa-
ture (4, 2p, 4p). As the previous signature is maximal (by Lemma 2.1), we have that

deck(β̃0) = Aut(C̃0) ∼= ω0(∆).

Also, as a consequence of the Riemann-Hurwitz formula, the genus of C̃0 is

gp = 1 + 3× 22p−3p(p− 1).

The Galois orbit of (C0, β) is given by the p dessins d’enfants (see Figure 2)

(Ck, β); k = 0, 1, . . . , p− 1,

where
Ck : y2 = x(x− 1)

(
x− ρkp

p
√

2
)
, ρp = e2πi/p,

whose monodromy ωk : ∆→ S4p is defined by

ωk(x)

||

(1, 2, . . . , k + 1, 2p+ k + 2, . . . , 3p, 2p+ 1, 2p+ 2, . . . , 2p+ k + 1, k + 2, . . . , p)

(p+ k + 1, 3p+ k + 1),
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and
ωk(y)

||

(2, p+ 2)(3, p+ 3) · · · (p, 2p)(2p+ 2, 3p+ 2)(2p+ 3, 3p+ 3) · · · (3p, 4p)
(1, 3p+ 1, 2p+ 1, p+ 1),

and the dessin d’enfant corresponds to the ∆-conjugacy class of the subgroup

Fk = ω−1
k

(
Stabωk(∆)(1)

)
.

2p+k+1

1

1

2p+1

2p+1

2p
p

2
p+2 p+1
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4p 3p
k
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k+1

p+k+1

3p+k+1

Figure 2: The dessin d’enfant (Ck, β)

The normal subgroup Γk = ker(ωk) corresponds to a regular dessin d’enfant (C̃k, β̃k)
with signature (4, 2p, 4p). Again, by maximality of the signature,

deck(β̃k) = Aut(C̃k) ∼= ωk(∆) ∼= ω0(∆).

Theorem 3.2. The field of moduli of (C̃0, β̃0) is Q
(

p
√

2
)
.

Proof. As the regular dessin d’enfant (C̃k, β̃k) is the normalization of the dessin d’enfant
(Ck, β), we see that the Galois orbit of (C̃0, β̃0) is given by the following p dessins
d’enfants

(C̃k, β̃k); k = 0, 1, . . . , p− 1.

It follows that the field of moduli of (C̃0, β̃0) is a subfield of Q
(

p
√

2
)
. As Q

(
p
√

2
)

is
an extension of degree p (a prime integer) of Q, in order to see that the field of moduli is
exactly Q( p

√
2) we only need to check that Γ0 and Γ1 are not conjugated in Aut(H). As Γ0

is a finite index subgroup of the maximal and non-arithmetic group ∆(4, 2p, 4p), it follows,
from Lemma 2.1, that we only need to check that Γ0 6= Γ1. This last can be noted by part
(5) of Lemma 3.1 and the fact that

∏p−1
j=0 x

−j (xpy2
)
xj /∈ Γ1; since

p−1∏
j=0

ω1(x)−j
(
ω1(x)pω1(y)2

)
ω1(x)j = (p+ 1, 3p+ 1)(p+ 2, 3p+ 2).

This last can be checked by observing that

ω0(x)p = ω1(x)p(p+ 1, 3p+ 1)(p+ 2, 3p+ 2),
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ω1(y)2 = ω0(y)2,

ω1(x)pω1(y)2 =
(
ω0(x)pω0(y)2

)
(p+ 1, 3p+ 1)(p+ 2, 3p+ 2),

and, for j = 1, . . . , p− 1,

ω1(x)−j
(
ω1(x)pω1(y)2

)
ω1(x)j

||
ω0(x)−j

(
ω0(x)pω0(y)2

)
ω0(x)j(p+ 1, 3p+ 1)(p+ 2, 3p+ 2).
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Abstract

In this paper we aim to characterize association schemes all of whose symmetric fusion
schemes have only integral eigenvalues, and classify those obtained from a regular action
of a finite group by taking its orbitals.

Keywords: Association schemes, groups.
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1 Introduction
In the history of algebraic combinatorics it has been one of the important topics to consider
eigenvalues of the adjacency matrix of a graph. In [3] and [5] many criterions and conjec-
tures on such problems are suggested and the eigenvalues of well-known distance-regular
graphs are explicitly found. Together with web catalogue [7] this gives many association
schemes with integral first eigenmatrices (see [3] and [5] for its definition). As mentioned
in [3, Ex. 2.1] a transitive permutation group H on a finite set X induces an association
scheme (X,RH) where RH is the set of orbitals of H . If G is a permutation group of X
containing H , then each element in RG is a union of elements of RH , and the first eigen-
matrix of (X,RG) is influenced by that of (X,RH). In general, the fusion (and fission)
of association relations gives rise to new association schemes from a given association
scheme. In this paper we focus on association schemes whose adjacency matrices have
only integral eigenvalues.
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The authors of [9] introduced fusion association schemes and presented some diagrams
to enumerate all association schemes of given small orders according to the partial order
defined by fusing. As shown in the enumeration, the association scheme induced by the
icosahedron can be obtained as a fusion of the alternating group A4 of degree 4 where we
identify a finite group G with the association scheme obtained from a regular action of G
on itself, but not all eigenvalues of the icosahedron are integral. On the other hand, every
symmetric fusion association scheme of a non-cyclic abelian group of order 12 has the
integral first eigenmatrix.

For more general cases, we introduce the following definition: an association scheme
is said to be desirable if the first eigenmatrix of each of its symmetric fusion schemes is
integral, otherwise it is said to be undesirable. Our main problem is the following:

Problem 1.1. Characterize desirable association schemes.

For the remainder of this article we shall write schemes instead of association schemes
for short. It is obvious that every fusion scheme of a desirable scheme is desirable. More-
over given a desirable scheme (X,S), the subscheme induced by a closed subset and the
quotient modulo a closed subset are desirable (see Lemma 2.2), while the direct product
(or the other scheme products) of two desirable schemes are not necessarily desirable. The
following are examples of desirable or undesirable association schemes:

Example 1.2.

(i) The scheme of a cyclic group G of order m is undesirable if m /∈ {1, 2, 3, 4, 6} by
Corollary 2.4.

(ii) Every symmetric scheme with non-integral first eigenmatrix is undesirable since for
any scheme it is also one of its fusion schemes.

(iii) Every symmetric scheme with integral first eigenmatrix is desirable by [2, Lem-
ma 1 (2)].

(iv) Every association scheme of rank 2 is symmetric and integral. This implies that every
non-symmetric scheme of rank 3 is desirable.

A group G is said to be desirable if it induces a desirable scheme by its regular ac-
tion, otherwise it is said to be undesirable. Then the former example may lead readers to
confront the following problem:

Problem 1.3. Find all desirable finite groups.

Remark 1.4. For a finite group G, there is a one-to-one correspondence between the set of
fusions of the association scheme induced by G by its regular action and the set of Schur
rings over G (see [8] for the definition of Schur ring). Thus Problem 1.3 can be stated in
terms of Schur rings.

Remark 1.5. In connection with Problem 1.3 we mention that Bridge and Mena [4] give a
criterion on Cayley graphs over abelian groups with integral eigenvalues which is obtained
from a group action.

By Corollary 2.4, if a finite groupG is desirable, then |G| = 2a3b for some nonnegative
integers a, b and the order of each element of G belongs to the set {1, 2, 3, 4, 6}. But, the
converse does not hold because of A4. In [1] all Cayley integral groups G were classified;
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the defining property of such a group is that the eigenvalues of any undirected Cayley graph
over G are integral. Let Cn, Sn and Q8 denote the cyclic group of order n, the symmetric
group of degree n and the quaternion group, respectively. It is remarkable that any Cayley
integral group is desirable. On the other hand, our main result show that the converse also
holds:

Theorem 1.6. Every desirable group is isomorphic to one of the following:

(i) an abelian group the exponent of which divides 4 or 6;

(ii) Q8 × Cm
2 for some nonnegative integer m;

(iii) S3;

(iv) C3 o C4 = 〈x, y | x3 = y4 = 1, y−1xy = x−1〉.

In Section 2, we prepare some terminologies on association schemes and groups. In
Section 3, we show a number of desirable groups that will be used in the proof of Theo-
rem 1.6. In Section 4, we give a proof of our main result, Theorem 1.6.

2 Preliminaries
Following [11] we prepare terminologies on association schemes. Let X be a finite set and
S a partition of X × X . We say that the pair (X,S) is an association scheme (or shortly
scheme) if it satisfies the following:

(i) 1X := {(x, x) | x ∈ X} is an element of S;

(ii) For any s in S, s∗ := {(y, x) | (x, y) ∈ s} is an element of S;

(iii) For all s, t, u ∈ S the size of {z ∈ X | (x, z) ∈ s, (z, y) ∈ t} is constant whenever
(x, y) ∈ u. The constant is denoted by astu.

For the remainder of this section we assume that (X,S) is an association scheme. For
s ∈ S we define a matrix σs over C, which is called the adjacency matrix of s, whose rows
and columns are indexed by the elements of X as follows:

(σs)x,y =

{
1 if (x, y) ∈ s
0 if (x, y) /∈ s.

We shall write ev(A) as the set of all eigenvalues of a square matrix A over C. We say that
(X,S) is integral if

⋃
s∈S ev(σs) ⊆ Z.

Remark 2.1. The first eigenmatrix of (X,S) is defined when (X,S) is commutative, i.e.,
σsσt = σtσs for all s, t ∈ S. Then the first eigenmatrix of (X,S) is integral if and only if
(X,S) is integral.

We say that (X,S) is symmetric if σs is symmetric for each s ∈ S, and desirable if
(X,T ) is integral for each symmetric fusion scheme (X,T ) of (X,S).

For a finite group G we set
G̃ = {g̃ | g ∈ G}

where g̃ = {(a, b) ∈ G × G | ag = b}. It is well-known that (G, G̃) is an association
scheme (see [10, Appendix]). We say that G is desirable if (G, G̃) is desirable.
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Following [11] we introduce a concept which corresponds to blocks in permutation
groups. For T ⊆ S we say that T is closed if

{u ∈ S | astu > 0} ⊆ T for all s, t ∈ T ,

equivalently,
⋃

t∈T t is an equivalence relation on X since each digraph (X, t) has a di-
rected cycle because of |X| < ∞. We shall write the equivalence class containing x by⋃

t∈T t as xT . It is well-known (see [10, 1.5]) that (xT, {t ∩ (xT × xT ) | t ∈ T}) forms
an association scheme, which is denoted by (X,S)xT , and the quotient set X/T forms an
association scheme, called the factor scheme of (X,S) over T , denoted by (X/T, S//T )
where

S//T = {sT | s ∈ S} and sT := {(xT, yT ) | (xT × yT ) ∩ s 6= ∅}.

Lemma 2.2. Let (X,S) be a desirable scheme, x ∈ X and T a closed subset of S. Then
both of (X,S)xT and (X/T, S//T ) are desirable.

Proof. Let (xT, U) be a symmetric fusion scheme of (X,S)xT where U is a partition of
xT × xT . Since each u ∈ U is a union of elements of the restrictions of T to xT × xT , it
allows us to fuse elements of S as follows:{ ⋃

s∈S\T

s

}
∪

{ ⋃
s∈S;s∩u6=∅

s

∣∣∣∣∣ u ∈ U
}

which forms a symmetric fusion scheme of (X,S).
Let |X/T | = m. Notice that

⋃
s∈S;s∩u 6=∅ s is contained in

⋃
i=1(xiT × xiT ) where

xiT with i = 1, . . . ,m are the equivalence classes induced by T . Thus, the characteristic
polynomial of

⋃
s∈S;s∩u6=∅ s is the product of those of (

⋃
s∈S;s∩u6=∅ s) ∩ (xiT × xiT )

with i = 1, . . . ,m which are mutually equal since (X,S)xiT have the same structure
constants. This implies that the characteristic polynomial of

⋃
s∈S;s∩u6=∅ s is equal to the

m-th power of that of u. Since (X,S) is desirable, the eigenvalues of the adjacency matrix
of
⋃

s∈S;s∩u 6=∅ s are all integers. Therefore, ev(σu) ⊆ Z for each u ∈ U .
Let (X/T,U) be a symmetric fusion of (X/T, S//T ), and for u ∈ S let ATuT denote

the adjacency matrix of
⋃

s∈S;sT⊆uT s. Notice that
⋃

s∈TuT s is a union of some of the
{xiT × xjT | i, j = 1, . . . ,m}. Moreover, (xiT × xjT ) ⊆

⋃
s∈TuT s if and only if

(xiT, xjT ) ∈ uT . This implies thatATuT is conjugate to the Kronecker’s product σuT ⊗J
under the group of permutation matrices where J is the all one matrix of degree m, so that
it can be easily checked that{

1X ,
⋃

t∈T ;t6=1X

t

}
∪

{ ⋃
s∈S;sT⊆uT

s

∣∣∣∣∣ uT ∈ U \ {1X/T }

}

is a symmetric fusion of (X,S).
Since each of the eigenvalues ofATuT is an integral multiple of an eigenvalue of σuT , it

follows from the fact that each eigenvalue of σuT is an algebraic integer that ev(σuT ) ⊆ Z
for each uT ∈ U . Therefore, (X/T, S//T ) is desirable.

We frequently use the following without mentioning.
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Corollary 2.3. Any subgroup or any homomorphic image of a desirable group is desirable.

Proof. Let G be a finite group and H a subgroup of G. Then H̃ is a closed subset of G̃,
and if H is normal in G, then (G/H, G̃/H) is isomorphic to the factor scheme of (G, G̃)
over H̃ . Applying Lemma 2.2 with the homomorphism theorem in group theory we obtain
the result.

Corollary 2.4. The order of any element of a desirable group belongs to the set {1, 2, 3,
4, 6}. In particular, the order of a desirable group equals 2a3b for some nonnegative inte-
gers a, b.

Proof. Let G be a desirable group and x ∈ G has order n. By Corollary 2.3, H := 〈x〉
is desirable. Since the symmetrization {ỹ ∪ z̃ | y, z ∈ H; yz = 1} forms a symmetric
fusion of (H, H̃) and ev(σỹ∪z̃) = {2 cos(2πk/n) | k ∈ Z} with yz = 1, it follows that
n ∈ {1, 2, 3, 4, 6}.

3 Undesirable groups of small orders
By Corollary 2.4, every desirable group has order 2a3b for some nonnegative integers a, b.
But, the converse does not necessarily hold. In this section we collect some undesirable
groups of such orders.

Lemma 3.1. The dihedral group of order 8 is undesirable.

Proof. Let G = 〈x, y | x4 = y2 = 1, yxy = x−1〉 be the dihedral group of order 8. Then
the following partition of G induces a symmetric fusion of (G, G̃):

{{1}, {x2}, {x, x3}, {y, yx}, {yx2, yx3}}.

Since ỹ ∪ ỹx forms the octagon whose eigenvalues are not all integral, the dihedral group
of order 8 is undesirable.

Lemma 3.2. The direct product C2 × S3 is undesirable.

Proof. Let G = 〈x〉 × 〈y, z | y3 = z2 = 1, zyz = y−1〉 denote the group C2 × S3. Then
the following partition of G induces a symmetric fusion of (G, G̃):

{{1}, {y, y2}, {x}, {xy, xy2}, {z, xz}, {y2z, xyz}, {yz, xy2z}}.

Since ỹ2z ∪ x̃yz forms a 12-gon whose eigenvalues are not all integral, the statement
holds.

Lemma 3.3. The alternating group of degree 4 is undesirable.

Proof. The following partition of A4 induces a symmetric fusion of (A4, Ã4):

{{1}, {(12)(34)}, {(13)(24), (123), (132), (124), (142)},
{(14)(23), (134), (143), (234), (243)}}.

The third one induces the icosahedron, whose eigenvalues are not necessarily integral.
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Lemma 3.4. The semidirect product (C3 × C3) o C2 by the action of the inverse map is
undesirable.

Proof. Let 〈x, y, z | x3 = y3 = [x, y] = zxzx = zyzy = z2 = 1〉 denote the group given
in the statement. Then the following partition of G induces a symmetric fusion of (G, G̃):

{{1}, {x, x2}, {y, xy, x2y, y2, xy2, x2y2}, {z, yz, xy2z},
{xz, x2z, y2z, xyz, x2yz, x2y2z}}.

Since z̃ ∪ ỹz ∪ x̃y2z forms a distance-regular graph with intersection array {3, 2, 2, 1;
1, 1, 2, 3} whose eigenvalues are not all integral, the statement holds.

Lemma 3.5. The direct product S3 × C3 is undesirable.

Proof. Let 〈x, y, z | x3 = y3 = [x, y] = [z, x] = zyzy = z2 = 1〉 denote the group given
in the statement. Then the following partition of G induces a symmetric fusion of (G, G̃):

{{1}, {y, y2}, {x, xy, xy2, x2, x2y, x2y2}, {z, xyz, x2yz},
{yz, y2z, xz, xy2z, x2z, x2y2z}}.

Since z̃ ∪ x̃yz ∪ x̃2yz forms a distance-regular graph with intersection array {3, 2, 2, 1;
1, 1, 2, 3} whose eigenvalues are not all integral, the statement holds.

Lemma 3.6. The semidirect product (C3 o C4)× C2 is undesirable.

Proof. Let G = H ∪Hy where H = 〈x〉 × 〈y2〉 × 〈z〉 is the unique subgroup with index
two with |x| = 2, |y| = 4 and |z| = 3. Then the following partition of G induces a
symmetric fusion of (G, G̃):{

{a}a∈〈x,y2〉, {az, az2}a∈〈x,y2〉, 〈x, y2〉y, T, xT
}

where T := {zy, zy3, xz2y3, z2xy}. Since the minimal polynomial of the adjacency ma-
trix of the graph induced by

⋃
t∈T t̃ is λ(λ2− 4)(λ2− 16)(λ2− 12) where λ is an indeter-

minate, the statement holds.

Lemma 3.7. There are no non-abelian desirable groups of order 27.

Proof. Notice that there are two non-abelian groups of order 27 those exponents are 9 and
3. Every group with exponent 9 is undesirable by Corollary 2.4. Let G = (〈x〉×〈y〉)o 〈z〉
where |x| = |y| = |z| = 3, zx = xz and z−1yz = xy. Then G is a unique non-abelian
group of order 27 with exponent 3, and the following partition of G induces a symmetric
fusion of (G, G̃):{

{1}, {x, x2}, {y, y2, xy, xy2, x2y, x2y2}, H1, H2, H3

}
where H1 = {z, z2, yz, x2y2z2, x2y2z, x2yz2}, H2 = {xz, x2z2, xyz, xy2z2, y2z, xyz2}
and H3 = {x2z, xz2, x2yz, y2z2z, xy2z, yz}. Since the minimal polynomial of the adja-
cency matrix of the graph induced by

⋃
h∈H1

h̃ is λ(λ+ 3)(λ− 6)(λ3 − 9λ− 9) where λ
is an indeterminate, the statement holds.
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Proposition 3.8. There are no non-abelian desirable groups of order 18, 24 or 27.

Proof. Since the groups as in Lemma 3.4 and 3.5 are the non-abelian groups of order 18
without any element of order 9, there are no such groups of order 18.

The following are the non-abelian groups of order 24 without any element of order 8 or
order 12:

SL(2, 3), (C3 o C4)× C2, D12 × C2, S4, C2 ×A4 and C2 × C2 × S3.

Among them the first, third, fourth, fifth and sixth ones are undesirable by Lemma 3.3 and
Corollary 2.3 and the second is undesirable by Lemma 3.6. So there are no such groups of
order 24.

By Lemma 3.7, there are no such groups of order 27, the statement holds.

4 Proof of our main result
Lemma 4.1. Let G be a desirable group and a, b ∈ G non-commuting involutions. Then
|〈a, b〉| ∈ {6, 12}.

Proof. Since 〈a, b〉 is isomorphic to a dihedral group, it follows from Corollary 2.4 and
Lemma 3.1.

Lemma 4.2. Let G be a desirable group. If a ∈ G normalizes an elementary abelian
2-subgroup H of G, then ab = ba for each b ∈ H .

Proof. Suppose the contrary, i.e., ab 6= ba for a ∈ NG(H) and b ∈ H where NG(H) =
{x ∈ G | x−1Hx = H}. Since 〈a−ibai | i = 0, 1, . . . , 3〉 is a subgroup of H , it is an
elementary abelian 2-group of rank at least two. By Corollary 2.4, we divide our proof
according to |a| ∈ {2, 3, 4, 6}.

If |a| = 2, then 〈a, b〉 is a non-abelian group of order 8, which is isomorphic to D8, a
contradiction to Lemma 3.1.

If |a| = 4, then 〈a−ibai | i = 0, 1, . . . , |a| − 1〉 = 〈b, a−1ba〉 since a2 commutes with b
by what we proved in the last paragraph. If a2 ∈ 〈b, a−1ba〉, then 〈a, b〉 is isomorphic toD8

since it has more than one involutions, a contradiction to Lemma 3.1. If a2 /∈ 〈b, a−1ba〉,
then 〈a2〉 is central in 〈a, b〉 and |〈a, b〉/〈a2〉| = 8 by |a2| = 2. If 〈a, b〉/〈a2〉 is non-abelian,
then it is isomorphic to D8, a contradiction to Lemma 3.1. If 〈a, b〉/〈a2〉 is abelian, then
a−1ba = ba2, which implies that bab = a−1, and hence, 〈a, b〉 is isomorphic to D8, a
contradiction to Lemma 3.1.

If |a| = 3 and 〈b, a−1ba, aba−1〉 ' C2
2 , then 〈a, b〉 = 〈a, b, a−1ba, aba−1〉 is isomor-

phic to A4, which contradicts Lemma 3.3.
If |a| = 3 and 〈b, a−1ba, aba−1〉 ' C3

2 , then 〈a, b〉 is a non-abelian group of order 24,
which contradicts Proposition 3.8.

If |a| = 6, then a = cd = dc for some d, c ∈ 〈a〉 with |d| = 2 and |c| = 3. Since both
d and c centralize H , a also centralizes H .

Lemma 4.3. If G is a desirable non-abelian 2-group, then G is isomorphic to Q8 × Cm
2

for some nonnegative integer m.

Proof. By Lemma 4.1, all involutions of a desirable 2-group commute for each other. This
implies that the subgroup, say K, generated by all involutions is a normal subgroup, which
is isomorphic to an elementary abelian 2-group contained in the center ofG by Lemma 4.2.
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In order to prove the statement it suffices to show that each cyclic subgroup of G is
normal by a well-known theorem by Baer and Dedekind (We mimic the same argument as
in the proof of [1, Thm. 2.13]). Suppose the contrary, i.e., a−1ba /∈ 〈b〉 for a, b ∈ G \K,
namely, |a| = |b| = 4. Let L denote the subgroup of 〈a, b〉 generated by the involutions of
〈a, b〉. Since L is central in G and b2 ∈ L, b〈b2〉 ∈ 〈a, b〉/〈b2〉 is an element of order two.
Since 〈a, b〉/〈b2〉 is a desirable 2-group by Corollary 2.3, it follows from the same argument
as in the last paragraph that b〈b2〉 is contained in the center of 〈a, b〉/〈b2〉. Therefore,
a−1ba ∈ b〈b2〉 ⊆ 〈b〉, a contradiction.

Lemma 4.4. IfG is a desirable 3-group, thenG is isomorphic toCm
3 for some nonnegative

integer m.

Proof. Suppose that G is a desirable non-abelian 3-group of the least order. Let x, y ∈ G
with xy 6= yx. By Corollary 2.3, 〈x, y〉 is a desirable non-abelian 3-group, which is of
exponent three by Corollary 2.4. By the minimality of |G| we have G = 〈x, y〉. Since G
has a non-trivial center, there exists a non-identity element z ∈ Z(G). By the minimality
of |G| and Corollary 2.3, G/〈z〉 is an elementary abelian 3-group of rank two. This implies
that |G| = |〈x, y〉| = |G/〈z〉||〈z〉| = 27, which contradicts Proposition 3.8.

Next we suppose that G is a desirable abelian 3-group. Since there are no element of
order lager than 3 in G by Corollary 2.4, G is isomorphic to Cm

3 for some nonnegative
integer m.

Lemma 4.5. LetG be a desirable group and a ∈ G. If a normalizes an elementary abelian
3-group H of G, then a−1ba ∈ {b, b−1} for each b ∈ H .

Proof. Suppose the contrary, i.e., a−1ba /∈ {b, b−1} for a ∈ NG(H) and b ∈ H . Since
〈a−ibai | i = 0, 1, . . . , |a| − 1〉 is a subgroup of H , it is an elementary abelian 3-group of
rank at least two. By Corollary 2.4, we divide our proof according to |a| ∈ {2, 3, 4, 6}.

If |a| = 2, then 〈a, b〉 has order 18, which contradicts Corollary 2.3 and Proposition 3.8.
If |a| = 4, then

〈b, a−1ba, a2ba2, aba−1〉

is an elementary abelian 3-group contained in H . Note that 〈b, a2ba2〉 is an elementary
abelian 3-group of rank at most two. If a2ba2 /∈ {b, b−1}, then 〈a2, b〉 is a non-abelian
group of order 18, which contradicts Proposition 3.8. If a2ba2 = b, then a2 is central in
〈a, b〉, and a−1ba /∈ b〈a2〉 by the assumption that a−1ba ∈ H and a2 /∈ H . This implies
that 〈a, b〉/〈a2〉 is a non-abelian group of order 18, which contradicts Proposition 3.8. If
a2ba2 = b−1, then 〈a2, b, a−1ba〉 is a non-abelian group of order 18, which contradicts
Proposition 3.8.

If |a| = 3, then 〈a,H〉 is abelian by Lemma 4.4, and hence a centralizes H .
If |a| = 6, then a = cd = dc for some d, c ∈ 〈a〉 with |d| = 2 and |c| = 3. Since both

d and c normalize 〈b〉, a also normalizes 〈b〉.

It is well-known that a minimal normal subgroup of a finite group is the direct product
of isomorphic simple groups (see [6]). Applying this fact with Corollary 2.4 we obtain that
any minimal normal subgroup of a desirable group is isomorphic to an elementary abelian
p-group for some p ∈ {2, 3}.

Lemma 4.6. Let G be a desirable group and N a minimal normal subgroup of G. If
N ' Cm

2 and there exist a, b ∈ G with |a| = |b| = 2 and |ab| = 3, then m = 1.
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Proof. We claim that N ∩ 〈a, b〉 = 1, otherwise 〈a, b〉 contains an involution in N . Since
all involutions of 〈a, b〉 are conjugate in 〈a, b〉, it follows that 〈a, b〉 ⊆ N , a contradiction
to |ab| = 3 and N ' Cm

2 . By Lemma 4.2, N is central, and hence, if N has a subgroup
H of order 4, then, by Lemma 4.2, |H〈a, b〉| = 24, which contradicts Proposition 3.8.
Therefore, m = 1.

Lemma 4.7. Let G be a desirable group and N a minimal normal subgroup of G. If
N ' Cm

3 and a, b ∈ G with |a| = |b| = 2 and |ab| = 3, then N = 〈ab〉.

Proof. Suppose c ∈ N \〈ab〉. By Lemma 4.5, 〈a, b〉 normalizes 〈c〉, and hence, |〈a, b, c〉| =
18, which contradicts Proposition 3.8.

Lemma 4.8. Let G be a desirable group. If G has two non-commuting involutions, then
|G| ∈ {6, 12}.

Proof. Use induction on |G|. Suppose thatG is a desirable group with two non-commuting
involutions and |G| is minimal such that |G| /∈ {6, 12}. Note that any two non-commuting
involutions generate the dihedral group of degree 3 or 6 by Lemma 4.1, and each of the
cases contains two non-commuting involutions whose product has order three. Let N be a
minimal normal subgroup of G and a, b ∈ G such that |a| = |b| = 2 and |ab| = 3. Recall
that N is an elementary abelian p-group for some p ∈ {2, 3}. Applying Lemma 4.6 and
4.7 we obtain that N ' C2 and N ∩ 〈a, b〉 = 1, or N = 〈ab〉.

IfN ' C2 andN∩〈a, b〉 = 1, thenG/N is a desirable group with two non-commuting
involutions. By the minimality of |G|, |G/N | ∈ {6, 12}. Since |G| 6= 12 and |N | = 2, it
follows that |G/N | = 12, and hence G is a non-abelian group of order 24, a contradiction
to Proposition 3.8.

Suppose N = 〈ab〉.
We claim that 8 - |G/N |. Otherwise there exists a subgroup L/N of G/N such that

|L/N | = 8 and a, b ∈ L by Sylow’s theorem, implying that L is a non-abelian group of
order 24, a contradiction to Proposition 3.8.

If G/N has two non-commuting involutions, then |G/N | ∈ {6, 12} by the minimal-
ity of |G|. By Proposition 3.8, |G/N | = 12. Since G/N is not isomorphic to A4 by
Lemma 3.3, G/N has a minimal normal subgroup N1/N of order 3 by the classification
of groups of order 12. Since |N1| = 9, 〈a, b,N1〉 is a non-abelian group of order 18 by
Lemma 4.5, a contradiction to Proposition 3.8. Therefore, we conclude that all involutions
of G/N commute for each other, and the subgroup of G/N generated by all involutions is
a normal subgroup of G/N which is an elementary abelian 2-group.

By the last claim, it suffices to show that 3 - |G/N |. Otherwise, there exists L/N ≤
G/N such that N ≤ L and |L/N | = 3. Since aN is an involution of G/N , it is central
by Lemma 4.2. Thus, 〈aN,L/N〉 is a subgroup of order 6. This implies that 〈L, a, b〉 is a
non-abelian group of order 18, a contradiction to Proposition 3.8.

Lemma 4.9. Let G be a non-abelian desirable group any two involutions of which are
commute. Then the subgroup of G generated by all involutions is normal in G, and G is
isomorphic to C3 o C4 unless G is a 2-group.

Proof. The first statement is obvious. Let K be the subgroup of G generated by all involu-
tions of G. Since G is non-abelian, G is not a 3-group by Lemma 4.4. This implies that K
has a subgroup L of order two. By Lemma 4.2, L is central in G.
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We use the induction on |G| to prove the second statement. Let G be a non-abelian
desirable group of the least order such that all involutions ofG commute for each other and
G is neither 2-group nor G ' C3 o C4.

If G/L has two non-commuting involutions, then |G/L| ∈ {6, 12} by Lemma 4.8. By
Proposition 3.8, |G| = 12, and hence G ' C3 oC4 by the classification of groups of order
12, a contradiction.

IfG/L has no two non-commuting involutions and non-abelian then, by the minimality
of |G|, G/L ' C3 o C4 or a 2-group. But, the former case does not occur by Proposi-
tion 3.8, and the latter case implies that G is a 2-group, a contradiction.

Suppose that G/L is an abelian group any two involutions of which are commute. We
claim that a ∈ Z(G) for each element a ∈ G with |a| = 3. Otherwise, ab 6= ba for some
b ∈ G. Since G/L is abelian, b−1ab = al for a non-identity l ∈ L. Since l ∈ Z(G) and
|l| = 2, it follows that |al| = 6, which contradicts |a| = 3. Applying the claim for an
element c ∈ G of order 6 we obtain from c = c4c3, |c4| = 3 and |c3| = 2 that each element
of order 2, 3 or 6 is in the center of G. This implies that there exist a, b ∈ G such that
|a| = |b| = 4 and ab 6= ba since G is non-abelian. Applying Lemma 4.3 we conclude that
G has a unique Sylow 2-subgroup, which has a subgroup isomorphic to Q8. Since G is not
a 2-group by the assumption, it follows from the claim that there exists a subgroup of G
isomorphic to C3 ×Q8, a contradiction to Proposition 3.8.

4.1 Proof of Theorem 1.6

Proof. Suppose that G is a non-abelian desirable group. If G has two non-commuting in-
volutions, then |G| ∈ {6, 12} by Lemma 4.8. If G has no two non-commuting involutions,
then G ' C3 o C4 or a 2-group by Lemma 4.9, which is eliminated by Lemma 4.3. Since
all non-abelian desirable groups of order 6 or 12 are known to be S3 or C3 o C4, this
completes the proof.
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Abstract

A graph is called half-arc-transitive if its full automorphism group acts transitively on
vertices and edges, but not on arcs. It is well known that for any prime p there is no half-
arc-transitive graph of order p or p2. In 1992, Xu classified half-arc-transitive graphs of
order p3 and valency 4. In this paper we classify half-arc-transitive graphs of order p3 and
valency 6 or 8. In particular, the first known infinite family of half-arc-transitive Cayley
graphs on non-metacyclic p-groups is constructed.

Keywords: Cayley graph, half-arc-transitive graph, automorphism group.

Math. Subj. Class.: 05C10, 05C25, 20B25

1 Introduction
A (di)graph Γ consists of a pair of sets (V (Γ), E(Γ)), where V (Γ) is its vertex set, and
E(Γ) is its edge set. For a graph, E(Γ) is also called undirected edge set and is a subset
of the set {{u, v} | u, v ∈ V (Γ)}, and for a digraph, E(Γ) is also called directed edge
set and is a subset of the set {(u, v) | u, v ∈ V (Γ)}. For an edge {u, v} of a graph
Γ, we call (u, v) an arc of Γ. An automorphism of a (di)graph Γ is a permutation on
V (Γ) preserving the adjacency of Γ, and all automorphisms of Γ form a group under the
composition of permutations, called the full automorphism group of Γ and denoted by
Aut(Γ). A (di)graph Γ is vertex-transitive or edge-transitive if Aut(Γ) acts transitively
on V (Γ) or E(Γ), respectively. A graph Γ is arc-transitive or symmetric if Aut(Γ) is
transitive on the arc set of Γ, and half-arc-transitive provided that it is vertex-transitive,
edge-transitive, but not arc-transitive. Throughout this paper, all (di)graphs Γ are finite and
simple, that is, |V (Γ)| is finite and there are no loops or multiple edges.
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Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of α
in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if
Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular.

Let G be a finite group and S a subset of G such that 1 /∈ S. The Cayley digraph
Γ = Cay(G,S) on G with respect to S is defined as the digraph with vertex set V (Γ) = G
and directed edge set {(g, sg) | g ∈ G, s ∈ S}. The Cayley digraph Cay(G,S) is connected
if and only if G = 〈S〉, and if S is symmetric, that is, S−1 = {s−1 | s ∈ S} = S,
then Cay(G,S) can be viewed as a graph by identifying the two oppositely directed edges
(g, sg) and (sg, g) as an undirected edge {g, sg}. Thus a Cayley graph can be viewed as a
special case of a Cayley digraph. It is easy to see that Aut(Cay(G,S)) contains the right
regular representation Ĝ = {ĝ | g ∈ G} ofG, where ĝ is the map onG defined by x 7→ xg,
x ∈ G, and Ĝ is regular on the vertex set V (Γ). This implies that a Cayley digraph is
vertex-transitive. Also, it is easy to check that Aut(G,S) = {α ∈ Aut(G) | Sα = S} is a
subgroup of Aut(Cay(G,S))1, the stabilizer of the vertex 1 in Aut(Cay(G,S)). A Cayley
digraph Cay(G,S) is said to be normal if Ĝ is normal in Aut(Cay(G,S)).

In 1966, Tutte [26] initiated an investigation of half-arc-transitive graphs by showing
that a vertex- and edge-transitive graph with odd valency must be arc-transitive. A few
years later, in order to answer Tutte’s question of the existence of half-arc-transitive graphs
of even valency, Bouwer [5] gave a construction of a 2k-valent half-arc-transitive graph
for every k ≥ 2. Following these two classical articles, half-arc-transitive graphs have
been extensively studied from different perspectives over decades by many authors. See,
for example, [3, 13, 15, 18, 20, 23, 25, 33]. One of the standard problems in the study of
half-arc-transitive graphs is to classify such graphs of certain orders. Let p be a prime. It is
well known that there are no half-arc-transitive graphs of order p or p2, and by Cheng and
Oxley [6], there are no half-arc-transitive graphs of order 2p. Alspach and Xu [2] classified
half-arc-transitive graphs of order 3p and Dobson [9] classified half-arc-transitive graphs
of order a product of two distinct primes. Classification of half-arc-transitive graphs of
order 4p had been considered for more than 10 years by many authors, and recently was
solved by Kutnar et al. [16]. Despite all of these efforts, however, further classifications of
half-arc-transitive graphs with general valencies seem to be very difficult.

In view of the fact that 4 is the smallest admissible valency for a half-arc-transitive
graph, special attention has rightly been given to the study of tetravalent half-arc-transitive
graphs. In particular, constructing and classifying tetravalent half-arc-transitive graphs is
currently an active topic in algebraic graph theory (for example, see [10, 11, 22, 28]).
Marušič [20] and Šparl [27] classified tightly attached tetravalent half-arc-transitive graphs
with odd and even radius, respectively. For quite some time, all known examples of tetrava-
lent half-arc-transitive graphs had vertex-stabilizers that are either abelian or dihedral:
For instance, Marušič [21] constructed an infinite family of tetravalent half-arc-transitive
graphs having vertex stabilizers isomorphic to Zm2 for each positive integer m ≥ 1, and
Conder and Marušič [7] constructed a tetravalent half-arc-transitive graph with vertex-
stabilizer isomorphic toD4 of order 8. Recently, a tetravalent half-arc-transitive graph with
vertex-stabilizers that are neither abelian nor dihedral was constructed by Conder et al. [8].

Xu [31] classified tetravalent half-arc-transitive graphs of order p3 for each prime p,
and later this was extended to the case of p4 by Feng et al. [10]. In this paper, we classify
half-arc-transitive graphs of order p3 and valency 6 or 8. In these new constructions, there
is an infinite family of half-arc-transitive Cayley graphs on non-metacyclic p-groups, and
to our best knowledge, this is the first known construction of such graphs.
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Denote by Zn the cyclic group of order n as well as the ring of order n. From elemen-
tary group theory we know that up to isomorphism there are only five groups of order p3,
that is, three abelian groups Zp3 , Zp2 ×Zp and Zp×Zp×Zp, and two non-abelian groups
G1(p) and G2(p) defined as

G1(p) = 〈a, b | ap
2

= 1, bp = 1, b−1ab = a1+p〉

and
G2(p) = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉.

It is easy to check that the center of G1(p) is 〈ap〉 and the center of G2(p) is 〈c〉.
Denote by Z∗n the multiplicative group of the ring Zn consisting of numbers coprime to

n. Let e be an element of order j < p in Z∗p2 . Since Z∗p2 ∼= Zp(p−1), we have j | (p−1). For

each k ∈ Z∗p, let T j,k = {bka, bkae, . . . , bkaej−1

, (bka)−1, (bkae)−1, . . . , (bkae
j−1

)−1} be
a subset of G1(p) and define

Γj,k(p) = Cay(G1(p), T j,k).

By Proposition 2.2, Γj,k(p) does not depend on the choice of the element e of order j.
Suppose 4 | (p − 1) and let λ be an element of order 4 in Z∗p. For each k ∈ Zp with

k 6= 2−1(1 + λ), let S4,k = {a, b, aλbλ−1ck, a−λ−1b−λc1−k, a−1, b−1, (aλbλ−1ck)−1,
(a−λ−1b−λc1−k)−1} be a subset of G2(p) and define

Γ4,k(p) = Cay(G2(p), S4,k).

There are exactly two elements of order 4 in Z∗p, that is, λ and λ−1 = −λ. Let

S4,s = {a, b, a−λb−λ−1cs, aλ−1bλc1−s, a−1, b−1, (a−λb−λ−1cs)−1, (aλ−1bλc1−s)−1},

where s ∈ Zp and s 6= 2−1(1−λ). For each k ∈ Zp and k 6= 2−1(1+λ), the automorphism
of G2(p) induced by a 7→ a, b 7→ aλ−1bλc1−k+λ, c 7→ cλ, maps S4,k to S4,k−λ, and so
Cay(G2(p), S4,k) ∼= Cay(G2(p), S4,k−λ). Since k 6= 2−1(1 + λ), we have k − λ 6=
2−1(1− λ). Thus, Γ4,k(p) does not depend on the choice of λ. The following is the main
result of the paper.

Theorem 1.1. Let Γ be a graph of order p3 for a prime p. Then we have:

(1) If Γ has valency 6 then Γ is half-arc-transitive if and only if 3 | (p − 1) and Γ ∼=
Γ3,k(p). There are exactly (p−1)/2 nonisomorphic half-arc-transitive graphs of the
form Γ3,k(p);

(2) If Γ has valency 8 then Γ is half-arc-transitive if and only if 4 | (p − 1) and Γ ∼=
Γ4,k(p) or Γ4,k(p). There are exactly p−1 nonisomorphic half-arc-transitive graphs
of the forms Γ4,k(p) and Γ4,k(p), with (p− 1)/2 such graphs in each form.

2 Preliminaries
We start by stating some group-theoretical results. For a group G and x, y ∈ G, denote
by [x, y] the commutator x−1y−1xy and by xy the conjugation y−1xy. The following
proposition is a basic property of commutators and its proof is straightforward (also see
[24, Subsection 5.1.5]):
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Proposition 2.1 ([14, Kapitel III, Hilfssätze 1.2 and 1.3]). Let G be a group. Then, for any
x, y, z ∈ G, we have [x, y] = [y, x]−1, [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z .
Furthermore, if [x, y] commutes with x and y then for any integers i and j, [xi, yj ] =

[x, y]ij , and for any positive integer n, (xy)n = xnyn[y, x](
n
2).

