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Abstract

In this paper, we show that all fat Hoffman graphs with smallest eigenvalue at least
−1 − τ , where τ is the golden ratio, can be described by a finite set of fat (−1 − τ)-irre-
ducible Hoffman graphs. In the terminology of Woo and Neumaier, we mean that every fat
Hoffman graph with smallest eigenvalue at least−1− τ is anH-line graph, whereH is the
set of isomorphism classes of maximal fat (−1 − τ)-irreducible Hoffman graphs. It turns
out that there are 37 fat (−1− τ)-irreducible Hoffman graphs, up to isomorphism.
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1 Introduction
P. J. Cameron, J. M. Goethals, J. J. Seidel, and E. E. Shult [1] characterized graphs whose
adjacency matrices have smallest eigenvalue at least −2 by using root systems. Their re-
sults revealed that graphs with smallest eigenvalue at least −2 are generalized line graphs,
except a finite number of graphs represented by the root system E8. Another characteri-
zation for generalized line graphs were given by D. Cvetković, M. Doob, and S. Simić [3]
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by determinig minimal forbidden subgraphs (see also [4]). Note that graphs with smallest
eigenvalue greater than −2 were studied by A. J. Hoffman [5].

Hoffman [6] also studied graphs whose adjacency matrices have smallest eigenvalue at
least −1−

√
2 by using a technique of adding cliques to graphs. R. Woo and A. Neumaier

[12] formulated Hoffman’s idea by introducing the notion of Hoffman graphs. A Hoff-
man graph is a simple graph with a distinguished independent set of vertices, called fat
vertices, which can be considered as cliques of size infinity in a sense (see Definition 2.1,
and also [8, Corollary 2.15]). To deal with graphs with bounded smallest eigenvalue, Woo
and Neumaier introduced a generalization of line graphs by considering decompositions of
Hoffman graphs. They gave a characterization of graphs with smallest eigenvalue at least
−1 −

√
2 in terms of Hoffman graphs by classifying fat indecomposable Hoffman graphs

with smallest eigenvalue at least −1−
√

2. This led them to prove a theorem which states
that every graph with smallest eigenvalue at least−1−

√
2 and sufficiently large minimum

degree is a subgraph of a Hoffman graph admitting a decomposition into subgraphs iso-
morphic to only four Hoffman graphs. In the terminology of [12], this means that every
graph with smallest eigenvalue at least −1 −

√
2 and sufficiently large minimum degree

is an H-line graph, where H is the set of four isomorphism classes of Hoffman graphs.
For further studies on graphs with smallest eigenvalue at least −1−

√
2, see the papers by

T. Taniguchi [10, 11] and by H. Yu [13].
Recently, H. J. Jang, J. Koolen, A. Munemasa, and T. Taniguchi [8] made the first step

to classify the fat indecomposable Hoffman graphs with smallest eigenvalue−3. However,
it seems that there are so many such Hoffman graphs. A key to solve this problem is the
notion of special graphs introduced by Woo and Neumaier. A special graph is an edge-
signed graph defined for each Hoffman graph. Although non-isomorphic Hoffman graphs
may have isomorphic special graphs, it is not difficult to recover all the Hoffman graphs
with a given special graph in some cases.

In this paper, we introduce irreducibility of Hoffman graphs and classify fat (−1− τ)-
irreducible Hoffman graphs, where τ := 1+

√
5

2 is the golden ratio. This is a somewhat more
restricted class of Hoffman graphs than those considered in [8], and there are only 37 such
Hoffman graphs. As a consequence, every fat Hoffman graph with smallest eigenvalue at
least −1 − τ is a subgraph of a Hoffman graph admitting a decomposition into subgraphs
isomorphic to only 18 Hoffman graphs. In the terminology of [12], this means that every
fat Hoffman graph with smallest eigenvalue at least −1− τ is anH-line graph, whereH is
the set of 18 isomorphism classes of maximal fat (−1− τ)-irreducible Hoffman graphs.

