ZAUPAMO V KAKOVSTNO ŠOLO PRIHODNOSTI Prednosti nivojskega pouka matematike v praksi Natalija Podjavoršek, prof. matematike in fizike, specialistka zakonske in družinske tera- pije, Srednja ekonomska šola Ljubljana Slovenija velja za državo z dokaj dobrim znanjem matematike. Toda učenci in dijaki matematike ne marajo. Mnogim se zdi prezahtevna. Leta 1999 se je v slovenskih šolah tudi pri matematiki začel pojavljati nivojski pouk kot oblika zunanje diferenciacije. Pri tem so učence osmega in devetega razreda razdelili v tri različno zahtevne homogene skupine. To se je izvajalo le kratek čas, saj so bile velike težave z oblikovanjem stalnih homogenih skupin. Danes homogenih skupin ne srečujemo več, čeprav je še vedno prisotna velika potreba po nivojskem pouku matematike. V članku je predstavljen nivojski pouk matematike, ki se izvaja s pomočjo začasnega združevanja dveh ali treh oddelkov v enega, kot to že počnejo na Finskem. Opisan pa je tudi primer iz praske, ko učitelj sam znotraj enega oddelka vodi pouk na dveh težavnostnih nivojih. Pri tem si lahko pomaga tudi z IKT tehnologijo. Slovenija je znana po učencih in dijakih z do- mel, ko pa sem začela z delom v običajni šoli, sem brim znanjem matematike opazila, da precej dijakov kar odplava v neki svoj Na spletnih straneh projekta TIMSS, mednarodne svet. Ker jim pri mojih urah ne dovolim brskati raziskave v znanju matematike in naravoslovja, po mobitelih in tudi ne delati drugih predmetov, lahko ob pregledu rezultatov ugotavljamo, da so kmalu začnejo klepetati in motiti delo celotnega slovenski šolarji v samem vrhu po znanju naravo- razreda. In potem se kar vedno znova in znova slovja in matematike, kljub vsemu pa matema- znajdemo v istem začaranem krogu: ko dijaki ne tike ne marajo. Učenci in dijaki v Sloveniji najbrž razumejo več stvari, začnejo samo še prepisovati, dosegajo dobre rezultate zato, ker naši učni na- potem prenehajo še s tem, nalog ne naredijo, ker črti za matematiko predvidevajo poznavanje ma- jih ne znajo, nikoli nič konkretnega ne vprašajo, tematike na precej visokem nivoju. O tem, ali je rečejo samo, da so se izgubili, ker je vse pretežko to prav ali ne, bi se dalo diskutirati, a na tem me- in prehitro. Bi bila rešitev, da bi reševali samo lažje stu se ne bomo ukvarjali z učnimi načrti, ampak naloge in jih večkrat ponavljali? Ob takšnem na- s tem, kako narediti ure matematike prijetne oz. činu bi nam gotovo zmanjkalo časa za doseganje vsaj znosne za vse učence in dijake, tako tiste, ki vseh ciljev, ki so zapisani v učnih načrtih. Pa ne se z matematiko zelo mučijo, kot tiste, ki mate- samo to. Če snov napreduje prepočasi in so si na- matiko toliko obvladajo, da v njej že uživajo. Težko loge preveč podobne, se začno dolgočasiti boljši je sočasno ugoditi obojim. Če so naloge prelahke, dijaki in začno klepetati ali pa se zaposlijo s ka- se dolgočasijo boljši učenci in dijaki, če so težje, kšno drugo dejavnostjo. popolnoma izgubimo šibkejše učence in dijake. In to se začne odražati tudi na disciplini pri urah Notranja diferenciacija je zagotovo mogoča na matematike. papirju, v praksi pa je to velikokrat misija ne- mogoče Ko poučevanje ni prilagojeno posamezniku, Učim na srednji strokovni šoli in tako imam v obstaja velika verjetnost, da bo učenec oz. di- istem oddelku dijake, ki so imeli v osnovni šoli jak izgubil motivacijo za delo matematiko komaj dve, pa tudi tiste, ki so imeli Dolgo časa sem poučevala v bolnišnični šoli, kjer matematiko v osnovni šoli pet, pa se zaradi te- je večino dela potekala individualno, pogosto ena žav z jeziki niso odločili ali pa niso bili sprejeti na na ena. Zelo redko se je zgodilo, da bi imela težave gimnazijski program. Podobna situacija je tudi z motivacijo za delo, tako pri učencih kot pri dija- po osnovnih šolah, ki je obvezna za vse. Mnogi kih. Praktično vse sem tudi uspela precej naučiti. osnovnošolci imajo zelo nizke intelektualne spo- Res pa sem težavnost nalog in tempo dela ves čas sobnosti, najbrž bi bilo za njih dosti bolj