© Acta hydrotechnica 21/34 (2003), Ljubljana ISSN 1581-0267 37 UDK / UDC: 551.311.2:556.04:556.51:556.535(28.2.249)(497.14) Prejeto/Received: 30. 10. 2003 Predhodna objava – Preliminary scientific paper Sprejeto/Accepted: 17. 1. 2004 MERITVE EROZIJSKIH PROCESOV V EKSPERIMENTALNEM POVODJU DRAGONJE, JZ SLOVENIJA MEASUREMENTS OF EROSION PROCESSES IN THE EXPERIMENTAL CATCHMENT OF THE DRAGONJA RIVER, SW SLOVENIA Gregor PETKOVŠEK, Matjaž MIKOŠ Prispevek obravnava nekatere rezultate meritev v povodju Rokave, ki je del eksperimentalnega povodja Dragonje. Ve činoma so meritve potekale v času od jeseni 2000 do spomladi 2002. Merili smo pretok vode, lebde čih in rinjenih plavin, dinamiko erozije sedimentov na klifih ter padavine, na podlagi katerih smo dolo čili dejavnik erozivnosti padavin in odtoka R. Rezultati kažejo, da srednje letno odplavljanje lebde čih plavin znaša okrog 1500 ton oziroma 750 kg/ha/leto. Pri meritvah klifov smo uporabili kombinacijo fotogrametri čnih snemanj in meritev z erozijskimi žeblji či, kar nam je dalo vpogled tako v skupno koli čino sproš čenega materiala kot v kratkotrajno dinamiko erozije s klifov. Klifi so najaktivnejši pozno poleti, letno pa prispevajo v re čno mrežo okrog 100 ton drobnega materiala letno. Erozivnost padavin je tako prostorsko kot časovno izrazito neenakomerna. Najbolj erozivni so meseci od julija do novembra. Klju čne besede: eksperimentalno povodje, Dragonja, Rokava, sedimenti, klifi, erozivnost padavin The paper presents and analyses the results of some of the measurements in the Rokava catchment, which is a part of the Dragonja catchment. Measurements were carried out mostly between autumn 2000 and spring 2002. The measured quantities included water discharge, suspended and bedload discharge, dynamics of sediment production from cliffs, and measurements of rainfall, which were used to compute rainfall and the runoff erosivity factor R. The results show that the mean annual suspended sediment yield is around 1500 tonnes, which is equal to 750 kg/ha/year. Cliffs’ activity was monitored with a combination of photogrammetric surveys and erosion pins, which gave us both the total sediment production from cliffs and its short-term dynamics. Cliffs are most active in late summer. They contribute approximately 100 tonnes of fine sediment into the stream network. Rainfall erosivity is highly variable, both spatially and temporally. The rainfall erosivity is highest in the period between July and November. Key words: experimental catchment, Dragonja, Rokava, sediments, cliffs, rainfall erosivity 1. UVOD Pri preoblikovanju zemeljskega površja ima pomembno vlogo erozija. Erozija je posledica razli čnih eksogenih dejavnikov, kot so na primer delovanje teko če vode, snega, vetra, temperaturnih nihanj in težnosti. Glede na vzrok nastanka delita Pintar & Mikoš (1983) erozijske pojave takole: − pojavi kemi čnega, biološkega in fizikalnega preperevanja, − vetrna erozija, − snežna erozija, 1. INTRODUCTION Erosion of Earth’s surface plays an important role in geomorphologic processes. In general, erosion can be caused by different exogenic factors, such as force of running water, snow, wind, temperature oscillations and gravity. Depending on the driving force, Pintar & Mikoš (1983) consider the following erosion processes: −chemical, biological and physical weathering, − wind erosion, Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 38 − ledeniška erozija, − vodna erozija, − plazna erozija in − podorna erozija. V hidrologiji uporabljamo pojem erozija tal tudi v ožjem pomenu, kot vodno erozijo. Z njim ozna čujemo pojave površinskega spiranja in odplavljanja zemljin zaradi delovanja padavin in teko če vode. Erozija tal je v ve čini primerov rezultat naravnih dejavnikov. V nekaterih primerih pa jo pospešuje tudi človekova dejavnost. Najbolj zna čilni primeri so kmetijstvo, rudarstvo in gradbeništvo (Hahn et al., 1994). Ta prispevek obravnava predvsem procese vodne erozije, ki so na obravnavanem obmo čju najbolj prisotni. Dinamiko erodiranja zemljin sestavljajo procesi sproš čanja, premeš čanja in odlaganja (Meyer & Wischmeier, 1969). Pri sproš čanju se predvsem zaradi dežnih kapelj delci lo čijo od mati čnih tal. Površinski vodni tok zrna premeš ča navzdol po pobo čju. Premestitvena zmogljivost vodnega toka naraš ča s hitrostjo, ko pa se hitrost zmanjša, obi čajno zaradi zmanjšanja naklona pobo čja, nastopi odlaganje (Hahn et al., 1994). Dinamiko in bilanco sedimentov v povodju podaja slika 1. Podrobnejši pregled procesov je podan v Petkovšek (2000). V tem prispevku podajamo rezultate meritev odtoka vode, odplavljanja zemljin in erozije s klifov. Meritve smo opravili na severovzhodnem delu eksperimentalnega povodja Dragonje, to je v povodju Rokave (slika 2). Povodje Rokave je dobro raz členjen gri čevnat svet, s površino 20,4 km 2 in srednjo nadmorsko višino 250 m. Najnižja to čka je soto čje z Dragonjo (75 m NMV), najvišja pa 415 m NMV. Povpre čni vzdolžni padec doline je v zgornjem delu 2,2 %, v spodnjem delu pa 1,4 %. Srednji nagib površja je 25 %. Meritve smo izvajali v sodelovanju z Vrije Universiteit Amsterdam v okviru projekta "Dragonja: Forest – Soil – Water – Climate Interactions" (Dragonja: medsebojni vplivi gozda, tal, vode in klime). Povodje Dragonje je v zadnjih desetletjih doživelo ve čje spremembe rabe tal, kar je vplivalo na režim odtoka vode ter sproš čanje − snow erosion, − glacial erosion, − fluvial erosion, − landslides and rockfalls. In hydrology, the term soil erosion is usually used in a narrower context, as water erosion. It denotes the processes of superficial soil detachment and transport due to raindrop impact and running water. Soil erosion is a natural process. In some cases, however, human activity accelerates the natural phenomenon. These activities are agriculture, mining and construction (Hahn et al., 1994). This paper analyses the processes of water erosion, which are most important in the studied area. The soil erosion process consists of soil detachment, transport and deposition (Meyer & Wischmeier, 1969). Detachment is a process caused mainly b y raindrop impact, which separates the soil particles from the ground. Overland flow transports the particles downslope. The transport capacity of the overland flow increases with flow velocity. Downslope, the angle of the slope usually decreases, therefore flow velocity also decreases and