We remark that it is easy to see that the equality (xy)n = xnyn[y, x](
n
2) holds also

for negative integers n if we define
(
n
2

)
= n(n−1)

2 . By Li and Sim [18, Theorem 1.1 and
Lemma 2.6], we have the following proposition.

Proposition 2.2. Let Γ be a Cayley graph on G1(p) of valency 2j with 1 < j < p. Then
Γ is half-arc-transitive if and only if j

∣∣(p − 1) and Γ ∼= Γj,k(p) for 1 ≤ k ≤ p − 1, and

Γj,k(p) ∼= Γj
′
,k
′

(p) if and only if j = j
′

and k = k
′

(mod p). Furthermore, for each
j
∣∣(p− 1) there exist exactly (p− 1)/2 nonisomorphic such graphs of the form Γj,k(p).

Since a transitive permutation group of prime degree p has a regular Sylow p-subgroup,
every vertex-transitive digraph of order a prime must be a Cayley digraph. Together with
the results given by Marušič [19], we have the following proposition.

Proposition 2.3. Any vertex-transitive digraph of order pk with 1 ≤ k ≤ 3 is a Cayley
digraph on a group of order pk.

For any abelian group H , the map h 7→ h−1, h ∈ H is an automorphism of H . By [10,
Proposition 2.10], we have the following proposition.

Proposition 2.4. Let G be a finite group and Cay(G,S) a connected half-arc-transitive
Cayley graph. Then, S does not contain an involution and for any s ∈ S, there is no
α ∈ Aut(G,S) satisfying sα = s−1. Furthermore, every edge-transitive Cayley graph on
an abelian group is also arc-transitive.

The following proposition is about isomorphisms between Cayley graphs on p-groups.

Proposition 2.5 ([17, Theorem 1.1 (3)]). Let Cay(G,S) and Cay(G,T ) be two connected
Cayley graphs on a p-group G with respect to subsets S and T , and let |S| = |T | < 2p.
Then Cay(G,S) and Cay(G,T ) are isomorphic if and only if there is an automorphism α
of G such that Sα = T .

Let Γ=Cay(G,S) be a Cayley digraph on a finite groupG. By Godsil [12, Lemma 2.2]
(also see [32, Proposition 1.5]), we have NAutΓ(Ĝ) = Ĝo Aut(G,S).

Proposition 2.6. A Cayley digraph Γ = Cay(G,S) is normal if and only if Aut(Γ)1 =
Aut(G,S).

A finite group G is called 2-genetic if each normal subgroup of G can be generated by
two elements. For a prime p, denote by Op(G) the largest normal p-subgroup of G, and by
Φ(G) the Frattini subgroup of G, that is, the intersection of all maximal subgroups of G.
We call G a p′-group if the order of G is not divisible by p. The following proposition is
about automorphism groups of Cayley digraphs on 2-genetic groups.

Proposition 2.7 ([30, Theorem 1.1]). Let G be a nonabelian 2-genetic group of order pn

for an odd prime p and a positive integer n, and let Γ = Cay(G,S) be a connected Cayley
digraph. Assume that Aut(G,S) is a p′-group and Γ is non-normal. Then p ∈ {3, 5, 7, 11}
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and ASL(2, p) ≤ Aut(Γ)/Φ(Op(A)) ≤ AGL(2, p). Furthermore, the kernel of A :=
Aut(Γ) acting on the quotient digraph ΓΦ(Op(A)) is Φ(Op(A)), and one of the following
happens:

(1) p = 3, n ≥ 5, and ΓΦ(Op(A)) has out-valency at least 8;

(2) p = 5, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 24;

(3) p = 7, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 48;

(4) p = 11, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 120.

In Proposition 2.7, the quotient digraph ΓΦ(Op(A)) has the orbits of Φ(Op(A)) on V (Γ)
as vertices, and for two orbits O1 and O2, (O1, O2) is a directed edge in ΓΦ(Op(A)) if and
only if (u, v) is a directed edge in Γ for some u ∈ O1 and v ∈ O2.

3 Proof of Theorem 1.1
Let Γ be a half-arc-transitive graph and A = Aut(Γ). Let (u, v) be an arc of Γ and set
(u, v)A = {(ua, va) | a ∈ A}. Define digraphs Γ1 and Γ2 having vertex set V (Γ) and
directed edge sets (u, v)A and (v, u)A, respectively. Since Γ is half-arc-transitive, for every
edge {x, y} ∈ E(Γ), each of Γ1 and Γ2 contains exactly one of the directed edges (x, y)
and (y, x), and Γ is connected if and only if Γi is connected for each i = 1, 2. Furthermore,
A = Aut(Γi) and Γi is A-edge-transitive. In what follows we denote by

−→
Γ one of the

digraphs Γ1 and Γ2.
Let Γ be a half-arc-transitive graph of order p3 for a prime p. Since there exists no

half-arc-transitive graph of order less than 27 (see [1]), we have p ≥ 3. By Proposition 2.3,
Γ = Cay(G,S) and

−→
Γ = Cay(G,R). Since a group of order p or p2 is abelian and there is

no half-arc-transitive Cayley graph on an abelian group by Proposition 2.4, Γ is connected,
and so G = 〈R〉 and S = R ∪R−1. Furthermore, G = G1(p) or G2(p), where

G1(p) = 〈a, b | ap
2

= 1, bp = 1, b−1ab = a1+p〉,
G2(p) = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉.

Since G = 〈R〉 is non-abelian, R contains two elements x and y such that xy 6= yx,
and since |G| = p3, we have 〈x, y〉 = G. For G = G2(p), x and y have the same relations
as do a and b, which implies that we may assume that a, b ∈ R. Similarly, for G = G1(p)
we may assume that a ∈ R. Thus we have the following observation:

Observation 3.1. Let Γ be a half-arc-transitive graph of order p3 for a prime p. Then
Γ = Cay(G,S) and

−→
Γ = Cay(G,R), where G = G1(p) or G2(p) with p ≥ 3, G = 〈R〉

and S = R ∪R−1. Furthermore,

(1) if G = G1(p) then a ∈ R;

(2) if G = G2(p) then a, b ∈ R.

Let us begin by considering normal half-arc-transitive Cayley graphs on G2(p) of
valency 8. Since G2(p) has center 〈c〉, Proposition 2.1 implies bjai = aibjc−ij and
(aibj)k = akibkjc−2−1k(k−1)ij for i, j, k ∈ Zp. Our proofs will constantly be relying
on these facts.
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Lemma 3.2. Let Γ = Cay(G2(p), S) be a Cayley graph of valency 8. Then Γ is normal
and half-arc-transitive if and only if 4

∣∣(p− 1) and Γ ∼= Γ4,k(p) for some k.

Proof. Let Γ = Cay(G2(p), S) be normal and half-arc-transitive. Set A = Aut(Γ). By
Observation 3.1, we have

−→
Γ = Cay(G2(p), R) with p ≥ 3, G2(p) = 〈R〉 and S =

R∪R−1. We may further assume a, b, aibjck ∈ R. Since Γ has valency 8, we have |S| = 8
and |R| = 4. Since Γ is normal, Proposition 2.6 implies that A1 = Aut(G2(p), S) =
Aut(G2(p), R), which is transitive on R. Since |R| = 4, Aut(G2(p), R) ≤ S4. Thus,
Aut(G2(p), R) has a regular subgroup M on R such that M ∼= Z2 × Z2 or Z4.

Case 1: M ∼= Z2 × Z2. Let α1, α2 ∈ Aut(G2(p), R) and M = 〈α1〉 × 〈α2〉 ∼=
Z2 × Z2. Without loss of generality, we may assume that aα1 = b and bα1 = a, and so
cα1 = c−1. This yields that R = {a, b, aibjck, (aibjck)α1} = {a, b, aibjck, ajbic−ij−k}.
Since 〈α1, α2〉 ∼= Z2 × Z2, we may assume that aα2 = aibjck and (aibjck)α2 = a. Then
bα2 = ajbic−ij−k and so cα2 = ci

2−j2 . By Proposition 2.1,

a = (aibjck)α2 = (aibjck)i(ajbic−ij−k)j(ci
2−j2)k = (aibj)i(ajbi)jck(i2−j2+i−j)−ij2

= ai
2

bijc−2−1i2j(i−1)aj
2

bijc−2−1ij2(j−1)ck(i2−j2+i−j)−ij2

= ai
2+j2b2ijc−ij

3+k(i2−j2+i−j)−ij2−2−1i2j(i−1)−2−1ij2(j−1),

implying the following equations:

i2 + j2 = 1; (3.1)
2ij = 0; (3.2)

−ij3 + k(i2 − j2 + i− j)− ij2 − 2−1i2j(i− 1)− 2−1ij2(j − 1) = 0. (3.3)

As above, in what follows all equations are considered in Zp, unless otherwise stated.
Since α1 interchanges a and b, we can assume i = 0 by Eq. (3.2), and so j = ±1 by
Eq. (3.1). If j = −1 then S = {a, b, a−1c−k, b−1ck} ∪ {a−1, b−1, ack, bc−k}, and the
automorphism of G2(p) induced by a 7→ a−1, b 7→ bc−k, c 7→ c−1, fixes S setwise,
contrary to Proposition 2.4. If j = 1 then k = 0 by Eq. (3.3), implying that aibjck = b, a
contradiction.

Case 2: M ∼= Z4. Let α ∈ Aut(G2(p), R) and M = 〈α〉 ∼= Z4. Then R =

{a, aα, aα2

, aα
3}, and since G2(p) = 〈R〉, we have 〈a, aα〉 = G2(p) and so a 7→ a,

b 7→ aα induces an automorphism ofG2(p). We thus assume that aα = b, and α is induced
by a 7→ b, b 7→ aibjck, c 7→ c−i. It follows that

R = {a, b, aibjck, aijbi+j
2

c−i
2j+k(j−i)−2−1ij2(j−1)}.

Since

a = aα
4

= ai(i+j
2)bj(2i+j

2)ci
3j+(k−i2j)(i+j2)−ik(j−i)+2−1i2j2(j−1)−2−1ij(i+j2)(i+j2−1)

= ai(i+j
2)bj(2i+j

2)ck(i2+j2+i−ij)−i2j3+2−1ij[ij2−ij−(i+j2)(i+j2−1)],

we have the following equations:

i(i+ j2) = 1; (3.4)

j(2i+ j2) = 0; (3.5)

k(i2 + j2 + i− ij)− i2j3 + 2−1ij[ij2 − ij − (i+ j2)(i+ j2 − 1)] = 0. (3.6)
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By Eq. (3.5), either j = 0 or 2i+ j2 = 0.
Case 2.1: j = 0. By Eq. (3.4), i = ±1. If i = 1 then k = 0 by Eq. (3.6),

and hence aibjck = a, a contradiction. If i = −1 then S = {a, b, a−1ck, b−1ck} ∪
{a−1, b−1, ac−k, bc−k}, and the automorphism of G2(p) induced by a 7→ a−1, b 7→ bc−k,
c 7→ c−1, fixes S setwise, contrary to Proposition 2.4.

Case 2.2: 2i + j2 = 0. Clearly, i + j2 = −i. By Eq. (3.4), i2 = −1 and so ij2 =
1− i2 = 2. Since j2 = −2i, Eq. (3.6) implies 2k(1 + i+ ij) = −ij(1 + i+ ij), and hence
2ki(1 + i+ ij) = j(1 + i+ ij), implying 2ki− j = 0 or 1 + i+ ij = 0.

Suppose 2ki− j = 0. Then ij = −2k and k = −2−1ij. Since ij2 = 2, we have k =
−j−1 and k(j−i)+1 = −k(j+i)−1. It follows that S = {a, b, aibjck, a−2kb−ick(j−i)+1}
∪ {a−1, b−1, a−ib−jck, a2kbic−k(j+i)−1}. The automorphism of G2(p) induced by a 7→
a−1, b 7→ b−1, c 7→ c, fixes S setwise, contrary to Proposition 2.4.

Thus, 1 + i + ij = 0 and so j = i − 1. Then S = {a, b, aibi−1ck, a−i−1b−ic1−k} ∪
{a−1, b−1, a−ib1−ic−k+1+i, ai+1bick−i}. If k = 2−1(1 + i), then k = −k + 1 + i and
1 − k = k − i, and hence the automorphism of G2(p) induced by a 7→ a−1, b 7→ b−1,
c 7→ c, fixes S setwise, contrary to Proposition 2.4. Hence k 6= 2−1(1 + i). Note that
i2 = −1 implies that 4

∣∣ (p− 1) and i = λ is an element of order 4 in Z∗p. Then j = λ− 1
and k 6= 2−1(1 + λ). By the definition of Γ4,k(p) before Theorem 1.1, Γ ∼= Γ4,k(p).

To finish the proof, we only need to show that Γ4,k(p) = Cay(G2(p), S4,k) is normal
and half-arc-transitive. Note that S4,k = {a, a−1, b, b−1, aλbλ−1ck, a−λb1−λc−k+λ+1,
a−λ−1b−λc1−k, aλ+1bλck−λ}, λ is an element of order 4 in Z∗p, and k 6= 2−1(1 + λ). Let
A = Aut(Γ4,k(p)) and set R4,k = {a, b, aλbλ−1ck, a−λ−1b−λc1−k}. Then S4,k = R4,k ∪
R−1

4,k. Let α be the automorphism of G2(p) induced by a 7→ b, b 7→ aλbλ−1ck, c 7→ c−λ.
By Proposition 2.1, (aλbλ−1ck)α = a−λ−1b−λc1−k and (a−λ−1b−λc1−k)α = a. Thus,
α ∈ Aut(G2(p), S4,k) has order 4 and permutes the elements of R4,k cyclically, implying
that Ĝ2(p)o 〈α〉 is half-arc-transitive on Γ4,k(p). To prove the normality and the half-arc-
transitivity of Γ4,k(p), it suffices to show that A = Ĝ2(p) o 〈α〉.

Write L = Aut(G2(p), S4,k). Then L acts on S4,k faithfully. Set Ω1 = {a, a−1}, Ω2 =
{b, b−1}, Ω3 = {aλbλ−1ck, a−λb1−λc−k+λ+1}, Ω4 = {a−λ−1b−λc1−k, aλ+1bλck−λ}.
Since L ≤ Aut(G2(p)), {Ω1,Ω2,Ω3,Ω4} is a complete imprimitive block system of L on
S4,k. Let Ω = {Ω1,Ω2,Ω3,Ω4}. Since α ∈ L, L is transitive on Ω.

Claim: La = 1 and Lx = 1 for any x ∈ S4,k. Let β ∈ La. Then aβ = a and Ωβ1 = Ω1.
Thus, (Ω2 ∪ Ω3 ∪ Ω4)β = Ω2 ∪ Ω3 ∪ Ω4, and so bβ ∈ Ω2 ∪ Ω3 ∪ Ω4, that is, bβ = b,
b−1, aλbλ−1ck, a−λb1−λc−k+λ+1, a−λ−1b−λc1−k or aλ+1bλck−λ. As λ is an element of
order 4 in Z∗p, we have λ 6= 0, ±1. If bβ = b−1 ∈ Ω2 then cβ = c−1 and Ωβ2 = Ω2. It
follows that (Ω3∪Ω4)β = Ω3∪Ω4, implying that (aλbλ−1ck)β = aλb1−λc−k ∈ Ω3∪Ω4,
which is impossible. If bβ = aλbλ−1ck ∈ Ω3 then cβ = cλ−1 and Ωβ2 = Ω3. Thus,
Ωβ3 ⊆ Ω2 ∪ Ω4, but (aλbλ−1ck)β = a−1b−2λc−λ+2+2k(λ−1) 6∈ Ω2 ∪ Ω4, a contradiction.
If bβ = a−λb1−λc−k+λ+1 ∈ Ω3, then cβ = c1−λ and Ωβ2 = Ω3. Thus, Ωβ3 ⊆ Ω2 ∪ Ω4

and (aλbλ−1ck)β = a2λ+1b2λc−λ−2k(λ−1) implies that (aλbλ−1ck)β = b−1. It fol-
lows that Ωβ3 = Ω2 and so Ωβ4 = Ω4, which is impossible because (aλ+1bλck−λ)β =
aλ+2bλ+1c−2kλ+k−λ−2 6∈ Ω4. If bβ = a−λ−1b−λc1−k ∈ Ω4, then cβ = c−λ and
Ωβ2 = Ω4. Thus, Ωβ3 ⊆ Ω2 ∪ Ω3 and (aλbλ−1ck)β = aλ+2bλ+1c−2kλ+k−λ−2 implies
that (aλbλ−1ck)β = b−1 and λ = −2. It follows that Ωβ3 = Ω2 and so Ωβ4 = Ω3. This
forces λ = 2 as (aλ+1bλck−λ)β = a2bc−2kλ+λ−2 ∈ Ω3, and hence λ = 2 = −2, a con-
tradiction. If bβ = aλ+1bλck−λ ∈ Ω4 then cβ = cλ and Ωβ2 = Ω4. Thus, Ωβ3 ⊆ Ω2 ∪ Ω3
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and so (aλbλ−1ck)β = aλ−2b−λ−1c2kλ−k−λ ∈ Ω2 ∪ Ω3, which is impossible. The above
arguments mean that bβ = b, implying β = 1. Thus, La = 1, and since Ω1 is a block of L,
we have La−1 ≤ La = 1. The transitivity of 〈α〉 on Ω implies Lx = 1 for any x ∈ S4,k, as
claimed.

Let K be the kernel of L on Ω. Then K fixes each Ωi setwise, and by Claim, |K| =
|Ka||aK | ≤ 2. Suppose |K| = 2. Then the unique involution, say γ, in K interchanges the
two elements in each Ωi because Lx = 1. In particular, γ is induced by aγ = a−1, bγ =
b−1 and cγ = c. It follows that (aλbλ−1ck)γ = a−λb1−λck, and since (aλbλ−1ck)γ ∈ Ω3,
we have a−λb1−λck = a−λb1−λc−k+λ+1, forcing that k = 2−1(1 + λ), a contradiction.
Thus, K = 1 and L ≤ S4, the symmetric group of degree 4.

Since Lx = 1 for any x ∈ S4,k, L is semiregular on S4,k, and so |L| is a divisor of
8. Since α ∈ L, we have |L| = 4 or 8. Suppose |L| = 8. Since L ≤ S4, L is the
dihedral group of order 8, and so α2 ∈ Z(L). Note that α2 interchanges Ω1 and Ω3, and
Ω2 and Ω4. Then LΩ1 = Lα

2

Ω1
= LΩ3 . Since L is transitive on Ω, |LΩ1 | = 2. Let δ be

the unique involution in LΩ1 . Then Ωδ1 = Ω1 and Ωδ3 = Ω3. Since La = 1, we have
aδ = a−1, and since K = 1, we have Ωδ2 = Ω4. On the other hand, 〈α〉 E L and so R4,k

is an imprimitive block of L, yielding Rδ4,k = R−1
4,k. It follows that bδ ∈ Ωδ2 ∩ Rδ4,k =

Ω4 ∩ R−1
4,k, that is, bδ = aλ+1bλck−λ. Thus, cδ = c−λ, and since δ is an involution,

b = (aλ+1bλck−λ)δ = a−2b−1c−1, which is impossible. Thus, |L| = 4 and L = 〈α〉.
Clearly, p - |L| = |Aut(G2(p), S4,k)|. By Proposition 2.7, Γ4,k(p) is a normal Cayley
graph, and by Proposition 2.6, A = Ĝ2(p) o 〈α〉.

Remark 3.3. The above proof implies Aut(Γ4,k(p)) = Ĝ2(p)o 〈α〉 and Aut(Γ4,k(p))1 =
Aut(G2(p), S4,k) = 〈α〉, where α is the automorphism ofG2(p) of order 4 induced by a 7→
b and b 7→ aλbλ−1ck. Moreover, the automorphism α cyclically permutes the elements in
{a, b, aλbλ−1ck, a−λ−1b−λc1−k}.

Lemma 3.4. There are exactly (p− 1)/2 nonisomorphic graphs of the form Γ4,k(p).

Proof. By definition, S4,k = {a, a−1, b, b−1, aλbλ−1ck, a−λb1−λcλ−k+1, a−λ−1b−λc1−k,
aλ+1bλck−λ} and Γ4,k(p) = Cay(G2(p), S4,k), where λ is an element of order 4 in Z∗p,
k ∈ Zp with k 6= 2−1(1 + λ). Thus, 4

∣∣ (p − 1). Since Γ4,k(p) does not depend on the
choice of λ (see the paragraph before Theorem 1.1), there are at most p− 1 nonisomorphic
half-arc-transitive graphs of the form Γ4,k(p) (k 6= 2−1(1 + λ)). To finish the proof, it
suffices to show that Γ4,k(p) ∼= Γ4,l(p) (k, l 6= 2−1(1 + λ)) if and only if l = k or
l = 1 + λ− k.

Let l = 1 + λ − k. One may easily show that the automorphism of G2(p) induced by
a 7→ a−1, b 7→ b−1, c 7→ c, maps S4,k to S4,1+λ−k = S4,l, and so Γ4,k(p) ∼= Γ4,l(p).

Let Γ4,k(p) ∼= Γ4,l(p) (k, l 6= 2−1(1 + λ)). Set

R4,i = {a, b, aλbλ−1ci, a−λ−1b−λc1−i}.

Then S4,k = R4,k ∪ R−1
4,k and S4,l = R4,l ∪ R−1

4,l . Since 4
∣∣ (p − 1), we have p ≥

5, and by Proposition 2.5, there exists σ ∈ Aut(G2(p)) such that Sσ4,k = S4,l. This
implies that σ maps the stabilizer Aut(Γ4,k(p))1 to the stabilizer Aut(Γ4,l(p))1. It fol-
lows Aut(G2(p), S4,k)σ = Aut(G2(p), S4,l) because Aut(Γ4,k(p))1 = Aut(G2(p), S4,k)
and Aut(Γ4,l(p))1 = Aut(G2(p), S4,l) by Remark 3.3. Moreover, Aut(G2(p), S4,k) is
regular on both R4,k and R−1

4,k, and Aut(G2(p), S4,l) is regular on both R4,l and R−1
4,l .
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Thus, Rσ4,k = R4,l or R−1
4,l , and replacing σ by a multiplication of σ and an element

in Aut(G2(p), S4,l), we may assume that aσ = a if Rσ4,k = R4,l, and aσ = a−1 if
Rσ4,k = R−1

4,l .
Assume Rσ4,k = R4,l with aσ = a. Then bσ ∈ R4,l and bσ = b, aλbλ−1cl or

a−λ−1b−λc1−l. If bσ = aλbλ−1cl then cσ = cλ−1. By Proposition 2.1, (aλbλ−1ck)σ =
a−1b−2λc−λ+2+(k+l)(λ−1) ∈ R4,l, which is impossible. If bσ = a−λ−1b−λc1−l then
cσ = c−λ, and hence (aλbλ−1ck)σ = aλ+2bλ+1c−λ−2−l(λ−1)−kλ ∈ R4,l, which is impos-
sible. If bσ = b then cσ = c, and hence (aλbλ−1ck)σ = aλbλ−1ck ∈ R4,l, implying that
l = k.

AssumeRσ4,k = R−1
4,l with aσ = a−1. Then bσ∈R−1

4,l , and bσ = b−1, a−λb1−λc−l+λ+1

or aλ+1bλcl−λ. If bσ = a−λb1−λc−l+λ+1 then cσ = cλ−1. By Proposition 2.1, we have
(aλbλ−1ck)σ = ab2λc−λ+(k−l)(λ−1) ∈ R−1

4,l , which is impossible. If bσ = aλ+1bλcl−λ

then cσ = c−λ and hence (aλbλ−1ck)σ = a−λ−2b−λ−1c−λ−kλ+l(λ−1) ∈ R−1
4,l , which is

impossible. If bσ = b−1 then we have cσ = c and (aλbλ−1ck)σ = a−λb1−λck ∈ R−1
4,l ,

implying that l = 1 + λ− k.

By Magma [4], a brute force computer search can be performed to verify the following
lemma, but we have also verified the correctness of the lemma theoretically. Since the proof
is rather long, we will not present it in the paper but are willing to provide it upon request
(also see [29]).

Lemma 3.5. There is no half-arc-transitive graph of order 27 and valency 6 or 8.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let Γ be a half-arc-transitive graph of order p3 and valency 6 or
8, and let A = Aut(Γ). By Observation 3.1, Γ = Cay(G,S) and

−→
Γ = Cay(G,R) for

some group G = G1(p) or G2(p) with p ≥ 3, where G = 〈R〉 and S = R ∪ R−1.
By Lemma 3.5, p ≥ 5, and by the half-arc-transitivity of Γ, A = Aut(

−→
Γ ) and A1 is

transitive on R. Since G = 〈R〉, Aut(G,R) acts faithfully on R, and since |R| < 5,
Aut(G,R) is a p′-group. Since G is a non-abelian group of order p3, G is 2-genetic, that
is, each normal subgroup of G can be generated by two elements. By Proposition 2.7,

−→
Γ is

normal, and by Proposition 2.6, A1 = Aut(G,R). Since A = Aut(Γ) = Aut(
−→
Γ ), we have

A1 = Aut(G,S), and so Γ is normal.
The theorem is true for G = G1(p) by Proposition 2.2. Now assume G = G2(p). If

Γ has valency 8, the theorem is also true by Lemma 3.2. We may thus assume that Γ has
valency 6, that is, |R| = 3. We prove that this is not possible.

By Observation 3.1, R = {a, b, aibjck}, where i, j, k ∈ Zp. Since Aut(G,R) is
transitive on R, there exists α ∈ Aut(G2(p)) of order 3 permuting the elements in R
cyclically. If necessary, replace α by α2, and then we may assume that α is induced by
a 7→ b, b 7→ aibjck, and then c 7→ c−i by Proposition 2.1. Thus, a = (aibjck)α =

aijbi+j
2

c−i
2j−2−1ij2(j−1)+k(j−i), and so we have:

ij = 1; (3.7)

i+ j2 = 0; (3.8)

−i2j + k(j − i)− 2−1ij2(j − 1) = 0. (3.9)
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By Eqs. (3.7) and (3.8), j3 + 1 = 0, implying (j + 1)(j2 − j + 1) = 0. Thus, either
j + 1 = 0 or j2 − j + 1 = 0. If j + 1 = 0 then j = −1. By Eq. (3.8), i = −1
and so S = {a, b, a−1b−1ck} ∪ {a−1, b−1, abc−1−k}, but the automorphism of G induced
by a 7→ a−1, b 7→ abc−1−k, c 7→ c−1, fixes S setwise, contrary to Proposition 2.4. If
j2 − j + 1 = 0 then by Eq. (3.8), i = 1 − j, and since ij = 1, Eq. (3.9) implies that
−i + k(j − i) − 2−1j(j − 1) = j − 1 + k(j + j − 1) + 2−1 = (2j − 1)(k + 2−1) = 0.
It follows that either 2j − 1 = 0 or k + 2−1 = 0. For 2j − 1 = 0, we have j = 2−1

and i = 1 − j = 1 − 2−1 = 2−1, but then Eq. (3.7) implies 4 = 1 in Zp, contradicting
p 6= 3. For k + 2−1 = 0, we have S = {a, b, a1−jbjc−2−1} ∪ {a−1, b−1, aj−1b−jc−2−1},
and the automorphism of G induced by a 7→ a−1, b 7→ b−1, c 7→ c, fixes S setwise, a
contradiction.
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[15] K. Kutnar, D. Marušič and P. Šparl, An infinite family of half-arc-transitive graphs with univer-
sal reachability relation, European J. Combin. 31 (2010), 1725–1734, doi:10.1016/j.ejc.2010.
03.006.



Y. Wang and Y.-Q. Feng: Half-arc-transitive graphs of prime-cube order of small valencies 353
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[21] D. Marušič, Quartic half-arc-transitive graphs with large vertex stabilizers, Discrete Math. 299
(2005), 180–193, doi:10.1016/j.disc.2004.02.025.
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Abstract

We study the families of plane graphs determined by lower bounds δ, ρ, w,w∗ on their
vertex degrees, face sizes, edge weights and dual edge weights, respectively. Continuing
the previous research of such families comprised of polyhedral graphs, we determine the
quadruples (2, ρ, w,w∗) for which the associated family is non-empty. In addition, we
determine all quadruples which yield extremal families (in the sense that the increase of
any value of a quadruple results in an empty family).

Keywords: Plane graph, girth, edge weight, dual edge weight.

Math. Subj. Class.: 05C10

1 Introduction
Throughout this paper, we consider connected graphs without loops or multiple edges.
Given a graph G = (V,E), the degree d(v) of a vertex v ∈ V is the number of edges
incident with v. By k+ or k− we denote any integer not smaller or not greater than k,
respectively. Hence, a k-vertex (k+-vertex, k−-vertex) is a vertex v with d(v) = k (d(v) ≥
k, d(v) ≤ k, respectively). An edge uv is an (i, j)-edge, if d(u) = i and d(v) = j. For an
edge e = uv ∈ E, the weight w(e) of e is the sum d(u)+d(v). The minimum vertex degree
of G is the number δ(G) = min{d(v) : v ∈ V }, and the minimum edge weight of G is
w(G) = min{w(e) : e ∈ E}. The girth g(G) of G is the length of a shortest cycle of G
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and the double girth of G is defined as the minimum sum of lengths of two distinct cycles
of G which share a common edge; it will be denoted as dg(G) (note that g(G) = ∞ if G
is a tree, and dg(G) =∞ if no two cycles of G share an edge). A graph is called planar if
it can be drawn in the plane in such a way that, in this drawing, no two edges cross (such
a drawing is called a plane graph and it is determined by the triple (V,E, F ), where F is
the set of faces). The face size d(α) of a face α ∈ F is the number of edges incident with
α (incident cut-edges being counted twice). A k-face (k+-face, k−-face) is a face α with
d(α) = k (d(α) ≥ k, d(α) ≤ k, respectively). The minimum face size of G, denoted ρ(G),
is defined as min{d(α) : α ∈ F} and the minimum dual edge weight of G is the number
w∗(G) = min{d(α) + d(β) : α, β ∈ F, α 6= β, α, β have a common edge}. Note that
g(G) ≤ ρ(G) and dg(G) ≤ w∗(G).

For a general graph G, there are no special dependencies of the above mentioned graph
invariants apart from the trivial ones: w(G) ≥ 2δ(G) and dg(G) ≥ 2g(G). On the other
hand, these invariants are strongly dependent when additional graph constraints are consid-
ered. Particularly, ifG is a plane graph, then min{δ(G), ρ(G)} ≤ 5; additionally δ(G) ≥ 4
implies ρ(G) = 3 and ρ(G) ≥ 4 implies δ(G) ≤ 3. These facts follow easily from Eu-
ler’s formula for the numbers of vertices, edges and faces of a plane graph. A more subtle
analysis of consequences of Euler’s formula yields further dependencies: if δ(G) ≥ 3 then
w(G) ≤ 13, whereas δ(G) ≥ 4 gives w(G) ≤ 11, see [1]. By considering dual versions
of these results, we obtain a dependence between the minimum face size ρ(G) and the
minimum dual edge weight w∗(G): if ρ(G) ≥ 3 then w∗(G) ≤ 13 and, for ρ(G) ≥ 4,
w∗(G) ≤ 11. Furthermore, the results of the classical paper [9] give that if δ(G) ≥ 3 and
ρ(G) ≥ 4, then w(G) ≤ 8, and δ(G) ≥ 3 together with ρ(G) = 5 yield w(G) = 6. The
mutual dependence of all four values δ(G), ρ(G), w(G) and w∗(G) for polyhedral (that is,
3-connected plane) graphs was studied in [4] giving the characterization of all quadruples
(δ, ρ, w,w∗) for which the corresponding families of polyhedral graphs of minimum ver-
tex degree at least δ, minimum face size at least ρ, minimum edge weight at least w and
minimum dual edge weight at least w∗ are non-empty.

The aim of this paper is to extend the results of [4] for wider families of plane graphs
with δ = 2. The graph K2,r shows that w(G) is unbounded for ρ(G) = 4. On the
other hand, recent results by Jendrol’ and Maceková [7] and results from [2] show that if
g(G) ∈ {5, 6} then w(G) ≤ 7 and, further, if g(G) ∈ {7, 8, 9, 10}, then w(G) ≤ 5 as well
as g(G) ≥ 11 implies w(G) = 4. Denoting the set of all plane graphs of minimum degree
at least δ, girth at least ρ, minimum edge weight at least w and minimum double girth at
least w∗ as G(δ, ρ, w,w∗), the equivalent formulation of these results is that the families
G(2, 5, 8, 10),G(2, 7, 6, 14) and G(2, 11, 5, 22) are empty.

In this paper, we prove the following additional results:

Theorem 1.1. The family G(2, 3, 7, 15) is empty.

Theorem 1.2. The family G(2, 3, 9, 11) is empty.

Theorem 1.3. The family G(2, 3, 13, 9) is empty.

Theorem 1.4. The families G(2, 5, 5, 27) and G(2, 7, 5, 23) are empty.

Theorem 1.5. The family G(2, 5, 6, 17) is empty.

Theorem 1.6. The family G(2, 5, 7, 13) is empty.
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For the non-empty families arising from admissible quadruples, we are interested in
determining the extremal ones, that is, the families G(δ, ρ, w,w∗) such that the increase of
any of the values δ, ρ, w and w∗ results in an empty family. We prove:

Theorem 1.7. The families G(2, 4, 8, 14), G(2, 4, 12, 10), G(2, 6, 5, 26), G(2, 6, 6, 16),
G(2, 6, 7, 12), G(2, 10, 5, 22) are non-empty and extremal.

2 The proofs
For the needs of the proofs we will use the following consequence of Euler’s formula with
specified parameters a and b (without giving a proof):

Lemma 2.1. Let G be a connected plane graph, a be a positive and b be a non-negative
integer. Then∑

v∈V (G)

(a · d(v)− 2(a+ b)) +
∑

α∈F (G)

(b · d(α)− 2(a+ b)) = −4(a+ b).

The common approach used in the majority of proofs in this paper is the discharging
method. Assuming the existence of a hypothetical plane counterexample G = (V,E, F )
for a particular statement of Theorems 1.1 – 1.7, we define the initial charges of vertices
and faces by the function ω : V ∪ F → Z assigning ω(v) = a · d(v)− 2(a+ b) for each
v ∈ V , and ω(α) = b · d(α)− 2(a+ b) for each α ∈ F . By Lemma 2.1,

∑
x∈V ∪F ω(x) =

−4(a + b) < 0. Next, we redistribute the initial charges of vertices and faces of G using
certain rules which specify, in particular situations, the amount of charge transferred from
one element to another; all transfers preserve the total sum of the initial charges. Finally,
by case analysis, we show that the final charge ϕ : V ∪F → Q is a non-negative function;
this is, however, a contradiction since 0 >

∑
x∈V ∪F ω(x) =

∑
x∈V ∪F ϕ(x) ≥ 0.

We note that, while checking the non-negativity of ϕ, we will usually mention just a
minimal set of discharging rules that give ϕ(x) ≥ 0 for an x ∈ V ∪ F , although there may
be additional transfers of a positive charge to x.

2.1 Proof of Theorem 1.1

Let the family G(2, 3, 7, 15) be non-empty and let G = (V,E, F ) be its representative.
Without loss of generality, we can assume that 5+-vertices are not adjacent in G (oth-

erwise we subdivide each (5+, 5+)-edge with a new 2-vertex which yields a new graph G′

being again from G(2, 3, 7, 15)). Therefore each k-face α of G, for k odd, is incident with
at most k−32 2-vertices (note that k-face α, for k even, is incident with at most k2 2-vertices).

The discharging procedure is based on Lemma 2.1 with a = 1 and b = 0 and the
following discharging rules:

R1 Each k-face α, k ≤ 7, distributes its initial charge uniformly to all incident 3+-
vertices.

R2 Each k-face α, k ≥ 8, distributes its initial charge uniformly to all incident 4+-
vertices.

It follows from the discharging rules that ϕ(α) = 0 for all α ∈ F .
In Table 1 we give the lower bounds for charges received by vertices of graph G from

k-faces of G (k ≥ 3):
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k 3 4 5 6 7 8 9 10 11 12+

d(v) = 3 − 2
3 − 2

3 − 1
2 − 1

2 − 2
5 − − − − −

d(v) = 4 − 2
3 − 2

3 − 1
2 − 1

2 − 2
5 − 1

2 − 2
5 − 2

5 − 1
3 − 1

3

d(v) ≥ 5 − 2
3 -1 − 1

2 − 2
3 − 2

5 − 1
2 − 2

5 − 2
5 − 1

3 − 1
3

Table 1: Lower bounds for charges sent to vertices of G from a k-face α.

Now, let v ∈ V be a k-vertex, k ≥ 2. We consider the following cases regarding k:

k = 2: Discharging rules do not involve 2-vertices, therefore ϕ(v) = ω(v) = 0.

k = 3: The 3-vertices receive negative charge only from incident 7−-faces by R1. Since
w∗(G) ≥ 15, v is incident with at most one 7−-face. If a 3-vertex v is incident with
an l-face α, 3 ≤ l ≤ 7, then, using Table 1, ϕ(v) ≥ 1 + (− 2

3 ) =
1
3 . If v is incident

with no such face, then ϕ(v) = ω(v) = 1.

k = 4: Each 4-vertex v is incident with at most two 7−-faces (as w∗(G) ≥ 15). If v is
incident with a 4−-face, then it is incident with at least two 11+-faces, and hence
ϕ(v) ≥ 2 + (− 2

3 ) + 2 · (− 1
3 ) + (− 2

3 ) = 0 due to Table 1. Otherwise, v is incident
with four 5+-faces and ϕ(v) ≥ 2 + 4 · (− 1

2 ) = 0.

k = 5: Each 5-vertex v is incident with at most two 7−-faces (as w∗(G) ≥ 15). If v is
incident with a 3-face, then it is incident with at least two 12+-faces, and hence, using
Table 1, ϕ(v) ≥ 3+(− 2

3 )+2 ·(− 1
3 )+(−1)+(− 1

2 ) =
1
6 . If v is incident with one k-

face, 4 ≤ k ≤ 7, and four 8+-faces then ϕ(v) ≥ 3−1+4 ·(− 1
2 ) = 0. If v is incident

with two 4-faces, then it is incident with three 11+-faces, and ϕ(v) ≥ 3+2·(−1)+3·
(− 1

3 ) = 0. If v is incident with a 4-face and a 5-face, then it is incident with two 11+-
faces and a 10+-face, and hence ϕ(v) ≥ 3+(−1)+(− 1

2 )+2 ·(− 1
3 )+(− 2

5 ) =
13
30 . If

it is incident with a 4-face and a 6-face, then it is incident with two 11+-faces and a
9+-face, and hence ϕ(v) ≥ 3+(−1)+(− 2

3 )+2 ·(− 1
3 )+(− 2

5 ) =
4
15 . If v is incident

with a 4-face and a 7-face, then it is incident with two 11+-faces and an 8+-face, and
hence ϕ(v) ≥ 3+(−1)+(− 2

5 )+2 ·(− 1
3 )+(− 1

2 ) =
13
30 . Finally, if v is incident with

faces α and β, where 5 ≤ d(α), d(β) ≤ 7, then ϕ(v) ≥ 3+2 · (− 2
3 )+3 · (− 1

2 ) =
1
6 .

k ≥ 6: Each k-vertex v, k ≥ 6, is incident with at most
⌊
k
2

⌋
7−-faces. To estimate the

total reception of the vertex v we argue as follows. If v is incident with a 3-face, then
it is incident with a 12+-face and they send together a charge − 2

3 + (− 1
3 ) = −1 to

v (according to Table 1). If v is incident with a 4-face, then it is incident with an
11+-face and they send together a charge −1 + (− 1

3 ) = − 4
3 to v. If v is incident

with a 5-face, then it is incident with a 10+-face and they send together a charge
− 1

2 + (− 2
5 ) = − 9

10 to v. If v is incident with a 6-face, then it is incident with a
9+-face and they send together a charge − 2

3 + (− 2
5 ) = −

16
15 to v. And finally, if v

is incident with a 7-face, then it is incident with an 8+-face and they send together a
charge − 2

5 + (− 1
2 ) = −

9
10 to v. Thence it follows, that each face sends in average

a charge at least − 2
3 to v and therefore ϕ(v) ≥ k − 2 + k · (− 2

3 ) =
k
3 − 2 ≥ 0 for

k ≥ 6.

Hence, all elements of G have non-negative final charge, giving the desired contradiction.
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2.2 Proof of Theorem 1.2

Let the family G(2, 3, 9, 11) be non-empty and G = (V,E, F ) be its representative.
The discharging procedure is based on Lemma 2.1 with a = 1 and b = 0 and the

following discharging rules:

R1 Each k-face, k ≤ 5, divides its initial charge uniformly among all incident 3+-
vertices.

R2 Each k-face, k ≥ 6, sends a charge of size − 1
3 to each incident 4-vertex.

R3 Each k-face, k ≥ 6, distributes its residual charge (after application of R2) uniformly
to all incident 5+-vertices.