2 Preliminaries
2.1 Hoffman graphs and eigenvalues

Definition 2.1. A Hoffman graph H is a pair (H,µ) of a graph H and a vertex labeling
µ : V (H) → {slim, fat} satisfying the following conditions: (i) every vertex with label
fat is adjacent to at least one vertex with label slim; (ii) the vertices with label fat are
pairwise non-adjacent.

Let V (H) := V (H), V s(H) := µ−1(slim), V f (H) := µ−1(fat), and E(H) :=
E(H). We call a vertex in V s(H) a slim vertex, and a vertex in V f (H) a fat vertex of H.
We represent a Hoffman graph H also by the triple (V s(H), V f (H), E(H)).

For a vertex x of a Hoffman graph H, we define Nf
H(x) (resp. Ns

H(x)) to be the set of
fat (resp. slim) neighbors of x in H. The set of all neighbors of x is denoted by NH(x), that
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is, NH(x) := Nf
H(x) ∪Ns

H(x).
A Hoffman graph H is said to be fat if every slim vertex of H has a fat neighbor. A

Hoffman graph is said to be slim if it has no fat vertex.
Two Hoffman graphs H = (H,µ) and H′ = (H ′, µ′) are said to be isomorphic if there

exists an isomorphism from H to H ′ which preserves the labeling.
A Hoffman graph H′ = (H ′, µ′) is called an induced Hoffman subgraph (or simply a

subgraph) of another Hoffman graph H = (H,µ) if H ′ is an induced subgraph of H and
µ(x) = µ′(x) holds for any vertex x of H′.

The subgraph of a Hoffman graph H induced by V s(H) is called the slim subgraph of
H.

Definition 2.2. For a Hoffman graph H, let A be its adjacency matrix,

A =

(
As C
CT O

)
in a labeling in which the fat vertices come last. The eigenvalues of H are the eigenvalues
of the real symmetric matrix B(H) := As − CCT . We denote by λmin(H) the smallest
eigenvalue of B(H).

Remark 2.3. An ordinary graph H without vertex labeling can be regarded as a slim
Hoffman graph H. Then the matrix B(H) coincides with the ordinary adjacency matrix
of the graph H . Thus the eigenvalues of H as a slim Hoffman graph are the same as the
eigenvalues of H as an ordinary graph in the usual sense.

Example 2.4. Let HI, HII, and HIII be the Hoffman graphs defined by

V s(HI) = {v1}, V f (HI) = {f1}, E(HI) = {{v1, f1}},
V s(HII) = {v1}, V f (HII) = {f1, f2}, E(HII) = {{v1, f1}, {v1, f2}},
V s(HIII) = {v1, v2}, V f (HIII) = {f1}, E(HIII) = {{v1, f1}, {v2, f1}}

(see Figure 1). Note that λmin(HI) = −1 and λmin(HII) = λmin(HIII) = −2.

HI HII HIII

Figure 1: The Hoffman graphs HI, HII, and HIII

Lemma 2.5 ([12, Lemma 3.4]). The diagonal entry B(H)xx of the matrix B(H) is equal
to −|Nf

H(x)|, and the off-diagonal entry B(H)xy is equal to Axy − |Nf
H(x) ∩Nf

H(y)|.

Lemma 2.6 ([12, Corollary 3.3]). If G is an induced Hoffman subgraph of a Hoffman
graph H, then λmin(G) ≥ λmin(H) holds. In particular, if Γ is the slim subgraph of H,
then λmin(Γ) ≥ λmin(H).
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2.2 Decompositions of Hoffman graphs

Definition 2.7. A decomposition of a Hoffman graph H is a family {Hi}ni=1 of Hoffman
subgraphs of H satisfying the following conditions:

(i) V (H) =
⋃n

i=1 V (Hi);

(ii) V s(Hi) ∩ V s(Hj) = ∅ if i 6= j;

(iii) if x ∈ V s(Hi), y ∈ V f (H), and {x, y} ∈ E(H), then y ∈ V (Hi);

(iv) if x ∈ V s(Hi), y ∈ V s(Hj), and i 6= j, then |Nf
H(x) ∩Nf

H(y)| ≤ 1, and |Nf
H(x) ∩

Nf
H(y)| = 1 if and only if {x, y} ∈ E(H).