deposition takes place (Hahn et al., 1994). The sediment dynamics in a catchment is shown in Figure 1. More details are given in Petkovšek (2000). In this paper, the results of the measurements of water runoff, sediment yield and sediment production from cliffs are given and discussed. Measurements took place in the Rokava catchment, which is a part of the Dragonja experimental catchment (see Figure 2). The Rokava catchment is formed of hills with a well-developed stream network. The area of the catchment is 20.4 km 2 , the mean elevation is 250 m a.s.l. The lowest point is the confluence with the Dragonja (75 m a.s.l.), the highest point is at 415 m a.s.l. The average longitudinal slope of the valley is 2.2 % in the upper part and 1.4% in the lower part. The average slope of the surface is 25 %. The measurement campaign was a joint project with the Vrije Universiteit Amsterdam called "Dragonja: Forest – Soil – Water – Climate Interactions". In the last decades, the Dragonja catchment underwent significant changes in land use. This also influenced water runoff and sediment Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 39 in odplavljanje zemljin (Globevnik & Sovinc, 1998). Viri navajajo na podlagi vrednotenja z Gavrilovi ćevo ena čbo (Gavrilovi ć, 1970), da se je sproš čanje od sedemdesetih let (PUH, 1971) do danes zmanjšalo za skoraj 70 % (Globevnik, 2001). yield regime (Globevnik & Sovinc, 1998). Authors that used the Gavrilovi ć e quation (Gavrilovi ć, 1970) state that sediment production (PUH, 1971) for nearly 70 % decreased from the seventies (Globevnik, 2001). STRUGA, POPLAVNO OBMO ČJE IZTOK IZ POVODJA sproš čanje odplavljanje POBO ČJE Slika 1. Dinamika, bilanca ter obmo čja odlaganja in erodiranja sedimentov v povodju. Puš čice, obrnjene navzdol, ponazarjajo premeš čanje, puš čice, obrnjene navzgor, pa odlaganje. Debelina puš čic je v razmerju s koli čino sedimentov za namišljen primer. Prirejeno po Reid & Dunne (1996). CHANNEL OVERBANK AREA OUTFLOW FROM CATCHMENT production yield SLOPE Figure 1. Schematics of sediment dynamics in a catchment. Arrows directed downwards represent erosion; arrows directed upwards represent deposition. The thickness of the arrows represents the approximate magnitude for a typical catchment. After Dunne & Reid ( 1996). Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 40 Slika 2. Položaj povodja Rokave znotraj eksperimentalnega povodja Dragonje v Slovenski Istri brez dela povodja na Hrvaškem. Figure 2. Location of the Rokava catchment inside the experimental watershed of the Dragonja in Slovene Istria without the part in Croatia. Slika 3. Merske lokacije. Figure 3. Locations of measurements. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 41 2. METODE Meritve, s katerimi smo ocenjevali sproš čanje in odplavljanje zemljin, so vklju čevale meritve padavin, meritve pretoka vode in lebde čih plavin ter meritve erozije s klifov. V podpovodju Rokave smo izbrali tri klife z razli čno stopnjo aktivnosti. Meritve so pokrivale obdobje dveh let med letoma 2000 in 2002. Merske lokacije so podane na sliki 3. 2.1 MERITVE PRETOKA, LEBDE ČIH IN RINJENIH PLAVIN Na lokaciji Rokava je bila postavljena vodomerna postaja z avtomatskim vzor čevalnikom ISCO 3700. V stabilnem reguliranem delu struge, širine okrog 5 m, je bil zgrajen široki prag, ki ga je za potrebe projekta zgradilo lokalno vodnogospodarsko podjetje Hidro Koper. Za njim sta bili postavljeni dve tla čni sondi Druck Ltd. PDCR- 830 (Hobby & Minneboo, 2001). Prva sonda beleži gladino vode v konstantnih časovnih intervalih (10 oziroma 20 minut). Druga sonda beleži gladino vode v daljših časovnih intervalih (1 ura), vendar tudi vsaki č, ko je sprememba ve čja od predpisane vrednosti (0,5 cm). Podatki z druge sonde se shranjujejo v pomnilnik instrumenta Campbell 21X, ki obenem ob vsaki spremembi gladine za ve č kot 5 cm sproži proceduro odvzema vzorca vode z avtomatskim vzor čevalnikom vode ISCO 3700. Ta lahko brez praznjenja odvzame najve č 24 vzorcev po 500 ml, kar zagotavlja precejšnjo avtonomnost vzor čevanja lebde čih plavin. Zajemna glava je bila postavljena pod širokim pragom, kjer je voda dobro premešana. S tem smo zagotovili ustrezno reprezentativnost vzorca. Velikost odvzetih vzorcev je bila med 400 in 500 ml. Koncentracija C s [g/l] lebde čih plavin je bila dolo čena tako, da je bila najprej izmerjena prostornina vzorca V s , nato pa vzorec izparjen pri 105 °C, sušina pa stehtana. Koncentracija je bila izra čunana kot razmerje med maso sušine m s in prostornino vzorca V s . Pretoki vode so bili dolo čeni s pomo čjo preto čne krivulje, ki je bila dolo čena z 2. METHODS The aim of the measurements was to assess the sediment production and sediment yield from the catchment. Measurements included measurements of rainfall, water and suspended sediment discharge and monitoring o f sediment production from cliffs in the period 2000–2002. Three cliffs with different activities were chosen in the Rokava sub- catchment. Locations are shown in Figure 3. 2.1 MEASUREMENTS OF WATER DISCHARGE, SUSPENDED SEDIMENT AND BEDLOAD At location Rokava, a water level recorder and automatic water sampler ISCO 3700 were set up. In an approximately 5 m wide, stable regulated part of the stream, a broad crested weir was constructed by local water management company Hidro Koper. Two pressure transducers of type Druck Ltd. PDCR-830 were placed just upstream (Hobby & Minneboo, 2001). The first transducer recorded the water level at constant intervals (10 or 20 minutes). The second transducer recorded the water level every hour, but also at every 0.5 cm change in water level. The data from the second transducer was logged to the Campbell 212X datalogger. The datalogger triggered the water sampler every time when the change in water level exceeded 5 cm. The automatic water sampler ISCO 3700 could take 24 samples of 500 ml without being emptied. This allowed for satisfactory automatisation of the process. The intake was placed just under the broad crested weir, where the water was well mixed. Thus the representativeness of the samples was ensured. The volume of samples was between 400 and 500 ml. Concentration C s [g/l] of suspended sediment was determined by determining the exact volume of the sample V s . Then, the sample was evaporated at 105°C and the dry residual weighted (m s ). The concentration was then calculated as the