It follows from the discharging rules that ϕ(α) = 0 for all α ∈ F .
In Table 2 we give the lower bounds for charges received by vertices of graph G from

k-faces of G, k ≥ 3:

k 3 4 5 6 7 8 9+

d(v) = 3 − 2
3 − 2

3 − 1
2 − − − −

d(v) = 4 − 2
3 − 2

3 − 1
2 − 1

3 − 1
3 − 1

3 − 1
3

d(v) = 5 − 2
3 − 2

3 − 1
2 − 1

2 − 5
12 − 2

5 − 1
3

d(v) = 6 − 2
3 − 2

3 − 1
2 − 2

3 − 1
2 − 1

2 − 2
5

d(v) ≥ 7 -1 -1 − 2
3 − 2

3 − 1
2 − 1

2 − 2
5

Table 2: Lower bounds for charges sent to vertices of G from a k-face α.

Now, let v ∈ V be a k-vertex, k ≥ 2. We consider the following cases regarding k:

k = 2: Discharging rules do not involve 2-vertices, therefore ϕ(v) = ω(v) = 0.

k = 3: Each 3-vertex v is incident with at most one 5−-face (as w∗(G) ≥ 11). Hence,
using Table 2, ϕ(v) ≥ 1 + (− 2

3 ) =
1
3 .

k = 4: Each 4-vertex v is incident with at most two 5−-faces (as w∗(G) ≥ 11). Hence,
according to Table 2, ϕ(v) ≥ 2 + 2 · (− 2

3 ) + 2 · (− 1
3 ) = 0.

k = 5: Each 5-vertex v is incident with at most two 5−-faces (as w∗(G) ≥ 11). Hence,
ϕ(v) ≥ 3 + 2 · (− 2

3 ) + 3 · (− 1
2 ) =

1
6 .

k = 6: Each 6-vertex v receives from each face charge at least − 2
3 and therefore, ϕ(v) ≥

4 + 6 · (− 2
3 ) = 0.

k = 7: If v is incident with three 3- or 4-faces, then it is incident with four 8+-faces and,
using Table 2, ϕ(v) ≥ 5 + 3 · (−1) + 4 · (− 1

2 ) = 0. If v is incident with two 3- or
4-faces, then it is incident with at least three 8+-faces and ϕ(v) ≥ 5 + 2 · (−1) + 3 ·
(− 1

2 ) + 2 · (− 2
3 ) =

1
6 . If v is incident with one 3- or 4-face, then it is incident with

at least two 8+-faces and ϕ(v) ≥ 5 + (−1) + 2 · (− 1
2 ) + 4 · (− 2

3 ) =
1
3 . Otherwise,

it is incident only with 5+-faces and ϕ(v) ≥ 5 + 7 · (− 2
3 ) =

1
3 .
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k ≥ 8: Let s be the number of 3- and 4-faces incident with k-vertex v and t be the number
of 8+-faces incident with v. As w∗(G) ≥ 11, we have t ≥ s and s ≤ bk2 c. Then
ϕ(v) ≥ k−2+s ·(−1)+ t ·(− 1

2 )+(k−s− t) ·(− 2
3 ) = k−2−s · 13 + t ·

1
6 −k ·

2
3 ≥

k
3 − s ·

1
6 − 2 ≥ k

3 −
k
12 − 2 = k

4 − 2 ≥ 0 for k ≥ 8.

Hence, all elements of G have non-negative final charge, a contradiction.

2.3 Proof of Theorem 1.3

Let the family G(2, 3, 13, 9) be non-empty and G = (V,E, F ) be its representative.
The discharging procedure is based on Lemma 2.1 with a = 1 and b = 0 and the

following discharging rules:

R1 a) Each face α sends a charge of size − 1
3 to each incident 3-vertex.

b) Each face α sends a charge of size − 1
2 to each incident 4-vertex.

R2 Each face α distributes its residual charge (after the application of R1a and R1b)
uniformly among all incident 5+-vertices.

It follows from the discharging rules that ϕ(α) = 0 for all α ∈ F (the faces are able to
distribute the charge, since there are always 5+-vertices in the graph).

In Table 3 we give the lower bounds for charges received by vertices of graph G from
k-faces of G (k ≥ 3) after the application of the rule R1:

k 3 4 5 6+

5 ≤ d(v) ≤ 8 − 2
3 − 2

3 − 1
2 − 1

2

d(v) = 9 − 3
4 − 2

3 − 1
2 − 1

2

d(v) = 10 − 5
6 − 2

3 − 5
9 − 1

2

d(v) ≥ 11 -1 -1 − 2
3 − 2

3

Table 3: Lower bounds for charges sent to vertices of G from a k-face α.

Now, let v ∈ V be a k-vertex, k ≥ 2. We consider the following cases regarding k:

k = 2: Discharging rules do not involve 2-vertices, therefore ϕ(v) = ω(v) = 0.

k = 3: Each 3-vertex v receives− 1
3 from all incident faces, hence ϕ(v) = 1+3·(− 1

3 ) = 0.

k = 4: Each 4-vertex v receives− 1
2 from all incident faces, hence ϕ(v) = 2+4·(− 1

2 ) = 0.

5 ≤ k ≤ 8: Let s and t be the numbers of 4−- and 5+-faces incident with a k-vertex v,
respectively. As w∗(G) ≥ 9, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then, using Table 3,

ϕ(v) ≥ k−2+s · (− 2
3 )+ t · (−

1
2 ) ≥ k−2+

⌊
k
2

⌋
· (− 2

3 )+
⌈
k
2

⌉
· (− 1

2 ) ≥
5k
12 −2 > 0

for k ≥ 5.

k = 9: As each 9-vertex receives, according to Table 3, a charge of at least − 3
4 from each

incident face, we have that ϕ(v) ≥ 7 + 9 · (− 3
4 ) =

1
4 > 0.

k = 10: Each 10-vertex is incident with at least five 5+-faces (as w∗(G) ≥ 9). Therefore
ϕ(v) ≥ 8 + 5 · (− 5

9 ) + 5 · (− 5
6 ) =

19
18 > 0.
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k = 11: Each 11-vertex is incident with at least six 5+-faces (as w∗(G) ≥ 9). Therefore
ϕ(v) ≥ 9 + 6 · (− 2

3 ) + 5 · (−1) = 0.

k ≥ 12: Let s and t be the numbers of 4−- and 5+-faces incident with a k-vertex v,
respectively. As w∗(G) ≥ 9, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then ϕ(v) ≥

k − 2 + s · (−1) + t · (− 2
3 ) ≥ k − 2 +

⌊
k
2

⌋
· (−1) +

⌈
k
2

⌉
· (− 2

3 ) ≥
k
6 − 2 ≥ 0 for

k ≥ 12.

Hence, all elements of G have non-negative final charge, a contradiction.

2.4 Proof of Theorem 1.4

Let the families G(2, 5, 5, 27) and G(2, 7, 5, 23) be non-empty and G∗1 and G∗2 be their
respective representatives. Each face α of G∗1 and G∗2 is incident with at most

⌊
d(α)
2

⌋
2-

vertices (as w(G∗i ) ≥ 5 for i ∈ {1, 2}). Then, after suppressing all 2-vertices of G∗1 and
G∗2, respectively, we obtain graphs G1, G2 with δ(Gi) ≥ 3, i ∈ {1, 2}. Moreover, G1

belongs to the family G(3, 3, 6, 14) and G2 is from G(3, 4, 6, 12), which contradicts the
fact that these families were proven to be empty (see [4]).

2.5 Proof of Theorem 1.5

Let G = (V,E, F ) ∈ G(2, 5, 6, 17) be a counterexample to the theorem. Without loss
of generality, we assume that 4+-vertices are not adjacent in G (otherwise we subdivide
each (4+, 4+)-edge in G with a new 2-vertex, which yields a new counterexample G′ ∈
G(2, 5, 6, 17)). Therefore, each k-face α of G, for k odd, is incident with at most k−3

2

2-vertices (note that k-face α, for k even, is incident with at most k2 2-vertices).
The discharging procedure is based on Lemma 2.1 with a = 2, b = 1 and the following

discharging rules:

R1 Each vertex v distributes its initial charge uniformly to all incident faces.

R2 Each 11+-face α sends a charge of size 1
4 to each adjacent face (through every com-

mon edge).

By R1, ϕ(v) = 0 for all v ∈ V . Since w(G) ≥ 6, every 2-vertex of G is adjacent only
to 4+-vertices and every its 3-vertex is adjacent only to 3+-vertices.

Let α ∈ F be a k-face, k ≥ 5. We consider the following cases regarding k:

k = 5: All faces adjacent to α are 12+-faces (as w∗(G) ≥ 17) and α is incident with at
most one 2-vertex. If α is incident with exactly one 2-vertex, then it is incident with
at least two 4+-vertices and hence ϕ(α) ≥ −1 + (−1) + 2 · 12 + 5 · 14 = 1

4 . Finally,
if α is not incident with any 2-vertex, then ϕ(α) ≥ −1 + 5 · 14 = 1

4 .

k = 6: All faces adjacent to α are 11+-faces (as w∗(G) ≥ 17). If α is incident with three
2-vertices, then it is incident with three 4+-vertices. Hence ϕ(α) ≥ 0 + 3 · (−1) +
3 · 12 + 6 · 14 = 0. If α is incident with two 2-vertices, then it is incident with at least
three 4+-vertices, giving ϕ(α) ≥ 0 + 2 · (−1) + 3 · 12 + 6 · 14 = 1. If α is incident
with at most one 2-vertex, then ϕ(α) ≥ 0 + (−1) + 6 · 14 = 1

2 .

k = 7: α is incident with at most two 2-vertices. If α is incident with two 2-vertices, then
it is incident with at least three 4+-vertices. Hence ϕ(α) ≥ 1+2·(−1)+3· 12 = 1

2 by
R1. Otherwise, if α is incident with at most one 2-vertex, then ϕ(α) ≥ 1+(−1) = 0.
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k = 8: If α is incident with four 2-vertices, then it is incident with four 4+-vertices. Hence
ϕ(α) ≥ 2 + 4 · (−1) + 4 · 12 = 0 by R1. If α is incident with three 2-vertices, then
it is incident with at least four 4+-vertices, giving ϕ(α) ≥ 2 + 3 · (−1) + 4 · 12 = 1.
Finally, if α is incident with at most two 2-vertices, then ϕ(α) ≥ 2 + 2 · (−1) = 0.

k = 9: α is incident with at most three 2-vertices, thus we have that ϕ(α) ≥ 3+3 ·(−1) =
0.

k = 10: If α is incident with five 2-vertices, then it is incident with five 4+-vertices. Hence
ϕ(α) ≥ 4+5 · (−1)+5 · 12 = 3

2 by R1. Otherwise, if α is incident with at most four
2-vertices, then ϕ(α) ≥ 4 + 4 · (−1) = 0.

k = 11: α is incident with at most four 2-vertices. If α is incident with four 2-vertices, then
it is incident with at least five 4+-vertices. Hence ϕ(α) ≥ 5+4·(−1)+5· 12−11·

1
4 =

3
4 by R1 and R2. If α is incident with three 2-vertices, then it is incident with at least
four 4+-vertices, giving ϕ(α) ≥ 5 + 3 · (−1) + 4 · 12 − 11 · 14 = 5

4 . Finally, if α is
incident with at most two 2-vertices, then ϕ(α) ≥ 5 + 2 · (−1)− 11 · 14 = 1

4 .

k ≥ 12: Let s and t be numbers of 2− and 4+−vertices incident with α, respectively. As
w(G) ≥ 6, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then ϕ(α) ≥ k−6+s·(−1)+t· 12−

1
4 ·k ≥

3
4 · k − 6− 1

2 · s ≥
3
4 · k − 6− 1

2 ·
⌊
k
2

⌋
≥ 0 for k ≥ 12.

Hence, all elements of G have non-negative final charge, a contradiction.

2.6 Proof of Theorem 1.6

Let the family G(2, 5, 7, 13) be non-empty and G = (V,E, F ) be its representative. With-
out loss of generality, we can assume that 5+-vertices are not adjacent in G (otherwise we
subdivide each (5+, 5+)-edge in G with a new 2-vertex, which yields a new counterexam-
ple G′ ∈ G(2, 5, 7, 13)). Therefore, each k-face α of G, for k odd, is incident with at most
k−3
2 2-vertices (note that k-face α, for k even, is incident with at most k2 2-vertices).

The discharging procedure is based on Lemma 2.1 with a = 2, b = 1 and the following
discharging rules:

R1 Each vertex v divides its initial charge uniformly among all incident faces.

R2 Each 7+-face α sends a charge of size 3
25 to each adjacent face (through every com-

mon edge).

By R1, ϕ(v) = 0 for all v ∈ V . Since w(G) ≥ 7, every 2-vertex of G is adjacent only
to 5+-vertices and every its 3-vertex is adjacent only to 4+-vertices.

Let α ∈ F be a k-face, k ≥ 5. We consider the following cases regarding k:

k = 5: All faces adjacent to α are 8+-faces (as w∗(G) ≥ 13). If α is incident with a
2-vertex, then it is incident with at least two 5+-vertices and hence ϕ(α) ≥ −1 +
(−1)+2 · 45 +5 · 3

25 = 1
5 . Otherwise, if α is not incident with any 2-vertex, then it is

incident with at least three 4+-vertices, and therefore ϕ(α) ≥ −1+3· 12+5· 325 = 11
10 .

k = 6: All faces adjacent to α are 7+-faces (as w∗(G) ≥ 13). If α is incident with three
2-vertices, then it is incident with three 5+-vertices. Hence ϕ(α) ≥ 0 + 3 · (−1) +
3 · 45 + 6 · 3

25 = 3
25 . If α is incident with two 2-vertices, then it is incident with at

least three 5+-vertices, giving ϕ(α) ≥ 0 + 2 · (−1) + 3 · 45 + 6 · 3
25 = 28

25 . If α is
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incident with exactly one 2-vertex, then it is incident with at least two 5+-vertices
and thus ϕ(α) ≥ 0 + (−1) + 2 · 45 + 6 · 3

25 = 33
25 . Finally, if α is not incident with

a 2-vertex, then it receives non-negative charge from each incident vertex, therefore
ϕ(α) ≥ ω(α) = 0.

k = 7: If α is incident with two 2-vertices, then it is incident with at least three 5+-vertices,
so ϕ(α) ≥ 1+2 · (−1)+3 · 45 +7 · (− 3

25 ) =
14
25 . If α is incident with exactly one 2-

vertex, then it is incident with at least two 5+-vertices and hence ϕ(α) ≥ 1+(−1)+
2· 45+7·(− 3

25 ) =
19
25 . Finally, if α is not incident with a 2-vertex, then it receives non-

negative charge from each incident vertex and, by R2, ϕ(α) ≥ 1 + 7 · (− 3
25 ) =

4
25 .

k ≥ 8: Let s and t be numbers of 2− and 5+-vertices incident with α, respectively. As
w(G) ≥ 7, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then ϕ(α) ≥ k−6+s·(−1)+t· 45−

3
25 ·k ≥

22
25k −

s
5 − 6 ≥ 22

25k −
⌊
k
2

⌋
· 15 − 6 ≥ 39·k

50 − 6 > 0 for k ≥ 8.

Hence, all elements of G have non-negative final charge, a contradiction.

2.7 Proof of Theorem 1.7

For each of the mentioned six families, we describe a representative and show that the
increase in any of the four parameters results in an empty family.

The family G(2, 4, 8, 14) contains, as a representative, the graph obtained from the
dodecahedron by replacing each edge uv by a 4-cycle uxvy with x, y being 2-vertices.
Furthermore, G(3, 4, 8, 14) ⊂ G(3, 4, 7, 9) = ∅ by [4], G(2, 5, 8, 14) ⊂ G(2, 5, 8, 10) = ∅
by [2] and [7], G(2, 4, 9, 14) ⊂ G(2, 3, 9, 11) = ∅ by Theorem 1.2, and G(2, 4, 8, 15) ⊂
G(2, 3, 7, 15) = ∅ by Theorem 1.1.

A representative of G(2, 4, 12, 10) is obtained from the icosahedron by replacing each
edge uv by a 4-cycle uxvy with x, y being 2-vertices. Furthermore, G(3, 4, 12, 10) ⊂
G(3, 4, 7, 9) = ∅ by [4], G(2, 5, 12, 10) ⊂ G(2, 5, 8, 10) = ∅ by [2, 7], G(2, 4, 13, 10) ⊂
G(2, 3, 13, 9) = ∅ by Theorem 1.3, and finally G(2, 4, 12, 11) ⊂ G(2, 3, 9, 11) = ∅ by
Theorem 1.2.

For G(2, 6, 5, 26), a suitable representative can be obtained, for example, by subdivid-
ing each edge of the graph of the truncated dodecahedron. Note that G(3, 6, 5, 26) = ∅
(if δ(G) ≥ 3, then ρ(G) ≤ 5). Furthermore, by Theorem 1.4, G(2, 7, 5, 26) ⊂
G(2, 7, 5, 23) = ∅, G(2, 6, 5, 27) ⊂ G(2, 5, 5, 27) = ∅ and, by Theorem 1.5,
G(2, 6, 6, 26) ⊂ G(2, 5, 6, 17) = ∅.

By subdividing each edge of the graph of icosidodecahedron, we obtain a represen-
tative of G(2, 6, 6, 16). Again, G(3, 6, 6, 16) = ∅ (if δ(G) ≥ 3, then ρ(G) ≤ 5) and
G(2, 7, 6, 16) ⊂ G(2, 7, 6, 14) = ∅ by [2, 7], G(2, 6, 7, 16) ⊂ G(2, 5, 7, 13) = ∅ by Theo-
rem 1.6, G(2, 6, 6, 17) ⊂ G(2, 5, 6, 17) = ∅ by Theorem 1.5.

A representative of G(2, 6, 7, 12) is obtained by subdividing each edge of the icosahe-
dron graph. Further, G(3, 6, 7, 12) = ∅ (if δ(G) ≥ 3, then ρ(G) ≤ 5), G(2, 7, 7, 12) = ∅ (if
ρ(G) ≥ 7, then w∗(G) ≥ 2ρ(G) = 14), G(2, 6, 8, 12) ⊂ G(2, 5, 8, 10) = ∅ by [2, 7], and
G(2, 6, 7, 13) ⊂ G(2, 5, 7, 13) = ∅ by Theorem 1.6.

A representative of G(2, 10, 5, 22) is obtained by subdividing each edge of the truncated
icosahedron. Further, G(3, 10, 5, 22) = ∅ (if δ(G) ≥ 3, then ρ(G) ≤ 5), G(2, 11, 5, 22) =
∅ by [2] and [7], G(2, 10, 6, 22) ⊂ G(2, 5, 6, 17) = ∅ by Theorem 1.5, and finally
G(2, 10, 5, 23) ⊂ G(2, 7, 5, 23) = ∅ by Theorem 1.4.
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3 Concluding remarks
A possible common way how to visualize the dependence of δ, ρ, w,w∗ for families of
plane graphs is to construct a diagram of a partially ordered set depicting the hierarchy
of all non-empty families (generated by quadruples (δ, ρ, w,w∗)) under the set inclusion
partial ordering. For δ ≥ 3, a partially ordered set of generated families of polyhedral
graphs is shown in Figure 1 (this also corrects the error in the original diagram in [4]):

(5,3,11,6)

(4,3,11,6)

(3,3,13,6)

(3,3,12,6)

(3,3,11,6)

(3,3,10,6)

(3,3,9,6)

(3,3,8,6)

(3,3,7,6)

(3,3,6,6)

(5,3,10,6)

(4,3,10,6)

(4,3,9,6)

(4,3,8,6)

(3,3,9,7)

(3,3,8,7)

(3,3,8,8)

(4,3,8,7)

(4,3,8,8)
(3,3,6,13)

(3,3,6,12)

(3,3,6,11)

(3,3,6,10)

(3,3,6,9)

(3,3,6,8)

(3,3,6,7)

(3,5,6,11)

(3,4,6,11)

(3,4,6,10)

(3,4,6,9)

(3,4,6,8)

(3,5,6,10)

(3,3,7,9)

(3,4,7,8)

(3,4,8,8)

(3,3,7,8)

(3,3,7,7)

Ć

Figure 1: The hierarchy of families of polyhedral graphs generated by (δ, rho, w,w∗).

The results for δ = 2 are presented in Table 4 indexed by values of girth (rows) and edge
weight (columns) such that, the corresponding table entry shows the maximal admissible
value of dual edge weight. The value ∞ in the first column is due to the fact that, in the
graph obtained fromCn (n arbitrarily large) by replacing every edge with two disjoint paths
of length 2, the dual edge weight is unbounded. The value 8 in the last column results from
the graph K2,r for large r. The bold values correspond to extremal families.

The verification that we found all extremal classes can be done manually, or, as we did,
using a simple computer program. Iterating over all possible classes (2, ρ, w,w∗) check for
every non-extremal class that it is either covered by an extremal class (all parameters are
less or equal than for some extremal class) or by an empty class (all parameters are greater
or equal than for some empty class).

Let us note that all extremal classes must have all parameters less or equal to 26, be-
cause every class that has at least one parameter greater than 26 is empty (it is a subset of
G(2, 3, 13, 9), G(2, 5, 5, 27) or G(2, 3, 7, 15), which are all proven to be empty) or it is a
part of one of two infinite chains.
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HH
HHHρ

w
4 5 6 7 8 9 10 11 12 13+

3 ∞ ∞ ∞ 14 14 10 10 10 10 8

4 ∞ ∞ ∞ 14 14 10 10 10 10 8

5 ∞ 26 16 12 − − − − − −
6 ∞ 26 16 12 − − − − − −
7 ∞ 22 − − − − − − − −
8 ∞ 22 − − − − − − − −
9 ∞ 22 − − − − − − − −

10 ∞ 22 − − − − − − − −
11+ ∞ − − − − − − − − −

Table 4: The table of admissible values for quadruples (2, ρ, w,w∗).

The mutual dependence of the invariants δ, ρ, w,w∗ can also be studied for graphs
embedded into higher surfaces. Partial results were obtained for embedded graphs with
δ(G) = 3 and orientable genus γ(G) in [6], it was proved that w(G) ≤ 2γ(G) + 13 if
0 ≤ γ(G) ≤ 3 and w(G) ≤ 4γ(G) + 7 if γ(G) ≥ 3, whereas w(G) ≤ 4γ(G) + 5 if
γ(G) ≥ 1 and g(G) ≥ 4. For graphs with non-orientable genus γ(G), it was proved in [8]
that w(G) ≤ 2γ(G)+ 11 if 1 ≤ γ(G) ≤ 2, and w(G) ≤ 2γ(G)+ 9 in 3 ≤ γ(G) ≤ 5 with
w(G) ≤ 2γ(G) + 7 for γ(G) ≥ 6; furthermore, if g(G) ≥ 4, then w(G) ≤ 2γ(G) + 5
for γ(G) ≥ 2 and w(G) ≤ 8 for γ(G) = 1. Note, however, that for embedded graphs
with fixed genus, the invariant w∗(G) need not be well-defined, as G might have a single
face. This could be overcome by considering polyhedral embeddings (whose facial walks
are cycles and each two of them have at most a vertex or an edge in common).

There exist many graph families whose members do not involve a fixed genus em-
bedding, but they possess structural properties which are analogous to ones for plane or
embedded graphs nonetheless. A particularly interesting family in this direction is the fam-
ily of 1-planar graphs, that is, the family of graphs which can be drawn in the plane in
such a way that each edge is crossed at most once. It is known that if G is a 1-planar graph,
then δ(G) ≤ 7 and, in addition, w(G) ≤ 40 if G is 3-connected, see [3]. For a 1-planar
graph G with δ(G) ∈ {5, 6, 7} it was proved in [5] that w(G) ≤ 14. A partial dependence
between δ(G) and g(G) is also known: if δ(G) ≥ 5, then g(G) ≤ 4 and g(G) = 3 for
δ(G) ∈ {6, 7}, see [3]; however, for δ(G) ∈ {3, 4}, an upper bound for g(G) is still not
known. Also, not much is known on the dependence of dg(G) (which is a vague analogue
of w∗(G) for non-embedded graphs) on w(G), g(G) and δ(G): so far, the only result is the
one from [10] that if δ(G) ≥ 6 and w(G) ≥ 13, then dg(G) = 6.
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[6] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992), 113–
116, doi:10.1016/S0167-5060(08)70614-9, http://dx.doi.org/10.1016/
S0167-5060(08)70614-9.
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Abstract

In this paper the binary locating-dominating number of convex polytopes is considered.
The exact value is determined and proved for convex polytopes Dn and R′′n, while for the
convex polytopes Rn, Qn and Un a tight upper bound of the locating-dominating number
is presented.

Keywords: Locating-dominating number, convex polytopes.

Math. Subj. Class.: 05C69, 05C90

1 Introduction
Let G be a simple connected undirected graph G = (V,E), where V is a set of vertices,
and E is a set of edges. The open neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V |
(u, v) ∈ E} and the closed neighborhood is NG[v] = {u ∈ V | (u, v) ∈ E} ∪ {v}. We
write N(v) or N [v] if the graph G is clear from the context [4]. For a graph G = (V,E) a
dominating set is a vertex set D ⊆ V such that the union of the closed neighborhoods of
the vertices in D is all of V ; that is,

⋃
v∈DN [D] = V . Equivalently, each vertex not in D

is adjacent to at least one vertex in D, e.g. for every vertex v ∈ V \D,N(v)∩D 6= ∅. The
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domination number of G, denoted by γ(G), is the minimum cardinality of a dominating
set of G.

The concept of a dominating set can also be studied through assigning a weight of 1 will
be assigned to the vertices inD and a weight of 0 to the vertices of V \D. In this case,D is a
dominating set ofG if for every vertex inG the sum of weights for closed neighborhoods is
at least 1, i.e. |N [v]∩S| ≥ 1 for each v ∈ V . A dominating set S ⊆ V is a binary locating-
dominating set if for every two different vertices u, v ∈ V \S holds N(u)∩S 6= N(v)∩S
([12]). The binary locating-dominating number of G, denoted by γl−d(G), is the minimum
cardinality of a binary locating-dominating set. In the sequel all terms about the locating-
dominating number or set is denoted by binary locating-dominating number or set.

The article [11] studies the smallest cardinalities of locating-dominating codes on
chains and cycles and the extreme values of the cardinality of a minimum r-identifying or
r-locating-dominating code in any connected undirected graphG having a given number, n,
of vertices is studied in [8]. For more information about these issues, see [3, 9, 14, 15, 21].
The authors of the papers [23, 24, 27] study the single-fault-tolerant locating-dominating
sets and an open neighborhood locating-dominating sets in trees. More information on
locating-dominating sets can be found in [12, 13, 15, 25].

The identifying code problem and binary locating-dominating problem are NP-hard in
a general case [6, 7]: I. Charon et al. proved in [7] that, given a graphG and an integer k, the
decision problem of the existence of an r-identifying code, or of an r-locating-dominating
code, of size at most k in G, is NP-complete for any r.

The comprehensive list of papers related to identifying code and binary locating-domi-
nating problems were given in [19].

The following theorem gives a tight lower bound of binary locating-dominating number
on regular graphs:

Theorem 1.1 (Slater [26]). If G is a regular graph of degree r, then

γl−d(G) ≥
⌈
2 · |V (G)|
r + 3

⌉
.

Graphs of convex polytopes were introduced by Bača [1]. The classes of convex poly-
topes Qn and Rn were introduced in [2]. The metric dimension of convex polytopes Dn,
Qn andRn are equal to 3, as was proved in [16]. In [17] it was proven that metric dimension
of convex polytopes Sn, Tn and Un is also equal to 3. Minimal doubly resolving sets and
the strong metric dimension of convex polytopesDn and Tn are studied in [18]. M. Salman
et al. [22] were considering three similar optimization problems: the fault-tolerant metric
dimension problem, the local metric dimension problem and the strong metric dimension
problem of two convex polytopes Sn and Un.

2 A modified integer linear programming formulation
An integer linear programming (ILP) formulation of minimum identifying code problem
was given in [5]. If S is an identifying set, then decision variables xi are defined as:

xi =

{
1, i ∈ S
0, i /∈ S

Then, the ILP formulation of minimum identifying code problem from [5] is presented as
follows:
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min
∑
i∈V

xi (2.1)

subject to ∑
j∈N [i]

xj ≥ 1, i ∈ V (2.2)

∑
j∈N [i]∇N [k]

xj ≥ 1, i, k ∈ V, i 6= k (2.3)

xi ∈ {0, 1}, i ∈ V (2.4)

The objective function (2.1) ensures that the identifying code set has a minimal cardi-
nality, and constraints (2.2) defines S to be a dominating set. Identifying feature is rep-
resented by constraints (2.3) while the binary nature of decision variables xi are given by
constraints (2.4).

This formulation can not be directly used for the binary locating-dominating problem.
Therefore, it needs to be adapted by changing constraints (2.3) into the constraints (2.5).

xi + xk +
∑

j∈N(i)∇N(k)

xj ≥ 1, i, k ∈ V, i 6= k (2.5)

Constraints (2.3) and (2.5) are the same when vertices i and k are not neighbors, e.g.
N [i]∇N [k] = {i, j} ∪ (N(i)∇N(k)). The change between (2.3) and (2.5) is reflected
only when vertices i and k are neighbors, i.e. i ∈ N(k). Then, by constraints (2.5), at least
one of vertices i, k or some j ∈ N(i)∇N(k) must be in S. When i and k are not neighbors,
then N [i]∇N [k] = {i, j} ∪ (N(i)∇N(k)), so constraints (2.3) and (2.5) are equal.

In [28] it was noted that if d(u, v) ≥ 3 then u, v has no neighbors in common, therefore,
N(u)∩S 6= N(v)∩S need not be checked for equivalence. This becomes computationally
important for large graphs as it allows us to minimize the number of constraints generated
by the locating requirement. Using this idea, constraints (2.5) would be further improved:

xi + xk +
∑

j∈N(i)∇N(k)

xj ≥ 1, i, k ∈ V, i 6= k, d(i, k) ≤ 2 (2.6)

The proposed formulation with a reduced number of constraints can be used to find the
exact optimal values for problems of small dimensions. Moreover, as it can be seen from
[10], ILP formulation can be tackled by efficient metaheuristic approaches for obtaining
suboptimal solutions for large dimensions.

3 The exact values
3.1 Convex polytope Dn

The graph of convex polytope Dn, on Figure 1, was introduced in [16]. It consists of
2n 5-sided faces and a pair of n-sided faces. Mathematically, it has vertex set V (Dn) =
{ai, bi, ci, di | i = 0, 1, . . . , n−1} and edge set E(Dn) = {(ai, ai+1), (di, di+1), (ai, bi),
(bi, ci), (ci, di), (bi+1, ci) | i = 0, 1, . . . , n − 1}. Note that arithmetic in the subscripts is
performed modulo n.
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Figure 1: The graph of convex polytope Dn.

Table 1: Locating-dominating vertices in Dn.
n v ∈ V \ S S

⋂
N [v] v ∈ V \ S S

⋂
N [v]

3k a3i {a3i+1, b3i} a3i+2 {a3i+1}
b3i+1 {a3i+1, c3i+1} b3i+2 {c3i+1}
c3i {b3i} c3i+2 {b3(i+1), d3i+2}
d3i {d3(i−1)+2} d3i+1 {c3i+1, d3i+2}

3k + 1 a3i {a3(i−1)+2, b3i} a3i+1 {a3i+2}
b3i+1 {c3i+1} b3i+2 {a3i+2, c3i+1}
c3i {b3i, d3i} c3i+2 {b3(i+1)}
d3i+1 {c3i+1, d3i} d3i+2 {d3(i+1)}
a3k {b3k, a3(k−1)+2} c3k {b3k, d3k}
a0 {b0}

3k + 2 a3i+1 {a3i, b3i+1} a3i+2 {a3(i+1)}
b3i {a3i, c3(i−1)+2} b3i+2 {c3i+2}
c3i {b3i+1, d3i} c3i+1 {b3i+1}
d3i+1 {d3i} d3i+2 {c3i+2, d3(i+1)}
b3k {a3k, c3(k−1)+2} c3k {b3k+1, d3k}
a3k+1 {a3k, b3k+1} c3k+1 {b3k+1}
d3k+1 {d3k} b0 {a0}
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Theorem 3.1.
γl−d(Dn) =

⌈
4 · n
3

⌉
.

Proof. Firstly, notice that Dn is a regular graph of degree 3, with 4n vertices. Then, by
Theorem 1.1 it holds γl−d(Dn) ≥

⌈
2·4·n
3+3

⌉
=
⌈
4·n
3

⌉
.

Let

S =


{a3i+1, b3i, c3i+1, d3i+2|i = 0, . . . , k − 1}, n = 3k

{b3k, d3k}
⋃
{a3i+2, b3i, c3i+1, d3i|i = 0, . . . , k − 1}, n = 3k + 1

{a3k, b3k+1, d3k}
⋃
{a3i, b3i+1, c3i+2, d3i|i = 0, . . . , k − 1}, n = 3k + 2

Now, let us prove that S is a locating-dominating set of Dn. In order to do that, we
need to consider three possible cases:

Case 1: n = 3k. As can be seen from Table 1, neighborhoods of all vertices in V \ S
and their intersections with set S are non-empty and distinct. Although some formu-
las for some intersections can be somewhat similar, they are distinct. For example,
S
⋂
N [a3i+2] = {a3(i+1)} 6= {a3i+1} = S

⋂
N [b3i+1], since indices 3(i + 1) =

3i + 3 6= 3i + 1. Similarly, S
⋂
N [d3i+1] = {c3i+2, d3i} 6= {c3i+2, d3(i+1)} =

S
⋂
N [d3i+2];

Case 2: n = 3k+1. As in the previous case, once again, all intersections of neighborhoods
N [v] with set S, i.e. S

⋂
N [v], are non-empty and distinct. This also can be seen

from Table 1;

Case 3: n = 3k + 2. As in both previous cases, once again, all intersections of neighbor-
hoods N [v] with set S, i.e. S

⋂
N [v], are non-empty and distinct, which also can be

seen from Table 1.

3.2 Convex polytope R′′
n

The graph of convex polytope R′′n on Figure 2 is introduced in [20]. It has vertex set
V = {ai, bi,ci, di, ei, fi | i = 0, . . . , n−1} and edge setE = {(ai, ai+1), (ai, bi), (bi, ci),
(bi+1, ci), (ci, di), (di, ei), (di+1, ei), (ei, fi), (fi, fi+1) | i = 0, . . . , n− 1}.
Theorem 3.2.

γl−d(R
′′
n) = 2 · n.

Proof. It can be seen that R′′n is a regular graph of degree 3, with 6n vertices. Then, by
Theorem 1.1 it holds γl−d(R′′n) ≥

⌈
2·6·n
3+3

⌉
= 2 ·n. Now, let us prove that a set S = {bi, ei |

i = 0, . . . , n − 1} is a binary locating-dominating set of R′′n. Indeed, it is easy to see that
all intersections S

⋂
N [ai] = {bi}; S

⋂
N [ci] = {bi, bi+1}; S

⋂
N [di] = {ei−1, ei} and

S
⋂
N [fi] = {ei} are non-empty and distinct. Since S is a binary locating-dominating set

of R′′n and |S| = 2 · n therefore, γl−d(R′′n) ≤ 2 · n. Due to the previously proved fact that
γl−d(R

′′
n) ≥ 2 · n, it is proven that γl−d(R′′n) is equal to 2 · n.

4 The upper bounds
4.1 Convex polytope Qn

The graph of convex polytope Qn in Figure 3, is introduced in [2]. It has vertex set
V (Qn) = {ai, bi, ci, di | i = 0, 1, . . . , n−1} and edge setE(Qn) = {(ai, ai+1), (bi, bi+1),
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Figure 2: The graph of convex polytope R′′n.

(di, di+1), (ai, bi), (bi, ci), (ci, di), (bi+1, ci) | i = 0, 1, . . . , n − 1}. We call the cy-
cle induced by set of vertices {a0, a1, . . . , an−1} the inner cycle, the cycle induced by
{d0, d1, . . . , dn−1} the outer cycle, and the middle cycle are induced by set of vertices
{b0, b1, . . . , bn−1}. This polytope consists of n 5-sided faces, n 4-sided faces and n trian-
gles.
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Figure 3: The graph of convex polytope Qn.

Theorem 4.1.

γl−d(Qn) ≤
⌈
4 · n
3

⌉
,

and this bound is tight.
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Table 2: Additional data for Qn compared to Dn.
n v ∈ V \ S S

⋂
N [v] v ∈ V \ S S

⋂
N [v]

3k b3i+1 {a3i+1, b3i, c3i+1} b3i+2 {b3(i+1), c3i+1}
3k + 1 b3i+1 {b3i, c3i+1} b3i+2 {a3i+2, b3(i+1), c3i+1}
3k + 2 b3i {a3i, b3i+1, c3(i−1)+2} b3i+2 {b3i+1, c3i+2}

b3k {a3k, b3k+1, c3(k−1)+2} b0 {a0, b1, b3k+1}

Proof. Let

S =


{a3i+1, b3i, c3i+1, d3i+2|i = 0, . . . , k − 1}, n = 3k

{b3k, d3k}
⋃
{a3i+2, b3i, c3i+1, d3i|i = 0, . . . , k − 1}, n = 3k + 1

{a3k, b3k+1, d3k}
⋃
{a3i, b3i+1, c3i+2, d3i|i = 0, . . . , k − 1}, n = 3k + 2

Note that this set is the same as for convex polytopes Dn. This is not a surprise, since
convex polytopes Qn have only n additional edges (bi, bi+1), i = 0, . . . , n − 1 compared
toDn. Therefore, except vertices bi, i = 0, . . . , n−1, all neighborhoods of vertices in V \S
and their intersection with set S are the same as in Table 1. Additional data is presented in
Table 2.

As can be seen from Table 3 and additional data from Table 2, in all three cases, neigh-
borhoods of all vertices in V \ S and their intersection with set S are non-empty and
distinct. Therefore set S is a locating-dominating set for Qn. Since |S| =

⌈
4·n
3

⌉
therefore,

γl−d(Qn) ≤
⌈
4·n
3

⌉
.

Using the CPLEX solver on the integer linear programming formulation (2.1), (2.2),
(2.4), and (2.6) we have obtained optimal solutions: γl−d(Q5) = 7, γl−d(Q6) = 8,
γl−d(Q7) = 10, . . . , γl−d(Q28) = 38, γl−d(Q29) = 39 and γl−d(Q30) = 40 which
all match the proposed upper bound in this theorem. Therefore, the proposed upper bound
is tight.

4.2 Convex polytope Rn

The graph of convex polytope Rn, on Figure 4, has been introduced in [2]. It has vertex
set V = {ai, bi, ci | i = 0, . . . , n − 1} and edge set E = {(ai, ai+1), (ai, bi), (ai+1, bi),
(bi, bi+1), (bi, ci), (ci, ci+1) | i = 0, . . . , n − 1}. This graph consists of n 4-sided faces
and 2n triangles.

Theorem 4.2.
γl−d(Rn) ≤ n,

and this bound is tight.

Proof. Let S = {bi | i = 0, . . . , n− 1}. It is easy to see that all intersections S
⋂
N [ai] =

{bi−1, bi} and S
⋂
N [ci] = {bi} are non-empty and distinct. Since S is a binary locating-

dominating set of Rn and |S| = n therefore, γl−d(Rn) ≤ n.
Using the CPLEX solver on integer linear programming formulation (2.1), (2.2), (2.4),

and (2.6), we have obtained optimal solutions. For 5 ≤ n ≤ 31, γl−d(Rn) = n, which
match the proposed upper bound in this theorem. Therefore, the proposed upper bound is
tight.
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Figure 4: The graph of convex polytope Rn.

4.3 Convex polytope Un

Mathematically, the graph of convex polytope Un, on Figure 5, introduced in [17], has
vertex set V = {ai, bi, ci, di, ei | i = 0, . . . , n− 1} and edge set E = {(ai, ai+1), (ai, bi),
(bi, bi+1), (bi, ci), (ci, di), (ci+1, di), (di, ei), (ei, ei+1) | i = 0, . . . , n− 1}. This graph in
Figure 5 has 2n 5-sided faces and n 4-sided faces.
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Figure 5: The graph of convex polytope Un.

Theorem 4.3.
γl−d(Un) ≤

⌈
5 · n
3

⌉
,

and this bound is tight.

Proof. If n = 3k, let S = {a3i+1, b3i, c3i+1, d3i+2, e3i | i = 0, . . . , k − 1}, if n = 3k + 1
let S = {a3k, c3k, e3k}

⋃
{a3i, b3i+2, c3i, d3i+1, e3i | i = 0, . . . , k − 1} and if n = 3k + 2

let S = {a3k+1, b3k, c3k+1, e3k+1}
⋃
{a3i+1, b3i, c3i+1, d3i+2, e3i+1 | i = 0, . . . , k − 1}.