If a Hoffman graph H has a decomposition {Hi}ni=1, then we write H =
⊎n

i=1 H
i.

Example 2.8. The (slim) complete graphKn is precisely the slim subgraph of the Hoffman
graph H =

⊎n
i=1 H

i where each Hi is isomorphic to HI, sharing the unique fat vertex.
Ordinary line graphs are precisely the slim subgraphs of Hoffman graphs H =

⊎n
i=1 H

i,
where each Hi is isomorphic to HII.

The (slim) cocktail party graph CP (n) = Kn×2 is precisely the slim subgraph of the
Hoffman graph H =

⊎n
i=1 H

i where each Hi is isomorphic to HIII, sharing the unique fat
vertex.

Generalized line graphs are precisely the slim subgraphs of Hoffman graphs H =⊎n
i=1 H

i, where each Hi is isomorphic to HII or HIII (see [12]).

Definition 2.9. A Hoffman graph H is said to be decomposable if H has a decomposition
{Hi}ni=1 with n ≥ 2. We say H is indecomposable if H is not decomposable.

Example 2.10. A disconnected Hoffman graph is decomposable.

Definition 2.11. Let α be a negative real number and let H be a Hoffman graph with
λmin(H) ≥ α. The Hoffman graph H is said to be α-reducible if there exists a Hoffman
graph H′ containing H as an induced Hoffman subgraph such that there is a decomposition
{Hi}2i=1 of H′ with λmin(Hi) ≥ α and V s(Hi) ∩ V s(H) 6= ∅ (i = 1, 2). We say H is
α-irreducible if λmin(H) ≥ α and H is not α-reducible. A Hoffman graph H is said to be
reducible if H is λmin(H)-reducible. We say H is irreducible if H is not reducible.

Lemma 2.12 ([8, Lemma 2.12]). If a Hoffman graph H has a decomposition {Hi}ni=1, then
λmin(H) = min{λmin(Hi) | 1 ≤ i ≤ n}. In particular, an irreducible Hoffman graph is
indecomposable.

Example 2.13. For a non-negative integer t, let K1,t be the connected Hoffman graph
having exactly one slim vertex and t fat vertices, i.e.,

K1,t = (V s(K1,t), V
f (K1,t), E(K1,t)) = ({v}, {f1, . . . , ft}, {{v, fi} | i = 1, . . . t}).

Then K1,t is irreducible and λmin(K1,t) = −t.

Example 2.14. By Example 2.13, the Hoffman graphs HI (∼= K1,1) and HII (∼= K1,2) are
irreducible. The Hoffman graph HIII is also irreducible.
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Example 2.15. Let HIV be the Hoffman graph defined by

V s(HIV) = {v1, v2}, V f (HIV) = {f1, f2} and

E(HIV) = {{v1, v2}, {v1, f1}, {v2, f2}}.

The Hoffman graph HIV is indecomposable but reducible. Indeed, it is clear that HIV is
indecomposable. Let H′ be the Hoffman graph obtained from HIV by adding a new fat
vertex f3 and two edges {v1, f3} and {v2, f3}. The Hoffman graph H′ is the sum of two
copies of HII, where the newly added fat vertex is shared by both copies, that is, H′ is
decomposable. Furthermore, λmin(HII) = λmin(HIV) = −2. Hence HIV is reducible.

Proposition 2.16. Let G be a slim graph with at least two vertices. If G has maximum
degree k, then G is (−k)-reducible.