prav, da prilagajala točno določenemu dijaku oz. učencu. bi se vključili v prilagojeni izobraževalni program In boljši učenci so snov dojemali tudi petkrat hi- z nižjim izobrazbenim standardom. Toda na sle- treje kot slabši. Enako sem doživljala v dijaških in dnje starši učno šibkejših otrok le redko pristane- študentskih letih, ko sem kar precej inštruirala. jo, saj je obiskovanje teh šol še vedno povezano z Le redko se je zgodilo, da kdo razlage ne bi razu- neko stigmo, na drugi strani pa vključitev v te šole 44 Didakta za otroke pogosto pomeni, da so izvzeti iz doma- 2006 dobil tudi zakonski epilog. Po novem so se čega okolja, saj morajo v šolo hoditi v večje kraje. lahko šole same odločale, za kakšno diferenciaci- Kakorkoli že, učitelji v razredih z do 30 slušatelji jo se bodo odločale v osmem in devetem razredu. imajo zelo težko nalogo. Poučevati morajo vse so- Od takrat naprej se večina osnovnih šol odloča časno, ob tem pa slediti tempu posameznikov, ali za razporeditev učencev istega razreda v več he- na kratko – poskrbeti morajo za notranjo diferen- terogenih skupin, saj se tako ni treba ukvarjati z ciacijo. To se lepo sliši, zelo težko pa izvaja. razvrščanjem učencev v različne nivoje glede na njihove sposobnosti, s čimer so povzročili številna Zunanja diferenciacija v Sloveniji ni mogoča, nestrinjanja pri starših otrok, ki so velikokrat bili ker starši prepogosto želimo, da so naši otroci prepričani, da mora biti njihov otrok v najboljši povsod najboljši skupini, pri čemer pa niso upoštevali sposobnosti Šolska kurikularna prenova je leta 1995 v sloven- svojega otroka na področju matematike, ampak ske šole vnesla kar nekaj sprememb, ki naj bi samo svoje vizije o tem, da se bo njihov otrok vpi- pomagale pri odpravljanju tako disciplinskih te- sal v najboljšo gimnazijo in kasneje na najboljšo žav kot učne neuspešnosti učencev v osnovnih fakulteto. Kakorkoli že, v trenutku, ko so šole do- šolah. In tako se je za nekaj let v Sloveniji pojavil bile možnost, da se avtonomno odločajo o tem, nivojski pouk pri prvem tujem jeziku, slovenščini ali bodo imeli homogene ali heterogene skupine, in matematiki, skupaj z njim pa tudi ocenjevanje se je število homogenih skupin, ki predstavljajo s točkami. Zunanja diferenciacija se je postopo- plus predvsem za učno uspešnejše učence, zače- ma uvajala v šole. Toda kmalu so se začeli poja- lo zelo zmanjševati. vljati odpori do tovrstne diferenciacije. Menda naj bi bili vsi na slabšem, saj so najboljšim učencem Zunanja diferenciacija bi največ prinesla učno manjkali povprečni učenci, ki si upajo spraševati, najbolj uspešnim učencem, katerih potrebe se- najslabši učenci pa niso imeli nikogar, ki bi jih po- daj realiziramo pri dodatnih poukih in na inte- ganjal naprej. Odporov je bilo vedno več, še pose- resnih dejavnostih bej pri starših, ki so težko sprejeli, če je bil njihov V homogenih skupinah so učenci dobili predvsem otrok v šoli manj uspešen od njihovih pričakovanj priložnost, da pridobijo več znanj tudi na višjih ni- in so ga zato učitelji razporedili v manj zahtev- vojih, za kar v heterogenih skupinah ni priložnosti. no skupino, kot bi si želeli starši. Razporejanje v In ravno zaradi teh priložnosti imajo homogene te skupine je bilo tako vedno težje in vedno bolj skupine za boljše učence veliko vrednost. Res pa podvrženo kritikam staršev. Ves ta odpor je leta je, da v homogenih skupinah nekaj izgubijo slabši 45 Didakta ZAUPAMO V KAKOVSTNO ŠOLO PRIHODNOSTI in povprečni učenci. Za te bi bilo potrebno še raz- Na Finskem imajo zanimive pristope misliti, kako spremeniti način dela, da bi tudi oni Pred letom dni sem bila na izobraževanju o šoli pri- napredovali, ali vsaj ohranili svoj nivo znanja. hodnosti na Finskem. Med drugim so nam na tem izobraževanju predstavili potek dela v šoli. Njihove Mnogo raziskav je bilo narejenih ob uvajanju nivoj- učilnice velikokrat nimajo samo enih vrat, ki vodijo skega pouka. Na področju matematike so tako ugo- na hodnik, ampak tudi vrata v sosednji dve