Now, let us prove that S is a locating-dominating set of Un. In order to do that, as we
did in proofs of previous Theorems, we need to consider three possible cases. As it can
be seen from Table 3, in all three cases, neighborhoods of all vertices in V \ S and their
intersection with set S are non-empty and distinct.
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Using the CPLEX solver on the integer linear programming formulation (2.1), (2.2),
(2.4), and (2.6) we have obtained optimal solutions: γl−d(U5) = 9, γl−d(U6) = 10,
γl−d(U7) = 12, . . . , γl−d(U22) = 38, γl−d(U23) = 39 and γl−d(U24) = 40 which all
match the proposed upper bound in this theorem. Therefore, the proposed upper bound is
tight.

Table 3: Locating-dominating vertices in Un.
n v ∈ V \ S S

⋂
N [v] v ∈ V \ S S

⋂
N [v]

3k a3i {a3i+1, b3i} a3i+2 {a3i+1)}
b3i+1 {a3i+1, b3i, c3i+1} b3i+2 {b3(i+1)}
c3i {b3i, d3(i−1)+2} c3i+2 {d3i+2}
d3i {c3i+1, e3i} d3i+1 {c3i+1}
e3i+1 {e3i} e3i+2 {d3i+2, e3(i+1)}

3k + 1 a3i+1 {a3i} a3i+2 {a3(i+1), b3i+2}
b3i {a3i, b3(i−1)+2, c3i} b3i+1 {b3i+2}
c3i+1 {d3i+1} c3i+2 {b3i+2, d3i+1}
d3i {c3i, e3i} d3i+2 {c3(i+1)}
e3i+1 {d3i+1, e3i} e3i+2 {e3(i+1)}
b3k {a3k, b3(k−1)+2, c3k} d3k {c3k, e3k}
b0 {a0, c0}

3k + 2 a3i {a3i+1, b3i} a3i+2 {a3i+1}
b3i+1 {a3i+1, b3i, c3i+1} b3i+2 {b3(i+1)}
c3i {b3i, d3(i−1)+2} c3i+2 {d3i+2}
d3i {c3i+1} d3i+1 {c3i+1, e3i+1}
e3i {e3i+1} e3i+2 {d3i+2, e3i+1}
a3k {a3k+1, b3k} c3k {b3k, d3(k−1)+2}
d3k {c3k+1} e3k {e3k+1}
b3k+1 {a3k+1, b0, b3k, c3k+1} d3k+1 {c3k+1, e3k+1}
a0 {a1, a3k+1, b0} c0 {b0}
e0 {e1, e3k+1}

5 Conclusions
In this paper, we are studying the locating-dominating sets and the binary locating-dominat-
ing number of some convex polytopes. We are dealing with some classes of convex poly-
topes by considering classes: Dn, R′′n, Rn, Qn and Un. For Dn and R′′n exact values are
obtained and proved, while for Rn, Qn and Un tight upper bounds are given.

Future work can be directed towards determining a binary locating-dominating set of
some other challenging classes of graphs. The other promising direction for future work is
solving of some other similar graph problem on convex polytopes.
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1 Introduction
Our aim is to use weighting of graphs as a tool for the study of ballistic molecular conduc-
tion in undistorted and distorted molecular and extended systems. In this article we derive
the spectra and characteristic polynomials of a series of graphs that possess three common
features. The first is that they are bipartite. The second is that they possess an involution
that allows the graph to be expressed as a product of simpler graphs with known spectra.
The third feature is termed ‘distortivity’ by physical scientists. This refers to the way that
the spectrum changes with edge weights, and is of prime importance in theories of elec-
tronic structure, where molecular structures are modelled by graphs. It is well known to
physicists and chemists that extended overlapping π-electron systems may achieve greater
stability by distorting in such a way that bond lengths alternate, and the sharing of electron
density across the π-system is reduced. This is known in the physics literature as Peierls
distortion [13], and in the chemical literature as Jahn-Teller distortion [12]. It typically af-
fects π-electron systems in such a way as to reduce their conductivity. In order to assess the
importance of distortivity for the specific phenomenon of ballistic molecular conduction,
we need explicit characteristic polynomials and spectra for families of weighted graphs
representing molecules of chemical interest.

1.1 Graph theoretical background

The graphs in which we are interested are linear ladders, their cyclic analogues the tread-
mills, and graphs derivable from them by using (signed or zero) weights, such as linear
polyacenes and (Möbius) cyclacenes, shown in Fig. 1. In graph theory terms, we can mimic

(a)
(b)

(c)
(d)

Figure 1: Families of graphs treated in this paper: (a) ladders; (b) treadmills; (c) linear
polyacenes; (d) cyclic polyacenes.

geometric distortion of a molecular framework by studying weighted graphs in which edge
weights alternate [11]. Adjacency matrices of such graphs have been studied by Gover
[9] in the form of 2-Toeplitz matrices. Gover gave an explicit solution for the spectra of
2-Toeplitz matrices of odd dimension, and an implicit solution for even dimensions. These
solutions form the basis for our treatment of ladders and treadmills. Ladders (treadmills)
comprise two backbone chains (rings), that are linked by ‘rungs’. We shall alternate the
weights on the rungs, and separately on the edges comprising the two backbones, in such
a way that an involution symmetry is preserved. This symmetry element swaps vertices in
upper and lower backbone chains of the graphs and is crucial for the solution of the secu-
lar problem for distorted and undistorted systems. The use of symmetry splits the secular
matrices of the graphs into two non-interacting blocks, each of which represents a single
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path (or cycle) with alternating weighted vertices and edges. It is these backbone graphs
that possess the analytical solutions derived previously by Gover [9] and Shin [18].

An active avenue of research is exploration of the influence of molecular topology
in conduction behaviour. We therefore include certain graphs with edge weights having
flipped signs, and/or with a pair of crossed backbone edges. These flipped and crossed
graphs are sometimes called Möbius graphs [6]. The cases that we consider here have
closed-form spectra and structural polynomials that can be derived using the methodology
used for unflipped, uncrossed graphs.

1.2 Physical motivation

The physical context for the present mathematical exploration is that electronic structure
of unsaturated carbon networks is qualitatively modelled using spectral graph theory. In
particular, the basic reason for our interest in the graphs described in this paper is our
research into molecular conductivity in small molecules [14, 15] using the source-sink-
potential (SSP) method of Ernzerhof et al. [3, 4, 5, 20]. This approach uses graph theory as
a vehicle for showing important qualitative features in electron transmission for individual
molecules. Central to the SSP method is the idea of a molecular device based on a molecu-
lar graph, in which the effects of infinite attached wires are represented by two special extra
vertices, which behave respectively as a source and sink (of electrons). We have shown [14]
that electronic transmission in this model can be expressed using a basic set of polynomials
related to the molecular graph, G. These are the characteristic polynomial,

s(E) = det(E1−A), (1.1)

and the cofactors of the characteristic matrix,

pq(E) = (−1)p+q det(E1−A)[p,q] = (E1−A)−1
pq s(E), (1.2)

where E is the energy of the transmitted electron, 1 is the n × n unit matrix and A is the
n × n adjacency matrix of the graph G of order n. The indices in square-brackets refer to
the sets of rows and columns deleted from the determinant of the characteristic matrix.

The eigenvalue problem,
Ack = ckεk, (1.3)

allows us to define the n eigenvalues {εk}, and the corresponding eigenvectors ck. Spectral
decomposition allows us to write

s(E) =

n∏
k=1

(E − εk), (1.4)

and spectral resolution of the inverse gives a general expression for all pq(E) polynomials
in terms of eigenvectors and eigenvalues of A:

pq(E) =

n∑
k=1

cpkcqk

E − εk
, (1.5)

where cpk is the pth entry in the kth eigenvector, ck. In what follows we will find it
useful to switch between the two approaches, viz. calculating structural polynomials from
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determinants of characteristic matrices, or from explicit solutions of the eigenvalue problem
Eq. (1.3).

For a specific device in which vertices p and q of the molecular graph are attached to
infinite conducting wires, one needs just four polynomials, namely, s, pp, qq, and

vpq,pq(E) = det(E1−A)[pq,pq] (1.6)

to deduce an expression for the transmission, T (E), of an incoming stream of electrons
[14]. These are all characteristic polynomials derived from vertex-deleted graphs:

s ≡ ϕ(G, E),

t ≡ pp = ϕ(G − p, E),

u ≡ qq = ϕ(G − q, E),

v ≡ vpq,pq(E) = ϕ(G − p− q, E), (1.7)

where ϕ(G, E) is the characteristic polynomial of graph G, and the letters s, t, u, and v
refer to literature notation [14]. The formula for vpq,pq can be deduced using Jacobi’s
relation [19]:

svpq,pq = ppqq − 2pq. (1.8)

For convenience, we refer to s(E), the pq(E) and v(E) as structural polynomials.
We have shown [15] that molecular conduction can be thought of in two different

ways, i.e. either as occurring through molecular bonds (graph edges), or through individual
molecular orbitals (eigenvectors of the graph adjacency matrix). We find that there are 11
basic categories of conduction [7, 15, 17] for molecules and that these are determined by
the eigenvector coefficients. Conduction behaviour at eigenvalues of the adjacency ma-
trix is particularly important [15]. Hence arises our interest in closed-form expressions for
spectra and structural polynomials. Spectral representations of the structural polynomials
are also informative, in that they allow elaboration of the SSP model to treat the physically
important effects of Pauli exclusion, an effect that prevents current passing through filled
orbitals. This extension of the theory is worked out in a recent paper [16].

We can summarise the key features of our approach and the main results as follows.
Explicit expressions for structural polynomials, spectra and eigenvectors of weighted paths
and cycles are obtained. These are useful in themselves for the discussion of distortivity
and conduction. We then exploit the graph-product structure of the families of ladders,
treadmills and Möbius forms to build analytical expressions for the structural polynomi-
als and spectral properties of these graphs in terms of those of the simpler graphs. This
gives compact formulas that are ultimately related to Chebyshev and similar orthogonal
polynomials. It is this ‘factorised’ form of the final expressions that gives a powerful tool
for interpretation of spectra and conduction properties of ladders, treadmills. This inter-
pretation will be used to analyse the effects of flips and twists on conduction in physically
realisable systems.

1.3 Plan

The plan of the paper is as follows. First we derive eigenvectors and eigenvalues for
weighted alternating paths (Section 2), and then derive expressions for the important struc-
tural polynomials in Section 3. These results are used to derive spectra for ladders and
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their structural polynomials in Sections 4 and 5. The spectra for alternating cycles are de-
rived in Section 6, and their structural polynomials in Section 7. Derivations of spectra and
structural polynomials of treadmills then follow in Sections 8 and 9. Section 10 introduces
important chemical graphs that can be derived from ladders and treadmills. We end with a
brief conclusion.

Our explicit treatment of cases necessarily leads to a large number of equations, but
the central results are Eqs. (5.6) and (9.3), which show the generic relationships between
the structural polynomials of ladders and chains, and treadmills and cycles, respectively.
The structural polynomials for weighted chains are given in Eqs. (3.12) and (3.13), and
weighted cycles in Eqs. (7.13) and (7.14) and for flipped cycles in Eqs. (7.15) and (7.16).
The blocks of equations giving the results are: Eqs. (5.7) to (5.10) for ladders; Eqs. (9.4)
and (9.5) for treadmills; Eqs. (9.9) and (9.10) for flipped treadmills; Eqs. (9.14) and (9.15)
for Möbius treadmills; Eqs. (9.19) and (9.20) for flipped Möbius treadmills.

2 The spectra of alternating weighted paths PM(a, b | c, d)

We consider paths, PM (a, b | c, d), with alternating vertex weights a, b, and edge weights
c, d. Eigenvalues and eigenvectors for such weighted paths have been deduced by Gover
[9] and Shin [18]. Gover used recursion to show that the spectrum of the odd-vertex chain,
P2N+1, could be expressed in terms of two sets of polynomials. One is the Chebyshev
polynomials of the second kind, UN . The other set of polynomials satisfy the Chebyshev
recursion relation, but with different initial values. The eigenvectors for the odd paths are
evaluated at the zeroes of the polynomial UN . The even paths have an analogous form for
eigenvectors and eigenvalues, but one of the quantities cannot be evaluated analytically.
We discuss odd and even paths separately.

2.1 The odd path, P2N+1(a, b | c, d)

A path, P2N+1(a, b | c, d), with 2N+1 vertices is shown in Fig. 2. It is convenient to write

a b a a b a

c d c

b

d c d1 2 3 2N-1 2N+1... ...

b

2N

Figure 2: A chain, P2N+1(a, b | c, d), with 2N + 1 vertices and alternating vertex weights
(a, b), and edge weights (c, d).

the adjacency matrix, AP, for this bipartite graph in the form

AP =

(
a1N+1 BP(
BP
)T

b1N

)
, (2.1)

where 1h symbolises a unit matrix of dimension h, and superscript T indicates a transpose.
We place the (N + 1) odd-numbered vertices shown in Fig. 2 in the first block, and the N
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even-numbered vertices in the second. The (N + 1)×N -dimensional matrix BP is then

BP =



c 0 · · · 0 0

d c
. . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0
. . . d c

0 0 · · · 0 d


. (2.2)

In order to find the eigenvalues of the matrix AP we can use the fact that the blocks on
the diagonal are invariant to any unitary transformation. Therefore, a singular value de-
composition of the off diagonal block will render the whole matrix in a form in which each
block is diagonal or pseudo-diagonal. This technique has been used [15], for example, to
provide a compact derivation of the Coulson-Rushbrooke theorem for bipartite graphs [1].
The singular value decomposition [8, Sections 2.5.3 and 2.5.6] of BP can be written as

BPXP = YPσP, (2.3)

where XP, and YP are N - and (N + 1)-dimensional orthogonal matrices, respectively.
The (N + 1)×N -dimensional rectangular matrix, σP, is “diagonal”, i.e.

σP
1 0 · · · 0

0 σP
2

. . .
...

...
. . . . . . 0

0
. . . σP

N

0 0 · · · 0


, (2.4)

and the singular values σP
k ≥ 0, have labels k. The theory of singular value decomposition

tells us further that(
BP
)T

BPXP
k = XP

k (σP
k )2 for k = 1, . . . , N,

BP
(
BP
)T

YP
k = YP

k (σP
k )2 for k = 1, . . . , N + 1, (2.5)

with σP
k > 0 for k = 1, . . . , N , and σP

N+1 = 0. We note that the N × N -dimensional
positive definite tridiagonal matrix

(
BP
)T

BP =



c2 + d2 cd 0 · · · 0 0

cd c2 + d2 cd
. . . 0

0 cd c2 + d2 . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . c2 + d2 cd

0 0 · · · 0 cd c2 + d2


(2.6)
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represents the adjacency matrix of a path of length N with equal vertex weights (c2 + d2),
and equal edge weights cd, so the eigenvalues are

(σP
k )2 = c2 + d2 + 2cd cos θP

k for k = 1, 2, . . . , N, (2.7)

where the angle

θP
k =

πk

N + 1
(2.8)

also describes the orthonormal eigenvectors

XP
pk = NP

k sin pθP
k , (2.9)

and the normalisation factor is

NP
k =

√
2

N + 1
. (2.10)

The (N + 1)× (N + 1)-dimensional semi-definite tridiagonal matrix, on the other hand,

BP
(
BP
)T

=



c2 cd 0 · · · 0 0

cd c2 + d2 cd
. . . 0

0 cd c2 + d2 . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . c2 + d2 cd

0 0 · · · 0 cd d2


, (2.11)

has no such simple expressions for its eigenvectors, but they can be derived directly from
the singular value decomposition. We can use Eq. (2.3) to deduce that

Y P
pk =

1

σP
k

(
cXP

pk + dXP
p−1,k

)
for k,p = 1, 2, . . . , N. (2.12)

We note from Eq. (2.9) that p = 0 implies XP
0k = 0, and p = N + 1, implies XP

N+1,k = 0.
The nullspace vector is

Y P
p,N+1 = NP

N+1 (−1)
p−1

cp−1dN−p+1, (2.13)

where the normalisation factor is

NP
N+1 =

√
d2 − c2

d2N+2 − c2N+2
. (2.14)

We define the (2N + 1)-dimensional orthogonal matrix

WP =

(
YP 0
0 XP

)
, (2.15)

which gives

(
WP

)T
APWP =

(
a1N+1

(
YP
)T

BPXP(
XP
)T (

BP
)T

YP b1N

)
. (2.16)
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The off-diagonal blocks in Eq. (2.16) simplify because(
YP
)T

BPXP = σP, (2.17)

where σP is given in Eq. (2.4). It is evident that each block of
(
WP

)T
APWP is diagonal,

so that it comprises N two-dimensional interacting blocks of the form(
a σP

k

σP
k b

)
(2.18)

and a single one-dimensional block with eigenvalue a. The two-dimensional blocks give
2N eigenvalues

EP
k± =

1

2
(a+ b)± 1

2
DP

k for k = 1, 2, . . . , N (2.19)

with discriminant

DP
k =

√
(a− b)2 + 4(σP

k )2 =
√

(a− b)2 + 4(c2 + d2 + 2cd cos θP
k ). (2.20)

The eigenvectors arising from these two-dimensional blocks can be written as

NP
k±

(
σP

k

EP
k± − a

)
, (2.21)

where the normalisation constants are

NP
k+ =

√
1

DP
k

(
EP

k+ − a
) and NP

k− =

√
1

DP
k

(
a− EP

k−
) . (2.22)

We can write the 2N + 1 eigenvectors of AP in the form cP
k± for k = 1, 2, . . . , N , and

cP
N+1, the latter arising from the extra null space eigenvector in the singular value de-

composition. Using expression (2.12) for YP, we obtain expressions for the eigenvector
coefficients

cP2p,k± = NP
k±
(
EP

k± − a
)
XP

pk,

cP2p−1,k± = NP
k±
(
cXP

pk + dXP
p−1,k

)
. (2.23)

There is, in addition, a single eigenvalue arising from the one-dimensional block, and cor-
responding to the null-space eigenvector in the YP subspace, that is of the form

EP
N+1 = a. (2.24)

The corresponding eigenvector has coefficients

cP2p,N+1 = 0,

cP2p−1,N+1 = NP
N+1 (−1)

p−1
cp−1dN−p+1. (2.25)
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2.2 The even path, P2N(a, b | c, d)

The adjacency matrix for the bipartite graph, P2N (a, b | c, d), can be written as

AP =

(
a1N BP(
BP
)T

b1N

)
, (2.26)

using the same numbering scheme for vertices as that shown in Fig. 2. The adjacency
matrix is identical to Eq. (2.1), but with one row missing, so that BP is a square N × N
matrix.

We again use singular decomposition [8, Sections 2.5.3 and 2.5.6] of BP as shown in
Eq. (2.3), where XP and YP are both N -dimensional orthogonal matrices. We note that
the N ×N -dimensional positive definite tridiagonal matrix has the form

(
BP
)T

BP =



c2 + d2 cd 0 · · · 0 0

cd c2 + d2 cd
. . . 0

0 cd c2 + d2 . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . c2 + d2 cd

0 0 · · · 0 cd c2


. (2.27)

We introduce an Ansatz for the eigenvectors of the matrix in Eq. (2.27) as

XP
pk = NP

k sin pθP
k , (2.28)

where NP
k is a normalization factor, and θP

k is an angle yet to be determined. Examining
the first row of

(
BP
)T

BPXP, leaving out the normalisation factor, we find

(c2 + d2) sin θP
k + cd sin 2θP

k = σP
k

2
sin θP

k , (2.29)

and expanding sin 2θP
k , we obtain an expression for the eigenvalue as

(σP
k )2 = c2 + d2 + 2cd cos θP

k (2.30)

which should be compared with Eq. (2.7). Likewise, for row p,

cd sin (p− 1)θP
k + (c2 + d2) sin pθP

k + cd sin (p + 1)θP
k = σP

k

2
sin pθP

k . (2.31)

Noting that
sin (p− 1)θP

k + sin (p + 1)θP
k = 2 sin pθP

k cos θP
k , (2.32)

it is easy to see that the eigenvalue equations are satisfied for rows p = 2 up to row N − 1
using the expression Eq. (2.30) for the eigenvalue. However, the N th equation is

cd sin (N − 1)θP
k + c2 sinNθP

k = σP2
k sinNθP

k . (2.33)

In order to ensure that this equation be satisfied, we would need to add a factor

d2 sinNθP
k + cd sin (N + 1)θP

k (2.34)
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to the left-hand side. Dividing by sin θP
k , it follows that we require a condition on θP

k , such
that

cUN (cos θP
k ) + dUN−1(cos θP

k ) = 0 for − π ≤ θP
k ≤ π. (2.35)

Eq. (2.35) is a polynomial of order N in the variable cos θP
k , and has N solutions that fully

determine the spectrum.
The norm of the eigenvectors is obtained from

N∑
p=1

(
XP

pk

)2
=
(
NP

k

)2 N∑
p=1

sin2 pθP
k

=
(
NP
Xk

)2 1

4

{
2N + 1− sin (2N + 1) θP

k

sin θP
k

}
= 1, (2.36)

where we use a well-known trigonometrical summation [10]. This simplifies to

NP
k =

2√
2N + 1− U2N (cos θP

k )
, (2.37)

which has been expressed in terms of the Chebyshev polynomial of the second kind,

U2N (cos θ) =
sin(2N + 1)θ

sin θ
.

The N ×N -dimensional semi-definite tridiagonal matrix BP
(
BP
)T

, has eigenvectors YP

that can be derived directly from the singular value decomposition as

Y P
pk =

NP
k

σp
k

[
c sin pθP

k + d sin (p− 1) θP
k

]
. (2.38)

The expression for the eigenvalues,

EP
k± =

1

2
(a+ b)± 1

2
DP

k for k = 1, 2, . . . , N, (2.39)

where
DP

k =
√

(a− b)2 + 4(c2 + d2 + 2cd cos θP
k ), (2.40)

is identical to that for the odd path (Eq. (2.19)), apart from the difference in angle θP
k . The

eigenvector entries are

cP2p,k± = NP
k±
(
EP

k± − a
)
XP

pk,

cP2p−1,k± = NP
k±
(
cXP

pk + dXP
p−1,k

)
. (2.41)

We note that the expressions for eigenvalues and eigenvectors of odd and even paths are
substantially the same for the pairs EP

k±. The odd path has an extra eigenvector arising

from the null space of BP
(
BP
)T

. The expression for the angle θP
k , however, is different in

the two cases (c.f. Eqs. (2.8) and (2.35)), as are the normalisation factors (c.f. Eqs. (2.10)
and (2.37)). The angle θP

k is the sole quantity that cannot be determined in closed form for
the even chain. For some values of the edge weights c, d, the angle θP

k may be equal to±π.
Such cases must be treated separately as the expressions for the norm (2.37) and for the
eigenvector entries in Eq. (2.41) vanish, but this is not difficult.
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3 Structural polynomials of alternating paths
The characteristic polynomials for alternating paths can be written

s (P2N+1(a, b | c, d), E) = (E − a)

N∏
k=1

(E − EP
k+)(E − EP

k−),

s (P2N (a, b | c, d), E) =

N∏
k=1

(E − EP
k+)(E − EP

k−). (3.1)

We can combine these factors in pairs as(
E − EP

k+

) (
E − EP

k−
)

= (E − a)(E − b)− c2 − d2 − 2cd cos θP
k , (3.2)

and using the product expression for the Chebyshev function of the second kind,

UN (z) =

N∏
k=1

(
2z − 2 cos

kπ

N + 1

)
, (3.3)

it can be shown that the ‘half-chain’ expression for the odd path is

s (P2N+1(a, b | c, d), E) = (E − a)(cd)NUN (x) ,

(3.4)

with

x =
(E − a)(E − b)−

(
c2 + d2

)
2cd

. (3.5)

The expression in Eq. (3.3) cannot be used for even paths because of the more complicated
formula for the angle, θP

k . It has been shown by Gover [9], however, that the even chain
has a related ‘half-chain’ form

s (P2N (a, b | c, d), E) = d(cd)N−1ŨN (x; c, d) , (3.6)

where
ŨN (x; c, d) = cUN (x) + dUN−1(x). (3.7)

We can derive an expression in terms of Chebyshev polynomials for the full chain by using
the standard formula

U2N+1(z) = 2zUN (2z2 − 1) (3.8)

which, when applied to Eqs. (3.4) and (3.6) gives

s (P2N+1(a, b | c, d), E) =
(cd)N (E − a)

2y
U2N+1(y),

s (P2N (a, b | c, d), E) =
d(cd)N−1

2y
(cU2N+1(y) + dU2N−1(y)) , (3.9)

where, comparing Eqs. (3.4), (3.6) and (3.8) gives

y =

√
(E − a)(E − b)− (c− d)2

4cd
. (3.10)
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In the case of a non-alternating linear chain, with a = b and c = d, Eqs. (3.9) simplify to

s (P2N+1(a, a | c, c), E) = c2N+1U2N+1

(
E − a

2c

)
,

s (P2N (a, a | c, c), E) =
c2N+1

E − a

(
U2N+1

(
E − a

2c

)
+ U2N−1

(
E − a

2c

))
= c2NU2N

(
E − a

2c

)
, (3.11)

where we have used the Chebyshev recursion relations in the last step.
Closed-form expressions for the other structural polynomials can be derived using the

explicit inverse for 2-Toeplitz matrices derived by da Fonseca and Petronilho [2], and using
Eqs. (1.1) and (1.2). Making the necessary translation of notation, we find that for paths of
order 2N + 1 and assuming that p ≤ q,

2p,2q (P2N+1(a, b | c, d), E) = (cd)N−1(E − a)2Up−1(x)UN−q(x),

2p−1,2q−1 (P2N+1(a, b | c, d), E) = (cd)N−1Ũp−1(x; c, d)ŨN+1−q(x; d, c),

2p,2q+1 (P2N+1(a, b | c, d), E) = (cd)N−1(E − a)Up−1(x)ŨN−q(x; d, c),

2p−1,2q (P2N+1(a, b | c, d), E) = (cd)N−1(E − a)Ũp−1(x; c, d)UN−q(x). (3.12)

The expressions for 2N -vertex paths, again assuming that p ≤ q, are

2p,2q (P2N (a, b | c, d), E) = d(cd)N−2(E − a)Up−1(x)ŨN−q(x; c, d),

2p−1,2q−1 (P2N (a, b | c, d), E) = d(cd)N−2(E − b)Ũp−1(x; c, d)UN−q(x),

2p,2q+1 (P2N (a, b | c, d), E) = d(cd)N−2(E − a)(E − b)Up−1(x)UN−q−1(x),

2p−1,2q (P2N (a, b | c, d), E) = d(cd)N−2Ũp−1(x; c, d)ŨN−q(x; c, d). (3.13)

For cases where q < p, one needs to swap indices p and q in Eqs. (3.12) and (3.13).

4 Alternating ladders L2M(a, b | c, d)

a b a a b a

c d c

b

d c d1 2 3 ... ... M-1

b

c d c d c d1 2 3 ... ...

_ _ _

M-2 M

_____ ___

M-1M-2 M

Figure 3: A linear ladder, L2M (a, b | c, d), with 2M vertices and alternating rung (a, b)
and riser weights (c, d).

The 2M -vertex linear ladder, L2M (a, b | c, d), has two alternating M -vertex paths
(1, 2, . . . ,M) and (1, 2, . . . ,M) joined by rungs between like-numbered vertices, (p,p),
with alternating weights as displayed in Fig. 3. The quantities (a, b) are, in this case, rung
weights, and (c, d) are edge weights for the two riser chains.
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The ladder has an involution involving simultaneous exchange of all vertices attached to
the ends of the rungs. This involution can be exhibited by arranging the adjacency matrix
so that the vertices are first put into 2 × 2 blocks with vertices 1 to M of the first path
followed by vertices 1̄ to M̄ of the lower path. Next, odd vertices 1, 3, . . . are placed in a
block together, and then the even vertices, 2, 4, . . . . The same procedure is adopted for the
lower path. We now have a 4× 4 blocked adjacency matrix in the form:

0 BP a1 0(
BP
)T

0 0 b1
a1 0 0 BP

0 b1
(
BP
)T

0

 , (4.1)

where BP is the same matrix as in Eq. (2.2). This matrix can be block-diagonalised by an
orthogonal transformation of the form(

1√
2
1M

1√
2
1M

1√
2
1M − 1√

2
1M

)
(4.2)

where the blocks are over allM vertices of top and bottom paths. This transformation leads
to the adjacency matrix

a1 BP 0 0(
BP
)T

b1 0 0
0 0 −a1 BP

0 0
(
BP
)T −b1

 =

(
AP 0

0 AP

)
, (4.3)

in which AP is the adjacency matrix of PM (a, b | c, d) as in Eq. (2.1), and AP is the
adjacency matrix of PM (−a,−b | c, d), the path with vertex weights of opposite sign.
It follows that we can use the results of Section 2 to derive expressions for all relevant
quantities. The eigenvalues for L2M are thus

EL
µ = EP

µ ,

E
(L)
µ = EP

µ for µ = 1, 2, . . . ,M, (4.4)

where EP
µ is an index ranging over the eigenvalues of the path PM (a, b|c, d) as given by

Eq. (2.39), or (2.19) and (2.24), depending on whether M is even or odd. The eigenfunc-
tions can be written using the vector cL using Eq. (2.23) as

cLpµ =
cPpµ√

2
, cLp̄µ =

cPp̄µ√
2
,

cLpµ̄ =
cP̄pµ√

2
, cLp̄µ̄ = −

cP̄p̄µ√
2

(4.5)

where the index, µ = 1, 2, . . . ,M , labels the eigenvectors in each of the symmetric and
antisymmetric blocks, labelled µ and µ̄, respectively.
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5 Structural polynomials of alternating ladders

The characteristic polynomial, sLM (E), can be derived directly from the expressions in
Section 3 to give

sL4N = d2(cd)2N−2ŨN (x; c, d) ŨN (x̄; c, d) ,

sL4N+2 = (E2 − a2)(cd)2NUN (x)UN (x̄) , (5.1)

where we use x defined in Eq. (3.5) along with the antisymmetric analogue

x̄ =
(E + a)(E + b)− c2 − d2

2cd
. (5.2)

We can also use the results of Section 3 to write

sL4N =
d2

4yȳ
(cd)2N−2 (cU2N+1(y) + dU2N−1(y)) (cU2N+1(ȳ) + dU2N−1(ȳ)) ,

sL4N+2 =
(E2 − a2)

4yȳ
(cd)2NU2N+1(y)U2N+1(ȳ), (5.3)

in which we use

ȳ =

√
(E + a)(E + b)− (c− d)2

4cd
, (5.4)

along with the definition of y in Eq. (3.10). The characteristic polynomials for the ladder,
therefore, are written in Eqs. (5.1) and (5.3) as products of characteristic polynomials for
the part systems PM (a, b | c, d) and PM (−a,−b | c, d).

We can easily deduce the forms of the pq structural polynomials, since, using the
spectral expansion of the structural polynomials in Eq. (1.5),

LM
pq = (E1−AL)−1

pq s
L(E) =

1

2

M∑
µ=1

{
cPpµc

P
qµ

E − EP
µ

+
cPpµc

P
qµ

E − EP
µ

}
sL(E). (5.5)

It follows immediately that,

LM
pq =

1

2

{
Ppq(E)sP̄(E) + sP(E)P̄pq(E)

}
, (5.6)

which also exhibits a simple structure in terms of PM (a, b | c, d) and PM (−a,−b | c, d).

The structural polynomials for L4N+2(a, b | c, d), expressed in terms of the half-ladder,
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where both vertices are on the same backbone path, and assuming p ≤ q, are


L4N+2

2p,2q =
E2 − a2

2
(cd)2N−1

{
(E − a)Up−1(x)UN−q(x)UN (x̄)

+(E + a)UN (x)Up−1(x̄)UN−q(x̄)
}
,


L4N+2

2p−1,2q−1 =
1

2
(cd)2N−1

{
(E + a)Ũp−1(x; c, d)ŨN+1−q(x; d, c)UN (x̄)

+ (E − a)UN (x)Ũp−1(x̄; c, d)ŨN+1−q(x̄; d, c)
}
,


L4N+2

2p,2q+1 =
E2 − a2

2
(cd)2N−1

{
Up−1(x)ŨN−q(x; d, c)UN (x̄)

+ UN (x)Up−1(x̄)ŨN−q(x̄; d, c)
}
,


L4N+2

2p−1,2q =
E2 − a2

2
(cd)2N−1

{
Ũp−1(x; c, d)UN−q(x)UN (x̄)

+ UN (x)Ũp−1(x̄; c, d)UN−q(x̄)
}
. (5.7)

If p > q, then the indices p and q are swapped on the right-hand side of Eq. (5.7). For
vertices on different backbone chains, and assuming again p ≤ q,


L4N+2

2p,2q =
E2 − a2

2
(cd)2N−1

{
(E − a)Up−1(x)Un−q(x)UN (x̄)

−(E + a)UN (x)Up−1(x̄)UN−q(x̄)
}
,


L4N+2

2p−1,2q−1 =
1

2
(cd)2N−1

{
(E + a)Ũp−1(x; c, d)ŨN+1−q(x; d, c)UN (x̄)

− (E − a)UN (x)Ũp−1(x̄; c, d)ŨN+1−q(x̄; d, c)
}
,


L4N+2

2p,2q+1 =
E2 − a2

2
(cd)2N−1

{
Up−1(x)ŨN−q(x; d, c)UN (x̄)

− UN (x)Up−1(x̄)ŨN−q(x̄; d, c)
}
,


L4N+2

2p−1,2q =
E2 − a2

2
(cd)2N−1

{
Ũp−1(x; c, d)UN−q(x)UN (x̄)

− UN (x)Ũp−1(x̄; c, d)UN−q(x̄)
}
. (5.8)

If p > q, then the indices p and q are swapped on the right-hand side of Eq. (5.8). Com-
paring Eqs. (5.7) and (5.8), we observe a sign change in the expressions that arises from
the sign patterns of the antisymmetric functions in Eq. (4.5).

The structural polynomials, expressed in terms of the half-ladder for L4N (a, b | c, d),
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where both vertices are on the same backbone path and p ≤ q, are

L4N
2p,2q =

1

2
d2(cd)2N−3

{
(E − a)Up−1(x)ŨN−q(x; c, d)ŨN (x̄; c, d)

+ (E + a)ŨN (x; c, d)Up−1(x̄)ŨN−q(x̄; c, d)
}
,

L4N
2p−1,2q−1 =

1

2
d2(cd)2N−3

{
(E − b)Ũp−1(x; c, d)UN−q(x)ŨN (x̄; c, d)

+ (E + b)ŨN (x; c, d)Ũp−1(x̄; c, d)UN−q(x̄)
}
,

L4N
2p,2q+1 =

1

2
d2(cd)2N−3

{
(E − a)(E − b)Up−1(x)UN−q−1(x)ŨN (x̄; c, d)

+(E + a)(E + b)ŨN (x; c, d)Up−1(x̄)UN−q−1(x̄)
}
,

L4N
2ps−1,2q =

1

2
d2(cd)2N−3

{
Ũp−1(x; c, d)ŨN−q(x; c, d)ŨN (x̄; c, d)

+ ŨN (x; c, d)Ũp−1(x̄; c, d)ŨN−q(x̄; c, d)
}
. (5.9)

If p > q, p and q are swapped on the RHS of Eq. (5.9). For vertices on different backbone
paths and p ≤ q,

L4N
2p,2q =

1

2
d2(cd)2N−3

{
(E − a)Up−1(x)ŨN−q(x; c, d)ŨN (x̄; c, d)

− (E + a)ŨN (x; c, d)Up−1(x̄)ŨN−q(x̄; c, d)
}
,

L4N
2p−1,2q−1 =

1

2
d2(cd)2N−3

{
(E − b)Ũp−1(x; c, d)UN−q(x)ŨN (x̄; c, d)

− (E + b)ŨN (x; c, d)Ũp−1(x̄; c, d)UN−q(x̄)
}
,

L4N
2p,2q+1 =

1

2
d2(cd)2N−3

{
(E − a)(E − b)Up−1(x)UN−q−1(x)ŨN (x̄; c, d)

−(E + a)(E + b)ŨN (x; c, d)Up−1(x̄)UN−q−1(x̄)
}
,

L4N
2ps−1,2q =

1

2
d2(cd)2N−3

{
Ũp−1(x; c, d)ŨN−q(x; c, d)ŨN (x̄; c, d)

− ŨN (x; c, d)Ũp−1(x̄; c, d)ŨN−q(x̄; c, d)
}
. (5.10)

which exhibit the same sign change as in Eq. (5.8) for L4N+2 ladder. If p > q, then p and
q are swapped on the RHS of Eq. (5.10).

6 Alternating cycles
We restrict our attention to even cycles with alternating weights. We consider separately
the standard cycle, C2N (a, b | c, d), and the flipped cycle, Cf2N (a, b | c, d).

6.1 Alternating cycles, C2N(a, b | c, d)

The 2N -vertex cycle, C2N (a, b | c, d), has alternating weights as displayed in Fig. 4. The
quantities (a, b) are in this case vertex weights, and (c, d) are edge weights. It is convenient
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a

b

a

ab bc
d c

d
c

d

1
2

3

2N-1 2N
2N-2

Figure 4: A ring, C2N (a, b | c, d), with 2N vertices and alternating vertex weights (a, b)
and edge weights (c, d).

to write the adjacency matrix for this bipartite graph as

AC =

(
a1N BC(
BC
)T

b1N

)
, (6.1)

where we have placed the N odd-numbered vertices in the first block, and the N even-
numbered vertices in the second. The N ×N matrix BC is

BC =



c 0 · · · 0 d

d c
. . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 d c


. (6.2)

BC is the adjacency matrix of a directed, weighted N -cycle. It is easy to show that

BCXC = XCΩC, (6.3)

where
ΩC

kk′ = δkk′(c+ d(ωC)
−k

), (6.4)

with

ωC = exp

(
2πı

N

)
. (6.5)

The kth eigenvector has entries

XC
pk =

1√
N

exp

(
2πıkp

N

)
for p, k = 1, 2, . . . , N. (6.6)

We use Eq. (6.6) to define the 2N -dimensional unitary matrix

W =

(
XC 0
0 XC

)
(6.7)
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so that

W†ACW =

(
a1N XC†BCXC

XC† (BC
)T

XC b1N

)
, (6.8)

where the † sign denotes the Hermitian conjugate. This transformation achieves a block
diagonalization comprising N two-dimensional blocks of the form(

a c+ d(ωC)−k

c+ d(ωC)k b

)
, (6.9)

each with eigenvalues

EC
k± =

1

2
(a+ b)± 1

2
DC

k for k = 1, . . . , N, (6.10)

where the discriminant is

DC
k =

√
(a− b)2 + 4

(
c2 + d2 + 2cd cos

(
2πk

N

))
. (6.11)

The eigenvectors can be written as entries in the vector cC:

cC2p−1,k± = NC
k±X

C
pk

(
EC

k± − b
)
,

cC2p,k± = NC
k±(cXC

pk + dXC
p+1,k). (6.12)

The normalisation constants are

NC
k+ =

√
1

DC
k

(
EC

k+ − b
) and NC

k− =

√
1

DC
k

(
b− EC

k−
) . (6.13)

6.2 Flipped alternating cycles, Cf
2N(a, b | c, d)

The 2N -vertex cycle,Cf2N (a, b | c, d), has alternating weights as displayed in Fig. 4, except
that a single weight has a changed sign; without loss of generality, we shall flip the (1, 2N)
edge. It is convenient to write the adjacency matrix as

ACf

=

 a1N BCf(
BCf

)T

b1N

 , (6.14)

in the same manner as in Section 6. The N -dimensional matrix BCf

is hence defined by

BCf

=



c 0 · · · 0 −d

d c
. . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0
. . . d c

0 0 · · · 0 d


. (6.15)
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Proceeding as before,
BCf

XCf

= XCf

ΩCf

, (6.16)

where
ΩCf

kk′ = δkk′(c+ d(ωCf

)−(2k−1)), (6.17)

with
ωCf

= exp
( ıπ
N

)
, (6.18)

and the eigenfunctions are

XCf

pk =
1√
N

exp

{
ıπ(2k− 1)p

N

}
for p, k = 1, 2, . . . , N. (6.19)

The derivation proceeds exactly as for the simple cycle. The eigenvalues are

ECf

k± =
1

2
(a+ b)± 1

2
DCf

k for k = 1, . . . , N (6.20)

and the discriminant is

DCf

k =

√
(a− b)2 + 4

(
c2 + d2 + 2cd cos

(
π(2k− 1)

N

))
. (6.21)

The eigenvectors are written as entries in the vector cCf as

cC
f

2p−1,k± = NCf

k±X
Cf

pk

(
ECf

k± − b
)
,

cC
f

2p,k± = NCf

k± (cXCf

pk + dXCf

p+1,k), (6.22)

which is the analogue of Eq. (6.12), and the normalisation constants are

NCf

k+ =

√
1

DCf

k

(
ECf

k+ − a
) and NCf

k− =

√
1

DCf

k

(
a− ECf

k−
) . (6.23)

7 Structural polynomials of alternating cycles
We derive expressions for the structural polynomials of even cycles and flipped cycles in
this section. The characteristic polynomial, sC2N (E), for the graph C2N (a, b | c, d) is

sC2N =

N∏
k=1

(E − EC
k+)(E − EC

k−)

=

N∏
k=1

(
(E − a)(E − b)− c2 − d2 − 2cd cos

2πk

N

)
. (7.1)

Expressing the cosine in terms of the half-angle, we find that

sC2N = (4cd)N
N∏

k=1

(
(E − a)(E − b)− (c− d)2

4cd
− cos2 2πk

2N

)

= (4cd)N
2N∏
k=1

{
y − cos

2πk

2N

}
(7.2)
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where y is defined in Eq. (3.10). We use the well-known relation

2TN (z)− 2 =

N∏
k=1

(
2z − 2 cos

2πk

N

)
, (7.3)

where the Chebyshev polynomial of the first kind is

TN (cos θ) = cos(nθ).