Proof. Let G be a slim graph with maximum degree k. We define a Hoffman graph H by
adding a fat vertex for each edge e of G and joining it to the two end vertices of e. Note
that G is the slim subgraph of H. For each slim vertex x ∈ V s(H), let Hx be the Hoffman
subgraph of H induced by {x} ∪ Nf

H(x). Then Hx is isomorphic to the Hoffman graph
K1,degG(x) defined in Example 2.13, and we can check that H =

⊎
x∈V s(H) H

x. Since
the maximum degree of G is k, λmin(Hx) = −degG(x) ≥ −k. Thus G is (−k)-re-
ducible.

Definition 2.17. LetH be a family of isomorphism classes of Hoffman graphs. AnH-line
graph is an induced Hoffman subgraph of a Hoffman graph which has a decomposition
{Hi}ni=1 such that the isomorphism class of Hi belongs toH for all i = 1, . . . , n.

2.3 The special graphs of Hoffman graphs

Definition 2.18. An edge-signed graph S is a pair (S, sgn) of a graph S and a map sgn :
E(S) → {+,−}. Let V (S) := V (S), E+(S) := sgn−1(+), and E−(S) := sgn−1(−).
Each element in E+(S) (resp. E−(S)) is called a (+)-edge (resp. a (−)-edge) of S. We
represent an edge-signed graph S also by the triple (V (S), E+(S), E−(S)).

An edge-signed graph S ′ = (S′, sgn′) is called an induced edge-signed subgraph of an
edge-signed graph S = (S, sgn) if S′ is an induced subgraph of S and sgn(e) = sgn′(e)
holds for any edge e of S′.

Two edge-signed graphs S and S ′ are said to be isomorphic if there exists a bijection
φ : V (S) → V (S ′) such that {u, v} ∈ E+(S) if and only if {φ(u), φ(v)} ∈ E+(S ′) and
that {u, v} ∈ E−(S) if and only if {φ(u), φ(v)} ∈ E−(S ′).

An edge-sined graph S is said to be connected (resp. disconnected) if the graph (V (S),
E+(S) ∪ E−(S)) is connected (resp. disconnected).

Example 2.19. A connected edge-signed graph with at most two vertices is isomorphic to
one of the edge-signed graphs S1,1, S2,1, and S2,2, where

V (S1,1) = {v1}, E+(S1,1) = ∅, E−(S1,1) = ∅,
V (S2,1) = {v1, v2}, E+(S2,1) = {{v1, v2}}, E−(S2,1) = ∅,
V (S2,2) = {v1, v2}, E+(S2,2) = ∅, E−(S2,2) = {{v1, v2}}.

(see Figure 2 in which we draw an edge-signed graph by depicting (+)-edges as full lines
and (−)-edges as dashed lines).
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S1,1 S2,1 S2,2

Figure 2: The connected edge-signed graphs with at most two vertices

Definition 2.20. The special graph of a Hoffman graph H is the edge-signed graph

S(H) := (V (S(H)), E+(S(H)), E−(S(H)))

where V (S(H)) := V s(H) and

E+(S(H)) := {{u, v} | u, v ∈ V s(H), u 6= v, {u, v} ∈ E(H), Nf
H(u) ∩Nf

H(v) = ∅},
E−(S(H)) := {{u, v} | u, v ∈ V s(H), u 6= v, {u, v} /∈ E(H), Nf

H(u) ∩Nf
H(v) 6= ∅}.

Lemma 2.21 ([8, Lemma 3.4]). A Hoffman graph H is indecomposable if and only if its
special graph S(H) is connected.

Definition 2.22. For an edge-signed graph S, we define its signed adjacency matrix M(S)
by

(M(S))uv =


1 if {u, v} ∈ E+(S),

−1 if {u, v} ∈ E−(S),

0 otherwise.

We denote by λmin(S) the smallest eigenvalue of M(S).