učilnici. tovili, da pri zunanjem preverjanju (NPZ) ni bilo po- Predstavniki tamkajšnjih šol so nam povedali, da so membnih razlik v povprečnih dosežkih med učenci, ti medrazredni prehodi namenjeni temu, da lahko ki so obiskovali pouk v heterogenih učnih skupinah, po potrebi več učilnic združijo v eno veliko učilni- in tistih, ki so bili v homogenih učnih skupinah. Pri co. Tako imajo recimo trije oddelki sedmih razredov ocenjevanjih znotraj šole pa je bilo opaziti, da so imeli sočasno uro matematike. Vsak oddelek je »uradno« tisti učenci, ki so bili vključeni v homogene učne sku- v svojem razredu in ima svojega učitelja. Toda na pine, boljše povprečne učne rezultate od vrstnikov, ki začetku ure se vsi zberejo v eni učilnici, kjer se po- niso bili vključeni v homogene skupine. Izkazalo se sedejo in prisluhnejo uvodni razlagi enega od treh je, da so v homogenih skupinah bolj napredovali bolj učiteljev. Sledi utrjevanje povedanega. Vsak od uči- sposobni učenci, pri slabših učencih pa ni bilo razlike teljev gre v svoj razred in začne utrjevati snov na do- med tistimi v heterogenih in homogenih skupinah. ločen način. Tudi težavnost je lahko različna. Učenci Na začetku nas preseneti dejstvo, da boljši učenci, ki se sami odločijo, v katerem prostoru in s katerim so bili vključeni v homogene skupine, niso izboljšali učiteljem bodo utrjevali snov. Naloge lahko rešujejo rezultatov tudi na zunanjih preverjanjih. A če se za- tudi sami, če se tako odločijo, in to kjerkoli v učilnici, vedamo dejstva, da zunanja preverjanja preverjajo le na tleh, na okenski polici, za mizo, včasih tudi zu- temeljna znanja, to sploh ni več takšno presenečenje. naj v naravi. Edino otrokom s posebnimi potrebami občasno učitelji namignejo, v katero skupino naj Danes homogenih skupin skoraj ni več, so samo gredo. Ko vidiš otroke, se zdijo zadovoljni, in učitelji še manjše učne skupine. Nobena šola se ne želi pravijo, da naredijo dogovorjeno. ukvarjati z morebitnimi negativnimi učinki dela v homogenih skupinah, čeravno vedo, da bi to pri- Je mogoče del finskega sistema prenesti v Slo- neslo tudi marsikaj pozitivnega. Zunanja diferenci- venijo? acija je začela izginjati, še preden se je povsod do- Od obiska Finske naprej veliko razmišljam o tem, bro pojavila. Niti slučajno pa ni dobila priložnosti za kako v srednjih strokovnih šolah in v osnovnih izboljšave in osebno mislim, da je to velika škoda. šolah, kjer so učenci in dijaki z zelo različnimi 46 Didakta sposobnostmi za učenje matematike, izvesti ure računalnik in slušalke za poslušanje, tako da bi si matematike tako, da bodo vsi vključeni pri rednih sam tempiral tempo reševanja. Če nalog kljub po- urah pridobili čim več. Prevečkrat se moramo na- sneti razlagi ne bi razumel, bi na pomoč poklical mreč učitelji osredotočati predvsem na šibkejše prisotnega učitelja. Lahko bi reševali tudi e-kvize dijake, za boljše pa zmanjka časa. Sama sem več ali druge interaktivne vaje. Kot predvideva kombi- kot dvajset let učila v bolnišnični šoli, kjer delo po- nirani pouk, o katerem je v zadnjem času ponov- teka popolnoma individualno, pogosto celo ena no veliko govora. na ena, redkeje v manjših skupinah. In učitelj se navadi tega, da med podajanjem snovi ves čas Do sedaj mi še ni uspelo preizkusiti prej opisane sledi tempu točno določenega učenca oz. dijaka. diferenciacije v praksi. To potrebuje svoj čas in Tako je količina predelane snovi v enakem času ogromno organizacije na ravni šole. Marsikaj je lahko pri enem učencu ali pa dijaku tudi petkrat treba tudi pripraviti, še domisliti. Prakticiram pa obsežnejša kot pri drugem. To imam v sebi, a se že dvonivojsko delo znotraj istega oddelka in tako moram kot učitelj v razredu z do 30 dijaki neka- že pripravljam gradiva in nabiram izkušnje za čas, ko odločiti, komu bom sledila. Vsem ne morem, ko bomo ta način razširili na sočasno delo z dve- čeravno si dijaki to zelo želijo. Kot učiteljica v ce- ma ali tremi oddelki. Pomagam si s tem, da imam lotnem razredu imam precej veliko težav s