We conclude that
sC2N = 2(cd)N {T2N (y)− 1} . (7.4)

We can also derive a formula for the half ring by using Eq. (7.4) in conjunction with the
standard formula

T2N (z) = TN
(
2z2 − 1

)
, (7.5)

to give

sC2N = 2(cd)N (TN (x)− 1) , (7.6)

where we have used the definition of x in Eq. (3.5).
The characteristic polynomial, sC

f
2N (E), for the graph Cf2N (a, b | c, d) is

sC
f
2N =

N∏
k=1

(E − ECf

k+)(E − ECf

k−) =

N∏
k=1

(
2cdx2 − 2cd cos

π(2k− 1)

N

)
. (7.7)

Expressing the cosine in terms of the half-angle, we find that

sC
f
2N = (4cd)N

N∏
k=1

(
y2 − cos2 π(2k− 1)

2N

)
= 4(−cd)NTN (y)TN (−y), (7.8)

where we have used y as in Eq. (3.10), and the well-known relation

TN (z) = 2N−1
N∏

k=1

{
z − cos

(
π(2k− 1)

2N

)}
. (7.9)

The product formula
2T 2

N (z) = T2N (z) + 1 (7.10)

and the parity of the Chebychev polynomials gives the final ‘full-ring’ expression

sC
f
2N = 2(cd)N (T2N (y) + 1) . (7.11)

We can also derive a formula for the half ring using the transformation in Eq. (7.5), to give

sC
f
2N = 2(cd)N (TN (x) + 1) . (7.12)

The remaining structural polynomials can be deduced using the fact that removal of
a vertex from a cycle gives rise to a path, and we have already derived the characteristic
polynomials of even and odd vertex paths in Section 3. There are two kinds of vertex in
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our alternating cycles, odd-numbered vertices with weight a, and even-numbered vertices
with weight b. When one of these vertices is removed we create a path of length 2N − 1.
The equations for the diagonal parts of pq for C2N (a, b | c, d) are:

C2N
2p,2p = (cd)N−1(E − a)UN−1(x),

C2N
2p+1,2p+1 = (cd)N−1(E − b)UN−1(x). (7.13)

The formulae for the off-diagonal  polynomials can be deduced using Eq. (1.6), and by
noting that if we remove a second vertex, then we form two (or possibly one) paths. This
requires some trivial but lengthy trigonometry. The results are

C2N
2p,2p+2q = (E − a)(cd)N−1 {UN−q−1(x) + Uq−1(x)} ,

C2N
2p+1,2p+2q+1 = (E − b)(cd)N−1 {UN−q−1(x) + Uq−1(x)} ,

C2N
2p+1,2p+2q+2 = (cd)N−1

{
ŨN−q−1(x; c, d) + Ũq(x; d, c)

}
. (7.14)

Note that the formulae do not depend upon p, but only upon q, the offset along the ring. The
results for the flipped cycle can be calculated in the same manner. The diagonal  quantities
are identical to those for the cycle. This is because the deletion of a vertex creates a chain,
and flipped edges can be removed from a tree using an orthogonal transformation. Hence,


Cf

2N
2p,2p = (cd)N−1(E − a)UN−1(x),


Cf

2N
2p+1,2p+1 = (cd)N−1(E − b)UN−1(x), (7.15)

and further


Cf

2N
2p,2p+2q = (E − a)(cd)N−1 {UN−q−1(x)− Uq−1(x)} ,


Cf

2N
2p+1,2p+2q+1 = (E − b)(cd)N−1 {UN−q−1(x)− Uq−1(x)} ,


Cf

2N
2p+1,2p+2q+2 = (cd)N−1

{
ŨN−q−1(x; c, d)− Ũq(x; d, c)

}
. (7.16)

The changes in sign between Eqs. (7.14) and (7.16) arise because of the sign change be-
tween Eqs. (7.6) and (7.12).

8 Alternating treadmills
Treadmills are cyclic ladders. We consider a 4N -vertex treadmill, T4N (a, b | c, d), with
rung edge weights (a, b), and backbone weights (c, d) displayed in Fig. 5. We shall also
consider a related treadmill, namely the ‘flipped’ treadmill, T f4N (a, b | c, d), which has
a pair of symmetrically related backbone edges with weights having a changed sign. We
also include in our discussion the Möbius treadmill, TM4N (a, b | c, d), which has a pair of
crossed edges connecting top and bottom rings. There is also the flipped Möbius treadmill,
TM

f

4N (a, b | c, d), which has a pair of crossed bottom and top edges with weights having a
changed sign. All of these treadmills possess the same involution symmetry, and hence can
be treated in the same way.
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a b a a

c d d c1 2 3 2N-1...

b

2N d

b

2N-2c c 4

b

c d d c1 2 3 2N-1...2N 2N-2c c 4

___ ___ ________

d

Figure 5: A treadmill, T4N (a, b | c, d), with 4N vertices and alternating rung (a, b) and
ring edge weights (c, d).

8.1 The treadmill T4N(a, b | c, d)

This system has an involution symmetry based upon exchange of vertices attached to the
ends of rungs. The methodology proceeds in exactly the same way as for the ladder exam-
ple in Section 4. Hence, the 4 × 4 blocks of vertices (top ring odd, top ring even, bottom
ring odd, and bottom ring even) produce the adjacency matrix

0 BC a1 0(
BC
)T

0 0 b1
a1 0 0 BC

0 b1
(
BC
)T

0

 , (8.1)

where BC is the same matrix as in Eq. (6.2). This matrix can be block-diagonalised by an
orthogonal transformation of the form(

1√
2
12N

1√
2
12N

1√
2
12N − 1√

2
12N

)
. (8.2)

The adjacency matrix after the transformation is:
a1 BC 0 0(

BC
)T

b1 0 0
0 0 −a1 BC

0 0
(
BC
)T −b1

 =

(
AC 0

0 AC

)
, (8.3)

in which AC is the adjacency matrix of C2N (a, b | c, d) as shown in Eq. (6.1), and AC

is the adjacency matrix of C2N (−a,−b | c, d), the ring with vertex weights of opposite
sign. It follows that we can use the results of Section 6 to derive expressions for all relevant
quantities. The eigenvalues for T4N (a, b | c, d) are therefore

E
T(s)
k± = EC

k±,

E
T(a)
k± = EC

k± for k = 1, 2, . . . , N, (8.4)

where EC is the expression given in Eq. (6.10) for the eigenvalues of the cycle C2N (a, b |
c, d), andEC refers to the eigenvalues of the cycleC2N (−a,−b | c, d) with reversed vertex
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weights. The eigenvectors for the treadmill can be placed in a vector cT, with entries

c
T(s)
pk± = c

T(s)
pk± =

1√
2
cCpk±,

c
T(a)
pk± = −cT(a)

pk± =
1√
2
cCpk±, (8.5)

where the superscripts (s), and (a) indicate the symmetric and antisymmetric eigenvectors,
respectively.

8.2 Flipped treadmills, T f
4N(a, b | c, d)

Flipped treadmills can be obtained by simply changing the sign of a pair of symmetrically
positioned edges on the top and bottom rings. We shall take edges (1, 2N) and (1̄, 2N) to
have weights −d, without loss of generality, since a series of orthogonal transformations
can move the flipped pair of edges to any position around the rings. We use the same
diagonalization methodology as for the standard treadmill, whence the adjacency matrix is

a1 BCf

0 0(
BCf

)T

b1 0 0

0 0 −a1 BCf

0 0
(
BCf

)T

−b1

 =

(
ACf

0

0 AC
f

)
, (8.6)

where the matrix BCf

is shown in Eq. (6.15), ACf

is the adjacency matrix of Cf2N (a, b |
c, d) as shown in Eq. (6.14), and AC

f

is the adjacency matrix of Cf2N (−a,−b | c, d), the
ring with vertex weights of opposite sign. The eigenvalues for T f4N (a, b | c, d) are thus

E
Tf (s)
k± = ECf

k± ,

E
Tf (a)
k± = EC

f

k± for k = 1, 2, . . . , N, (8.7)

where ECf

k± , given in Eq. (6.20), is an eigenvalue of Cf2N (a, b | c, d), and EC
f

k± is an eigen-
value of Cf2N (−a,−b | c, d).

The eigenfunction entries can be written as

c
Tf (s)
pk± = c

Tf (s)
pk± =

1√
2
cC

f

pk±,

c
Tf (a)
pk± = −cT

f (a)
pk± =

1√
2
cC

f

pk±, (8.8)

with 2N eigenvectors in the symmetric and the antisymmetric blocks (i.e. k = 1, 2, . . . , N ).

8.3 Möbius treadmills, TM
4N(a, b | c, d)

The Möbius treadmill has the same involution symmetry as the other treadmills defined
in Section 8. Using the treadmill block diagonalisation procedure, the adjacency matrix
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a b a a

c d d c1 2 3 2N-1...

b

2N

d

d

b

2N-2c c 4

b

c d d c1 2 3 2N-1...2N 2N-2c c 4

___ ___ ________

Figure 6: A Möbius treadmill, TM4N (a, b | c, d), with 4N vertices and alternating rung (a, b)
and ring edge weights (c, d).

becomes 
a1 BC 0 0(

BC
)T

b1 0 0

0 0 −a1 BCf

0 0
(
BCf

)T

−b1

 =

(
AC 0

0 AC
f

)
, (8.9)

which has the structure of C2N (a, b | c, d) in the top block, and Cf2N (−a,−b | c, d) in the
lower one. The eigenvalues for TM4N (a, b | c, d) are thus

E
TM (s)
k± = EC

k±,

E
TM (a)
k± = EC

f

k± for k = 1, 2, . . . , N. (8.10)

The eigenfunction entries can be written as

c
TM (s)
pk± = c

TM (s)
pk± =

1√
2
cCpk±,

c
TM (a)
pk± = −cT

M (a)
pk± =

1√
2
cC

f

pk±, (8.11)

with 2N eigenvectors in the symmetric and the antisymmetric blocks.

8.4 Flipped Möbius treadmills, TMf

4N (a, b | c, d)

The block diagonalisation procedure gives the adjacency matrix
a1

(
BCf

)T

0 0

BCfT b1 0 0
0 0 −a1 BC

0 0
(
BC
)T −b1

 =

(
ACf

0

0 AC

)
, (8.12)

which has the structure of Cf2N (a, b | c, d) in the top block, and C2N (−a,−b | c, d) in the
lower. The eigenfunction entries, in this case, are

c
TMf

(s)
pk± = c

TMf
(s)

pk± =
1√
2
cC

f

pk±,

c
TMf

(a)
pk± = −cT

Mf
(a)

pk± =
1√
2
cCpk±. (8.13)
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9 Structural polynomials of alternating treadmills
The characteristic polynomial, sT4N (E), can be written immediately because we have
been able to split the secular equations into two annulene terms, C2N (a, b | c, d) and
C2N (−a,−b | c, d), to give

sT4N = s(C2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x)− 1) (TN (x̄)− 1) , (9.1)

with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write

sT4N = 4(cd)2N (T2N (y)− 1) (T2N (ȳ)− 1) (9.2)

with y and ȳ defined in Eqs. (3.10) and (5.4). The factoring of the secular problem for the
treadmill allows the characteristic polynomials to be written as a product of the character-
istic polynomials of C2N (a, b | c, d) and C2N (−a,−b | c, d).

The other structural polynomials can be obtained using the same logic as in Section 5,

T4N
pq =

1

2
((C2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

+ s(C2N (a, b | c, d), E)(C2N (−a,−b | c, d), E)) . (9.3)

It follows that, for pairs of indices on the same ring,

T4N
2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N
2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N
2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄)− 1]

+ [UN−q−1(x̄) + Uq(x̄)] [TN (x)− 1]} , (9.4)

and for pairs of indices on different rings,

T4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄)− 1]

− [UN−q−1(x̄) + Uq(x̄)] [TN (x)− 1]} , (9.5)

where we observe the expected sign change arising from the antisymmetry.

9.1 Structural polynomials of T f
4N(a, b | c, d)

The characteristic polynomial, sT
f
4N (E), can be written immediately as we have been able

to split the secular equations into contributions from two flipped annulenes,Cf2N (a, b | c, d)
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and Cf2N (−a,−b | c, d), to give

sT
f
4N = s(Cf2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x) + 1) (TN (x̄) + 1) , (9.6)

with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write a product form

sT
f
4N = 4(cd)2N (T2N (y) + 1) (T2N (ȳ) + 1) (9.7)

with y and ȳ defined in Eqs. (3.10) and (5.4).
The  structural polynomials can be obtained using the same logic as in Section 5:


T f
4N

pq =
1

2

(
(Cf2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

+ s(Cf2N (a, b | c, d), E)(Cf2N (−a,−b | c, d), E)
)
, (9.8)

so that, for indices on the same ring,


T f
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄) + 1]

+ [UN−q−1(x̄)− Uq(x̄)] [TN (x) + 1]} , (9.9)

and, for indices on different rings,


T f
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄) + 1]

− [UN−q−1(x̄)− Uq(x̄)] [TN (x) + 1]} . (9.10)

The differences between equations for plain (c.f. Eqs. (9.4) and (9.5)) and flipped treadmills
occur because of the sign changes arising from edge flips. These affect all terms inside the
square brackets because symmetry divides the adjacency matrix into two flipped ringsCf2N .

9.2 Structural polynomials of TM
4N(a, b | c, d)

The characteristic polynomial, sT
M
4N (E), can be written immediately as we have been able

to split the secular equations into contributions from two annulenes, C2N (a, b | c, d) and
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Cf2N (−a,−b | c, d), to give

sT
M
4N = s(C2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x)− 1) (TN (x̄) + 1) , (9.11)

with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write

sT
M
4N = 4(cd)2N (T2N (y)− 1) (T2N (ȳ) + 1) , (9.12)

with y and ȳ defined in Eqs. (3.10) and (5.4).
The  structural polynomials can be obtained using the same logic as in Section 5,


TM
4N

pq =
1

2

(
(C2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

+ s(C2N (a, b | c, d), E)(Cf2N (−a,−b | c, d), E)
)
, (9.13)

so that, for indices on the same ring,


TM
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,


TM
4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN+q−1(x) + Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,


TM
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄) + 1]

+ [UN−q−1(x̄)− Uq(x̄)] [TN (x)− 1]} , (9.14)

whilst for indices on different rings,


TM
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,

T
M
4N )2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x) + Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,


TM
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄) + 1]

− [UN−q−1(x̄)− Uq(x̄)] [TN (x)− 1]} . (9.15)

The sign changes in this case affect only one of the sets of terms inside square brackets,
because symmetry divides the adjacency matrix into contributions from one ring C2N and
one flipped ring Cf2N .

9.3 Structural polynomials of TMf

4N (a, b | c, d)

The characteristic polynomial, sT
Mf

4N (E), can be written immediately as we have been
able to split the secular equations into contributions from annulenes, Cf2N (a, b | c, d) and
C2N (−a,−b | c, d), to give

sT
Mf

4N = s(Cf2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x) + 1) (TN (x̄)− 1) , (9.16)
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with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write

sT
Mf

4N = 4(cd)2N (T2N (y) + 1) (T2N (ȳ)− 1) , (9.17)

with y and ȳ defined in Eqs. (3.10) and (5.4).
The  structural polynomials can be obtained using the same logic as in Section 5,


TMf

4N
pq =

1

2

(
(Cf2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

+ s(Cf2N (a, b | c, d), E)(C2N (−a,−b | c, d), E)
)
, (9.18)

so that, for indices on the same ring,


TMf

4N
2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1]

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x) + 1]} ,


TMf

4N
2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1)

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] (TN (x) + 1]} ,


TMf

4N
2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄)− 1]

+ [UN−q−1(x̄) + Uq(x̄)] [TN (x) + 1]} , (9.19)

and for indices on different rings,


TMf

4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1]

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x) + 1]} ,


TMf

4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1)

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x) + 1]} ,


TMf

4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄)− 1]

− [UN−q−1(x̄) + Uq(x̄)] [TN (x) + 1]} . (9.20)

The sign changes in this case affect only one of the sets of terms inside square brackets,
because symmetry divides the adjacency matrix into a flipped ring Cf2N and one plain ring
C2N .

10 Graphs derived from alternating ladders and treadmills
A series of interesting graphs can be derived from our alternating ladders and treadmills
by putting either a = 0, or b = 0. Some of the graphs that can be derived from ladders
are shown in Fig. 7. Ladders with backbone chains with odd numbers of vertices lead to
polyacenes with arms and legs, or to polyacenes themselves (Fig. 7(a) and 7(b)), by putting
the first rung edge parameter or the second to zero. Even-vertex backbones give polyacenes
with a single arm and leg, as shown in Fig. 7(c), whichever rung weight is set to zero. In
the case of treadmills, it does not matter which rung weight is set to zero. In either case one
obtains cyclic polyacenes. The appropriate formulae in Sections 4 and 8 for eigenvalues,
eigenvectors and structural polynomials can be used in these cases.
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(a) (b) (c)

Figure 7: Graphs derived from ladders by zeroing rung parameters to zero: (a) L14(0, 1 |
1, 1), with two 7-vertex backbone chains, a = 0; (b) L14(0, 1 | 1, 1), with two 7-vertex
backbone chains, b = 0; (c) L12(1, 0 | 1, 1), with two 6-vertex backbone chains, b = 0.

11 Conclusions
The algebraic development of structural polynomials reported here has been carried out
in order to have exact results on which to base an elaboration of the theory of molecular
conduction. The new formulae will allow us to treat π distortivity and its effect on ballistic
conduction through conjugated molecular frameworks, as predicted within the source-sink
potential (SSP) approach, a model that has a very direct connection to graph theory. In the
simplest picture, a molecular device consists of a molecule attached to two semi-infinite
wires. Such a device can be modelled qualitatively by replacing the system by a graph in
which the electronic interactions are replaced by a series of edge weights. Furthermore,
the infinite wires can be replaced by source and sink vertices, with complex vertex weights
modified to reproduce the physics of a current of electrons down the wires. The formula
for the transmission, T (E), of current of electrons through a device with energy E, can
then be expressed in terms of four polynomials derived from the graph of the molecule.
These polynomials can be chosen as the characteristic polynomial s(E) of the graph it-
self, pp(E), qq(E), and pq(E) (c.f. Eqs. (1.1) and (1.2)), where vertices p and q of the
molecule are attached to the source and sink vertices in the device.

The formulae we have obtained for ladders and the various forms of treadmills show
that the structural polynomials can be written in a simple manner. We have shown that
the existence of an involution allows the characteristic polynomials to be written neatly
as a product of the characteristic polynomials of certain ‘half’ graphs comprising vertex-
weighted backbones. The remaining structural polynomials are also expressed in terms of
half graphs, albeit in a slightly more complicated form.

Representation of the various structural polynomials in this ‘factorised’ form has advan-
tages for understanding the structure of the spectrum and has implications for the physics of
the transmission as a function of energy. The different sign patterns of the structural poly-
nomials exhibited in, for example, the varieties of treadmill (flipped, Möbius, etc.) will
have a profound effect on transmission, T (E), as a function of the energy of the incoming
electrons. In certain cases, for example, conduction is switched off for the whole range of
accessible energies, E. A detailed account of the SSP modelling of conduction in systems
represented by graphs with these exotic topologies will be published elsewhere.
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Abstract

In this note we show that there are no real configurations of d ≥ 4 lines in the projective
plane such that the associated Kummer covers of order 3d−1 are ball-quotients and there
are no configurations of d ≥ 4 lines such that the Kummer covers of order 4d−1 are ball-
quotients. Moreover, we show that there exists only one configuration of real lines such
that the associated Kummer cover of order 5d−1 is a ball-quotient. In the second part we
consider the so-called topological (nk)-configurations and we show, using Shnurnikov’s
inequality, that for n < 27 there do not exist (n5)-configurations and and for n < 41 there
do not exist (n6)-configurations.

Keywords: Line configurations, Hirzebruch inequality, Melchior inequality, Shnurnikov inequality,
ball-quotients.

Math. Subj. Class.: 14C20, 52C35, 32S22

1 Preliminaries
In his pioneering paper Hirzebruch [5] constructed some new examples of algebraic sur-
faces which are ball-quotients, i.e., surfaces of general type satisfying equality in the
Bogomolov-Miyaoka-Yau inequality [8]

K2
X ≤ 3e(X),
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where KX denotes the canonical divisor and e(X) is the topological Euler characteristic.
The key idea of Hirzebruch, which enabled constructing these new ball-quotients, is that
one can consider abelian covers of the complex projective plane branched along line con-
figurations. Let us recall briefly how the celebrated construction of Hirzebruch works (for
more details please consult for instance [1]).

Let L = {l1, ..., ld} ⊂ P2 be a configuration of d ≥ 4 lines such that there is no point
p where all d-lines meet and pick n ∈ Z≥2. Now we can consider the Kummer extension
having degree nd−1 and Galois group (Z/nZ)d−1 defined as the function field

K := C (z1/z0, z2/z0)
(
(l2/l1)

1/n, ..., (ld/l1)
1/n
)
.

This Kummer extension is an abelian extension of the function field of the complex pro-
jective plane. It can be shown that K determines an algebraic surface Xn with normal
singularities which ramifies over the plane with the arrangement as the locus of the ram-
ification. Hirzebruch showed that Xn is singular exactly over a point p iff p is a point of
multiplicity ≥ 3 in L. After blowing up these singular points we obtain a smooth surface
Y Ln . It turns out that the Chern numbers of Y Ln can be read off directly from combinatorics
of line arrangements, i.e.,

c2(Y
L
n )

nd−3 = n2(3− 2d+ f1 − f0) + 2n(d− f1 + f0) + f1 − t2,

c21(Y
L
n )

nd−3 = n2(−5d+ 9 + 3f1 − 4f0) + 4n(d− f1 + f0) + f1 − f0 + d+ t2,

where tr denotes the number of r-fold points (i.e. points where exactly r lines meet),
f0 =

∑
r≥2 tr and f1 =

∑
r≥2 rtr. Moreover, it can be shown that Y Ln has non-negative

Kodaira dimension if td = td−1 = td−2 = 0 and n ≥ 2, or td = td−1 = 0 and n ≥ 3 (we
assume additionally that d ≥ 6), and in these cases we have K2

Y L
n
≤ 3e(Y Ln ). Now we can

define the following Hirzebruch polynomial (for more details, please consult the original
paper due to Hirzebruch [5, Section 3.1]):

PL(n) =
3e(Y Ln )−K2

Y L
n

nd−3 = n2(f0 − d) + 2n(d− f1 + f0) + 2f1 + f0 − d− 4t2 (1.1)

and by the construction PL(n) ≥ 0 provided that n ≥ 2. If there exists a configuration
of lines A such that there exists m ∈ Z≥2 with PA(m) = 0, then Y Am is a ball quotient.
There are some examples of line configurations which allow us to construct ball quotients
via Hirzebruch’s construction.

Example 1.1. ([5, p. 133]) Let us consider the following configuration, which is denoted
in the literature by A1(6).

Simple computations give

PA1(6)(n) = n2 − 10n+ 25,

which means that Y A1(6)
5 is a ball-quotient.

Example 1.2. ([5, p. 133]) Let us now consider the Hesse configurationH of lines (which
cannot be drawn over the real numbers) having the following combinatorics:

d = 12, t2 = 12, t4 = 9.
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Figure 1: A1(6) configuration.

Then
PH(n) = 9(n2 − 6n+ 9),

which means that Y H3 is a ball-quotient.

It is known that there are only a few examples of ball-quotients provided by line ar-
rangements and it seems to be extremely difficult to find other examples. In this note we
study a natural question about the existence of new ball quotients constructed via Hirze-
bruch’s method. Before we formulate our main results let us define the following object.

Definition 1.3. Let Y Ln be the minimal desingularization of Xn constructed as the Kummer
extension. Then Y Ln is called the Kummer cover of order nd−1.

Question 1.4. Does a real line configuration L ⊂ P2
C exist such that Y L3 is a ball quotient?

Remark 1.5. In this note by a real line configuration we mean a configuration of lines
which is realizable over the real numbers. For instance, the Hesse line configuration is not
realizable over the real numbers.

Our main results of this paper are the following strong classification results (our proofs
are purely combinatorial).

Theorem A. There does not exist any real line configuration L with d ≥ 4 lines and
td = td−1 = 0 such that Y L3 is a ball quotient.

Theorem B. There does not exist any line configuration L with d ≥ 4 lines and td =
td−1 = 0 such that Y L4 is a ball-quotient.

As a simple application of our methods we show the following results.

Theorem C. The configuration A1(6) is (up to projective equivalence) the only configu-
ration for d ≥ 4 real lines such that the Kummer cover of order 5d−1 is a ball quotient.

In our proof of Theorem A we use, in a very essential way, Shnurnikov’s inequality
(2.4) for pseudoline configurations. Using this inequality we can prove the following result
about topological (nk)-configurations.

Theorem D. For n < 27 there does not exist a topological (n5)-configuration and for
n < 41 there does not exist a topological (n6)-configuration.
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2 Real line configurations and ball-quotients
Firstly, we recall that the Hirzebruch polynomial, depending on n ∈ Z≥2, parameterizes
the whole family of Hirzebruch’s inequalities. Taking this into account, observe that if
n = 3, then we have the following inequality (we assume here that td = td−1 = 0):

t2 + t3 ≥ d+
∑
r≥5

(r − 4)tr. (2.1)

It is worth pointing out that in a subsequent paper on the topic [6] Hirzebruch has improved
his inequality (here we assume that td = td−1 = td−2 = 0):

t2 +
3

4
t3 ≥ d+

∑
r≥5

(2r − 9)tr, (2.2)

and we should notice that this improvement comes from the Hirzebruch polynomial for
n = 2 with some extra effort – please consult [6] for further details.

We will also need the following Melchior’s inequality [7], which is true for real line
configurations with d ≥ 3 lines and td = 0:

t2 ≥ 3 +
∑
r≥4

(r − 3)tr. (2.3)

Finally, let us recall the notion of (real) pseudoline configurations.

Definition 2.1. We say that C ⊂ P2
R is a configuration of pseudolines if it is a configuration

of n ≥ 3 smooth closed curves such that

• every pair of pseudolines meets exactly once at a single crossing (i.e., locally this
intersection looks like xy = 0),

• curves do not intersect simultaneously at a single point.

In particular, every real line configuration is a pseudoline configuration. Recently I. N.
Shnurnikov [9] has shown the following beautiful inequality.

Theorem 2.2. Let C be a configuration of n pseudolines such that tn = tn−1 = tn−2 =
tn−3 = 0. Then

t2 +
3

2
t3 ≥ 8 +

∑
r≥4

(2r − 7.5)tr. (2.4)

Now we are ready to prove Theorem A.

Proof. Our problem boils down to show that there does not exist a real line configuration
satisfying

t2 + t3 = d+
∑
r≥5

(r − 4)tr. (2.5)

We start with excluding the case of td−2 = 1 for which two possibilities remain (we assume
here that d ≥ 6)

• A1 : td−2 = 1, t2 = 2d− 3,
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• A2 : td−2 = 1, t3 = 1, t2 = 2d− 6,

but it is easy to see that A1 and A2 do not satisfy (2.5).
From this point on we consider only real line configurations with d lines where td =

td−1 = td−2 = 0. Assume there exists a real line configuration L such that Y L3 is a
ball-quotient. Using (2.2) and (2.5) we obtain

−1

4
t3 ≥

∑
r≥5

(r − 5)tr,

which means that if d ≥ 4 we have t2 ≥ 3, t3 = 0 and tr = 0 for r ≥ 6. Moreover, it
might happen that t4 or t5 are non-zero. This reduces (2.5) to

t2 = d+ t5.

On the other hand, we have the following combinatorial equality

d(d− 1) =
∑
r≥2

r(r − 1)tr = 2t2 + 12t4 + 20t5,

and combining this with t2 = d+ t5 we obtain

d(d− 3) = 12t4 + 22t5.

Using (2.3) we get
d− 3 ≥ t4 + t5

and finally
12t4 + 22t5 = d(d− 3) ≥ d(t4 + t5),

which leads to
d ≤ 12t4 + 22t5

t4 + t5
≤ 22.

Summing up, L satisfies the following conditions:

d ∈ {4, ..., 22}, t2 = d+ t5, d(d− 3) = 12t4 + 22t4, d− 3 ≥ t4 + t5.

It can be checked (for instance using a computer program) that the above constraints
result in the following combinatorics (using the following convention in our listing : L =
[d, t4, t5]):

L1 = [10, 4, 1], L2 = [11, 0, 4], L3 = [12, 9, 0], L4 = [13, 9, 1], L5 = [14, 0, 7],

L6 = [15, 4, 6], L7 = [17, 7, 7], L8 = [18, 6, 9], L9 = [22, 0, 19].

Now we need to check whether the above combinatorics can be realized over the real num-
bers. To this end, first observe that L1, ...,L9 satisfy the assumptions of Theorem 2.2.
Combining Shnurnikov‘s inequality with t2 = d+ t5 we obtain

d− 8 ≥ 1

2
t4 +

3

2
t5, (2.6)

and it is easy to check that none of Li satisfies (2.6). This contradiction finishes the proof.
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Next, we show Theorem B.

Proof. Suppose that there exists a line configuration L such that Y L4 is a ball-quotient. This
implies that L satisfies the following equality:

9t2 + 7t3 + t4 = 9d+
∑
r≥5

(6r − 25)tr. (2.7)

Let us recall that Hirzebruch in [5, p. 140] pointed out that one can improve (2.1), namely

t2 +
3

4
t3 ≥ d+

∑
r≥5

(r − 4)tr. (2.8)

Now let us rewrite (2.8) as follows

9t2 +
27

4
t3 ≥ 9d+

∑
r≥5

(9r − 36)tr. (2.9)

On the other hand, we have

9t2 +
27

4
t3 = −t4 −

1

4
t3 + 9d+

∑
r≥5

(6r − 25)tr. (2.10)

Combining (2.9) with (2.10) we obtain

−t4 −
1

4
t3 + 9d+

∑
r≥5

(6r − 25)tr ≥ 9d+
∑
r≥5

(9r − 36)tr, (2.11)

which implies tr = 0 for r ≥ 3 and (2.7) has the following form

t2 = d.

However, using the combinatorial equality one gets

d(d− 1) = 2t2 = 2d,

which implies that either d = 3 or d = 0, a contradiction.

Remark 2.3. Using almost the same proof one can show that there does not exist any line
configuration L of d ≥ 4 lines with td = td−1 = 0 such that Y L7 is a ball-quotient.

Finally, we show Theorem C.

Proof. Again, our problem boils down to classifying all real line configurations that satisfy
the following equality:

4t2 + 3t3 + t4 = 4d+
∑
r≥5

(2r − 9)tr. (2.12)

It is easy to see that one can automatically exclude the case td−2 = 1, thus from now on
we assume that td = td−1 = td−2 = 0. Rewriting (2.12) in a slightly different way we get

t2 +
3

4
t3 = d− 1

4
t4 +

∑
r≥5

(
1

2
r − 9

4

)
tr.
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Now combining this with (2.2), we obtain

d− 1

4
t4 +

∑
r≥5

(
1

2
r − 9

4

)
tr ≥ d+

∑
r≥5

(2r − 9)tr

and finally

−1

4
t4 ≥

∑
r≥5

(
3

2
r − 27

4

)
tr.

This implies tr = 0 for r ≥ 4 and it leads to

t2 +
3

4
t3 = d. (2.13)

Using the combinatorial equality with (2.13) one gets

2

9
d(d− 3) = t3. (2.14)

On the other hand, by Melchior’s inequality

t2 ≥ 3

and
d(d− 1) = 2t2 + 6t3 ≥ 6(1 + t3).

Now using (2.14) we obtain
d2 − 9d+ 18 ≤ 0,

which means d ∈ {4, 5, 6}. It is easy to verify now that all these constraints lead to
d = 6, t2 = 3 and t3 = 4, which completes the proof.

3 Topological (nk)-configurations
A topological (nk) point-line configuration, or simply a topological (nk)-configuration, is
a set of n points and n pseudolines in the real projective plane, such that each point is
incident with k pseudolines and each pseudoline is incident with k points. Much work has
been done [4] to study the existence of (nk)-configurations in which all pseudolines are
straight lines. In these cases it is useful to know whether there exists at least a topological
(nk)-configuration. For k = 4 the existence of topological (n4)-configurations is known
for all n ≥ 17, see [3].

Using the inequality of Shnurnikov (2.4), we obtain lower bounds for smallest topolog-
ical (nk)-configurations for k > 4. The corresponding bound for k = 4 is not sharp and
leads to n ≥ 16, however for k = 5 not much is known so far.

Now we prove Theorem D.

Proof. When we have a topological (nk)-configuration, we can change the configuration
locally (if neccessary) such that ts = 0 for 2 < s < k and for k < s. This implies that the
number of single crossings is

t2 =

(
n

2

)
− n ·

(
k

2

)
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and the inequality of Shnurnikov becomes

n · (n− 1)− n · k · (k − 1) > 16 + n · (4 · k − 15)

n · (n− 1− k · (k − 1)− 4 · k + 15) > 16

n · (n+ 14− k · (k + 3)) > 16

This implies especially that there are no topological (n5)-configurations for n < 27
and there are no topological (n6)-configurations for n < 41.

The smallest known topological (n5)-configuration with n = 36 is due to Leah Wrenn
Berman, constructed from two (184)-configurations, [2]. It will be published elsewhere.
An open problem remains to find topological (n5)-configurations for 27 ≤ n ≤ 35.
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Abstract

We say that a finite Abelian group Γ has the constant-sum-partition property into t sets
(CSP(t)-property) if for every partition n = r1 + r2 + . . . + rt of n, with ri ≥ 2 for
2 ≤ i ≤ t, there is a partition of Γ into pairwise disjoint subsets A1, A2, . . . , At, such
that |Ai| = ri and for some ν ∈ Γ,

∑
a∈Ai a = ν for 1 ≤ i ≤ t. For ν = g0 (where

g0 is the identity element of Γ) we say that Γ has zero-sum-partition property into t sets
(ZSP(t)-property).

A Γ-distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ` from
V to an Abelian group Γ of order n such that the weight w(x) =

∑
y∈N(x) `(y) of every

vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G
is called a group distance magic graph if there exists a Γ-distance magic labeling for every
Abelian group Γ of order |V (G)|.

In this paper we study the CSP(3)-property of Γ, and apply the results to the study of
group distance magic complete tripartite graphs.
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1 Introduction
All graphs considered in this paper are simple finite graphs. Consider a simple graph G
whose order we denote by n = |G|. We denote by V (G) the vertex set and E(G) the edge
set of a graph G. The open neighborhood N(x) of a vertex x is the set of vertices adjacent
to x, and the degree d(x) of x is |N(x)|, the size of the neighborhood of x.
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Let the identity element of Γ be denoted by g0. Recall that any group element ι ∈ Γ of
order 2 (i.e., ι 6= g0 such that 2ι = g0) is called an involution.

In [8] Kaplan, Lev and Roditty introduced a notion of zero-sum partitions of subsets
in Abelian groups. Let Γ be an Abelian group and let A be a finite subset of Γ − {g0},
with |A| = n− 1. We shall say that A has the zero-sum-partition property (ZSP-property)
if every partition n − 1 = r1 + r2 + . . . + rt of n − 1, with ri ≥ 2 for 1 ≤ i ≤ t and
for any possible positive integer t, there is a partition of A into pairwise disjoint subsets
A1, A2, . . . , At, such that |Ai| = ri and

∑
a∈Ai a = g0 for 1 ≤ i ≤ t. In the case that Γ is

finite, we shall say that Γ has the ZSP-property if A = Γ− {g0} has the ZSP-property.
They proved the following theorem for cyclic groups of odd order.

Theorem 1.1 ([8]). The group Zn has the ZSP-property if and only if n is odd.

Moreover, Kaplan, Lev and Roditty showed that if Γ is a finite Abelian group of even
order n such that the number of involutions in Γ is different from 3, then Γ does not have
the ZSP-property [8]. Their results along with results proved by Zeng [10] give necessary
and sufficient conditions for the ZSP-property for a finite Abelian group.

Theorem 1.2 ([8, 10]). Let Γ be a finite Abelian group. Then Γ has the ZSP-property if
and only if either Γ is of odd order or Γ contains exactly three involutions.

They apply those results to the study of anti-magic trees [8, 10].

We generalize the notion of ZSP-property. We say that a finite Abelian group Γ has
the constant-sum-partition property into t sets (CSP(t)-property) if for every partition n =
r1 + r2 + . . . + rt of n, with ri ≥ 2 for 2 ≤ i ≤ t, there is a partition of Γ into pairwise
disjoint subsets A1, A2, . . . , At, such that |Ai| = ri and for some ν ∈ Γ,

∑
a∈Ai a = ν

for 1 ≤ i ≤ t. For ν = g0 we say that Γ has zero-sum-partition property into t sets
(ZSP(t)-property).

In this paper we investigate also distance magic labelings, which belong to a large
family of magic type labelings.

A distance magic labeling (also called sigma labeling) of a graph G = (V,E) of order
n is a bijection ` : V → {1, 2, . . . , n} with the property that there is a positive integer k
(called the magic constant) such that

w(x) =
∑

y∈N(x)

`(y) = k for every x ∈ V (G),

where w(x) is the weight of vertex x. If a graph G admits a distance magic labeling, then
we say that G is a distance magic graph.

The concept of distance magic labeling has been motivated by the construction of magic
rectangles, since we can construct a distance magic complete r-partite graph with each part
size equal to n by labeling the vertices of each part by the columns of the magic rectangle.
Although there does not exist a 2× 2 magic rectangle, observe that the partite sets of K2,2

can be labeled {1, 4} and {2, 3}, respectively, to obtain a distance magic labeling. The
following result was proved in [9].

Observation 1.3 ([9]). There is no distance magic r-regular graph with r odd.
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Froncek in [7] defined the notion of group distance magic graphs, i.e., the graphs allow-
ing a bijective labeling of vertices with elements of an Abelian group resulting in constant
sums of neighbor labels.

A Γ-distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ` from
V to an Abelian group Γ of order n such that the weight w(x) =

∑
y∈N(x) `(y) of every

vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G
is called a group distance magic graph if there exists a Γ-distance magic labeling for every
Abelian group Γ of order |V (G)|.

The connection between distance magic graphs and Γ-distance magic graphs is as fol-
lows. Let G be a distance magic graph of order n with the magic constant µ′. If we replace
the label n in a distance magic labeling for the graphG by the label 0, then we obtain a Zn-
distance magic labeling for the graph G with the magic constant µ = µ′ (mod n). Hence
every distance magic graph with n vertices admits a Zn-distance magic labeling. However
a Zn-distance magic graph on n vertices is not necessarily a distance magic graph. More-
over, there are some graphs that are not distance magic while at the same time they are
group distance magic (see [4]).

A general theorem for Γ-distance magic labeling similar to Observation 1.3 was proved
recently.

Theorem 1.4 ([5]). Let G be an r-regular graph on n vertices, where r is odd. There
does not exist an Abelian group Γ of order n with exactly one involution ι such that G is
Γ-distance magic.

Notice that the constant sum partitions of a group Γ lead to complete multipartite
Γ-distance magic labeled graphs. For instance, the partition {0}, {1, 2, 4}, {3, 5, 6} of
the group Z7 with constant sum 0 leads to a Z7-distance magic labeling of the com-
plete tripartite graph K1,3,3. More general, let G be a complete t-partite graph of order
n with the partition sets V1, V2, . . . , Vt. Note that G is Γ-distance magic if and only if∑t
i=1,i6=j

∑
x∈Vi `(x) = µ for j ∈ {1, 2, . . . , t} which implies that

∑
x∈Vj `(x) = ν for

j ∈ {1, 2, . . . , t} and some ν ∈ Γ. Therefore we can see that G is Γ-distance magic if and
only if Γ has the CSP(t)-property. The following theorems were proven in [3].

Theorem 1.5 ([3]). Let G = Kn1,n2,...,nt be a complete t-partite graph and n = n1 +
n2 + . . .+ nt. If n ≡ 2 (mod 4) and t is even, then there does not exist an Abelian group
Γ of order n such that G is a Γ-distance magic graph.

Theorem 1.6 ([3]). The complete bipartite graph Kn1,n2
is a group distance magic graph

if and only if n1 + n2 6≡ 2 (mod 4).

Therefore it follows that an Abelian group Γ of order n has the CSP(2)-property if and
only if n 6≡ 2 (mod 4).