ratio between m s and V s . The discharge of water was determined from the discharge curve. The discharge curve was determined by occasional measurements Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 42 občasnimi meritvami pretokov. Pretoki so bili izra čunani s trapezno integracijo specifi čnih pretokov po širini, ti pa so bili izra čunani iz izmerjene hitrosti in globine. Hitrosti so bile merjene z elektromagnetnim merilcem hitrosti OTT Nautilus C2000 (merilno obmo čje 0 ÷ 2,5 m/s). Dolo čitev prostornine odtoka za posamezen poplavni val je potekala po naslednjem postopku. Najprej sta bila dolo čena za četni t z in končni čas t k poplavnega vala. Za za četek poplavnega vala je veljal tisti čas pred nastopom konice, ko je bil pretok najmanjši. Za čas upadanja t r (od vrha do konca poplavnega vala) je bila izbrana fiksna vrednost, ki je bila na podlagi primerjav poplavnih valov ocenjena na 12 ur. Nadalje je bilo predpostavljeno, da je bazi čni odtok Q b do nastopa vrha poplavnega vala enak pretoku ob za četku poplavnega vala, od tam naprej pa linearno naraš ča do vrednosti na koncu poplavnega vala. Kon čno je bila prostornina poplavnega vala izra čunana z integracijo razlike med izmerjenim pretokom v strugi Q in bazi čnim odtokom Q b : of discharge at different water levels. The discharges were computed from the measured velocities and cross section geometry. Velocities were measured by electromagnetic flow sensor OTT Nautilus C2000 (range 0 ÷ 2.5 m/s). The volume of surface runoff for each flood wave was computed by the following procedure. First, the time of the beginning t z and the time of end t k of the flood wave was determined. The time of beginning was defined as the time before the peak with lowest discharge. For the recession time t r (from time of peak to ending time) a fixed value was chosen. The t r was estimated to 12 hours. Further, we assumed that baseflow Q b in the time period between the beginning and peak was equal to the discharge at the beginning t z of the flood wave. From then on, it increased linearly till the end of the flood wave. The volume of surface runoff was computed by integrating the difference between the total discharge Q and baseflow Q b : ∫ ⋅ − = k z t t b dt Q Q V )( (1) Letno stopnjo premeš čanja rinjenih plavin smo ocenili na podlagi zaprojevanja zaplavnega prostora za pragom vodomerne postaje. 2.2 MERITVE SPROŠ ČANJA S KLIFOV Pri meritvah klifov smo uporabili zanimivo in uspešno kombinacijo fotogrametri čne meritve in meritev z erozijskimi žeblji či. Tako smo izmerili tako skupno sproš čanje kot tudi kratkotrajno dinamiko sproš čanja sedimenta s klifa. V povodju Rokave smo na podlagi kart identificirali aktivne klife, to je take, ki niso v zaraš čanju in lahko na njih še vedno pri čakujemo velike stopnje sproš čanja. Vsem klifom smo dolo čili velikost, na najve čjem klifu (Rokava-1, sliki 3 in 4) pa smo opravili tudi podrobno fotogrametri čno meritev v treh časovnih presekih. The annual bed load rate was estimated from the volume of the sediment deposited behind the broad crested weir. 2.2 SEDIMENT PRODUCTION FROM CLIFFS For the monitoring of cliffs an interesting and powerful combination of photogrammetric surveys and measurements with erosion pins was used. In this way, we were able to measure both total sediment production as well as its short-term dynamics. The active cliffs were identified from maps. Every bare steep surface that was not vegetated in the lower part was considered an active cliff. The areas of all active cliffs were measured. On the biggest cliff (Rokava-1, Figures 3 and 4) three photogrammetric surveys were performed. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 43 Slika 4. Klif Rokava-1 v pogledu. Legenda: E – erodirajo či deli klifa; N – odlaganje sedimentov. Šrafirano obmo čje smo spremljali z erozijskimi žeblji či. Koordinate so lokalne. Figure 4. Front view of the cliff Rokava- 1. Legend: E – eroding areas of the cliff,; N – deposition areas. Hatched area was monitored by erosion pins. Coordinates are local. Na manjših klifih smo izmerili nekaj zna čilnih to čk, s čimer smo lahko ocenili njihovo velikost. Za dolo čanje razdalj smo uporabili laserski razdaljemer DISTO pro (Leica Geosystems, 2001). Natan čnost razdaljemera, kot navaja proizvajalec, je ± 5 mm, merimo pa lahko razdalje do 100 m. Višino to čk smo dolo čili po ena čbi (2). Oznake razdalj so prikazane na sliki 5. Kljub veliki natan čnosti razdaljemera, zaradi manj zanesljivih meritev višin ocenjujemo natan čnost metode na ± 10 cm. The area of smaller cliffs was determined by measuring a number of topographically characteristic points. The distances were measured by the laser distance meter DISTO pro (Leica Geosystems, 2001). The accuracy of the device, as stated by the manufacturer, is ± 5 mm. The distances up to 100 m can be measured. The elevation of points was determined by equation (2) and as shown in Figure 5. In spite of the very accurate distance meter, the overall accuracy was estimated to ± 10 cm due to less accurate measurement of elevation. 1 1 0 1 ) ( b d h h z ⋅ − = (2) Meritve najve čjega klifa ob Rokavi smo naro čili pri Geodetskem inštitutu Slovenije (GI, 2001; 2002a; 2002b). Natan čnost dobljenih 3D-to čk je v zgornjem delu do ± 10 cm, v spodnjem delu pa ± 2 cm. Na podlagi dobljenih to čk smo izdelali 3D- model tipa nepravilne trikotniške mreže (TIN). Dolo čili smo nagib ter površino klifa v tlorisu in pogledu. Pri klifu Rokava-1, ki smo ga posneli v treh časovnih presekih, smo analizirali tudi Photogrammetric survey of the biggest cliff Rokava-1 was carried out by the Geodetic institute of Slovenia (GI, 2001; 2002a; 2002b). The accuracy of the obtained 3D points was ± 10 cm in the upper part and ± 2 cm in the lower part. From the measured points a 3D model of cliff surface was constructed as triangulated irregular network (TIN). Areas in plan and front view were calculated. The change surface and volume was Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 44 spremembo površine in prostornine. Erozijo in odlaganje na tem klifu smo spremljali tudi s pomo čjo erozijskih žeblji čev. Postavili smo 28 žeblji čev v žlebi čih ter v medžlebi čnem prostoru, in sicer tako na obmo čju, ki je bilo deloma zaš čiteno z vegetacijo (šopi trave), kot na nezaš čitenem obmo čju. Žeblji če smo razmestili v spodnjem delu klifa na njegovem skrajnem koncu v soto čni smeri (slika 4). analysed for the cliff Rokava-1, where three time records of the cliff were available. Also, short-term erosion or sedimentation was monitored using erosion pins. A network of 28 pins was set up in three different areas of the cliff: in rills, in the bare interrill area and in the vegetated interrill area. Pins were placed in the lower part of the cliff at its downstream most corner (Figure 4). h 1 h 0 z b 1 d 1 Slika 5. Dolo čitev višine merjene to čke z s pomo čjo razdaljemera. Figure 5. Determination of elevation by distance meter. 