tem, v učilnici nameščeni dve tabli, eno na sprednji in da bi se pravilno odločila, s kakšnim tempom naj eno na zadnji steni učilnice. Tudi klopi so obrnje- nadgrajujem snov pri matematiki. Nemogoče je ne tako, tako so zavrtene v določeno smer – nekaj stvari utrjevati toliko časa, da jih bodo čisti vsi ra- naprej, nekaj nazaj. Dijaki izberejo smer, ki jim bolj zumeli, vseeno pa je potrebno na isti snovi vztra- ustreza (težje ali lažje naloge). Kjer table na zadnji jati toliko časa, da večina razume. Seveda pa to za strani učilnice ni, pa se dogovorimo, kateri del ta- najboljše v matematiki pomeni, da se bodo začeli ble je za katere dijake, a to že zahteva več zbrano- dolgočasiti. Za boljše dijake in učence sicer pri- sti pri dijakih in je samo slabša različica delitve od- praviš posebne izzive, a le redko uspeš najti čas, delka na dva dela. Znotraj ure potem sama nekaj da se jim znotraj redne ure lahko posvetiš. Slabši časa delam z eno skupino in nekaj časa z drugo. dijaki enostavno ne znajo delati brez tvojega vo- Pri tem bi včasih potrebovala uro, ki bi mi javila denja. čas za prehod k drugi skupini, sicer se zelo hitro zgodi, da pri slabših dijakih ostanem daljši čas, za Potrebno je poučevati na različnih nivojih težav- boljše pa ga potem zmanjka. Lažje je, če si pri eni nosti, kar je za enega učitelja v razredu zelo težko. skupini pomagam z vnaprej posnetimi razlagami Učno šibkejši učenci in dijaki potrebujejo učite- nalog, ki jim dijaki sledijo s slušalkami na svojih lja ves čas, zelo malo pri rednih urah naredijo sa- mobitelih. Še bolje bi bilo, če bi v razredu imela mostojno, zaradi česar učitelji zelo težko delamo računalnike in bi jim sledili na računalnikih. Na ra- z učno bolj uspešnimi dijaki in učenci na višjem čunalnikih namreč njihovo delo lažje nadzorujem, nivoju. Rešitev vidim v združevanju dveh ali treh mobiteli pa imajo majhne zaslone in težko vidim, oddelkov otrok, kot to že prakticirajo na Finskem. kaj delajo. Predvsem v skupini šibkejših dijakov je Skupnemu uvodu v novo snov, ki ga za vse pri- digitalna pomoč zelo koristna. Na računalnikih ali pravi eden od dveh ali treh prisotnih profesorjev, mobitelih lahko dijaki tudi rešujejo razne kvize, sledi delo na dveh ali treh različnih težavnostnih kjer sproti dobijo povratno informacijo o tem, ali nivojih. Vsak nivo poteka v drugi učilnici in ga vodi so nalogo rešili pravilno ali ne. To prakticiram ve- drug učitelj, učenci in dijaki pa se po uvodnem dno pogosteje in rezultati so vzpodbudni. delu odločijo, v kateri skupini bodo delali, glede na svoje sposobnosti oz. stil učenja. S tem bi se po Dovolimo si iskati nove pristope k poučevanju, uvodni skupni razlagi slušatelji razdelili v dosti bolj ko uvidimo, da stari pristopi niso učinkoviti homogene skupine. Vendar to ne bi bile vnaprej Svet, v katerem živimo, se hitro spreminja in nujno določene skupine, zaradi česar bi odpadel nega- je slediti tem spremembam tudi s spremembami tiven pogled na delo v homogenih skupinah, ki je šolskega sistema. Iskati je potrebno nove načine bil ena večjih kritik nivojskega pouka. Prepričana dela, z namenom, da najdemo način, ki bo dober sem tudi, da bi bilo več prehodov iz ene v drugo za čim več učencev in dijakov v točno določenem skupino – eno uro bi se dijaki oz. učenci odločili času. Nivojsko poučevanje matematike, pri kate- tako, drugo drugače. rem dijake in učence znotraj enega ali več oddel- kov delimo v bolj homogene skupine, je eden od Nivojsko poučevanje s pomočjo kombiniranega možnih pristopov k poučevanju. Vsak pristop ima pouka seveda prednosti in slabosti, kajti idealnega, za vse Ena od teh skupin bi lahko delo nadaljevala tudi v primernega pristopa, ni, saj smo si ljudje preveč računalniški učilnici, kjer bi lahko dijaki in učenci različni. To, da iščemo in preizkušamo nove pristo- naloge reševali s pomočjo vnaprej posnetih raz- pe poučevanja, pomeni, da imamo možnost na- lag. Vsak dijak oz. učenec bi imel na razpolago svoj predovanja. In to je zelo pomembno. 47 Didakta