In this paper we study the CSP(3)-property of Γ, and apply the results to an investi-
gation of the necessary and sufficient conditions for complete tripartite graphs to be group
distance magic. This work will also be potentially useful for group theorists working on
Abelian groups.
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2 Preliminaries
Assume Γ is an Abelian group of order nwith the operation denoted by +. For convenience
we will write ka to denote a + a + . . . + a (where the element a appears k times), −a to
denote the inverse of a and we will use a− b instead of a+ (−b). Recall that a non-trivial
finite group has elements of order 2 if and only if the order of the group is even. The
fundamental theorem of finite Abelian groups states that a finite Abelian group Γ of order
n can be expressed as the direct product of cyclic subgroups of prime-power order. This
implies that

Γ ∼= Zpα1
1
×Zpα2

2
× . . .× Zpαkk where n = pα1

1 · p
α2
2 · . . . · p

αk
k

and pi for i ∈ {1, 2, . . . , k} are not necessarily distinct primes. This product is unique up
to the order of the direct product. When t is the number of these cyclic components whose
order is a multiple of 2, then Γ has 2t−1 involutions. In particular, if n ≡ 2 (mod 4), then
Γ ∼= Z2×A for some Abelian group A of odd order n/2. Moreover every cyclic group of
even order has exactly one involution. The sum of all the group elements is equal to the
sum of the involutions and the neutral element.

The following lemma was proved in [6] (see [6], Lemma 8).

Lemma 2.1 ([6]). Let Γ be an Abelian group.

1. If Γ has exactly one involution ι, then
∑
g∈Γ g = ι.

2. If Γ has no involutions, or more than one involution, then
∑
g∈Γ g = g0.

Anholcer and Cichacz proved the following (see [1], Lemma 2.4).

Lemma 2.2 ([1]). Let Γ be an Abelian group with involutions set
I∗ = {ι1, ι2, . . . , ι2k−1}, k > 1 and let I = I∗ ∪ {g0}. Given positive integers n1,
n2 such that n1 + n2 = 2k. There exists a partition A = {A1, A2} of I such that

1. n1 = |A1|, n2 = |A2|,
2.

∑
a∈Ai a = g0 for i = 1, 2,

if and only if none of n1, n2 is 2.

3 Constant sum partition of Abelian groups
Note that if Γ has odd order, then it has the ZSP-property by Theorem 1.2, thus one can
check that it has the ZSP(3)-property. We now generalize Lemma 2.2.

Lemma 3.1. Let Γ be an Abelian group with involutions set I∗ = {ι1, ι2, . . . , ι2k−1},
k > 2 and let I = I∗∪{g0}. Given positive integers n1, n2, n3 such that n1+n2+n3 = 2k.
There exists a partition A = {A1, A2, A3} of I such that

1. n1 = |A1|, n2 = |A2|, n3 = |A3|,
2.

∑
a∈Ai a = g0 for i ∈ {1, 2, 3},

if and only if n1, n2, n3 6∈ {2, 2k − 2}.
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Proof. For ni = nj = 1 we have that
∑
a∈Ai a 6=

∑
a∈Aj a. For ni = 2, it is easy to see∑

a∈Ai a 6= g0.
Let ι0 = g0. Recall that since I = {ι0, ι1, . . . , ι2k−1} is a subgroup of Γ, we have

I ∼= (Z2)k. One can check that the lemma is true for k ∈ {3, 4}. The sufficiency will
be proved then by induction on k. Namely, suppose the assertion is true for some m =
k ≥ 4. We want to prove it is true for m = k + 1. Let (n1, n2, n3) be a triple such that
n1, n2, n3 6∈ {2, 2k+1 − 2} and n1 + n2 + n3 = 2k+1. For i ∈ {1, 2, 3} let ni = 4qi + ri,
where ri ∈ {1, 3, 4, 5, 6} and 1 appears at most once as a value of some ri. Observe
that r1 + r2 + r3 ≤ 18, but because n1 + n2 + n3 ≡ 0 (mod 4) and n1 + n2 + n3 =
4(q1 + q2 + q3) + r1 + r2 + r3, we must have r1 + r2 + r3 ≡ 0 (mod 4), which implies
that r1 + r2 + r3 ≤ 16. Thus 4(q1 + q2 + q3) ≥ 2k.

Now we select t1, t2, t3 such that ti ≤ qi and 4(t1+t2+t3) = 2k. Denote n′i = ni−4ti
and n′′i = 4ti. Obviously, n′1 +n′2 +n′3 = n′′1 +n′′2 +n′′3 = 2k and n′i /∈ {0, 2, 2k − 2} for
any i ∈ {1, 2, 3}.

If also n′′i 6= 0, then both triples (n′1, n
′
2, n
′
3) and (n′′1 , n

′′
2 , n
′′
3) satisfy the inductive hy-

pothesis and there exist partitions of (Z2)k into sets S′1, S
′
2, S
′
3 and S′′1 , S

′′
2 , S

′′
3 of respective

orders n′1, n
′
2, n
′
3 and n′′1 , n

′′
2 , n
′′
3 . If we now replace each element (x1, x2, . . . , xk) of (Z2)k

in any S′i by the (x1, x2, . . . , xk, 0) of (Z2)k+1, it should be clear that the sum of elements
in each S′i is the identity of (Z2)k+1.

Similarly, we replace each element (y1, y2, . . . , yk) of (Z2)k in any S′′i by the element
(y1, y2, . . . , yk, 1) of (Z2)k+1. Now because the order of each S′′i is even, the ones in last
entries add up to zero and the sum of elements in each S′′i is again the identity of (Z2)k+1.
Now set Si = S′i ∪ S′′i to obtain the desired partition of (Z2)k+1.

The case when n′′i = 0 and n′′j , n
′′
l 6= 0 can be treated using Lemma 2.2, and the case

when n′′i = n′′j = 0 and n′′l = 2k is obvious.

Theorem 3.2. Let Γ be an Abelian group of even order n. Γ has the CSP(3) -property if
and only if Γ 6∼= (Z2)t for some positive integer t. Moreover, Γ 6∼= (Z2)t has the ZSP(3)-
property if and only if Γ has more than one involution.

Proof. For a given partition n = n1+n2+n3 we will construct a partition Γ = A1∪A2∪A3

such that Ai = {ai0, ai1, . . . , aini−1} for i ∈ {1, 2, 3}. Let Γ = {g0, g1, . . . , gn−1}. Recall
that by g0 we denote the identity element of Γ.

Assume first that Γ ∼= (Z2)t for t > 1 has the CSP(3)-property. Let A1, A2, A3 be the
desired partition of Γ for n2 = 2. Hence

∑
a∈Ai a = ι 6= g0 for i ∈ {1, 2, 3}. Therefore∑

g∈Γ g =
∑3
i=1

∑
a∈Ai a = 3ι = ι 6= g0, a contradiction with Lemma 2.1.

Suppose now that Γ has the ZSP(3)-property and there is the only one involution ι ∈ Γ.
Let A1, A2, A3 be the desired partition of Γ, therefore

∑
a∈Ai a = g0 for i ∈ {1, 2, 3}.

Hence, g0 =
∑3
i=1

∑
a∈Ai a =

∑
g∈Γ g, on the other hand by Lemma 2.1 we have∑

g∈Γ g = ι, a contradiction.

We will prove sufficiency now. Let us consider two cases on the number of involutions
in Γ.
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Case 1. There is exactly one involution ι in Γ.
Notice that in that case |Γ| ≥ 6. By fundamental theorem of finite Abelian groups

Γ ∼= Z2α1 ×Zpα2
2
× . . .× Zpαkk where n = 2α1 · pα2

2 · . . . · p
αk
k , α1 ≥ 1

and pi ≥ 3 for i ∈ {2, 3, . . . , k} are not necessarily distinct primes. Since |Γ| ≥ 6 we
have Γ ∼= Z2m×A for m ≥ 3 and some Abelian group A of order n/2m. Let g1 = ι and
gi+1 = −gi for i ∈ {2, 4, 6, . . . , n − 2}. Using the isomorphism ϕ : Γ → Z2m×A, we
can identify every g ∈ Γ with its image ϕ(g) = (j, ai), where j ∈ Z2m and ai ∈ A for
i ∈ {0, 1, . . . , n

2m −1} and a0 is the identity element in A. Observe that g1 = ι = (m, a0).
Because m > 2 we can set g2 = (1, a0), g3 = (2m − 1, a0), g4 = (m − 1, a0),
g5 = (m+ 1, a0).
Without loss of generality we can assume that n1 is even and n2 ≥ n3. Let a1

0 = g2,
a1

1 = g4 and a1
i = gi+4 for i ∈ {2, 3, . . . , n1 − 1}.

Case 1.1. n2, n3 are both odd.
Let: a2

0 = g0, a2
1 = g3, a2

2 = g5 and g1
i = an1+1+i for i ∈ {3, 4, . . . , n2 − 1}.

a3
0 = g1 and a3

i = gn1+n2+i for i ∈ {1, 2, . . . , n3 − 1}.

Case 1.2. n2, n3 are both even.
Let: a2

0 = g3, a2
1 = g5 and a1

i = gn1+2+i for i ∈ {2, 3, . . . , n2 − 1}.
a3

0 = g0, a3
1 = g1 and a3

i = gn1+n2+i for i ∈ {2, 3, . . . , n3 − 1}.

Note that in both Cases 1.1 and 1.2 we obtain that
∑
a∈Ai a = (m, a0) = ι for

i ∈ {1, 2, 3}.

Case 2. There is more that one involution ι in Γ.
By fundamental theorem of finite Abelian groups Γ has 2t− 1 involutions ι1, ι2, . . . , ι2t−1

for t > 1. Let gi = ιi for i ∈ {1, 2, . . . , 2t − 1}, and gi+1 = −gi for i ∈ {2t, 2t + 2, 2t +
4, . . . , n − 2}. By the above arguments on necessity we obtain that Γ 6∼= (Z2)t, therefore
2t ≤ n/2. One can check, that we can choose integers t1, t2 and t3 such that:

t1 + t2 + t3 = 2t,

with

ni − ti ≡ 0 (mod 2), ti ≥ 0, ti 6∈ {2, 2t − 2} for i ∈ {1, 2, 3}.

By Lemmas 2.2 and 3.1 it follows that there exists a partition B = {B1, B2, B3} of
I = {g0, g1, . . . , g2t−1} such that t1 = |B1|, t2 = |B2|, t3 = |B3|, and if Bi 6= ∅, then∑
b∈Bi b = g0 for i ∈ {1, 2, 3}. Let Bi = {bi0, bi1, . . . , biti−1} for i ∈ {1, 2, 3}. Let us set

now:
a1
i = b1i for i ∈ {1, 2, . . . , t1 − 1} and a1

i = gi+t2+t3 for i ∈ {t1, t1 + 1 . . . , n1 − 1},
a2
i = b2i for i ∈ {1, 2, . . . , t2 − 1} and a2

i = gi+t3+n1 for i ∈ {t2, t2 + 1 . . . , n2 − 1},
a3
i = b3i for i ∈ {1, 2, . . . , t3 − 1} and a3

i = gi+n1+n2 for i ∈ {t3, t3 + 1 . . . , n3 − 1}.
In this case

∑
a∈Ai a = g0 for i ∈ {1, 2, 3}.

4 Group distance magic graphs
Observe that for G being an odd regular graph of order n, by hand shaking lemma n is
even. Thus, the below theorem is a generalization of Theorem 1.4.
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Theorem 4.1. LetG have order n ≡ 2 (mod 4) with all vertices having odd degree. There
does not exist an Abelian group Γ of order n such that G is a Γ-distance magic graph.

Proof. Assumption n ≡ 2 (mod 4) implies that Γ ∼= Z2×A for some Abelian group A of
odd order n/2 and there exists exactly one involution ι ∈ Γ. Let gn/2 = ι, gn/2+i = −ai
for i ∈ {1, 2, . . . , n/2− 1}. Let V (G) = {x0, x1, . . . , xn−1}.

Suppose that ` is a Γ-distance labeling for G and µ is the magic constant. Without
loss of generality we can assume that `(xi) = ai for i ∈ {0, 1, . . . , n − 1}. Recall that
ng = 0 for any g ∈ Γ and deg(xn/2)gn/2 = gn/2 = ι since deg(xn/2) is odd. Notice that
deg(xi) − deg(xn−i) = 2di for some integer di for i ∈ {1, 2, . . . , n/2 − 1}, because all
vertices have odd degree. Let now

w(G) =
∑

x∈V (G)

∑
y∈N(x)

w(y) =

n−1∑
i=0

deg(xi)gi =

n/2−1∑
i=1

deg(xi)gi + deg(xn/2)gn/2 +

n/2−1∑
i=1

deg(xn−i)gn−i =

n/2−1∑
i=1

deg(xi)gi −
n/2−1∑
i=1

deg(xn−i)gi + gn/2 =

n/2−1∑
i=1

(deg(xi)− deg(xn−i))gi + gn/2 = 2

n/2−1∑
i=1

digi + gn/2

On the other hand, w(G) =
∑
x∈V (G) w(x) = n · µ = g0. Therefore we obtain that

2υ = gn/2 for some element υ ∈ Γ. Since n/2 is odd and Γ ∼= Z2×A, such an element υ
does not exist, a contradiction.

From the above Theorem 4.1 we obtain the following.

Theorem 4.2. If G have order n ≡ 2 (mod 4) with all vertices having odd degree, then
G is not distance magic.

Proof. The graph G is not Zn-distance magic by Theorem 4.1, therefore it is not distance
magic.

We prove now the following useful lemma.

Lemma 4.3. Let G = Kn1,n2,...,nt be a complete t-partite graph and n = n1 +n2 + . . .+
nt. If n1 ≤ n2 ≤ . . . ≤ nt and n2 = 1, then there does not exist an Abelian group Γ of
order n such that G is a Γ-distance magic graph.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, . . . , t}. Let
x ∈ V1 and y ∈ V2. Suppose that the graph G is Γ-distance magic for some Abelian group
Γ of order n and that ` is a Γ-distance magic labeling of G, then w(x) =

∑
g∈Γ g− `(x) =

w(y) =
∑
g∈Γ g − `(y). Thus `(y) = `(x), a contradiction.
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Theorem 4.4. LetG = Kn1,n2,n3 be a complete tripartite graph such that 1 ≤ n1 ≤ n2 ≤
n3 and n = n1 + n2 + n3. The graph G is a group distance magic graph if and only if
n2 > 1 and n1 + n2 + n3 6= 2p for any positive integer p.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, 3}. We can
assume that n2 > 1 by Lemma 4.3.

Suppose now that Γ ∼= (Z2)p for some integer p. Let n1 = 2 and ` be a Γ-distance
magic labeling of G. Thus

∑
x∈V1

`(x) = ι 6= g0. Since G is Γ-distance magic we obtain
that

∑
x∈Vi `(x) = ι for i ∈ {1, 2, 3}. Therefore

∑
g∈Γ g =

∑3
i=1

∑
x∈Vi `(x) = 3ι =

ι 6= g0, a contradiction with Lemma 2.1.

If Γ 6∼= (Z2)p and ni ≥ 2 for i ∈ {2, 3}, then the group Γ can be partitioned into pair-
wise disjoint setsA1, A2, A3 such that for every i ∈ {1, 2, 3}, |Ai| = ni with

∑
a∈Ai a = ν

for some element ν ∈ Γ by Theorem 1.2 or 3.2. Label the vertices from a vertex set Vi
using elements from the set Ai for i ∈ {1, 2, 3}.

Theorem 4.5. LetG = Kn1,n2,n3
be a complete tripartite graph such that 1 ≤ n1 ≤ n2 ≤

n3 and n1 + n2 + n3 = 2p, then

1. G is Γ-distance magic for any Abelian group Γ 6∼= (Z2)p of order n if and only if
n2 > 1,

2. G is (Z2)p-distance magic if and only if n1 6= 2 and n2 > 2.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, 3}.
We can assume that n2 > 1 by Lemma 4.3. If (n1 = 2 or n2 ≥ 2) and Γ ∼= (Z2)p then

Γ does not have a partition A = {A1, A2, A3} such that
∑
a∈Ai a = ν for i ∈ {1, 2, 3} by

Theorem 3.2. Thus one can check that then there does not exist a Γ-distance labeling of G.
If Γ 6∼= (Z2)p and ni ≥ 2 for i ∈ {2, 3}, or Γ ∼= (Z2)p for some integer p and n1 6= 2,

n2 > 2, then the group Γ can be partitioned into pairwise disjoint sets A1, A2, A3 such
that for every i ∈ {1, 2, 3}, |Ai| = ni with

∑
a∈Ai a = ν for some element ν ∈ Γ by

Theorem 3.2, or Lemma 3.1, resp. Label the vertices from a vertex set Vi using elements
from the set Ai for i ∈ {1, 2, 3}.

At the end of this section we put some observations that are implications of Theorem 1.2
for complete t-partite graphs. But first we need the following theorem proved in [2] (see
Theorem 2.2, [2]).

Theorem 4.6 ([2]). Let G be a graph for which there exists a distance magic labeling
` : V (G) → {1, 2, . . . , |V (G)|} such that for every w ∈ V (G) the following holds: if
u ∈ N(w) with `(u) = i, then there exists v ∈ N(w), v 6= u, with `(v) = |V (G)|+ 1− i.
The graph G is a group distance magic graph.

Observation 4.7. Let G = Kn1,n2,...,nt be a complete t-partite graph such that 1 ≤ n1 ≤
n2 ≤ . . . ≤ nt and n = n1 + n2 + . . . + nt. Let Γ be an Abelian group of order n with
exactly three involutions. The graph G is Γ-distance magic graph if and only if n2 > 1.

Proof. Let G have the partition vertex sets Vi = {xi1, xi2, . . . , xini} for i ∈ {1, 2, . . . , t}.
By Lemma 4.3 we can assume that n2 > 1.
Suppose first that n1 = n2 = . . . = nt = 2. Note that a labeling ` : V (G)→ {1, 2, . . . , 2t}
defined as `(xi1) = i, `(xi2) = 2t+ 1− i for i ∈ {1, 2, . . . , t} is distance magic, hence G is
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a group distance magic graph by Theorem 4.6. This implies that there exists a Γ-distance
magic labeling of G.
We can assume now that nt ≥ 3. If n1 > 1, then nt ≥ 4 or nt−1 = nt = 3. Therefore
there exists a zero-sum partitionA′1, A

′
2, . . . , A

′
t of the set Γ−{g0} such that |A′t| = nt−1

and |A′i| = ni for every 1 ≤ i ≤ t− 1 by Theorem 1.2. Set At = A′t ∪ {g0} and Ai = A′i
for every 1 ≤ i ≤ t− 1. If n1 = 1 then there exists a zero-sum partition A′2, A

′
3, . . . , A

′
t of

the set Γ− {g0} such that |A′i| = ni for every 2 ≤ i ≤ t by Theorem 1.2. In this case put
A1 = {g0} and Ai = A′i for every 2 ≤ i ≤ t. Label now the vertices from a vertex set Vi
using elements from the set Ai for i ∈ {1, 2, . . . , t}.

Observation 4.8. Let G = Kn1,n2,...,nt be a complete t-partite graph such that 1 ≤ n1 ≤
n2 ≤ . . . ≤ nt and n = n1 + n2 + . . .+ nt is odd. The graph G is a group distance magic
graph if and only if n2 > 1.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, . . . , t}.
We can assume that n2 > 1 by Lemma 4.3. If n1 > 1, then nt ≥ 3. Therefore there
exists a zero-sum partition A′1, A

′
2, . . . , A

′
t of the set Γ−{g0} such that |A′t| = nt − 1 and

|A′i| = ni for every 1 ≤ i ≤ t− 1 by Theorem 1.2. Set At = A′t ∪ {g0} and Ai = A′i for
every 1 ≤ i ≤ t − 1. If n1 = 1 then there exists a zero-sum partition A′2, A

′
3, . . . , A

′
t of

the set Γ− {g0} such that |A′i| = ni for every 2 ≤ i ≤ t by Theorem 1.2. In this case put
A1 = {g0} and Ai = A′i for every 2 ≤ i ≤ t. Label now the vertices from a vertex set Vi
using elements from the set Ai for i ∈ {1, 2, . . . , t}.
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Abstract

We prove several results about three families of graphs. For queen graphs, defined from
the usual moves of a chess queen, we find the edge-chromatic number in almost all cases.
In the unproved case, we have a conjecture supported by a vast amount of computation,
which involved the development of a new edge-coloring algorithm. The conjecture is that
the edge-chromatic number is the maximum degree, except when simple arithmetic forces
the edge-chromatic number to be one greater than the maximum degree. For Mycielski
graphs, we strengthen an old result that the graphs are Hamiltonian by showing that they
are Hamilton-connected (exceptM3, which is a cycle). For Keller graphsGd, we establish,
in all cases, the exact value of the chromatic number, the edge-chromatic number, and the
independence number; and we get the clique covering number in all cases except 5 ≤ d ≤
7. We also investigate Hamiltonian decompositions of Keller graphs, obtaining them up
to G6.
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1 Introduction
Inspired by computational experiments, we prove several results about some families of
graphs. We show in §5 that all Mycielski graphs (except the 5-cycle M3) are Hamilton-
connected. In §6, we establish the size of a maximum independent set for all Keller
graphs and investigate some other parameters, determining the chromatic number of both
the graphs and their complements, and also the edge-chromatic number. In particular, we
prove that the edge-chromatic number of each Keller graph equals its degree. We also find
the clique covering number for all cases except dimension 5, 6, and 7. And in §2–§4 we
present a detailed study of queen graphs, resolving the edge-chromatic number in most
cases.

Recall that the problem of coloring the edges of a graph is much simpler than the classic
vertex-coloring problem. There are only two possibilities for the edge-chromatic number
because of Vizing’s classic theorem [2, §6.2] that the edge-chromatic number χ′(G) is
either ∆(G) or ∆(G) + 1, where ∆(G) is the maximum vertex degree; the first case is
called class 1; the second, class 2. Let ne(G) denote the number of edges, nv the number
of vertices, and ρ(G) the number of edges in a maximum matching. Some graphs have too
many edges to be class 1. An overfull graph G is one for which

ne(G) > ∆(G)

⌊
nv(G)

2

⌋
.

For such a graph, ∆(G)ρ(G) < ne(G), and this inequality implies that G must be class
2; so any overfull graph is class 2. The reason for this is that each color class is a match-
ing and so has size at most ρ(G); if class 1, the number of colored edges would be at
most ∆(G)ρ(G) which is too small to capture all edges. In §2, we present results and an
intriguing conjecture related to edge coloring of the standard queen graph Qm,n: the con-
jecture is that Qm,n is class 1 whenever it is not overfull. Computation and proofs yield
the truth of this conjecture for m ≤ 10 and all values of n ≥ m; the exact conjecture
is that the queen is class 1 for n ≤ 1

3 (2m2 − 11m + 12). In Theorem 4.1, we prove
this for n ≤ 1

2 (m2 − 3m + 2). For the extensive computations we developed a general
edge-coloring algorithm that succeeded in finding class-1 colorings for some queen graphs
having over two million edges.

Our notation is fairly standard: Kn is the complete graph on n vertices; Cn is an n-
cycle; χ(G) is the chromatic number; χfrac(G) is the fractional chromatic number; α(G) is
the size of a largest independent set; ω(G) is the size of a largest clique; θ(G) is the clique
covering number (same as χ(Gc)). Occasionally G will be omitted from these functions
where the context is clear. A vertex of G is called major if its degree equals ∆(G). Graphs
are always simple graphs, with the exception of some queen graph discussions, where
multigraphs appear.

A Hamiltonian path (resp. cycle) is a path (resp. cycle) that passes through all vertices
and does not intersect itself. A graph is Hamiltonian if there is a Hamiltonian cycle; a
graph is Hamilton-connected (HC) if, for any pair u, v of vertices, there is a Hamiltonian
path from the u to v. We will make use of Fournier’s Theorem [9, 10] that a graph is class
1 if the subgraph induced by the vertices of maximum degree is a forest. This theorem is a
straightforward consequence of Vizing’s adjacency lemma [20, pp. 24, 54, 55].

We thank Joan Hutchinson for a careful reading and helpful suggestions, David Pike
for the interesting comment about edge-coloring pioneer F. Walecki, and a referee for some
valuable comments.
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2 Rook and bishop graphs
The family of (not necessarily square) queen graphs presents a number of well-known
combinatorial challenges. In this and the following two sections, we study the Vizing
classification of queen graphs, a problem that turns out to have unexpected complexity.
Queens on a chessboard can make all the moves of rooks and bishops, and thus queen
graphs are the union of the rook graph and (white and black) bishop graphs. We therefore
start, in this section, by looking at rook and bishop graphs separately. Then in §§3 and 4,
we will show how these rook and bishop results lead to a variety of class-1 queen colorings.

It is well known that rook graphs behave similarly to their one-dimensional cousins,
the complete graphs: they are class 2 if and only if both dimensions are odd. Perhaps
more surprising, all bishop graphs are class 1. These two results already suffice to show
that queen graphs are class 1 when at least one of the dimensions is even: just take the
union of a class 1 rook coloring and a class 1 bishop coloring. When both dimensions are
odd, however, the classification of queen graphs becomes much harder. A straightforward
counting argument shows that such odd queen graphs are eventually class 2: for m and n
odd, Qm,n is class 2 if n ≥ 1

3 (2m3 − 11m + 18). On the other hand, we prove below
(Theorem 4.1) that for m and n odd, Qm,n is class 1 if m ≤ n ≤ 1

2 (m2 − 3m+ 2). As we
will also show, the method we use cannot produce class-1 colorings all the way up to the
cubic limit, and thus we leave essentially open the problem of determining whether there
are any class-2 queen graphs when 1

2 (m2 − 3m+ 4) ≤ n ≤ 1
3 (2m3 − 11m+ 12). We do,

however, describe an algorithmic approach that gives lots of data to support the conjecture
that there are no such graphs.

Recall that bishops move diagonally on a chessboard and rooks (Fig. 1) move horizon-
tally or vertically. Because a queen can move diagonally, horizontally, or vertically, Qm,n,
the graph of queen moves, is the union of its two edge subgraphs Bm,n and Rm,n, where
Bm,n denotes the graph of bishop moves on an m × n board, and Rm,n denotes the rook
graph; the latter is just the Cartesian product Km�Kn. The bishop graph is disconnected:
it is the union of graphs corresponding to a white bishop and a black bishop (where we
take the lower left square as being white). We will use WBm,n for the white bishop graph.
It is natural to try to get edge-coloring results for the queen by combining such results
for bishops and rooks, so we review the situation for those two pieces. The classic result
on edge-coloring complete graphs is also essential, so we start there. Lucas [13, p. 177]
attributes the first part of Proposition 2.1 to Felix Walecki.

Proposition 2.1. χ′(Kn) is n− 1 when n is even (and so the graph is class 1) and n when
n is odd (the graph is class 2). Moreover, when n is odd every coloring has the property
that no missing color at a vertex is repeated. Also, for all n, if M is a maximum matching
of Kn, then χ′(Kn \M) = n− 1.

Proof. For the even case, take the vertices to be vi where v1, . . . , vn−1 are the vertices
of a regular (n − 1)-gon, and vn is the center. Use color i on vi ·−· vn and on edges
perpendicular to this edge. For n odd, one can use a regular n-gon to locate all the vertices
and use n colors for the exterior n-cycle; then color any other edge with the same color used
for the exterior edge that parallels it. (Alternatively, add a dummy vertex vn+1 and use the
even-order result, discarding at the end any edges involving the dummy vertex.) Note that
Kn, with n odd, is overfull, so the preceding coloring is optimal. Further, the coloring has
the property that the missing colors at the vertices are 1, 2, . . . , n. This phenomenon, that
no missing color is repeated, is easily seen to hold for any class-2 coloring of Kn, with n
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odd. Because χ′(Kn) = ne(Kn)/ρ(Kn), each color class in any optimal coloring of Kn

is a maximum matching. These graphs are edge transitive, so all maximum matchings are
the same, which yields the final assertion of the Proposition.

Theorem 2.2. The rook graph Rm,n is class 1 except when both dimensions are odd, in
which case it is overfull, and so is class 2.

Proof. For the class-2 result, we have ∆ = m + n − 2, and ne = m
(
n
2

)
+ n

(
m
2

)
, which

leads to ne − 1
2 (mn − 1)∆ = ∆

2 > 0. For class 1, the even case is trivial by Proposition
2.1, since we can use colors 1 through n − 1 on each row and n through m + n − 2 on
each column. For the case of m even and n odd (which suffices by symmetry; see Fig. 1),
use colors 1 through n on each complete row, and ensure that color 1 is missing at the
vertices in the first column, color 2 is missing on the second column, and so on. The color
set consisting of i, n+ 1, . . . , n+m− 2 can be used on the ith column.

� � � � � �� �		 
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Figure 1: The rook graph R4,5 is class 1. Use colors 1–5 on the rows, with color i missing
on the vertices in the ith column. Then use i, 6, and 7 on the ith column.

For the class-2 case of the preceding result one can easily give an explicit ∆+1 coloring,
either by the method used in Theorem 3.1 or the ladder method of Proposition 4.3.

The bishop situation had not been investigated until the work of Saltzman and Wagon
[16, 17, 18], who proved that all bishop graphs are class 1.

Theorem 2.3. All bishop graphs Bm,n are class 1.

Proof. Assume m ≤ n. We have ∆(Bm,n) = 2m − 2, except for one case: if m is even,
then ∆(Bm,m) = 2m− 3. The graph can be decomposed into paths as follows. Note that
any bishop edge is a diagonal line with a natural “length”: the Euclidean distance between
the vertices divided by

√
2. Let G+

1 consist of all edges of length 1 having negative slope
and paths of lengthm−1, with edges having positive slope (in Fig. 2 this graph is the set of
green and red edges). This subgraph consists of disjoint paths; the edges of each path can
be 2-colored. Define G−1 the same way, but with the slopes reversed. Get the full family
by defining G+

1 , G
−
1 , G

+
2 , G

−
2 , . . . , G

+
bm/2c, G

−
bm/2c, where G±i is defined similarly to G±1 ,

but using edges of length i and m − i. The proof that these edge subgraphs partition the
bishop edges is easy (see [16, 17]). Each of these subgraphs, being a collection of disjoint
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paths, can be 2-edge colored (for definiteness and because it plays a role in later work,
we will always use the first of the two colors on the leftmost edge of each path; and the
resulting coloring will be referred to as the canonical bishop edge-coloring). When m is
odd the color count is 4m−1

2 = 2m − 2. When m is even and n > m, the graphs G+
m/2

and G−m/2 coincide and the color count is 4(m2 − 1) + 2 = 2m − 2. But when m is even
and n = m, then G+

m/2 = G−m/2 and this subgraph consists of only disjoint edges; it is
therefore 1-colorable and the color count is 4(m2 − 1) + 1 = 2m− 3. Note that for odd m,
some of the edge subgraphs when restricted to the black bishop will be empty, but that is
irrelevant. The black bishop will use fewer colors, but the colors are disjoint from the ones
used for the white bishop and it is the latter that determines χ′.

Figure 2: Top: The red and green edges form the subgraph G+
1 of WB5,9, the white bishop

graph; blue and yellow form G−1 . Bottom: The purple and green edges form G+
2 ; cyan and

pink are G−2 . The total color count is 8, the maximum degree of the graph.

An interesting and useful type of coloring is one in which one color is as rare as can be.
The next lemma shows that, for Bn,n with n odd, the canonical coloring is such that the
rarest color occurs the smallest possible number of times: once.

Lemma 2.4. In the canonical coloring of Bn,n, n odd, the rarest color occurs on one edge
only.

Proof. Referring to the subgraphs of Theorem 2.3’s proof, all the paths in the black bishop
part of G−(m−1)/2 are isolated edges, and the same is true for the white bishop except for
the single path Z ·−· X ·−· Y where X is the central vertex and Y , Z are, respectively,
the upper-right and lower-left corners (Fig. 3). Therefore the coloring used in the proof of
Theorem 2.3 will use the last color only on X ·−·Y .

A version of Lemma 2.4, with proof similar to the one given, but requiring some color
switching, holds for even bishops; we do not need the result so just sketch the proof.

Lemma 2.5. The bishop graph B2k,2k admits a class-1 coloring where one of the colors
appears on only 2 edges; and the 2 cannot be replaced by 1.
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�

�

�

Figure 3: The edges shown form the subgraphG−3 ofB5,5. This subgraph consists of many
isolated edges and one 2-edge path: Z ·−·X ·−·Y , and so can be edge-colored so that one
color occurs only once, at X ·−·Y .

Sketch of proof. The proof focuses on the white bishop and uses some color switching in
the subgraphs G−1 and G+

k−1 to get the uniquely appearing color at the edge connecting the
two major vertices. That 2 is best possible follows from the fact that the graph splits into
two isomorphic components.

In fact, this whole discussion can be generalized. Let M(G) be the number of major
vertices of G. Then in any coloring of G using ∆(G) colors, each color must occur at least
d 1

2Me times (because all colors appear at every major vertex). Moreover, a coloring using
the rarest color exactly d 1

2Me times cannot exist unless there is a perfect matching (or
almost perfect matching if M(G) is odd) of the major subgraph, since such a matching is
needed to make each account for two major vertices. Call a class-1 coloring of G extremal
if the rarest color occurs exactly d 1

2Me times. Then Lemma 2.4 states that Bn,n admits an
extremal class-1 coloring when n is odd, and Lemma 2.5 implies that Bn,n does not admit
such a coloring when n is even. Computations support the following conjecture, where
WB denotes the white bishop graph.

Conjecture 2.6. WBm,n always admits an extremal class-1 coloring.

3 Queen graphs
The graph of queen moves on an m×n chessboard is the queen graph Qm,n (Fig. 4 shows
Q3,3). The vertices ofQm,n are arranged in anm×n grid and each vertex is adjacent to all
vertices in the same row, in the same column, and on the same diagonal or back diagonal.
We always assume m ≤ n. Easy counting and summation leads to

∆(Qm,n) =

{
3m+ n− 5 if m = n and n is even
3m+ n− 4 otherwise

ne(Qm,n) =
1

6
m(2− 2m2 − 12n+ 9mn+ 3n2).
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Figure 4: The queen graph Q3,3 has 28 edges and maximum degree 8. It combines the
bishop graph (blue) with the rook graph (red).

Queen graphs have served as a challenging benchmark for vertex coloring algorithms
[1]. The values of χ(Qn,n) are known for n ≤ 26. For 11 ≤ n ≤ 26, χ(Qn,n) = n; the first
open case is Q27,27. So a case involving 272 = 729 vertices is unresolved. As discussed
later in this section, we developed an algorithm that succeeds in finding the edge-chromatic
number for cases as large as Q11,707, which has 7777 vertices and requires coloring almost
three million edges. But many cases are resolved by relatively straightforward arguments
and Theorems 3.1 and 4.1 find the edge-chromatic number in all cases except when m, n
are odd and 1

2 (m2 − 3m+ 4) ≤ n ≤ 1
3 (2m3 − 11m+ 12).

Any queen graph is the edge-union of a bishop subgraph and a rook subgraph (Fig. 4);
the maximum degrees add: ∆(Qm,n) = ∆(Bm,n) + ∆(Rm,n). Theorem 2.3 shows that
all bishop graphs are class 1 and Theorem 2.2 shows that the rooks are class 1 except when
both m and n are odd. Thus one can often get a class-1 queen coloring by forming the
union of optimal colorings of the bishop and rook subgraphs. When the rook is class 1,
one can simply combine class-1 colorings for the rook and bishop to get a class-1 queen
coloring. This yields the class-1 part of the next theorem in all cases except one: Qn,n, n
odd.

Theorem 3.1 (Joseph DeVincentis, Witold Jarnicki, and Stan Wagon). The queen graph
Qm,n is class 1 if at least one of m and n is even, or if m and n are equal and odd. The
graph is class 2 if m and n are odd and n ≥ 1

3 (2m3 − 11m+ 18).

Proof. The last assertion follows from the fact that Qm,n in that case is overfull and there-
fore is class 2. This is because the overfull condition becomes

1

2
(mn− 1)(3m+ n− 4) ≤ 1

6
m(2− 2m2 − 12n+ 9mn+ 3n2)− 1,

which simplifies to the stated inequality n ≥ 1
3 (2m3 − 11m+ 18).

The class-1 result is proved by combining class-1 colorings of the rook and bishop
subgraphs, except in the one case that the rooks are class 2. Thus a different argument is
needed for Qn,n where n is odd.

ConsiderQn,n with n odd. The central vertex is the only vertex of maximum degree, so
the result follows from Fournier’s theorem (§1). It also follows from Theorem 4.1 below,
but we can give a direct construction of a class-1 coloring, using a special property of the
square bishop graph.
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Start with a coloring of Bn,n as in Lemma 2.4. Then we can color the corresponding
rook graph Rn,n using only new colors in such a way that a color is free to replace color
2n− 2 at its single use on the bishop edge X ·−·Z. The result will be a class-1 coloring of
Qn,n.
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Figure 5: A class-2 coloring of R7,7 with color 25 placed so it does not interfere with the
bishop edge X ·−· Z; therefore 25 can replace 12 on that bishop edge, reducing the total
color count to the desired 24.

We will build a class-2 coloring of Rn,n using colors 2n − 1, . . . , 4n − 3, which are
unused in the bishop coloring (recall ∆(Rn,n) = 2n − 2). Color each row with 2n −
1, . . . , 3n−2 so that this order indicates the missing colors in each row (Fig. 5). Now color
the columns by using the remaining colors together with the appropriate missing color; e.g.,
the first column gets colors 3n− 1, . . . , 4n− 3 together with 2n− 1. Arrange the column
coloring so that the missing colors at the rows are in reverse numerical order (as in Fig. 5),
except that, in the central column, color 4n − 3 is missing at the central vertex X . Then
we can finish by replacing color 2n− 2 on X ·−·Z in the bishop coloring by color 4n− 3
(25 in Fig. 5). So the total number of colors used is now 4n − 2, and combining the two
colorings gives a class-1 coloring of Qn,n. In fact, it is a also an extremal coloring (see end
of §2), as the rarest color appears only once.

Returning to the general edge-coloring questions left open by Theorem 3.1, the most
natural conjecture is that Qm,n is class 1 whenever it is not overfull. The first cases are:
Q3,n, 3 ≤ n ≤ 11; Q5,n, 5 ≤ n ≤ 69; Q7,n, 7 ≤ n ≤ 207; Q9,n, 9 ≤ n ≤ 457; and
Q11,n, 11 ≤ n ≤ 851.

Conjecture 3.2. The queen graph Qm,n is class 2 iff it is overfull.

We have some positive steps toward Conjecture 3.2. A first step was a generalization of
theQm,m case that combined bishop and rook colorings and worked form ≤ n ≤ 2m−1;
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we omit the details because Theorem 4.1 in §4 uses more delicate arguments to get the
much stronger result that Qm,n is class 1 when m ≤ n ≤ 1

2 (m2 − 3m + 2). For small
values (e.g, m = 3, 5) the quadratic result is not as good as the 2m − 1 result, but that is
not a problem because various computations, which we describe in a moment, show that
Conjecture 3.2 is true for m ≤ 9.

If f(m) = 1
3 (2m3 − 11m + 18), then Qm,f(m) is “just overfull” [20, p. 71], in that

ne = ∆
⌊

1
2nv

⌋
+ 1. The Just Overfull Conjecture [20, p. 71] states that for any simple

graph G such that ∆(G) ≥ 1
2nv(G), G is just overfull iff G is “edge-critical” (meaning, χ′

decreases upon the deletion of any edge). Computations show that Q3,13 is edge-critical.
Since deletion of a single queen edge cannot reduce the maximum degree, this is the same
as saying that the deletion of any queen edge leads to a class-1 graph. So we have the
following additional conjecture about the structure of queen edge colorings.

Conjecture 3.3. The queen graph Qm,n is just overfull iff it is edge critical.

An algorithm based on Kempe-style color switches yielded class-1 colorings for queen
graphs that verify Conjecture 3.2 for m = 3, 5, 7, 9, and for m = 11 up to n = 551. A
straightforward bootstrapping approach, where Qm,n was used to generate a precoloring
for Qm,n+2 and random Kempe color-switches were used to resolve impasses, worked for
m = 3 and 5 (and 7 up to Q7,199); an example of a class-1 coloring of Q3,7 is in Figure
6; it was found by a method similar to the general Kempe method, but with an effort to
find an extremal bishop coloring, which is shown at top with white the rarest color. But
a more subtle method yielded a much faster algorithm, which resolved Conjecture 3.2 for
m = 7 and 9 (and 11 up to Q11,559, and also Q11,707). The largest case required the
coloring of 2,861,496 edges! This faster algorithm uses an explicit method to get a ∆ + 1
coloring (e.g., one can combine optimal colorings of the rook and bishop subgraphs) and
then Kempe-type switches to eliminate the least popular color. This last step is based on a
local search method that assigns a heuristic score to the possible switches and chooses the
one with the highest score. This approach is quite general, using no information specific to
the queen graph (except the speedy generation of the initial ∆ + 1 coloring, a task that can
also be done via the algorithm inherent in Vizing’s proof that a coloring in ∆ + 1 colors
always exists).

4 Quadratic class 1 queen graphs
In this section we show how a certain multigraph defined from the canonical bishop color-
ing can help prove that many queen graphs are class 1; the method can be called the ring-
and-ladder method. Throughout this section m and n are odd, m ≤ n, and k = 1

2 (m− 1).
The main result, proved in §4.2, is the following.