2.3 MERITVE EROZIVNOSTI PADAVIN Padavine smo merili z avtomatskimi dežemeri Siap WL-8100 z lo čljivostjo 0,1 mm dežja. Dežemeri so bili postavljeni na izbranih lokacijah v Kocjan či čih, Marezigah, ob Rokavi, ob Dragonji in na Koštaboni. Lokacije so podane na sliki 3. Erozivnost smo izrazili z dejavnikom R (Renard et al., 1997). Padavinski podatki iz dežemerov so bili najprej razdeljeni na 15- minutne intervale. Nato so bili iz njih izlo čeni erozivni dogodki oziroma nalivi. Po Renard et al. (1997) je erozivni dogodek definiran kot dogodek, v katerem pade skupaj najmanj 12 mm padavin oziroma najve čja skupna koli čina padavin v pol ure preseže 6 mm. Dva dogodka sta lo čena, če med njima obstaja šesturni interval, v katerem pade manj kot 1,2 mm padavin. 2.3 RAINFALL EROSIVITY Rainfall was measured by automatic raingauges Siap WL-8100 with a resolution of 0.1 mm. Raingauges were placed in selected locations in Kocjan či či, Marezige, at Rokava, Dragonja and Koštabona. Locations are shown in Figure 3. Rainfall erosivity was estimated with the R factor (Renard et al., 1997). Raw rainfall data was distributed in 15 minute time intervals. Then the erosive events were determined. Following Renard et al. (1997), an erosive event is defined as event, where total amount of precipitation is more than 12 mm or when the maximum amount of precipitation in 30 minutes exceeds 6 mm. Two events are separated if a six-hour time interval exists between them with less than 1.2 mm of precipitation. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 45 Dejavnik R [MJ/ha mm/h] je za en naliv definiran kot produkt energije padavin E [MJ/ha] in najve čje 30-minutne intenzitete naliva I 30 [mm/h]: R factor [MJ/ha mm/h] for a single event is defined as a product of rainfall energy E [MJ/ha] and maximum 30 minute intensity I 30 [mm/h]: 30 I E R ⋅ = (3) Energija padavin E je odvisna od trenutne intenzitete naliva i* [mm/h]. Enotsko energijo padavin e [MJ/ha·mm] na enoto površine (ha) in enoto padavin (mm) dolo čimo po empiri čni ena čbi: The rainfall energy is a function of instantaneous intensity i* [mm/h]. Unit rainfall energy e [MJ/ha·mm] per unit of area (ha) and unit of rainfall (mm) is calculated by the following equation: *)) 05 . 0 exp( 72 . 0 1 ( 29 . 0 i e ⋅ − ⋅ − ⋅ = (4) Letna erozivnost je seštevek erozivnosti vseh posameznih nalivov v izbranem letu. 3. REZULTATI IN RAZPRA VA 3.1 MERITVE PRETOKOV VODE, RINJENIH IN LEBDE ČIH PLAVIN Struga Rokave je del leta suha. Skupen čas, ko je v sezoni 2000/01 po strugi tekla voda, je bil 248 dni. Srednji letni pretok, če ra čunamo samo obdobje, ko je bila v strugi voda, je 428 l/s. Če to prera čunamo na celo leto (365 dni), dobimo srednji letni pretok 291 l/s. Najve čji zabeleženi pretok 19,7 m 3 /s v omenjenem obdobju je nastopil 4. 11. 2000. Srednja letna visoka voda v merilnem prerezu znaša Q 2 = 16.3 m 3 /s, visoka voda s petletno povratno dobo pa Q 5 = 25 m 3 /s (Petkovšek, 2002). Pri šestih poplavnih valovih v tem obdobju je bila merjena tudi koncentracija lebde čih plavin in izra čunan njihov masni pretok (kalnost). Vrednosti so podane v preglednici 1. Pri nekaterih dogodkih so bile izmerjene koncentracije nekajkrat ve čje od povpre čja. Pri poplavnem valu 14. 9. 2001 je v naraš čajo či veji, pri pretoku približno 10 m 3 /s, vodomerna postaja prenehala pravilno delovati. Zato podatki o najve čjem pretoku temeljijo na oceni najvišje dosežene kote vode (sledi na obrežnem grmovju), prostornina poplavnega vala pa je bila ocenjena na podlagi trajanja poplavnega vala in ocene koeficienta odtoka. Annual erosivity is the sum of erosivities of all events in the selected year. 3. RESULTS AND DISCUSSION 3.1 WATER DISCHARGE, SUSPENDED SEDIMENT AND BEDLOAD During summer, there is no water flow in the Rokava stream. Total time with water flow in the season 2000/01 was 248 days with a mean discharge of 428 l/s. If this is averaged over the whole year (365 days), the mean value is 291 l/s. The maximum recorded discharge of 19.7 m 3 /s in the period occurred on November 4, 2000. Discharges with characteristic return periods were estimated by Petkovšek (2002). The discharge with a return period of two years equals 16.3 m 3 /s, and that of five years equals Q 5 = 25 m 3 /s. Concentration of suspended sediment and their discharges was measured for six events. Values are given in Table 1. At some events, the measured concentrations exceeded the average value by several times. For the flood wave on September 14, 2001 the water level recorder stopped functioning properly in the rising limb at the discharge of approximately 10 m 3 /s. Therefore, the data on peak discharge is based on the highest water level reached, which in turn was estimated by traces left on riparian vegetation. The runoff volume was estimated on the base of the flood wave duration and an estimate of the runoff coefficient. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 46 Preglednica 1. Pregled poplavnih valov na vodomerni postaji Rokava, pri katerih so bile vzor čevane lebde če plavine. Oznake: izmerjene koncentracije: C m – srednja vrednost, C max – najve čja vrednost; M SS – skupna masa premeš čenih lebde čih plavin, Q max – najve čji pretok vode, V q – prostornina površinskega odtoka, P – višina padavin. Table 1. Overview of sampled flood events at Rokava sampling station. Explanation of symbols: concentrations: C m – mean, C max – maximum; M SS – total mass of transported suspended sediment, Q max – peak flow, V q – volume of surface runoff, P – precipitation. datum / date C m C max M SS Q max V q P d.m.yy kg/m 3 kg/m 3 1000 kg m 3 /s 1000 m 3 mm mm 10.10.00 0.72 2.72 61.3 5.6 92 4.7 51 4.11.00 2.72 3.33 759 19.7 275 14.0 79 25.11.00 1.04 5.98 96.5 5.0 89 4.5 29 14.9.01 4.73 14.91 1800* 20* 380* 19.5* 108 7.2.02 0.53 0.88 32.5 1.77 61.8 3.0 23 9.4.02 0.06 0.07 4.2 1.65 66.1 3.2 48 Na podlagi prikazanih rezultatov v preglednici 1 lahko zaklju čimo, da manjši poplavni valovi odplavijo do 100 ton lebde čih plavin, ve čji pa tudi 1000 in ve č ton. V obeh opazovanih sezonah se je pojavil en velik poplavni val in nekaj (5–10) manjših poplavnih valov, ki premeš čajo lebde če plavine. Tako lahko letno odplavljanje lebde čih plavin v opazovanem obdobju s povodja Rokave ocenimo na okrog 1500 ton letno, ta vrednost pa je najbolj odvisna od najve čjega dogodka v letu. Leto 2001 je bilo, glede na padavine, sicer nekoliko podpovpre čno (na lokaciji klimatološke postaje Portorož – Letališ če 978 mm v primerjavi z dolgoletnim povpre čjem 1013 mm). Meseci oktober, november in december 2000 pa so bili nadpovpre čno mokri (na lokaciji Portorož – Letališ če 652 mm v primerjavi z dolgoletnim povpre čjem v teh mesecih 318 mm). Razmerje med koncentracijo lebde čih plavin C in pretokom Q niha, zlasti med razli čnimi poplavnimi valovi. Tako je bila pri dogodku dne 10. 10. 00 koncentracija lebde čih plavin pri pretoku Q = 3 m 3 /s le okrog 0,5 g/l, medtem ko je bila pri dogodkih 4. 11. 2000 in 14. 9. 2001 okrog 2 g/l. Opazimo lahko tudi, da se koncentracija lebde čih plavin s pretokom včasih ne zvišuje, najvišje koncentracije se pojavljajo pri relativno nizkih pretokih. To From Table 1 it can be concluded that the suspended sediment discharge at smaller events is approximately 100 tonnes, while at bigger events it is above 1000 tonnes. In both monitored seasons one big event and several (5–10) small events with ability to transport suspended sediment occurred. Therefore, the suspended sediment yield in the monitored period can be estimated to 1500 tonnes per year. Variation mostly depends on the biggest event in a year. The precipitation in the year 2001 was a bit below the mean value. At the location of the climatological station in Portorož Airport, the annual precipitation was 978 mm compared to the long-term average of 1013 mm. The months of October, November and December 2000 were above the long-term average (at Portorož Airport, 652 mm compared to the long-term average in the same months of 318 mm). Relation between the concentration of suspended sediment C and the discharge Q varies between events. The concentration at the discharge Q = 3 m 3 /s was around 0.5 g/l for the event of October 10, 2000, while it was around 2 g/l for events of November 4, 2000 and September 14, 2001. Often the concentration was not increasing with the discharge and the peak in concentration occurred at relatively low discharges. This is especially true for the event of November 4, Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 47 velja npr. za dogodek 4. 11. 2000. Izmerjeni podatki torej kažejo, da omejitveni dejavnik premeš čanja lebde čih plavin ni premestitvena zmogljivost, temve č dotok sedimentov. To potrjuje tudi dejstvo, da na dnu skoraj ni mogo če najti drobnih zrn plavin. Ravno tako lahko sklepamo, da erozija brežin, ki je odvisna predvsem od pretoka vode, ne prispeva bistvenega deleža lebde čih plavin. Zaplavni prostor za pragom na lokaciji vodomerne postaje Rokava se je zapolnil v času dogodka 4. 11. 2000 (vrh poplavnega vala Q max = 19,7 m 3 /s). Prostornino plavin za pragom smo ocenili na 50 m 3 . Približno enaka koli čina rinjenih plavin se je odložila na položnem delu med pragom in stopnjo, ki leži približno 50 m dolvodno. V času tega poplavnega vala se je po strugi skozi presek tik nad pragom torej premestilo najmanj 100 m 3 rinjenih plavin. 2000. The measured data show that the sediment discharge is not transport capacity limited, but supply limited. This can also be confirmed by the fact that there is very little fine sediment in the streambed. It can also be concluded that the bank erosion, which is mostly water discharge dependent, does not contribute a considerable amount of sediment. The deposition volume behind the broad crested weir at the site of Rokava water level recorder was filled during the event of November 4, 2000 (peak flow Q max = 19.7 m 3 /s). Volume of deposited bedload was estimated at 50 m 3 . Approximately the same volume was deposited between the broad crested weir and a step located approximately 50 m downstream. Therefore, we estimate that during that event at least 100 m 3 of bedload was transported. Slika 6. Deli klifa glede na dinamiko sedimentov. Figure 6. Parts of cliff regarding sediment dynamics. POBO ČJE SLOPE zgornje obmo čje upper area spodnje obmo čje lower area STRUGA CHANNEL KLIF CLIFF Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 48 Preglednica 2. Dimenzije in nagib klifa Rokava-1. Table 2. Dimensions and slope of the Rokava- 1 cliff. zgornje obmo čje (erozija) upper area (erosion) spodnje obmo čje (odlaganje) lower area (deposition) skupaj total površina – tloris A z area – plan view A z 2682 m 2 878 m 2 3560 m 2 površina – pogled A y area – front view A y 3685 m 2 745 m 2 4430 m 2 nagib slope 1.48 0.87 1.32 3.2 EROZIJA S KLIFOV Na povodju Rokave smo identificirali štiri erozijsko aktivne klife: Rokava-1, Rokava-2, Rokava-3 in Lopar (slika 3). Klifi so sestavljeni iz dveh obmo čij (slika 6): zgornje obmo čje se ve činoma erodira, na spodnjem obmo čju klifa se sedimenti za časno odlagajo. Na podlagi terenskih opazovanj smo prišli do naslednjih ugotovitev o dinamiki sedimentov na klifih: 1. Na zgornjem delu klifa prihaja do erozije, predvsem zaradi preperevanja in zdrsov manjših zemljinskih mas. 2. Drobnejše frakcije se odložijo na spodnjem delu klifa, grobe frakcije pa zaradi ve čje vztrajnosti padejo neposredno v strugo. 3. Iz spodnjega dela sedimente v strugo odnaša predvsem površinska vodna erozija (medžlebi čna in žlebi čna erozija). 3.2.1 KLIF ROKAVA-1 Klif Rokava-1 je najve čji. Podatki o tem klifu so bili dobljeni s fotogrametri čnim snemanjem. Klif je visok do 50 m, širina pa je 180 m. Pogled z zna čilnimi deli klifa je prikazan na sliki 4. Spodnji del klifa v protito čni smeri je precej zaraš čen, tako da tam meritve nismo opravili. Preglednica 2 podaja nekatere zna čilnosti klifa. Klif je spodaj zaraš čen do x = 980 m (lokalne koordinate, obmo čje 1E na sliki 4), zato lahko sklepamo, da je koli čina erodiranega materiala, ki doseže strugo, na tem 3.2 EROSION FROM CLIFFS Four active cliffs were identified in the Rokava catchment: Rokava-1, Rokava-2, Roaka-3 and Lopar (Figure 3). Cliffs consist of two areas (Figure 6): the upper area, where the area is mainly eroded, and the lower area, where sediment is temporarily deposited. Field observations helped us reach the following conclusion about sediment dynamics on cliffs: 1. In the upper part, the sediment is mostly eroded due to decay and small landslides. 