We remark that P. J. Cameron, J. J. Seidel, and S. V. Tsaranov studied the eigenvalues
of edge-signed graphs in [2].

Lemma 2.23. If S ′ is an induced edge-signed subgraph of an edge-signed graph S, then
λmin(S ′) ≥ λmin(S).

Proof. Since M(S ′) is a principal submatrix of M(S), the lemma holds.

Lemma 2.24. Let H be a Hoffman graph in which any two distinct slim vertices have at
most one common fat neighbor. Then

M(S(H)) = B(H) +D(H),

where D(H) is the diagonal matrix defined by D(H)xx := |Nf
H(x)| for x ∈ V s(H).

Proof. This follows immediately from the definitions and Lemma 2.5.

Lemma 2.25. If H is a fat Hoffman graph with smallest eigenvalue greater than −3, then
λmin(S(H)) ≥ λmin(H) + 1.

Proof. If some two distinct slim vertices of H have two common fat neighbors, then H
contains an induced subgraph with smallest eigenvalue at most −3. This contradicts the
assumption by Lemma 2.6. Thus the hypothesis of Lemma 2.24 is satisfied. Since H is
fat, the smallest eigenvalue of M(S(H)) = B(H) + D(H) is at least λmin(H) + 1 by [7,
Corollary 4.3.3], proving the desired inequality.
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3 Main Results

3.1 The edge-signed graphs with smallest eigenvalue at least −τ

Definition 3.1. Let p, q, and r be non-negative integers with p+ q ≤ r. Let Vp, Vq , and Vr
be mutually disjoint sets such that |Vi| = i where i ∈ {p, q, r}. Let Up and Uq be subsets
of Vr satisfying |Up| = p, |Uq| = q, and Up ∩Uq = ∅. LetQp,q,r be the edge-signed graph
defined by

V (Qp,q,r) := Vp ∪ Vq ∪ Vr,
E+(Qp,q,r) := {{u, v} | u ∈ Up, v ∈ Vp} ∪ {{v, v′} | v, v′ ∈ Vr, v 6= v′},
E−(Qp,q,r) := {{u, v} | u ∈ Uq, v ∈ Vq}

(see Figure 3 for an illustration).

Figure 3: Q3,2,6

Lemma 3.2. For any non-negative integers p, q, and r with p+q ≤ r, λmin(Qp,q,r) ≥ −τ .

Proof. Let

M(Qr,r,2r) =


0 0 I 0
0 0 0 −I
I 0 J − I J
0 −I J J − I

 .
Multiplying 

I 0 xI 0
0 I 0 −xI
0 0 I 0
0 0 0 I
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from the left to xI −M(Qr,r,2r), we find

|xI −M(Qr,r,2r)| = (−1)r
∣∣∣∣(x2 + x− 1)I −(x2 + x− 1)I

xJ −(x2 + x− 1)I + xJ

∣∣∣∣
= (x2 + x− 1)r

∣∣∣∣ I I
xJ (x2 + x− 1)I − xJ

∣∣∣∣
= (x2 + x− 1)r|(x2 + x− 1)I − 2xJ |
= (x2 + x− 1)2r−1(x2 − (2r − 1)x− 1).

In particular, we obtain λmin(Qr,r,2r) = −τ . Since p ≤ r and q ≤ r, Qr,r,2r has an
induced edge-signed subgraph isomorphic to Qp,q,r. By Lemma 2.23, λmin(Qp,q,r) ≥
λmin(Qr,r,2r) = −τ .

Example 3.3. Let T1 and T2 be the edge-signed triangles having exactly one (+)-edge
and exactly two (+)-edges, respectively, i.e., V (T1) = V (T2) = {v1, v2, v3}, E+(T1) =
E−(T2) = {{v1, v2}}, and E−(T1) = E+(T2) = {{v1, v3}, {v2, v3}} (see Figure 4).