Theorem 4.1. Qm,n is class 1 for all m ≤ n ≤ 1
2 (m2 − 3m+ 2).

4.1 The derived ring of a bishop coloring

We will here use only the canonical path-based class-1 coloring of the bishop graph Bm,n,
as described in Theorem 2.3. From such a coloring, we can define a derived multigraph;
edge-coloring information about the multigraph can yield edge-coloring information about
the corresponding queen graph Qm,n. The multigraph is in fact a ring, by which we mean
a multigraph on vertex-set V with edges being edges of the associated simple cycle on V .
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Figure 6: Top: An extremal edge coloring of B3,7; there are four colors and white is
avoided at vertices 1, 2, 3, 4, 6, 16, 18, 19, and 20. The dashed arcs indicated how white
can then be used on four rook edges. Take the four colors, starting with white, to be 9, 10,
11, 12. Bottom: A class-1 coloring using 1 through 8 of the rook graph R3,7 less the four
edges from (a); only the vertical edges are shown as arcs in the edge-deleted graph. The
four dashed white edges get the shared color, 9. The three sets of horizontal labels indicate
edge colors on the horizontal edges, moving to the right. This rook coloring combines with
the bishop coloring to yield a class-1 coloring of Q3,7 using 1 through 12.

Note that a ring might be missing some edges from the underlying cycle; in that case it
is called a multipath (it could have several connected components). In [20, p. 157], the
term “ring” is used for a multigraph as we have defined it, but excluding multipaths; but
allowing multipaths is a minor addition and causes no problems.

Recall from Theorem 2.3 that the last two colors (2m−3 and 2m−2; in this section we
use cyan for color 2m− 2) in the canonical bishop coloring are used on the subgraph G−k ,
which consists of paths that start with edges of positive slope and length k, then negative
slope edges of length k+1, then positive slope edges of length k, and so on (Fig. 2, bottom
right). We call such a path a special path.

Definition 4.2. For any bishop graph Bm,n, let B̂m,n, the derived ring, be the multigraph
on vertices {1, 2, . . . ,m} given in the order {1 + jk : j = 0, . . . ,m − 1} (where the
numbers are reduced modm starting from 1); the edges arise from the (2m − 2)-colored
bishop edges: the bishop edge (x1, y1)·−· (x2, y2) induces the edge y1 ·−·y2 in B̂m,n. The
case of B̂5,11 is shown in Figure 7.

The multiplicities of the edges in B̂m,n ((3, 5, 3, 4, 4) in Fig. 7) play a key role in
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Figure 7: The last color (color 8 = 2 · 5 − 2) of the canonical coloring of B5,11 (left) and
the derived ring B̂5,11 with edge-multiplicities shown. The dashed edges correspond.

the proof that follows. The critical parameters of B̂m,n are ∆ and χ′, and the minimum
multiplicity µ−. We also use the maximum multiplicity µ+ and σm,n, the edge-count of
B̂m,n (i.e., the number of cyan edges in the canonical coloring). Now here is the key result
that relates the chromatic index of B̂m,n to that of Qm,n.

Proposition 4.3 (The Ring-and-Ladder Method). Suppose B̂m,n can be edge-colored using
n − 1 colors. then Qm,n is class 1. That is, χ′(B̂m,n) ≤ n − 1 implies χ′(Qm,n) =
3m+ n− 4.

Proof. We start with a special class-2 coloring (a “ladder coloring”) of Rm,n using colors
{1, 2, . . . ,m−n−1}. Because the rook graph is regular, each vertex in any class-2 coloring
misses exactly one color. We start by using 1 through m on the columns (and some row
edges), and will then use the n−1 colorsA = {m+1, . . . ,m+n−1} on the uncolored row
edges. Each vertex in the leftmost column will use all colors inA, but the sequence of n−1
missing colors in each row excluding its leftmost vertex is a permutation of A; moreover,
the colors in A may be arranged so that, for each row, any preselected permutation is the
missing-color permutation for that row. To define the ladder coloring, use colors 1 through
m on each column, ensuring that color i is missing at vertices in the ith row. Now use 1
to color the horizontal edges in the bottom row that connect vertices in successive columns
after the leftmost; i.e., the edges connecting the vertices in columns 2 and 3, columns 4 and
5, and so on. Do the same for row 2 but using color 2, and so on (Fig. 8). We have now used
m colors to color all vertical edges and the edges of one maximum matching in each row.
But each row is a Kn, and Kn minus any maximum matching can be colored with n − 1
colors (Prop. 2.1). Thus the colors in A suffice to color all uncolored horizontal edges.
The vertices in the leftmost column see all the colors in A, while the remaining vertices
(which already have edges colored 1 through m) each miss exactly one color in A. Thus
the missing colors in each left-deleted row form a permutation of A, and it is clear from
the construction that the A-colors can be arranged independently in the rows, so that any
set of m permutations can be assumed to be the missing-color permutations on the rows,
excluding the leftmost vertices.

The proof of the theorem now proceeds as follows. We assume that the bishop graph
is colored in the canonical way (Theorem 2.3) using colors from 1 to 2m − 2. Let ξ be
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Figure 8: A class-2 ladder coloring of R7,9 using 15 colors. The column colors are listed
in missing order.

the hypothesized edge-coloring of B̂m,n using colors {m + 1, . . . ,m + r}, r ≤ n − 1;
this is a subset of A. If ξ assigns k to edge e = y ·−· y′ of B̂m,n, assign k as a missing
color to the endpoints of e viewed as a bishop edge; that is, if e arises from the (2m − 2)-
colored bishop edge (x, y) ·−· (x′, y′), assign k to be used as a missing rook color at both
vertices (x, y) and (x′, y′). Because ξ is a proper multigraph coloring of B̂m,n, no k will
be assigned to more than one vertex in any row; and because no bishop edge incident with
the leftmost column gets color 2m− 2, no missing color will be assigned to vertices in the
leftmost column. We therefore get, for each row, an injection from {m + 1, . . . ,m + r}
to the vertices of that row excluding its leftmost vertex, and these maps can be extended
to full permutations of A arbitrarily. Since, in the class-2 rook coloring, we can arrange
the missing A-colors to match these missing-color permutations, we can now recolor each
(2m − 2)-colored bishop edge with the common missing rook color at its endpoints, thus
eliminating 2m− 2 as a bishop color. So now the two colorings combine to give a coloring
of Qm,n with color count equal to ∆(Bm,n)− 1 + ∆(Rm,n) + 1, which is ∆(Qm,n).

We will use Proposition 4.3 to obtain an infinite family of queen class-1 colorings, but
first we need careful analysis of the rings B̂m,n. For general rings there is a beautiful exact
formula due to Rothschild and Stemple and, independently, Gallai (see [20, Thm. 6.3]).

Theorem 4.4 (Ring Chromatic Index). Let G be a ring with n vertices; then χ′(G) =

max
(

∆(G),
⌈
ne(G)
bn/2c

⌉)
.

Proof. If G is a ring, but not a multipath, this is exactly the formula of Rothschild et al.
For a multipath, χ′(G) = ∆(G) (Lemma 4.6), and it is not hard to see that ∆(G) ≥⌈
ne(G)
bn/2c

⌉
.
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For the regular ring Cm,a of length m with a edges in each group, this reduces to⌈
2am
m−1

⌉
; we here present a direct proof of the regular case that is slightly different from

the proof in [20] as it avoids induction. Recall also the two classic upper bounds for multi-
graphs: Vizing’s bound is χ′(G) ≤ ∆(G) + µ+(G) and Shannon’s bound is χ′(G) ≤⌊

3
2∆(G)

⌋
.

Proposition 4.5 (Regular Ring Chromatic Index). χ′(Cm,a) =
⌈

2am
m−1

⌉
.

Proof. View Cm,a as a collection of a simple cycles and partition them into groups of size
k = (m−1)/2, or less for the last group. Each group can be edge-colored using two colors
for each cycle plus one extra color that is used on all the cycles in the group, spreading the
extra color around a maximum matching in the m-cycle so that the edges with this extra
color are disjoint (Fig. 9). The total color count is 2a +

⌈
a
k

⌉
, which equals

⌈
am
k

⌉
, as in

the Proposition. This upper bound is sharp because ρ(Cm,a) = k. If the color count was
less than the upper bound, the edge count would be at most k

(⌈
a
k

⌉
+ 2a− 1

)
; using the

identity k
⌈
a
k

⌉
≤ a+k−1 simplifies this toma−1, one less than the number of edges.

Figure 9: The regular ring C9,9 (shown split apart into 9 cycles) can be edge-colored using
21 colors. Each cycle gets 2 colors (for 18), with three shared colors (one for each group
of four or less; red, green, blue) each placed in a matching.

If m is even, then χ′(m, a) = 2a, but this is irrelevant to our work. More important
here is the simple case of a multipath.

Lemma 4.6. If G is a multipath, then χ′(G) = ∆(G).

Proof. Enumerate the edges in the order they appear in the path as {ei} and assign color i
(mod ∆) to ei.
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The preceding cases lead to a simple upper bound for any ring (this also follows from
Theorem 4.4 and the easily proved

⌈
ne

k

⌉
≤ ∆ +

⌈
µ−

k

⌉
).

Corollary 4.7 (Ring Chromatic Index Bound). Let G be any ring with vertex count m.
Then χ′(G) ≤ χ′(Cm,µ−) + ∆(G) − 2µ−. Using k for 1

2 (m − 1) as usual, this becomes

χ′(G) ≤
⌈
µ−

k

⌉
+ 2µ− + ∆(G)− 2µ− = ∆(G) +

⌈
µ−

k

⌉
.

Proof. Split G into the regular “kernel” — the ring Cm,µ− — and the “residual”, which
is a multipath (because kernel removal leaves a 0 multiplicity) and so has chromatic index
∆(G) − 2µ− by Lemma 4.6. The kernel is colorable as in the Regular Ring Chromatic
Index Theorem, and summing the two yields the claimed bound.

Compare the preceding bound to the general Vizing bound: χ′ ≤ ∆ + µ+. For rings,
χ′ ≤ ∆ +

⌊
µ−

k

⌋
. The values µ±(B̂m,n) do not differ by much (in general of course they

can differ arbitrarily), but division by k is a big improvement. Recall the trivial lower bound⌈
ne(G)
ρ(G)

⌉
≤ χ′(G). For our bishop rings this becomes

⌈
σ(B̂m,n

k

⌉
≤ χ′(B̂m,n. In fact, it

appears that this lower bound is always equal to the chromatic index of the derived ring.
We have checked this for m ≤ 19 and n ≤ 199. The computation is simplified by the use
of Theorem 4.4 to compute χ′; by that theorem, the conjecture follows from ∆ ≤

⌈σm,n

k

⌉
for the bishop rings, and this is easy to check.

Conjecture 4.8. χ′(B̂m,n) =
⌈σm,n

k

⌉
.

There are many many patterns in the data one can compute for the derived ring of
Bm,n; key parameters are the total edge count σ, the minimum multiplicity µ−, and the
maximum degree ∆. The next conjecture summarizes the results of many computations.
Figure 10 presents some evidence for Conjecture 4.9, and also shows the periodicity in the
edge counts of B̂m,n that appears to arise in all cases.

Conjecture 4.9. For oddm, n, withm ≤ n, 1
2mn−( 1

2m
2−1) ≤ σm,n ≤ 1

2mn−
1
4 (m2 +

1).

4.2 The fine structure of the canonical bishop coloring

We can use the color-sharing theorem and a detailed study of the properties of the last color
in the canonical bishop coloring to prove the queen coloring result of Theorem 4.1.

Proof of Theorem 4.1. Since we have already shown that Qm,n is class 1 if either m or n
is even, we assume m and n are odd and write m = 2k+1. Recall (Thm. 2.3) that in Bm,n
only two colors (one of them being cyan) were needed to color all special paths. As we are
at liberty to start each special path with either color, we assume that no special path starts
with cyan.

Let C be the set of cyan edges in all special paths. Because k and m are relatively
prime, the derived multigraph is a ring. The following result will yield Theorem 4.1 as
a consequence of the ring-and-ladder method (Proposition 4.3) and the Ring Chromatic
Index Bound (Cor. 4.7). It is not hard to see that n−2k ≤ ∆(B̂m,n). Proposition 4.10, the
final step in the proof, puts an upper bound on the maximum degree; so we see that, as m
is fixed and n rises, the derived ring is close to being regular.
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Figure 10: Computed values of σm,n − mn
2 , where m = 11 and with the red lines being

− 1
4 (m2 + 1) (upper) and 1 − 1

2m
2 (lower). This illustrates the bounds of Conjecture 4.9.

Also note the periodicity of this reduced data set with period m2 − 1 (dashed blue line).

Proposition 4.10. Whenm and n are odd,m ≤ n,m = 2k+1, we have ∆(B̂m,n) ≤ n−k.

We can then complete the proof of Theorem 4.1 as follows. For any ring G, µ−(G) ≤
1
2∆(G), so by Corollary 4.7 we have χ′(B̂m,n) ≤ dn − k + n−k

2k e. By assumption, n ≤
1
2 (m2 − 3m + 2) = k(2k − 1), and therefore n−k

2k ≤ k − 1 so that dn−k2k e ≤ k − 1 and
χ′(B̂m,n) ≤ n− 1. Proposition 4.3 now concludes the proof.

We now prove Proposition 4.10, starting with some definitions: call the leftmost vertex
of a special path in a bishop graph an initial vertex and let `(i, j) be the length (i.e., edge
count) of the special path that starts at the initial vertex (i, j). Furthermore, call an initial
vertex (i, j) for which `(i, j) is even an even vertex and one for which `(i, j) is odd an odd
vertex. For bishop vertices v viewed as points in the plane, we use v ≤ w to mean that v is
first in the lexicographic ordering: vx ≤ wx − 1, or vx = wx and vy ≤ wy . We break the
proof into a series of claims.

Claim 4.11. Let I(j) be the number of initial vertices in row j, and letO(j) be the number
of odd vertices in row j. Then the degree of row j in B̂m,n is deg(j) = n− I(j)−O(m+
1− j).

Proof. Note that the degree of a vertex in B̂m,n is the number of bishop vertices in the row
represented by the multigraph vertex that are incident with an edge in C. Every vertex in
Bm,n that is not an endpoint of a special path lies on a cyan edge, so is counted toward the
degree of the row in which it sits. Because we have arranged for all paths to start on the left
without cyan, we eliminate all initial vertices in the row from the count; we also eliminate
all vertices in the row that terminate an odd-length path, as they will not be incident with a
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cyan edge. Note that π(i, j) = (n + 1− i,m + 1− j), a vertical reflection followed by a
horizontal reflection, is an automorphism of Bm,n that takes special paths to special paths
(and odd length special paths to odd length special paths). Therefore if v is an odd terminal
point of path p, π(v) is an odd vertex beginning path π[p]. Thus the number of vertices in
row j that terminate an odd-length path is the same as the number of odd (initial) vertices
in row m+ 1− j, and the claim follows.

Claim 4.12. I(j) = k + 1 for j ≤ k; I(j) = k for j > k.

Proof. This follows from the fact that the set of initial points of all special paths is {(i, j) :
(i, j) ≤ (k + 1, k)}; see Figure 11.
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Figure 11: The values of I(j) for B7,15 are 4, 4, 4, 3, 3, 3 (Claim 4.12); these are all the
vertices lexicographically below or equal to (4, 3). The yellow vertices are even, the blue
ones odd.

Claim 4.13. There is at least one even vertex and at least one odd vertex.

Proof. Because C is a matching, e = v/2 where e = |C| and v is the number of vertices
in Bm,n that are included in a C edge. But the vertices included in such an edge are those
that don’t begin a special path or terminate an odd-length special path. There are k(m+ 1)
vertices that begin a special path, so letting p be the number of odd vertices, we have
e = 1

2 (nm − k(m + 1) − p). Because nm is odd and k(m + 1) is even, this implies that
p must be odd, and thus there are an odd number of odd vertices, and hence also an odd
number of even vertices.

Claim 4.14. `(i, j) is the largest integer q such that qk + i+ b qk+j−1
m c ≤ n.

Proof. A special path moves k units to the right (i.e., from i to i + k) when it moves
upwards and k+1 units to the right when it moves downwards, and only moves downwards
if ck + j ≤ bm < (c+ 1)k + j, where c is the number of edges the path has moved along
thus far, and bm is any multiple ofm. Thus a path that starts at (i, j) and moves to the right
q edges ends at (i′, j′), where i′ = qk+ i+ b(qk+ j − 1)/mc, and the claim follows.



W. Jarnicki et al.: Properties, proved and conjectured, of Keller, Mycielski, and queen graphs 443

Claim 4.15. There is an initial vertex (i∗, j∗) < (k + 1, k) such that `(i, j) = `(1, 1) for
all (i, j) ≤ (i∗, j∗), and `(i, j) = `(1, 1)− 1 for all initial vertices (i, j) > (i∗, j∗).

Proof. See Figure 11 for an example where (i∗, j∗) = (2, 2). Let L = `(k + 1, k). It
follows easily from Claim 4.14 that `(i, j) is decreasing with respect to lexicographic order;
that is, (i, j) ≤ (i′, j′) implies `(i, j) ≥ `(i′, j′). Thus L ≤ `(1, 1), and the inequality must
be strict by Claim 4.13. Also, by Claim 4.14, we have that `(1, 1) is the largest integer q
such that qk+b qkm c ≤ n−1, while L is the largest integer q such that qk+k+b qk+k−1

m c =

(q+1)k+b (q+1)k−1
m c ≤ n−1. This implies that `(1, 1) ≤ L+1. ThusL ≤ `(1, 1) ≤ L+1,

and the claim follows. More precisely, (i∗, j∗) is the smaller of the largest even initial point
and largest odd initial point, where comparisons are lexicographic.

Claim 4.16. If `(1, 1) is odd, ∆(B̂m,n) ≤ n− k.

Proof. If `(1, 1) is odd, Claim 4.15 implies that the odd vertices are all (i, j) ≤ (i∗, j∗).
Thus

O(j) =

{
i∗ if j ≤ j∗

i∗ − 1 if j > j∗

Then

O(m+ 1− j) =

{
i∗ − 1 if j < m+ 1− j∗

i∗ if j ≥ m+ 1− j∗

By Claim 4.12, we therefore have

I(j) +O(m+ 1− j) =


i∗ + k if j ≤ min(k + 1,m+ 1− j∗)
i∗ + k − 1 if k + 1 ≤ j < m+ 1− j∗

i∗ + k + 1 if m+ 1− j∗ ≤ j < k + 1

i∗ + k if j ≥ max(k + 1,m+ 1− j∗)

Thus ∆(B̂m,n) ≤ n − k − i∗ + 1 by Claim 4.11, and because i∗ ≥ 1, n − k − i∗ + 1 ≤
n− k.

We complete the proof of Proposition 4.10, and thus Theorem 4.1, with:

Claim 4.17. If `(1, 1) is even, ∆(B̂m,n) ≤ n− k.

Proof. If `(1, 1) is even, Claim 4.15 implies that the odd vertices are all (i, j) such that
(i∗, j∗) < (i, j) ≤ (k + 1, k). Thus

O(j) =


k + 1− i∗ if j ≤ min (j∗, k)

k − i∗ if k < j ≤ j∗

k + 2− i∗ if j∗ < j ≤ k
k + 1− i∗ if j > max(j∗, k)

Then

O(m+ 1− j) =


k + 1− i∗ if j < m+ 1−max(j∗, k)

k + 2− i∗ if m+ 1− k = k + 2 ≤ j < m+ 1− j∗

k − i∗ if m+ 1− j∗ ≤ j < k + 2

k + 1− i∗ if j ≥ m+ 1−min(j∗, k)
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By Claim 4.12, we therefore have

I(j) +O(m+ 1− j) =



m− i∗ + 1 if j < m+ 1−max(j∗, k) and j ≤ k
m− i∗ if j < m+ 1−max(j∗, k) and j > k

m− i∗ + 1 if k + 2 ≤ j < m+ 1− j∗

m− i∗ if m+ 1− j∗ ≤ j ≤ k
m− i∗ − 1 if m+ 1− j∗ ≤ j = k + 1

m− i∗ if j ≥ m+ 1−min(j∗, k)

Note that if i∗ = k + 1, j∗ must be less than k (by Claim 4.13), and thus the fifth of these
cases (m + 1 − j∗ ≤ k + 1) cannot occur. In that case, ∆(B̂m,n) ≤ n − m + i∗ =

n − m + k + 1 = n − k by Claim 4.11. If i∗ < k + 1, we similarly have ∆(B̂m,n) ≤
n−m+ i∗ + 1 ≤ n− k, and the claim follows.

4.3 Limits to the ring-and-ladder method

The quadratic lower bound, n ≥ 1
2 (m2 − 3m + 4), for class-2 queen graphs of Theorem

4.1 provides substantial support for the queen chromatic index conjecture (Conjecture 3.2).
Assuming the truth of Conjecture 4.8, we can improve the bound slightly, likely up to
1
2 (m2 + 2m− 3), but the ring-and-ladder method will not reach beyond a quadratic bound
and thus will not settle the full Conjecture 3.2. For suppose that 2m − 1 ≤ n; then the
number of major vertices inBm,n ismn−2m(m−1)+2k+4

∑k−1
i=1 i = mn−(3m+1)k;

therefore, for such n, any bishop color class from a class-1 coloring must have size at least
a = 1

2 (mn − (3m + 1)k − 1) + 1. Now suppose that χ′(B̂m,n) ≤ n − 1; then B̂m,n is
covered by at most n − 1 matchings, each of size at most k, and thus B̂m,n can have at
most b = k(n − 1) edges. But this is the same as the size of the (2m − 2)-color class, so
we must have a ≤ b, which simplifies to n ≤ 3

2m
2 − 2m − 1

2 . In fact, assuming the truth
of Conjecture 4.9, the ring-and-ladder method can only work up to about m2. For then
σm,n ≥ 1

2mn+ 1− 1
2m

2. Therefore χ′(B̂m,n) ≥ ( 1
2mn+ 1− 1

2m
2)/k. Now for this to

be at most n− 1 means n ≤ m2 −m− 1, so this is a likely bound for the ring-and-ladder
method.

Thus a quadratic bound is the best we can achieve with our methods, and a proof of
Conjecture 3.2 would seem to require an altogether different approach of even greater in-
tricacy. This highlights the surprising difficulty of the Vizing classification problem for
queen graphs. It is well known that the general classification problem is NP − complete
([20, p. 18]), but one would expect that queen graphs — being a union of rook and bishop
graphs whose classifications are relatively straightforward — would be amenable to a com-
plete classification. So as we leave behind the quadratic bound obtained here, it is hard
to resist the thought that we may be entering terrain of intractable complexity. If so, the
computational evidence supporting Conjecture 3.2 seems all the more remarkable and may
be the best we can hope for.

5 Mycielski graphs
The Mycielskian µ(G) of a graph G with vertex set X is an extension of G to the vertex
set X ∪ Y ∪ {z}, where |Y | = |X| and with new edges z ·−· yi for all i and xi ·−· yj for
each edge xi ·−· xj in G (see Fig. 12). The Mycielski graphs Mn are formed by iterating
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µ on the singleton graph M1, but ignoring the isolated vertex that arises in µ(M1). Thus
M1 = K1, M2 = K2, M3 = C5, and M4 is the Grötzsch graph (Fig. 13). They are of
interest because Mn is a triangle-free graph of chromatic number n having the smallest
possible vertex count. Fisher et al. [8] proved that ifG is Hamiltonian, then so is µ(G). We
extend that to a Hamilton-connected (HC) result, provided nv(G) is odd. This is sufficient
to show that all Mycielski graphs Mn, except M3 = C5, are HC.

��

�

�
��

�

Figure 12: The Mycielskian of the 6-path formed by the lowest six vertices.

Figure 13: A Hamiltonian cycle in the Mycielski graph M4, which is the Grötzsch graph.

The key result is the following.

Theorem 5.1. If G is an odd cycle, then µ(G) is Hamilton-connected.

We will prove this shortly; note that it yields the fact that µ preserves HC for graphs
with an odd number of vertices.

Corollary 5.2. If G is Hamilton-connected and nv(G) is odd, then µ(G) is Hamilton-
connected.

Proof. We may skip the trivial case that G has one vertex. Therefore G is Hamiltonian,
with Hamiltonian cycleC. Since µ(G) contains µ(C) as an edge subgraph, and since µ(G)
is HC by Theorem 5.1, so is µ(G).

Theorem 5.1 does not extend to the even case.

Proposition 5.3. If G is an even cycle, then µ(G) is not HC.

Proof. It is easy to use parity to show that there is no Hamiltonian path from any vertex in
X to z. This is because such a path can get to z only from Y , and hence must alternate
from X to Y ; but then if the path starts at x1 it can never visit xi, where i is even.
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Even cycles are not HC, so the negative result for even cycles does not mean that HC-
preservation fails in general for even graphs (an exception being K2: µ(K2) is a 5-cycle,
which is not HC, even though K2 is HC). Computations support the following strengthen-
ing of Corollary 5.2, but some new ideas are needed.

Conjecture 5.4. IfG is Hamilton-connected and notK2, then µ(G) is Hamilton-connected.

Easy computation shows thatM4, the 11-vertex Grötzsch graph, is HC and so Corollary
5.2 means that all Mycielski graphs are HC, except the 5-cycle M3.

Corollary 5.5. The Mycielski graph Mn is Hamilton-connected iff n 6= 3.

The stronger assertion that µ(G) is HC wheneverG is Hamiltonian is false. Counterex-
amples include C4,K3,3,K1,1,2,Grid2,3. Indeed, the first two here are Hamilton-laceable,
but their Mycielskians are not HC.

Proof of Theorem 5.1. Assume that the cycle G has n vertices, given in cyclic order as
X = {xi}, where n is odd. Then µ(G) has as vertices X , and also Y = {yi} and a single
vertex z. The subgraph corresponding to Y ∪ {z} forms a K1,n. Then, as in [8], we have
the following Hamiltonian cycle in µ(G) (see Fig. 14):

C = y1 ·−·x2 ·−·y3 ·−·x4 ·−· · · ·
· · · ·−·xn−1 ·−·yn ·−·x1 ·−·xn ·−·yn−1 ·−· · · · ·−·y4 ·−·x3 ·−·y2 ·−·z ·−·y1

��

�� �� �� �� �� ��

�� �� �� �� �� �� ��

�

Figure 14: A Hamiltonian cycle in the Mycielskian of an odd cycle {xi}.

Now consider any two distinct vertices A,B of µ(G).

Case 1. A·−·B is an edge in µ(G).
It suffices to show that there is a Hamiltonian cycle containing A·−·B. By symmetry,

we may assume A ·−· B is one of x1 ·−· xn, x1 ·−· yn, or y1 ·−· z. In all cases cycle C
above contains the edge.

Case 2. A·−·B is not an edge of µ(G).

Case 2.1. {A,B} ⊂ X; say xi, xj .
Without loss of generality, assume i = 1. The same proof works for both even and

odd j. Zigzag up from x1 until yj−1 is reached (when reaching the end, carry on at the
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beginning in the obvious way). Then jump via z to yn and zigzag left (past y1 if necessary)
until xj is reached. Formally:

x1 ·−·y2 ·−·x3 ·−· · · · ·−·yj−1 ·−·z ·−·yn ·−·xn−1 ·−·yn−2 ·−· · · · ·−·xj .
Figure 15 shows how this works when j is even, followed by the odd j case.

�� �� �����

�� �� ����

Figure 15: Typical Hamiltonian paths from X to X .

Case 2.2. A ∈ X and B ∈ Y .
Assume A = x1 and B = yj . Then x1 ·−·xj is a nonedge in G. If j is even: Zigzag up

to xj−1 ·−· xj then zigzag to yn ·−· z ·−· yj−1 and zigzag left and through y1 to the target
xj , as in Figure 16.

�� �� �����

Figure 16: A typical Hamiltonian path from X to an even vertex in Y .

If j is odd, zigzag up to xj then left to xj−1 and down through y1 to yj+1, then up to z
and yn and zigzag down to the finish at yj , as in Figure 17. This works fine even if j = n.

Case 2.3. A ∈ X and B = z.
Assume A = x1. Zigzag through to yn and then finish up at z:

x1 ·−·y2 ·−·x3 ·−·y4 ·−·x5 ·−·y6 ·−· · · ·
· · · ·−·xn ·−·y1 ·−·x2 ·−·y3 ·−·x4 ·−·y5 ·−· · · · ·−·yn ·−·z;
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Figure 17: A typical Hamiltonian path from X to an odd vertex in Y .

Figure 18: A typical Hamiltonian path from X to z.

see Figure 18.

Case 2.4. {A,B} ⊂ Y .
Assume first that A = y1 and B = yj , with j even.

�� �� �����

Figure 19: A typical Hamiltonian path from a vertex in Y to a vertex of different parity
in Y .

Zigzag up from y1 to yj−1, then up to z and down to yn, then back to x1 and zigzag up
to xj−1, then to xj and zigzag up to xn−1, then xn and zigzag down to yj . See Figure 19.
Formally:

y1 ·−·x2 ·−·y3 ·−· · · · ·−·yj−1 ·−·z ·−·yn ·−·x1 ·−·y2 ·−·x3 ·−· · · ·
· · · ·−·xj−1 ·−·xj ·−·yj+1 ·−·xj+2 ·−· · · · ·−·xn−1 ·−·xn ·−·yn−1 ·−·xn−2 · · · ·−·yj

Finally assume j is odd. Zigzag from y1 to xj−1, then back to xj−2 and zigzag down to
x1 and up to yn, then up to z, down to yj−1, and zigzag up to xn, then back to xn−1 and
zigzag to yj ; see Figure 20. This completes the proof.
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�� �� ����

Figure 20: A typical Hamiltonian path from a vertex in Y to a vertex of the same parity
in Y .

The proof technique does not work directly to settle the even case. But we have barely
used the edges in G; because G is assumed HC, there might be a way to use more of those
edges to extend Corollary 5.2 to all graphs, proving Conjecture 5.4. Computation also
leads to a conjecture about edge coloring. All the Mycielski graphs (except M3) are class 1
because of Fournier’s theorem (§1); forM4 and beyond, z is the unique vertex of maximum
degree. But perhaps much more is true: computation supports the following conjecture.

Conjecture 5.6. For any graph G other than K2, µ(G) is class 1.

6 Keller graphs

The Keller graph Gd of dimension d is defined as follows [6, 21]: the 4d vertices are all
d-tuples from {0, 1, 2, 3}. Two tuples form an edge if they differ in at least two coordinates
and if in at least one coordinate the difference of the entries is 2 (mod 4). We ignore
G1, which simply consists of four isolated points. These graphs are vertex transitive and
therefore regular; it is easy to work out the degree of Gd, which is 4d − 3d − d. The graph
G2 is also known as the Clebsch graph. The Keller graphs play a critical role in the Keller
conjecture [6], which, in its unrestricted form, states that any tiling of Rd by unit cubes
contains two cubes that meet face-to-face. This conjecture is closely related to ω(Gd). The
value of ω(Gd) is known for all d: when d ≥ 8, ω(Gd) = 2d, while ω(Gd) < 2d for d ≤ 7
(Table 2; see [6]). These ω values imply that the Keller conjecture with the restriction that
all cube centers involve only integers or half-integers is true for d ≤ 7 and false for d ≥ 8.
The unrestricted Keller conjecture is known to be true for d ≤ 6 and false for d ≥ 8, but is
unresolved in R7.

Note thatGd always admits a 2d-vertex coloring, defined this way: There are 2d vertices
using only 0s and 2s; they each receive a distinct color. Give any other vertex (vi) the same
color as

(
2
⌊
vi
2

⌋)
; the “differ by 2” condition is never satisfied by both vertices (vi) and(

2
⌊
vi
2

⌋)
. Therefore χ(Gd) ≤ 2d (proved independently by Fung [11] and Debroni et al.

[6]). This coloring is also implicit in the proof of Theorem 6.4 below: the 0-and-2 set is the
diagonal of the array shown. We will show in Corollary 6.5 that this coloring is optimal for
all d.

A classic theorem of Dirac [2, Thm. 4.3] states that a graph with minimum degree
greater or equal to nv/2 is Hamiltonian; this applies to Gd when d ≥ 3. We can give an
explicit Hamiltonian cycle for all Keller graphs.
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Theorem 6.1. All Keller graphs are Hamiltonian.

Proof. For G2, a Hamiltonian cycle is

(00, 23, 01, 20, 02, 21, 03, 22, 10, 33, 11, 30, 12, 31, 13, 32).

This ordering alternates 0 and 2 in the first coordinate for the first half, and then 1 and
3. And in the second coordinate, the leading 0s and 1s are matched, in order, with 0, 1,
2, 3, and the 2s and 3s with 3, 0, 1, 2. For larger d, just append vectors to the scheme
for G2, thus: (00X, 23X, 01X, . . . , 13X, 32X, 00Y, 23Y, . . .), where X,Y, . . . exhaust all
tuples in Zd−2

4 . This repetition still yields a cycle and because all vertices are included, it
is Hamiltonian.

Another classic result [15] states that if the minimum degree of G is greater than or
equal to 1

2 (nv + 1), then G is Hamilton-connected. The condition holds for Gd when
d ≥ 3 and a simple computation using an algorithm described in [7] verifies that G2 is
Hamilton-connected, so all Keller graphs are HC.

The Keller graphs are vertex-transitive and so provide an infinite family of examples
for the conjecture in [7] that vertex-transitive, Hamiltonian graphs — except cycles and
the dodecahedral graph — are HC. Computations also support the conjecture that Keller
graphs have Hamiltonian decompositions (meaning that the edges can be partitioned into
disjoint Hamiltonian cycles, plus a perfect matching if the degree is odd; see Fig. 21 for
such a decomposition of G2). We found Hamiltonian decompositions up through G6 and
conjecture that they exist for all Keller graphs. Table 1 shows such a decomposition for
G3: 17 Hamiltonian cycles.

Figure 21: A Hamiltonian decomposition of G2, also known as the Clebsch graph: two
Hamiltonian cycles (red, blue) and one perfect matching (black). The gray vertices are a
maximum independent set.

Conjecture 6.2. All Keller graphs have a Hamiltonian decomposition.

Conjecture 6.2 is related to deep work of Kühn et al. [12, 5]. Theorem 1.7 of [12]
implies that for sufficiently large odd d, there is a Hamilton decomposition of Gd, while
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 27 54 26 46 30 45 9 22 58 43 25 24 44 59 37 62
2 9 32 62 60 36 19 31 31 19 53 49 19 1 50 35 22

45 50 27 55 38 54 8 17 52 48 44 58 33 11 25 1 61
21 42 60 20 20 8 49 62 46 59 52 12 23 16 63 51 7
46 48 14 49 53 2 30 29 15 32 62 18 28 40 16 43 21
16 17 56 15 14 32 21 50 41 11 6 44 51 19 41 50 55
53 41 42 52 16 56 15 56 5 29 12 14 21 26 3 24 16
7 34 1 19 51 22 39 27 3 22 40 39 57 63 17 46 58

28 59 40 25 29 44 33 49 34 40 17 46 43 49 15 32 27
62 49 33 51 39 9 12 7 40 30 56 22 9 21 45 10 17
8 23 26 9 12 7 7 38 49 24 29 51 2 52 31 12 35

39 25 57 39 2 42 40 32 56 2 36 31 59 27 36 21 59
17 16 20 13 33 3 50 8 30 26 5 21 22 5 9 3 41
47 62 29 42 25 58 22 18 4 54 42 59 16 39 46 8 19
1 7 52 33 52 23 4 52 18 27 51 61 6 60 55 47 54

27 43 12 47 58 29 43 45 42 3 18 35 56 31 28 2 18
48 13 34 3 17 5 61 54 19 13 24 4 34 4 18 16 53
25 46 10 61 42 46 52 47 57 51 35 42 13 46 60 59 12
32 37 45 16 35 6 34 22 16 61 9 16 54 7 22 45 50
42 14 22 43 41 52 14 13 26 31 38 56 46 57 53 5 28
24 4 58 45 18 63 42 63 28 53 61 1 3 29 47 34 49
10 63 18 14 9 17 9 5 61 46 25 10 53 58 6 9 43
51 53 48 41 59 60 17 35 27 10 3 43 17 32 30 19 37
40 26 24 31 26 21 54 15 29 4 57 17 10 22 39 56 31
13 36 63 7 56 39 25 1 59 38 15 24 37 55 11 23 48
37 18 36 37 28 28 58 25 33 28 20 34 4 61 42 30 26
19 32 50 59 6 59 36 11 58 34 54 15 60 17 2 58 60
29 15 16 23 13 20 3 53 2 1 16 33 25 51 40 48 42
43 5 9 63 31 50 26 59 60 43 30 6 7 33 58 22 6
3 40 47 6 50 57 44 19 23 18 48 48 32 43 8 52 20

33 3 5 36 21 24 2 60 13 57 46 57 12 48 44 42 63
4 29 30 10 27 61 35 20 32 35 23 63 38 8 62 49 33

34 6 55 60 63 15 56 61 50 49 37 37 5 38 56 26 9
26 8 19 58 54 25 51 23 11 41 28 47 31 3 20 17 32
50 22 49 34 15 34 53 57 47 12 4 52 39 59 51 11 5
52 28 3 27 22 43 27 55 38 62 58 28 49 25 27 38 51
23 57 44 50 36 12 57 33 24 21 31 36 47 18 35 15 23
9 51 7 4 11 26 1 24 51 56 59 8 55 62 7 53 45

49 58 41 32 49 51 23 3 37 25 1 41 18 53 29 25 1
31 24 23 30 55 45 47 37 8 39 8 27 27 24 49 55 36
56 60 17 53 45 4 20 44 45 63 26 45 62 6 24 27 2
18 54 59 29 3 41 46 42 53 7 55 7 40 15 32 13 25
59 61 13 38 10 55 28 28 39 14 13 13 48 9 43 36 47
30 47 21 1 48 37 63 58 6 5 19 20 41 37 19 7 29
54 12 28 46 23 27 18 21 44 33 63 26 1 2 5 60 4
14 55 53 56 44 16 10 43 10 8 21 32 58 28 23 29 15
38 1 35 2 5 49 41 2 20 16 47 3 44 10 12 63 40
63 39 25 57 43 18 13 48 48 52 7 9 50 56 37 41 46
22 10 31 17 8 11 11 14 9 17 33 40 8 54 1 39 11
57 19 38 8 34 33 48 36 63 50 27 54 42 23 26 44 34
11 21 62 35 7 13 29 46 1 23 2 29 36 14 61 4 44
44 11 39 12 30 53 37 12 7 15 39 55 15 35 21 62 13
15 35 61 22 37 19 62 30 17 42 45 5 29 13 14 20 52
55 45 4 24 61 1 32 51 55 20 11 62 35 47 33 18 24
60 38 2 54 19 31 6 41 14 44 41 23 26 41 10 61 14
6 44 46 44 62 62 31 6 43 55 32 53 52 50 52 6 8

35 30 8 21 24 48 55 34 25 9 14 60 14 30 38 40 30
58 52 51 48 1 38 24 16 62 45 22 30 20 20 13 14 57
20 2 11 28 32 40 59 10 36 6 49 38 45 34 4 28 39
12 20 37 5 57 35 5 40 12 37 10 2 63 36 54 54 3
5 31 15 11 47 10 60 26 54 60 50 11 30 45 48 31 56

61 33 43 40 4 47 16 4 21 36 60 19 61 12 34 57 38
36 56 6 18 40 14 38 39 35 47 34 50 11 42 57 33 10

Table 1: A decomposition of G3 into 17 Hamiltonian cycles. The vertices are encoded,
using base 4, by integers from 0 to 63. Because ∆ = 34, there are 17 Hamiltonian cycles.
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the improvement in [5, Thm. 1.1.3] handles the even case too. So for sufficiently large d,
Gd is known to have a Hamiltonian decomposition.

Our algorithm for finding these decompositions starts with the simple idea of trying
random class-1 colorings (obtained by using the methods of Vizing and Kempe on a random
permutation of the graph) and checking to see if the color-sets, which are matchings, can be
paired up to form the desired cycles; the pairing is generally done using the classic blossom
algorithm of Edmonds. A more sophisticated approach is needed for large cases such asG5

and G6. We again start with a class-1 coloring, but then apply Kempe switches in the hope
of obtaining pairs of matchings that link to form cycles. The heuristic used to decide which
Kempe switches to make is a scoring function that compares the number of Hamiltonian
cycles obtainable by pairing up matchings (primary key), the minimum number of cycles
a pair of remaining matchings produces (secondary key), and the total number of cycles
that all pairs of remaining matchings produce (tertiary key). Additionally, a Hamiltonian
decomposition of a significant part of the edges of G6 can be effectively constructed from
a decomposition of G5. Therefore, to find a decomposition of G6, we first find one for G5.
We then apply the local search method using the heuristic function described above, but
only to the subgraph of G6 consisting of the uncovered edges.

Although it seemed plausible that connected, vertex-transitive graphs always have
Hamiltonian decompositions (excluding a few small examples), that was recently shown
by Bryant and Dean [3] to be false. An even stronger property is that of having a perfect
1-factorization: a collection of matchings such that any two form a Hamiltonian cycle.
That is a much more difficult subject — it is unresolved even for complete graphs — and
all we can say is that an exhaustive search established that G2 does not have a perfect 1-
factorization. In the other direction, a weaker conjecture than the false one just mentioned
is that all vertex-transitive graphs with even order are class 1 except the Petersen graph and
the triangle-replaced Petersen graph; no counterexample is known.