2. Fine sediment is deposited in the lower part of the cliff, while bigger grains tend to fall directly into the streambed. 3. From the lower part, sediment is eroded into the stream mostly by soil erosion processes caused by rainfall (rill and inter-rill erosion). 3.2.1 CLIFF ROKAVA-1 Rokava-1 cliff is the biggest cliff in the catchment. Topography of the cliff was obtained by a photogrammetric survey. The cliff is up to 50 m high and 180 m wide. The front view with indicated characteristic parts is shown in Figure 4. In the upstream direction, the lower part is considerably vegetated and no survey of that part was performed. Table 2 gives some data about the cliff. The cliff is vegetated up to x = 980 m (local coordinates, area 1E in Figure 4). It can be therefore assumed that the amount of sediment reaching the stream in this part is negligible. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 49 delu majhna. Med x = 980 m in x = 1000 m je na višini z = 120 m klif precej položen in zaraš čen, tako da se sedimenti, ki se morebiti sprostijo iz višje leže čih delov, tam ustavijo in prav tako ne dosežejo struge (obmo čje 3E na sliki 4). Površine in nagibi posameznih delov klifa so podani v preglednici 3. At elevation z = 120 m between x = 980 m and x = 1000 m the cliff surface is nearly flat. The sediment that is eroded from higher parts is deposited there without the possibility of being flushed to the stream (area 3E in Figure 4). Areas and slopes of individual parts of the cliff are given in Table 3. Preglednica 3. Površine in nagibi obmo čij klifa Rokava-1 (glej tudi sliko 4). Table 3. Rokava- 1 cliff: areas and slopes (see also Figure 4). obmo čje / area A z [m 2 ] A y [m 2 ]n a g i b I [-] 1E 1096 1593 1.56 2E 978 1222 1.35 2N 390 370 0.97 3E 194 271 1.50 4E 414 600 1.56 4N 488 373 0.78 Preglednica 4. Prostornine erodiranega in nanesenega materiala na klifu Rokava-1 med 27. 9. 2001 in 5. 2. 2002. Table 4. The volumes of eroded and deposited material. Cliff Rokava- 1, time span September 27, 200 1 to February 5, 2002. V [m 3 ] erodirajo či del eroding area nasuti del deposition area skupaj total erodirani material eroded material –10 –54 –73 odloženi material deposited material 3 175 178 skupaj total –7 112 105 Razlike med časovnima presekoma 27. 9. 2001 in 5. 2. 2002 so podane v preglednici 4. Med tem časom ni bilo intenzivnih deževij in visokovodnih valov, zato lahko sklepamo, da so spremembe posledica preperevanja materiala oziroma drugih oblik erozije (zdrsi ipd.). Med časovnima presekoma 5. 2. 2002 in 27. 8. 2002 pa je zaradi površinske vodne erozije na nekaterih nasutih delih klifa prišlo tudi do odnašanja materiala. Zaradi kratkih časovnih obdobij med snemanji in slabše natan čnosti meritve v zgornjem delu klifa so rezultati za erodirajo či The differences between time sections September 27, 2001 and February 5, 2002 are given in Table 4. During that time, there were no intensive rainfall and flood events. Therefore, it can be concluded that the differences are a consequence of material decay and small landslides. On the other hand, between February 5, 2002 and August 27, 2002 rainfall did cause some erosion from the deposition parts as well. As the time span between surveys is short compared to the accuracy of the surveys in the upper part of the cliff, the results for erosion in Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 50 del manj zanesljivi. Pri dolo čanju specifi čnega letnega sproš čanja smo se zato oprli na rezultate odlaganja na spodnjem delu klifa v prvem polletnem obdobju (27. 9. 2001–5. 2. 2002), ko erozije na tem obmo čju klifa skoraj ni bilo. Če predpostavimo, da se je ves sproš čen material odložil na klifu, lahko izra čunamo, da je specifi čno letno sproš čanje na enoto tlorisne površine okrog 500 m 3 /ha oziroma na enoto površine v pogledu okrog 400 m 3 /ha. 3.2.2 DRUGI KLIFI Poleg velikega klifa smo izmerili tudi druge manjše aktivne klife. Preglednica 6 podaja nekatere dimenzije in nagibe klifov. Pri klifu Rokava-3 obmo čja nasipanja nismo zaznali v nobenem obdobju. Zato smo sklepali, da klif ne prispeva pomembnejše koli čine sedimentov v strugo. Iz preglednice 6 vidimo, da so v primerjavi s klifom Rokava-1 drugi klifi mnogo manjši. Njihova skupna površina je približno petkrat manjša. Iz nagibov spodnjega dela klifa lahko izra čunamo strižni kot erodiranega materiala. Ta znaša med 35° (Rokava-2) in 41° (Rokava- 1). To so precej visoke vrednosti, ki pa so glede na obliko (ravnokar odlomljen oglat material) pri čakovane. 3.2.3 PRIMERJAVA S PODOBNIMI MERITVAMI V HRVAŠKI ISTRI O meritvah sproš čanja s klifov poro čajo iz hrvaškega dela Istre (Jurak et al., 2002), ki so od leta 1995 s fotogrametri čno metodo merili sproš čanje s klifa v Sv. Donatu (A z = 2191 m 2 , A y = 3856 m 2 ) in erozijske eksperimentalne ploskve v Abramih (A z = 8,9 m 2 , A y = 3,7 m 2 ). Tam znaša specifi čno letno sproš čanje med 393 in 497 m 3 /ha v tlorisu oziroma med 200 in 269 m 3 /ha v pogledu. Vrednosti so podobne, kot smo jih dobili na klifu Rokava-1. To je pri čakovano, saj so klifi tako v topografskem kot geološkem pogledu podobni. the upper part are less reliable. Therefore, the results from the lower part in first half-year (27 Sept. 2001–5 Feb. 2002) were chosen for calculation of specific (per year and area) sediment production from the cliff. There was hardly any erosion of sediment from this part. If we assume that all the sediment eroded from the upper part of the cliff was deposited in the lower part, the specific annual sediment production can be estimated at 500 m 3 /ha of area in plan view or 400 m 3 /ha in front view. 3.2.2 OTHER CLIFFS In addition to the biggest cliff, other cliffs were also measured. Their sizes and slopes are given in Table 6. Cliff Rokava-3 had no deposition area and therefore it was concluded that the amount of the sediment contributed to the stream network is negligible. From Table 6 it can be seen that the other cliffs are much smaller in comparison to the Rokava-1 cliff. Their total area is about five times smaller. From the slope of the lower part of a cliff angle of repose of the eroded material can be calculated. It is between 35° (Rokava- 2) and 41° (Rokava-1). These values are high but considering the shape (freshly broken angular material) they are expected. 