Note that an even-order graph with a Hamiltonian decomposition is necessarily class
1. One can show that all Keller graphs are class 1 by explicit computation up to G6 and
then calling on a famous theorem of Chetwynd and Hilton for the rest ([4]; see also [20,
Thm. 4.17]); their theorem applies to graphs for which ∆ > 1

2 (
√

7 − 1)nv , which holds
for G7 and beyond. But in fact there is a uniform and constructive way to present class-1
colorings of all Gd, which we now describe. Note that this result also follows from the
class-1 conjecture of the preceding paragraph.

Theorem 6.3. All Keller graphs are class 1.

Proof. All arithmetic here is mod 4. Call a vertex — a d-tuple — even if all entries are
even; otherwise odd. The class-1 coloring can be constructed explicitly as follows. Define
the color set S to consist of all vertices whose coordinates have at least one 2, but excluding
the d vectors consisting of just d− 1 0s and one 2. This set is a type of kernel: the set of all
differences u − v for edges v ·−· u. This set satisfies (1) |S| = ∆, and (2) for each vertex
v, its neighbors are v + S. Partition S into its even vectors, S0, and its odd ones, S1.

For each s ∈ S1, define an equivalence relation ∼s on the vertices: u ∼s v iff u− v is
a multiple of s. Each equivalence class has the form {v, v+ s, v+ 2s, v+ 3s}; because s is
odd, each such class has four distinct elements. Note that the collection of classes for s is
identical to the collection of classes for −s. For each s ∈ S1, define a choice set Cs for the
equivalence classes; use the lexicographically first vector in each class. Then Cs = C−s.

Define the edge coloring as follows (see Fig. 22). For each even color s ∈ S0, use it
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for all edges v ·−·v + s. Each s colors 1
2nv edges because v ·−·v ± s both get color s, but

are the same edge (because s = −s). So in all, this colors 1
2nv|S0| edges. For each odd

color s ∈ S1, use it for the edges v ·−·v + s and v + 2s·−·v + 3s, but, in both cases, only
for vertices v ∈ Cs. Because |Cs| = 1

4nv , each color applies to 1
2nv edges, and so the odd

colors taken together color 1
2nv|S1| edges. Thus the number of edges that are colored is

1
2nv(|S0|+ |S1|) = 1

2nv|S| =
1
2nv∆ = ne, the total number of edges.

Claim. Every edge receives only one color.

Proof. Given edge u ·−· w, let s = w − u. If s is even, then s = −s and this easily
yields the claim. The odd case is more delicate. Suppose u ·−· w is assigned color s;
then s = ±(w − u). We may assume s = w − u. If the edge is assigned another color
distinct from s, that color must therefore be −s. Now u and w are equivalent under both
relations ∼s and ∼−s. And the class representatives from Cs and C−s agree. This means
that u ·−·w must be one of the edges {v ·−· v + s, v + 2s ·−· v + 3s} and also one of the
edges {v ·−·v−s, v−2s·−·v−3s}. But the latter set equals {v+3s·−·v, v+s·−·v+2s},
which is disjoint from the first pair.

The claim and the fact that ne edges are colored means that every edge receives a color.
So it remains only to show that the coloring is proper. Suppose not. Then we have edges
u·−·w and u·−· y receiving the same color s. If s is even, this is not possible because the
edges would have to be of the form v ·−· v + s and v ·−· v − s, which are equal because
s = −s. Suppose s is odd and color s is assigned to edge u ·−· w. If u ∈ Cs, then
w = u + s; if u = v + s where v ∈ Cs, then w = v; if u = v + 2s where v ∈ Cs, then
w = v + 3s, and if u = v + 3s where v ∈ Cs, then w = v + 2s. In all cases there is only
one choice for w.
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Figure 22: The class-1 Keller coloring for the edges of G2, using five colors. The even
case has only one entry; S0 = {22}. The odd case has four colors and the four equivalence
classes of the full vertex set are shown, with the matchings within each class. Note that the
classes for ±s are the same sets (e.g., s = 12 and 32).

We can also investigate some familiar parameters for Keller graphs. The standard pa-
rameters α, θ, χ, and χfrac are defined in §1. Let θfrac be the fractional clique covering
number (same as χfrac of the complementary graph). Table 2 shows the known results,
including results proved here. It is clear that α(Gd) ≥ 2d since the tuples using only 0s
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Table 2: Properties of the Keller graphs Gd. The number of vertices of Gd is 4d and the
edge count is 1

24d(4d − 3d − d).

and 1s are independent. A larger independent set can exist, but only in G2, as Theorem 6.4
shows.

Theorem 6.4. The independence number of Gd is 2d, except that α (G2) = 5.

Proof. for d ≤ 5, this was known; direct computational methods work. The anomalous
case has maximum independent set {(0, 3), (1, 0), (1, 2), (1, 3), (2, 3)}; see Figure 21. For
d = 6 or 7, one can again use computation, but some efficiencies are needed since the
graphs are large. The graphs are vertex-transitive, so we may assume the first vertex is
in the largest independent set. Thus, if A consists of the first vertex together with its
neighbors, we can look at Hd, the subgraph of Gd generated by the vertices not in A. This
is substantially smaller, and we need only show that α(Hd) = 2d − 1. That can be done
by standard algorithms for finding independent sets; in Mathematica it takes a fraction of a
second to show that this is the case for H6 and only a few seconds to do the same for H7.

Now suppose d ≥ 8. Recall that it is known that ω(Gd) = 2d in this case (Mackey [14]
for d = 8; see [6, Thm. 4.2] for larger d). As in [6], place the vertex labels in a 2d×2d grid,
called the independence square. The row position of a tuple is computed by converting 0
or 1 to 0 and also converting 2 or 3 to 1 and then treating the result as a binary number. The
column position of a tuple is computed by converting 0 or 3 to 0 and also converting 1 or 2
to 1 and then interpreting this in binary. The array for G4 is shown in Table 3.

The tuples in the same row of the square form an independent set because, in each digit,
the value is always either 0 or 1, or it is 2 or 3. Therefore there is no position where the
difference is 2 (mod 4). Similarly, the tuples in a column form an independent set. The
independence square also proves that χ(Gd) ≤ 2d for any d.
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0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0003 0002 0013 0012 0103 0102 0113 0112 1003 1002 1013 1012 1103 1102 1113 1112
0030 0031 0020 0021 0130 0131 0120 0121 1030 1031 1020 1021 1130 1131 1120 1121
0033 0032 0023 0022 0133 0132 0123 0122 1033 1032 1023 1022 1133 1132 1123 1122
0300 0301 0310 0311 0200 0201 0210 0211 1300 1301 1310 1311 1200 1201 1210 1211
0303 0302 0313 0312 0203 0202 0213 0212 1303 1302 1313 1312 1203 1202 1213 1212
0330 0331 0320 0321 0230 0231 0220 0221 1330 1331 1320 1321 1230 1231 1220 1221
0333 0332 0323 0322 0233 0232 0223 0222 1333 1332 1323 1322 1233 1232 1223 1222
3000 3001 3010 3011 3100 3101 3110 3111 2000 2001 2010 2011 2100 2101 2110 2111
3003 3002 3013 3012 3103 3102 3113 3112 2003 2002 2013 2012 2103 2102 2113 2112
3030 3031 3020 3021 3130 3131 3120 3121 2030 2031 2020 2021 2130 2131 2120 2121
3033 3032 3023 3022 3133 3132 3123 3122 2033 2032 2023 2022 2133 2132 2123 2122
3300 3301 3310 3311 3200 3201 3210 3211 2300 2301 2310 2311 2200 2201 2210 2211
3303 3302 3313 3312 3203 3202 3213 3212 2303 2302 2313 2312 2203 2202 2213 2212
3330 3331 3320 3321 3230 3231 3220 3221 2330 2331 2320 2321 2230 2231 2220 2221
3333 3332 3323 3322 3233 3232 3223 3222 2333 2332 2323 2322 2233 2232 2223 2222

Table 3: The independence square for G4: each row and each column is an independent
set.

000 001 010 011 100 101 110 111
003 002 013 012 103 102 113 112
030 031 020 021 130 131 120 121
033 032 023 022 133 132 123 122
300 301 310 311 200 201 210 211
303 302 313 312 203 202 213 212
330 331 320 321 230 231 220 221
333 332 323 322 233 232 223 222

001 000 011 010 101 100 111 110
002 003 012 013 102 103 112 113
031 030 021 020 131 130 121 120
032 033 022 023 132 133 122 123
301 300 311 310 201 200 211 210
302 303 312 313 202 203 212 213
331 330 321 320 231 230 221 220
332 333 322 323 232 233 222 223

(a) (b)

Table 4: (a) The independence square for G3. (b) After application of the automorphism
defined by 001.

LetX be a clique of order 2d inGd. It has exactly one entry per row in the independence
square. Given a d-digit bit-string b, use it to define an associated automorphism of the
graph. In the positions where b has 0, leave the corresponding position of all the vertex
entries alone. In the places where b has 1, do the following in those positions: switch 1
and 0, and switch 2 and 3. This preserves adjacency because positions that are different in
value are still different and positions that differed by 2 (mod 4) still differ by 2 (mod 4).

If the bit string is 0011, then the first two columns stay the same and the last two
columns have the swaps: for example, 0213 becomes 0202. The complete action of the
automorphism on G3 using the bit-string 001 is shown in Table 4.

Note that this automorphism maps each row of the square to itself. The collection of
automorphisms that correspond to all 0-1 bit strings will map a 2d-clique of the Keller
graph to a partitioning of the vertices of the Keller graph into 2d disjoint cliques each of
size 2d. So θ(Gd) = 2d for such graphs.

Since any coloring of the graph can have at most one vertex per clique, for Keller graphs
that have a 2d clique (i.e., for d ≥ 8, which we have assumed), it is not possible to find an
independent set of size bigger than 2d.

Corollary 6.5. For all Keller graphs, χ(Gd) = 2d.
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1 113 130 232 300 312
2 110 131 212 320 332
3 100 121 202 310 322
4 021 033 203 220 301
5 031 112 133 303 311
6 012 020 132 213 230
7 013 032 111 223 231
8 011 030 201 233 313
9 010 022 200 221 302

10 003 101 122 323 331
11 001 103 120 321 333
12 000 023 102 210 222
13 002 123 211 330

Table 5: A covering of the 64 vertices of G3 by 13 disjoint complete subgraphs.

Proof. The constructive coloring at the beginning of the section gives 2d as an upper bound.
Theorem 6.4 gives 2d as a lower bound, because 4d/α(Gd) = 2d.

Fung [11, Cor. 6.7] observed that χ(Gd) = 2d for d ≥ 4, χ(G3) ≥ 7, and χ(G2) ≥ 3.
Corollary 6.5 establishes the validity of χ = 2d for all Keller graphs.

The graph G2 is an anomaly, with independence number 5. Because χfrac(G) = nv

α(G)

for vertex-transitive graphs (see [19]), we get the following result.

Corollary 6.6. If d ≥ 3, then χfrac(Gd) = 2d; χfrac(G2) = 16/5.

So for d ≥ 8, we have that each parameter α, χ, χfrac and ω equals 2d.
Computing θ(Gd) when d ≤ 7 is difficult. A general lower bound is

⌈
nV (H)
ω(H)

⌉
≤ θ(H),

which yields 8, 13, 22, 37, 69, 133, the lower bounds of Table 2 (note also that α ≤ θ); the
first three are sharp. But for 5 ≤ d ≤ 7, we do not know θ(Gd). For G5, we have only that
37 ≤ θ ≤ 40. because G2 has no triangles, it is clear that θ(G2) = 8. A 13-coloring of the
complement of G3 is shown in Table 5. Table 6 shows a covering of G4 by 22 cliques, the
method for which we will explain shortly. That same method found θ(G5) ≤ 40 (see Table
7). The values of θfrac in Table 2 arise from the vertex-transitive formula χfrac = nv/α on
the complement, which becomes nv/ω.

The method of getting a minimal clique covering for G4 uses backtracking and the
structure of the independence square (Table 3). As discussed, any clique cover for G4 has
at least 22 cliques. One way to search for a cover using 22 cliques is to use twenty 12-
cliques and two 8-cliques. So an initial goal was to search for 20 disjoint 12-cliques. The
complete set of all 86,012 12-cliques was generated. We then tried backtracking on these to
find a set of 20 pairwise disjoint cliques that could extend to a clique cover but the problem
size proved unmanageable. Many search paths would get stuck after including only 16 of
the 12-cliques. A second problem is that if after including the twenty 12-cliques, there is a
row or column in the independence square that is not covered k times, then it is necessary
to add at least k more cliques to complete the cover. So an auspicious selection of twenty
12-cliques should leave each row uncovered at most two times each.
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1 0233 1003 1020 1213 1221 1301 2101 3033 3113 3121 3312 3331
2 0013 0030 0200 1212 1220 1332 2012 2020 2100 3032 3202 3221
3 0100 0132 0212 0310 0333 1331 2010 2033 2131 2211 2223 3012
4 0223 0303 0331 1102 1121 1311 2123 2313 2330 3011 3103 3131
5 0101 1022 1103 1120 1302 1330 2222 3013 3021 3203 3220 3301
6 0001 0033 0113 1021 1211 1232 2000 2023 2213 3201 3233 3321
7 0111 0123 0203 0301 0322 1320 2001 2022 2120 2200 2232 3003
8 0302 1111 1132 1230 1310 1322 2030 3010 3022 3102 3200 3223
9 0003 0020 0122 0202 0230 1001 2113 2121 2201 2303 2320 3322

10 0011 0103 0131 0313 0330 1123 2002 2021 2203 2231 2323 3211
11 0110 1033 1112 1131 1313 1321 2233 3002 3030 3212 3231 3310
12 0012 0031 0133 0213 0221 1010 2102 2130 2210 2312 2331 3333
13 0220 1011 1023 1201 1222 1303 2103 3020 3101 3122 3300 3332
14 0000 0032 0120 0201 0222 1012 2110 2133 2212 2300 2332 3320
15 0231 1000 1032 1210 1233 1312 2112 3031 3110 3133 3311 3323
16 0121 0311 0332 1013 1101 1133 2221 2301 2333 3100 3123 3313
17 0002 0021 0211 1203 1231 1323 2003 2031 2111 3023 3213 3230
18 0232 0312 0320 1113 1130 1300 2132 2302 2321 3000 3112 3120
19 0010 0022 0102 1030 1200 1223 2011 2032 2202 3210 3222 3330
20 0130 0300 0323 1002 1110 1122 2230 2310 2322 3111 3132 3302
21 0112 0321 1100 1333 2122 2311 3130 3303
22 0023 0210 1031 1202 2013 2220 3001 3232

Table 6: A covering of the 256 vertices of G4 by 22 disjoint complete subgraphs.

To attempt to deal with both of these problems, the search was restricted to only cliques
that had certain subsets of the rows missing. After inspecting the subsets of rows that could
be missing from one of the cliques, the following selection was made (where the rows are
indexed by 0, 1, . . . , 15.

Group 1 Rows 0, 3, 12, and 15 are missing.

Group 2 Rows 1, 2, 13, and 14 are missing.

Group 3 Rows 4, 7, 8, and 11 are missing.

Group 4 Rows 5, 6, 9, and 10 are missing.

Backtracking on just these cliques led to several sets of twenty 12-cliques. A back-
tracking program was used to try to complete the clique cover, and this quickly led to a
solution (most of the sets of 20 do not extend to a clique cover of size 22 but it did not take
long to find one that did); see Table 6. The set of 20 that completed had 5 tuples from each
group meaning that each row was used exactly 15 times (and was missing once). Similar
ideas yielded the 44-clique for G5 (Table 7).

It is well-known (see [6, Thm. 4.2]) that a clique in Gd can be used to create a clique
twice as large in Gd+1 by making two copies of it, prefacing the first copy with the digit
0, adding 1 modulo 4 to each position of each tuple in the second copy, and then prefacing
each tuple in the second copy with the symbol 2. The clique also can be doubled using
digits 1 and 3 as the first digits instead of 0 and 2. To double a clique cover, start with each
clique C. Double C using first digits 0 and 2. Then double the clique C again using 1 and
3 as the initial digits. The original clique cover used all the d-tuples exactly once. For first
digit 0 and 1 it is easy to see that each tuple is used exactly once. Similarly for first digits 1
and 3, each tuple appears exactly once, because adding 11 . . . 1 to every tuple of dimension
d gives back the complete set of tuples in dimension d. This construction gives a clique
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cover in Gd+1 whose size is twice that of the cover of Gd. The 40-cover of G4 therefore
yields the upper bounds of 80 and 160 for the next two Keller graphs.

The success in finding clique covers whose size equals the lower bound suggests that
this holds true in the remaining three cases, d = 5, 6, and 7.

Conjecture 6.7. For all d, θ(Gd) =
⌈

4d

ω(Gd)

⌉
.

7 Conclusion
The first investigations for all our results involved computer experimentation. The pat-
terns that one finds by such work often lead to new observations, which can sometimes be
proved by classical methods. But one can be led astray. The assertion that all connected,
vertex-transitive graphs (except five small examples) have Hamilton decompositions was
conjectured to be true by Wagon based on extensive computations on over 100,000 graphs,
including all graphs of 30 or fewer vertices. But the assertion is now known to be false
[3]; however, the related conjecture [7] that all Hamiltonian vertex-transitive graphs are
Hamilton-connected (except cycles and the dodecahedral graph) is still open. Very gen-
eral conjectures such as these can be tricky; we believe that the more specific conjectures
presented here about queen graphs, Keller graphs, and the Mycielskian operation are quite
plausible and easier to contemplate.
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Abstract

It has been conjectured that automorphism groups of vertex-transitive (di)graphs, and
more generally 2-closures of transitive permutation groups, must necessarily possess a
fixed-point-free element of prime order, and thus a non-identity element with all orbits
of the same length, in other words, a semiregular element. The known affirmative answers
for graphs with primitive and quasiprimitive groups of automorphisms suggest that solvable
groups need to be considered if one is to hope for a complete solution of this conjecture. It
is the purpose of this paper to present an overview of known results and suggest possible
further lines of research towards a complete solution of the problem.

Keywords: Solvable group, semiregular automorphism, fixed-point-free automorphism, polycirculant
conjecture.

Math. Subj. Class.: 20B25, 05C25

1 Introduction
It is known that each finite transitive permutation group contains a fixed-point-free element
of prime power order (see [8, Theorem 1]), but not necessarily a fixed-point-free element
of prime order (which is equivalent to existence of a semiregular element) [2, 8]. In 1981 it
was asked if every vertex-transitive digraph admits a semiregular automorphism (see [18,
Problem 2.4]). The existence of such automorphisms plays an important role in solutions
to many important open problems in algebraic graph theory, such as, for example, in the
classifications of graphs satisfying certain prescribed symmetry conditions (see [15, 16,
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20, 22, 25]). Semiregular automorphisms have also proved useful in the long standing
hamiltonicity problem for connected vertex-transitive graphs and in a recently explored
dichotomy of even/odd automorphisms (see [1, 13, 17]).

In 1997 Klin generalized the semiregularity problem conjecturing that every transitive
2-closed permutation group contains a semiregular element (see [4]) – the term polycir-
culant conjecture is sometimes used for the semiregularity problem in this wider context.
(Recall that for a finite permutation group G on a set V the 2-closure G(2) of G is the
largest subgroup of the symmetric group Sym(V ) containing G and having the same orbits
as G in the induced action on V × V .) Both terms will be used throughout the paper, this
should cause no confusion. The problem has spurred a lot of interest in the mathematical
community producing several partial results – addressing graphs with valency and/or order
restrictions – with varying degrees of difficulties involved in their proofs (see for instance
[2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 19, 21, 23, 24]). Recently, Giudici, Potočnik and Verret [11]
considered the problem in the context of graphs whose automorphism group acts transitiv-
ity on edges and not necessarily on vertices. They proved that every regular edge-transitive
graph of valency three or four has a semiregular automorphism. Also, in 2003 Giudici [9]
proved the polycirculant conjecture for quasiprimitive groups, and in 2007 Giudici and
Xu [12] proved it for biquasiprimitive groups.

Since the automorphism group of a vertex-transitive graph is a transitive 2-closed group
these results imply that the only graphs for which the semiregularity problem has not yet
been settled are graphs whose automorphism groups contain a non-identity normal sub-
group with at least three orbits. Clearly, since disconnected vertex-transitive graphs must
contain semiregular automorphisms, we can restrict ourselves to connected graphs.

It is usually the case that algebraic graph theory problems dealing with group actions
on graphs are considerably harder to address for nonsolvable groups than for the solvable
ones. Such is the case, for example, with various types of classification problems for arc-
transitive graphs and vertex-transitive graphs in general. Counter-intuitively, this does not
seem to be the case with the polycirculant conjecture. While, as already mentioned it has
been proved that the polycirculant conjecture holds for quasiprimitive groups [9], nothing
of that nature is known for groups at the opposite end of the spectrum. For example,
solvable groups turned out to be the steepest hill to climb in the completion of the proof
that groups of square-free degree satisfy the polycirculant conjecture, see [5].

Our aim is to discuss possible ways of approaching the semiregularity problem for
solvable groups, trying to single out certain idiosyncrasies of this class of groups relevant
to the problem.

Problem 1.1. Does the 2-closure G(2) of a solvable group G contain a semiregular ele-
ment?

In Proposition 2.3 a partial solution to this problem is given for groups of degree mp2,
wherem < p is square-free. As a consequence a partial solution to existence of semiregular
automorphism in vertex-transitive graphs of order p2q, where p and q are primes, is shown
(see Theorem 2.4 and Corollary 2.5). Since disconnected vertex-transitive graphs clearly
contain semiregular automorphisms, the graphs considered in Section 2 are connected.

2 Searching for semiregular elements
First let us recall the definition of a pseudometric first defined in [5] where it was used as
one of the tools in proving the existence of semiregular elements in transitive permutation



D. Marušič: Semiregular automorphisms in vertex-transitive graphs with a solvable . . . 463

groups of square-free degree.
Let G be a transitive permutation group with a complete block system B such that

fixG(B) contains a subgroup K ∼= Us, for some s ≥ 1 and such that the restriction KB ∼=
Ur, 1 ≤ r ≤ s, acts transitively on B, for each B ∈ B. Then in view of [5, Proposition
3.1] we can define a pseudometric on B by letting

DistK(B,B′) = log|U | |KB′

(B)|.

(For the proof that DistK is symmetric and that it satisfies the triangle inequality see [5,
Proposition 3.1].)

In Proposition 2.1 below the extremal case where the possible distances in this pseudo-
metric are only 0 and 1 is considered.

Proposition 2.1. Let p be a prime, let s ≥ 1 be an integer, let U be a simple group and
let G be a transitive permutation group on a set V admitting an imprimitivity block system
B with blocks of length divisible by p. If fixG(B) contains a subgroup K ∼= Us such that
for each block B ∈ B, the restriction KB is isomorphic to U , acts transitively on B and
contains a semiregular element of order p, then G(2) contains a semiregular element of
order p.

Proof. Observe that the assumptions in the statement of the proposition imply that in the
above pseudometric language the possible distances between any two blocks in B are either
0 or 1. Namely, sinceKB′

(B) is a normal subgroup ofKB′ ∼= U it follows thatKB′

(B) is either
1 or U . In particular, for B,B′ ∈ B, the following holds

DistK(B,B′) = 1⇔ K(B) is transitive on B′ and K(B′) is transitive on B. (2.1)

This will allow us to construct a semiregular element in G(2) by a succession of superposi-
tions of permutations acting independently on collections of blocks at distance 0. First, if
s = 1 then the distance between any two blocks in B is equal to 0, and thus the element of
K whose restriction to a block B ∈ B is semiregular on B is semiregular on V too. We
may therefore assume that the maximal distance between blocks in B is precisely 1. One
can easily see that each of the subsets of those blocks in B being at mutual distance 0 forms
a block of G. More precisely,

C = {{Bi0 ∪ . . . ∪Bik | DistK(Bij , Bit) = 0 for all ij , it ∈ {i0, . . . , ik}} |
i ∈ {0, . . . , e}},

where e = |B|, is an imprimitivity block system of G. Moreover, in view of (2.1) for every
blockCi = Bi0∪. . .∪Bik ∈ C there exists an element γi ∈ K such that γCi

i is semiregular
and γCj

i = 1 for all blocks Cj ∈ C, i 6= j. Consequently, γ0γ1 · · · γk is semiregular on V ,
completing the proof of Proposition 2.1.

Corollary 2.2. Let G be a permutation group acting transitively on a set V and let M be a
minimal normal subgroup of G having orbits of prime length p on V . Then G(2) contains
a semiregular element of order p.

Proof. Since M is a minimal normal subgroup of G it is isomorphic to a direct product of
isomorphic simple groups, that is, M ∼= Us, s ≥ 1, where U is a simple group. The orbits



464 Ars Math. Contemp. 13 (2017) 461–468

of M form an imprimitivity block system B consisting of blocks of length p. For B ∈ B
the restriction MB is therefore a transitive group of prime degree p, and thus MB ∼= U .
Hence Proposition 2.1 applies.

Proposition 2.3. Let G be a transitive solvable group of degree mp2, where m < p is
square-free. Then G(2) contains a semiregular element of prime order.

Proof. Let M be a minimal normal subgroup of G. Since G is solvable we have M ∼= Zs
q ,

where q is a prime and s ≥ 1. The orbits of M give rise to an imprimitivity block system
B. If the blocks in B are of prime length then Corollary 2.2 applies. We may therefore
assume that B consists of blocks of size p2 and M ∼= Zs

p, s ≥ 1.
Let B = {B0, . . . , Bm−1}. Assume that G(2) does not contain semiregular elements,

and let α ∈ M be an element of order p with a minimal number of orbits of M on which
the restriction of α is the identity. Without loss of generality we may assume that

αBi =

{
1; 0 ≤ i ≤ t
6= 1; t < i ≤ m− 1

where t < m − 1. Let B ∈ B be a block for which αB = 1. Because of transitivity of G
there exists β ∈ M , a conjugate of α, such that βB 6= 1. Since m < p there exists k ∈ Zp

such that αβk is semiregular and of order p on each of the blocks Bi, t < i ≤ m − 1, as
well as on the block B. Therefore, the number of blocks on which the restriction of αβk

is the identity is at least one less than the number of blocks on which the restriction of α
is the identity, contradicting the minimality condition. It follows that G(2) must contain
semiregular elements as claimed. (Note that the assumption that m < p was essential in
this respect.)

With the use of Corollary 2.2 and Proposition 2.3 we can now prove the following
result about existence of semiregular automorphisms in vertex-transitive graphs of order
qp2, where p and q are primes.

Theorem 2.4. Let X be a connected vertex-transitive graph of order p2q, where p and q
are primes, and either q ≤ p or p2 < q. Then either

(i) X admits a semiregular automorphism, or

(ii) 2 < q < p and Aut(X) is nonsolvable with an intransitive non-abelian minimal
normal subgroup whose orbits are either of length p2 or of length pq.

Proof. First, we may assume that p > 3 and q > 2 and that q 6= p. Namely, if q = 2 or
q = p then the order ofX equals 2p2 or p3, and the existence of semiregular automorphisms
was proved in [19] and [18], respectively. If q > p2 then the existence of semiregular
automorphisms follows from results in [18]. Therefore, we may assume that q < p2.

If Aut(X) is primitive or quasiprimitive then, by [9], X contains a semiregular auto-
morphism. We may therefore assume that there exists a minimal normal subgroup M of
Aut(X) whose orbits give rise to a non-trivial imprimitivity block system B.

If Aut(X) is solvable then M is abelian and isomorphic to Zk
r , where r ∈ {q, p} and

k ≥ 1. Hence B consists of blocks of length q, p or p2, and Corollary 2.2 and Propo-
sition 2.3 imply the existence of semiregular automorphisms of X . If, however, Aut(X)
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is nonsolvable then M is non-abelian. If the orbits of M are of prime length then Corol-
lary 2.2 applies. Otherwise the orbits of M are either of length p2 or qp, completing the
proof of Theorem 2.4.

The following corollary is an immediate consequence of Theorem 2.4.

Corollary 2.5. Let q and p be primes such that either q ≤ p or p2 < q. A connected vertex-
transitive graph of order p2q admitting a transitive solvable group of automorphisms has
a semiregular automorphism.

In our search for semiregular group elements we now turn to vertex-transitive graphs ad-
mitting a solvable group of automorphisms and satisfying certain valency restrictions. For
a graph X admitting a transitive action of a group G with an imprimitivity block system B
arising from the orbits of a normal subgroupM ≤ G, we letX/B denote the corresponding
quotient graph having vertex set B with two blocks B,B′ ∈ B being adjacent if there is an
edge in X joining a vertex in B to a vertex in B′. Further, for B,B′ ∈ B we let [B,B′]
denote the bipartite graph induced by the edges of X joining blocks B and B′, and we let
val(B,B′) denote the valency of [B,B′]. Also let val(X) denote the valency of X .

Lemma 2.6. Let X be a connected vertex-transitive graph admitting a transitive action of
a solvable group G with a minimal normal subgroup M = Zk

q , and suppose further that
val(X) < pq, where p > q is the largest prime dividing |G|. Then either

(i) G contains a semiregular subgroup or

(ii) M is intransitive and there exist orbits B, B′ of M such that val(B,B′) ≥ mq,
where mp is the smallest multiple of q exceeding p.

Proof. Assume that (i) does not hold. It follows that M is intransitive for otherwise X
would be a Cayley graph of M and so M would act semiregularly on V (X). Let B be
the imprimitivity block system arising from the orbits of M , and let Dist = DistM be
the associated pseudometric on B. If Dist(B,B′) = 0 for every two adjacent blocks
B and B′ in X/B, then clearly M contains a semiregular element of order q. We may
therefore assume that there are adjacent blocks B and B′ such that d = Dist(B,B′) ≥ 1.
Furthermore, we may assume that Gv , for v ∈ V (X), contains elements of order q as well
as elements of order p.

Fix a vertex v ∈ B. Since d ≥ 1, we have that val(B,B′) is a positive multiple of
q, and so is at least q. By assumption, there exists an element γ ∈ Gv of order p which
cyclically permutes at least p neighbors w0, w1, . . . , wp−1 of v, where γi(w0) = wi, and
clearly fixes all other neighbors.

Without loss of generality let w0 ∈ B′. We claim that wi belongs to B′ for every
i ∈ {0, . . . , p − 1}. If that was not the case there would be p distinct blocks γi(B′), with
Dist(B, γi(B′)) ≥ 1, i ∈ {0, . . . , p− 1}. Consequently, v would have at least q neighbors
in each of these p blocks and so the valency of X would be at least pq, which contradicts
the assumption. We conclude that each wi ∈ B′. It follows that val(B,B′) ≥ p. But
val(B,B′) is a multiple of q, and hence at least mq.

Proposition 2.7. Let p > q be primes and let X be a connected vertex-transitive graph
admitting a transitive solvable {p, q}-groupG, and letM be a minimal normal elementary
abelian subgroup of G. Then one of the following possibilities occurs:



466 Ars Math. Contemp. 13 (2017) 461–468

(i) G contains a semiregular subgroup, or

(ii) M ∼= Zk
q and val(X) > mq, where mq is the smallest multiple of q exceeding p, or

(iii) M ∼= Zk
p and val(X) > p.

Proof. Assuming that G does not contain a semiregular subgroup and assuming that M ∼=
Zk
q we have, by Lemma 2.6, that the valency val(X) of X is at least mq. Further if it is

exactly mq then the imprimitivity block system B arising from the orbits of M consists of
two blocks alone, that is, B = {B,B′} with valency val(B,B′) = mq. It follows that
X is a bipartite graph (with bipartition {B,B′}). As the blocks of B have order qj for
some j it must be that either X has order a power of 2 or p = 2. But q < p which is not
possible. Therefore val(X) > mq. Finally, suppose that M ∼= Zk

p . Then the nonexistence
of a semregular subgroup implies that there must exist a pair of adjacent blocks B and B′

in X/B such that in the above defined pseudometrc Dist we have Dist(B,B′) ≥ 1. This
implies that val(X) ≥ p. But if val(X) was equal to p then a semiregular automorphism
could be produced in an analogous way to the previous case.

3 Conclusions
Special cases for valencies 3 and 4 of Lemma 2.6 and Proposition 2.7 played an important
role in the proofs of these results, see [6, 19]. For example, in a cubic vertex-transitive
graph an automorphism of prime order greater than 3 is clearly semiregular. In fact, in
a vertex-transitive graph an automorphism of order greater than the valency of the graph
is necessarily semiregular. Therefore, in order to complete the proof of the existence of
semiregular automorphisms in such graphs it suffices to deal with graphs having a group
of automorphisms which is a {2, 3}-group. Clearly, Proposition 2.7 applies. As for quartic
vertex-transitive graphs again assuming that all automorphisms are of order 2 and 3, and
hence a group in question is a {2, 3}-group, Proposition 2.7 implies that the minimal normal
elementary abelian subgroup M has to be a 3-group, and furthermore that the quotient
graph with respect to the imprimitivity block system arising from the orbits of M is a
multicycle of even length obtained from a cycle with every second edge replaced by a triple
of edges. A delicate analysis of this case is then needed in order to prove the existence of a
semiregular automorphism (see [6]).

An obvious possible next goal would be to prove the existence of semiregular auto-
morphisms in quintic vertex-transitive graphs. In 2007 Giudici and Xu [12] proved that all
vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism, implying
that arc-transitive graphs of prime valency have semiregular automorphisms. This result
combined together with the above remark about automorphisms of order greater than the
valency of the graph allows us to assume that the group of automorphisms in question is
a {2, 3}-group. Two cases may occur depending on whether the elementary abelian sub-
group is a 2-group or a 3-group. If M ∼= Zk

2 then, using Proposition 2.7, one can prove that
the quotient graph with respect to the imprimitivity block system arising from the orbits of
M is a multicycle of even length obtained from a cycle with every second edge replaced
by a quadruple of edges. It is reasonable to expect that an approach similar to the one used
in [5] for the quartic case would result in a construction of semiregular automorphisms.
If on the other hand M ∼= Zk

3 , two possibilities needing further analysis may arise from
Proposition 2.7. First, the quotient graph is a multicycle of even length obtained from a
cycle with every other edge replaced, respectively, by a pair of edges and a triple of edges.
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Second, the quotient graph is a vertex-transitive multigraph obtained from a cubic graph
with every edge in a perfect matching replaced by a triple of edges. A complete solution
for quintic vertex-transitive graphs depends heavily on a successful analysis of these three
remaining cases.
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A Tribute to Mark E. Watkins
on the Occasion of his 80th Birthday

A generation of undergraduate students pass-
ing through the halls of Carnegie Library at Syra-
cuse University recall the name of Prof. Watkins
as synonymous with rigorous Calculus classes
taught by a passionate and engaging man with a
moustache. Doctoral students likely have more
personal memories of Mark, whether they be
of his mentorship through coursework in graph
theory and combinatorics, fall campouts in the
Adirondacks, or simply conversations in the cor-
ridors.

Outside of the classroom, Mark was a con-
stant presence at department colloquia and the
much appreciated Coffee Time, where students and faculty take some time in the afternoon
to relax and mingle. Mark could often be found on these afternoons regaling the gradu-
ate students with stories of some of the great names in graph theory, along with his close
friend and collaborator Jack Graver. For many years, Mark and Jack were the conveners
of a weekly combinatorics seminar at Syracuse, drawing together colleagues from neigh-
boring universities as well as from neighboring departments within Syracuse University.
Many students (this author included) were drawn to first appreciate and then to deeply love
topics in graph theory and combinatorics through this seminar.

A native of the suburbs of Philadelphia, Pennsylvania in the United States, Mark first
earned an AB at Amherst College in Massachusetts before proceeding to graduate study at
Yale University, where he completed a PhD in 1964 under the direction of Oystein Øre [11].
He then spent several years at the University of North Carolina at Chapel Hill and one year
at the University of Waterloo before arriving at Syracuse University as an Associate Pro-
fessor in 1968. He has worked for the entirety of his career in the field of graph theory, be-
ginning his work in areas of connectivity (e.g., [8]) before moving to more algebraic graph
theory (e.g., [1, 5, 7]). Among the highlights of an excellent career, Mark is responsible
for naming the generalized Petersen graphs ([1, 12]), for posing the problem of graphical
regular representations ([9, 10, 15]), and for a long series of articles and investigations into
the nature and structure of various families of infinite graphs (e.g., [3, 4, 6, 7, 13]). Mark
has mentored six Ph.D. students through his career: James Uebelacker and Alwin Green
1972, John Kevin Doyle in 1976, Jennifer Ann Bruce in 2002, and finally Adam McCaf-
fery and me in 2009. Mark has traveled extensively pursuing his love of mathematics, with
academic terms in Vienna, Waterloo, and Paris, as well as scholarly visits to Oberwolfach,
West Berlin, Montréal, Auckland, Marseille-Luminy, Canberra, Leoben, and Ljubljana.
Mark has coauthored three books, Combinatorics with Emphasis on the Theory of Graphs
in 1977 with Jack Graver [2], the AMS Memoir Locally Finite, Planar Edge-transitive
Graphs in 1997 also with Jack Graver [3], and Passage to Abstract Mathematics in 2011
with Jeffrey Meyer [14].

Beyond academia, Mark spent many years playing oboe and English horn until 2006,
when due to the effect of medical difficulty he was required to take up trombone. He is
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an avid outdoorsman, having been a hiker, camper, canoeist, and kayaker for many years,
as well as a swimmer and cyclist. For many years, Mark and Jack Graver sponsored a
weekend camping trip for graduate students to the Adirondack mountains of New York,
and he still enjoys such adventures. In 2012 Mark retired from Syracuse University, and
is now an Emeritus Professor of Mathematics. His mathematical contributions have not
retired, however, and he continues to work and publish with several prior coauthors.

Stephen J. Graves
The Unversity of Texas at Tyler
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Graphs, groups, and more:
celebrating Brian Alspach’s 80th

and Dragan Marušič’s 65th birthdays
Koper, Slovenia, May 28 – June 1, 2018

http://www.famnit.upr.si/sl/konference

It is our great pleasure to announce the conference “Graphs, groups, and more: cele-
brating Brian Alspach’s 80th and Dragan Marušič’s 65th birthdays” that will take place in
Koper, Slovenia, from 28 May to 1 June, 2018. The conference is dedicated to our col-
leagues Brian Alspach, on the occasion of his 80th birthday, and Dragan Marušič, on the
occasion of his 65th birthday.

Brian Alspach has had a distinguished career, primarily at Simon Fraser University
in Canada. Since his retirement in 1999 he has held adjunct positions at the Universities
of Regina (Canada) and Newcastle (Australia). He supervised 13 PhD students and has
been a keen advocate and mentor for young mathematicians, and for establishing innova-
tive programs of study. His research interests have included permutation groups and their
actions on graphs; tournaments and digraphs; decompositions and factorizations of graphs;
Hamilton cycles and other cycles in graphs, and more.

As one of the first mathematicians from the former Yugoslavia with a PhD obtained
abroad, Dragan Marušič returned home to take a teaching position at the University of
Ljubljana after having spent ten years at various universities in England and USA. He
then moved to the University of Primorska where he now serves as the third rector. He
has had a profound influence on mathematics in Slovenia, and is regarded as the founder
of the Slovenian school of algebraic graph theory. He has been passionately involved in
the promotion of mathematics and mathematicians in Slovenia, having supervised 7 PhD
students and mentored many other young mathematicians. His research interests focus on
the concept of symmetry in the broadest sense, with permutation groups and their actions
on graphs as a primary “point of interest”.

Venue: The conference will take place at UP FAMNIT in Koper, Slovenia.

Confirmed Invited Speakers:
• Darryn Bryant, The University of Queensland, Australia
• Danny Dyer, Memorial University of Newfoundland, Canada
• Donovan Hare, University of British Columbia – Okanagan, Canada
• Ademir Hujdurović, University of Primorska, Slovenia
• Klavdija Kutnar, University of Primorska, Slovenia
• Aleksander Malnič, University of Ljubljana & University of Primorska, Slovenia
• Joy Morris, University of Lethbridge, Canada
• Primož Potočnik, University of Ljubljana, Slovenia
• Mateja Šajna, University of Ottawa, Canada
• Primož Šparl, University of Ljubljana & University of Primorska, Slovenia
• Boris Zgrablić, University of Primorska, Slovenia
• Cui Zhang, Sweden
• Cun-Quan Zhang, West Virginia University, USA
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Organizing Committee: Klavdija Kutnar, Joy Morris, Mateja Šajna

Organized by:
• Slovenian Discrete and Applied Mathematics Society

In Collaboration with:
• UP FAMNIT – University of Primorska, Faculty of Mathematics, Natural Sciences

and Information Technologies
• UP IAM – University of Primorska, Andrej Marušič Institute
• Centre for Discrete Mathematics, UL PeF (University of Ljubljana, Faculty of Edu-

cation)

For more information, visit our website or email your inquiry to sygn@upr.si.
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