3.2.3 A COMPARISON TO SIMILAR MEASUREMENTS IN CROATIAN ISTRIA Jurak et al. (2002) report about sediment production from cliffs in the Croatian Istria. From 1995, photogrammetrical surveys of the cliff in Sv. Donat (A z = 2191 m 2 , A y = 3856 m 2 ) and experimental erosion plot in Abrami (A z = 8.9 m 2 , A y = 3.7 m 2 ) were performed. Specific annual sediment production from these cliffs is between 393 and 497 m 3 /ha in plan view and between 200 and 269 m 3 /ha in front view. These values are similar to the ones obtained from Rokava-1 cliff. Similarity could be expected since the cliffs are similar in topography and geology. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 51 Preglednica 6. Dimenzije in nagibi manjših klifov. Table 6. Size and slope of smaller cliffs. nagib / slope klif cliff A z [m 2 ] A y [m 2 ] nasuti del deposition area erodirajo či del eroding area Rokava-2 320 310 0.7 1.5 Rokava-3 50 150 - 3.0 Lopar 360 310 0.75 1.8 1.11.00 1.1.01 1.3.01 1.5.01 1.7.01 1.9.01 1.11.01 1.1.02 1.3.02 1.5.02 -20 0 20 40 60 80 100 120 140 dz [mm] datum sr max min Slika 6. Napredovanje sedimentacije v žlebi čih (n = 8). Figure 6. Dynamics of sedimentation in rill area (n = 8). 3.2.4 MERITVE Z ŽEBLJI ČI NA KLIFU ROKAVA-1 Napredovanje sedimentacije v žlebi čih je predstavljeno na sliki 6. Iz slike 6 vidimo, da je klif v obdobju od maja do julija tako reko č neaktiven. Najve čja sprememba se zgodi z nastopom pozno poletnih oziroma zgodnje jesenskih nalivov z veliko erozivno mo čjo 3.2.4 MONITORING WITH EROSION PINS AT ROKAVA-1 CLIFF The dynamics of the sedimentation in the rill area is shown in Figure 6. From Figure 6 it can be seen that the cliff is practically inactive in the months of May and June. Changes are fastest in late summer and early autumn and are caused by intensive rainfalls (Petkovšek, Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 52 (Petkovšek, 2002). Takrat se na novo pojavijo žlebi či, v katerih se nato zlasti v novembru in decembru, pa tudi še v pomladanskih mesecih, znova odlagajo sedimenti, dokler se žlebi č ne izravna z okoliško površino. Na podlagi meritev smo ugotovili, da so žlebi či globoki do 10 cm, široki okrog 20 cm, dolžina pa je odvisna od velikosti nasutega dela klifa, kjer se pojavljajo. Tipična dolžina je med 5 in 10 m. 3.3 EROZIVNOST PADAVIN V obravnavanem obdobju od se je na obravnavnem obmo čju pojavilo sedemnajst velikih dogodkov, ki so na vsaj eni lokaciji presegli mejo R = 100 MJ/ha mm/h. Slika 7 za te dogodke prikazuje erozivnost padavin po lokacijah. Preglednica 8 podaja višino padavin P, najve čjo polurno intenziteto padavin I 30 in erozivnost padavin R za deset najve čjih dogodkov. Iz rezultatov vidimo, da so se nalivi z veliko erozivnostjo pojavljali pozno poleti in jeseni (julij–november). Zunaj tega obdobja, to je v desetih mesecih od decembra 2000 do junija 2001 in od decembra 2001 do februarja 2002, sta se pojavila le dva velika dogodka. Poletni erozivni dogodki so prostorsko omejenega zna čaja, če upoštevamo, da je razdalja med dežemeri le nekaj kilometrov. Tako je bil dogodek 10. 7. 2001 eroziven tako reko č le v Kocjan či čih, 29. 7. 2001 pa predvsem v Koštaboni. Tudi pri ostalih dogodkih je opazno izrazito prostorsko spreminjanje erozivnosti padavin. Posebno pozornost zasluži dogodek 31. 8. 2001, ko je najve čja polurna intenziteta padavin I 30 presegla 100 mm/h. Podobne in ve čje vrednosti so sicer zna čilne za poletne in jesenske nalive na obmo čju Sredozemlja. Martinez Casanovas et al. (2002) navajajo dogodek iz osrednje Katalonije (Španija) junija 2000, ko je najve čja polurna intenziteta padavin dosegla I 30 = 170 mm/h, erozivnost dogodka pa kar R = 11.756 MJ/ha mm/h. 2002). Rills are formed at that period of year. From then on, the sediment is deposited in rills (especially in November, December) till they are filled and levelled with the rest of the cliff surface in spring. Measurements showed that the rills are up to 10 cm deep and 20 cm wide while the length depends on the size of the deposition area where a rill is formed. Typical lengths are between 5 and 10 m. 3.3 RAINFALL EROSIVITY In the monitored area and the period of observation, seventeen big events occurred that exceeded the limit of R = 100 MJ/ha mm/h in at least one location. Figure 7 shows the value of R factor for these events for all locations. Table 8 gives precipitation P, maximum 30 minute intensity I 30 and R factor for ten biggest events. The results indicate that the storms with high erosivity occur in late summer and in autumn (July–November). Outside of that period, i.e. in ten months between December 2000 and June 2001 and December 2001 and February 2002, only two big events occurred. During the summer, erosive events are of spatially limited character, considering that the distance between the raingauges is only a couple of kilometres. The event of July 10, 2001 was limited to Kocjan či či, while the event of July 29, 2001 was more or less limited to Koštabona. A similar pattern could be observed at other events. A special attention must be paid to the event of August 31, 2001, when the maximum 30 minute intensity I 30 exceeded 100 mm/h. Similar values are characteristic for summer storms in the Mediterranean. Martinez Casanovas et al. (2002) inform about an event from central Catalonia (Spain), where in June 2000 the following values were recorded: I 30 = 170 mm/h and R = 11756 MJ/ha mm/h. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 53 0 500 1000 1500 2000 2500 3000 10-okt-00 17-okt-00 3-nov-00 4-nov-00 6-nov-00 8-nov-00 15-nov-00 17-nov-00 16-apr-01 31-maj-01 10-jul-01 20-jul-01 29-jul-01 31-avg-01 14-sept-01 4-okt-01 12-nov-01 datum / date R [MJ/ha mm/h] Koštabona Dragonja Rokava Marezige Kocjan či či Slika 7. Pregled dogodkov z veliko erozivnostjo (R > 100 MJ/ha mm/h). Lokacije so razvrš čene v obratni smeri vodnega toka. Figure 7. Overview of the events with high erosivity (R > 100 MJ/ha mm/h). Locations are ordered in the upstream direction. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 54 Preglednica 8. Pregled desetih najve čjih erozivnih dogodkov. Table 8. Overview of ten biggest erosive events. Št. / No datum / date d.m.yy Lokacija Location P mm I 30 mm/h R MJ/ha mm/h 1 31.8.2001 Rokava 86.5 108.8 2647 2 31.8.2001 Dragonja 74.2 85.5 1759 3 14.9.2001 Marezige 105.2 54.4 1368 4 31.8.2001 Marezige 62.8 79.7 1366 5 14.9.2001 Rokava 115.6 44.8 1267 6 4.11.2000 Rokava 61.2 68.6 1081 7 14.9.2001 Kocjan či či 105.0 42.1 1022 8 31.8.2001 Kocjan či či 68.2 50.7 853 9 4.11.2000 Dragonja 54.4 54.7 736 10 10.10.2000 Koštabona 84.9 32.6 558 4. ZAKLJU ČEK Na podlagi opravljenih meritev od jeseni 2000 do pomladi 2002 lahko povpre čni letni odtok lebde čih plavin s povodja Rokave ocenimo na okrog 1500 t (750 kg/ha), povpre čni letni odtok rinjenih plavin pa na vsaj 10 % te vrednosti. Ocenjujemo, da je premeš čanje ve čjih zrn rinjenih plavin omejeno v povpre čju na en dogodek letno. Rinjene plavine izvirajo predvsem iz klifov in morda bo čne erozije že odloženega materiala. Rezultati kažejo, da je vir ve čjega dela lebde čih plavin površinska erozija, manjšega pa klifi (nekaj 100 m 3 oz 100 ton letno). Za natan čnejšo dolo čitev deležev so potrebne dolgotrajnejše meritve. Erozivni dogodki so zelo neenakomerno razporejeni, tako časovno kot prostorsko. Najve čji dogodki se pojavljajo pozno poleti in jeseni. V tem času je tudi erozijska aktivnost klifov najve čja. Pri meritvah klifov se je za uspešno izkazala kombinacija fotogrametri čne meritve in meritve z erozijskimi žeblji či. 4. CONCLUSION The following conclusions apply to the measurements in Rokava catchment from autumn 2000 to spring 2002. The average annual suspended sediment yield is around 1500 t (750 kg/ha). The average annual bedload transport is about one tenth of that value and on average occurs during one event per year. The source of bedload is rocks that originate from cliffs and possibly bed and bank material. The results show that the source of suspended sediment is mostly surface erosion, while cliffs contribute a couple 100 m 3 or approximately 100 tonnes per year. Further measurements in a longer period are required to obtain more precise results. Erosive events are highly variable both temporally and spatially. The biggest events usually occur in late summer and in autumn. During this time, the activity of the cliffs is also at its peak. For monitoring of cliffs, the combination of photogrammetry and erosion pins proved to be successful. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 55 VIRI – REFERENCES Gavrilovi ć, S. (1970). Savremeni na čini prora čunavanja buji čnih nanosa i izrada karata erozije. (Contemporary methods for calculation of sediment yield and soil erosion mapping). Proceedings of Erosion, torrents and sediments. Institut Jaroslav Černi, Belgrade, 85–100 (in Serbo-Croatian). GI (2001). 3D Model klifa ob Rokavi (3D model of the Rokava cliff). Report on photogrammetric survey, Geodetic institute of Slovenia, Ljubljana, 15 p. GI (2002a). 3D Model klifa ob Rokavi (3D model of the Rokava cliff). Report on photogrammetric survey, Geodetic institute of Slovenia, Ljubljana, 15 p. GI (2002b). 3D Model klifa ob Rokavi, tretja izmera (3D model of the Rokava cliff, third measurement). Report on photogrammetric survey, Geodetic Institute of Slovenia, Ljubljana, 15 p. Globevnik, L., Sovinc, A. (1998). The impact of catchment land use change on river flows: the Dragonja river, Slovenia. Hydrology in a changing environment I. John Wiley & Sons, 525–533. Globevnik, L. (2001). Celosten pristop k urejanju voda v povodjih (Integrative approach to water management) Unpublished Doctoral thesis, University of Ljubljana, 167 pp. Hahn, C.T., Barfield, B.J., Hayes, J.C. (1994). Design hydrology and sedimentology for small catchments. Academic Press Inc., San Diego, ZDA, 588 pp. Hobby, D., Minneboo, S. (2001). Hydrology of upper Dragonja catchment, SW Slovenia, a preliminary analysis. Unpublished document of VU Amsterdam, 101 p. Jurak, V., Petraš, J., Gajski, D. (2002). Istraživanje ekscesivne erozije na ogoljenim flišnim padinama u Istri primjenom trestri čke fotogrametrije. (Survey of excessive soil erosion from bare flysch slopes in Istria by terrestrial photogrammetry). Hrvatske vode 10/38, 49–58 (in Croatian). Leica Geosystems (2001). DISTO pro User Manual, 242 p. Martínez Casanovas, J.A., Ramos, M.C., Ribes-Dasi, M. (2002). Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105, 125–140. Meyer, L.D., Wischmeier, W.H. (1969). Mathematical simulation of the process of soil erosion by water. Trans. ASAE 12(6), 754–758. Petkovšek, G. (2000). Procesno utemeljeno modeliranje erozije tal = Process based soil erosion modelling. Acta hydrotechnica 18/28, 41–60. Petkovšek, G. (2002). Modeliranje in kvantifikacija erozije tal z aplikacijo na povodju Dragonje (Modelling and quantification of soil erosion with application to Dragonja catchment, in Slovenian). Doctoral thesis, University of Ljubljana, 205 p. Pintar, J., Mikoš, M. (1983). Izdelava smernic in normativov z globalno usmeritvijo urejanja po ekosistemih, pojavnostih in ekološki primernosti ter na činov gospodarjenja s povirji voda. Poro čilo VGI C-432, Ljubljana, 133 p. PUH (1971). Erozija tal in hudourniki, Dragonja v slovenski Istri (Soil erosion and torrents, Dragonja in Slovenian Istria). Report, Ljubljana (in Slovenian). Reid, L.M., Dunne, T. (1996). Rapid Evaluation of Sediment Budgets. Catena Verlag, 164 p. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised universal soil loss equation (RUSLE). USDA, Agricultural Handbook No 703, 404 p. Petkovšek, G., Mikoš, M.: Erozijski procesi v eksperimentalnem povodju Dragonje, JZ Slovenija – Measurements of Erosion Processes in the Experimental Catchment of the Dragonja River, SW Slovenia © Acta hydrotechnica 21/34 (2003), 37–56, Ljubljana 56 Naslovi avtorjev – Authors' Addresses asist. dr. Gregor Petkovšek Univerza v Ljubljani – University of Ljubljana Fakulteta za gradbeništvo in geodezijo – Faculty of Civil and Geodetic Engineering Jamova 2, SI – 1000 Ljubljana E-mail: gpetkovs@fgg.uni-lj.si present address: CGS, Ra čunalniško podprto projektiranje, GIS in ekologija, d.o.o. – CGS, Computer Aided Design, GIS and Ecology, L.t.d. Brn či čeva 13, SI-1000 Ljubljana E-mail: Gregor.Petkovsek@cgsplus.si izr. prof. dr. Matjaž Mikoš Univerza v Ljubljani – University of Ljubljana Fakulteta za gradbeništvo in geodezijo – Faculty of Civil and Geodetic Engineering Jamova 2, SI – 1000 Ljubljana E-mail: mmikos@fgg.uni-lj.si