For ε1, ε2, ε3 ∈ {1,−1} and δ ∈ {0,±1}, let S1(ε1, ε2, ε3), S2(ε1, ε2, δ), S3(ε1, ε2, δ),
and S4(ε1, ε2) be the edge-signed graphs in Figure 5, where an edge with label 1 (resp.−1)
represents a (+)-edge (resp. a (−)-edge) and an edge with label 0 represents a non-adjacent
pair.

It can be checked that each of the edge-signed graphs T2, S1(ε1, ε2, ε3), S2(ε1, ε2, δ),
S3(ε1, ε2, δ), S4(ε1, ε2) has the smallest eigenvalue less than −τ .

T1 T2

Figure 4: The edge-signed triangles T1 and T2

Theorem 3.4. Let S be a connected edge-signed graph with λmin(S) ≥ −τ . Assume that
S does not contain an induced edge-signed subgraph isomorphic to T1. Then either S is
isomorphic to Qp,q,r for some non-negative integers p, q, r with p + q ≤ r, or S has at
most 6 vertices and is isomorphic to one of the 15 edge-signed graphs in Figure 6.

Proof. By using computer [14], we checked that the theorem holds when |V (S)| ≤ 7. We
prove the assertion by induction on |V (S)|. Assume that the assertion holds for |V (S)| = n
(≥ 7). Suppose that |V (S)| = n+ 1. It follows from Problem 6(a) in Section 6 of [9] that
there exists a vertex v which is not a cut vertex of S. Then S −v is connected, where S −v
is the edge-signed subgraph induced by V (S)\{v}. Since λmin(S −v) ≥ λmin(S) ≥ −τ ,
the inductive hypothesis implies that S − v is isomorphic to Qp,q,r for some p, q, r with
p + q + r = n. Thus S is the edge-signed graph obtained from Qp,q,r by adding the
vertex v and signed edges between v and some vertices in Qp,q,r. Note that r ≥ 4 since
n = p+ q + r ≥ 7 and p+ q ≤ r.
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ϵ

ϵ

ϵ

1

3

2

ϵ1 ϵ2

δ

S1(ε1, ε2, ε3) S2(ε1, ε2, δ)

ϵ1 ϵ2δ

ϵ2ϵ1

S3(ε1, ε2, δ) S4(ε1, ε2)

Figure 5: Edge-signed graphs with smallest eigenvalue less than −τ

We claim that either v is adjacent to only one vertex of Vr, or to all the vertices of Vr.
Note that S cannot contain any of the edge-signed graphs T2, S1(ε1, ε2, ε3), S2(ε1, ε2, δ),
S3(ε1, ε2, δ), S4(ε1, ε2) in Example 3.3. If v is adjacent to none of the vertices of Vr, then
S contains S4(ε1, ε2) as an induced edge-signed subgraph, a contradiction. If the number
of neighbors of v in Vr is at least 2 and less than r, then S contains S3(ε1, ε2, δ) as an
induced edge-signed subgraph, a contradiction. Thus the claim holds.

Now, if v is adjacent to only one vertex of Vr, then the unique neighbor of v in Vr is in
Vr \ (Up ∪ Uq). Indeed, otherwise we would find S2(ε1, ε2, δ) as an induced edge-signed
subgraph, a contradiction. Also, v is adjacent to none of the vertices of Vp ∪ Vq since oth-
erwise we would find S1(ε1, ε2, ε3) as an induced edge-signed subgraph, a contradiction.
Thus S is isomorphic to Qp+1,q,r or Qp,q+1,r.

Suppose that v is adjacent to all the vertices of Vr. Since Vr is a clique consisting of
(+)-edges only, the assumption implies that v is incident with at most one (−)-edge to Vr.
If there is a vertex of Vr joined to v by a (−)-edge, then we find T2 as an induced edge-
signed subgraph, a contradiction. Thus all the edges from v to Vr are (+)-edges. Now v
is adjacent to none of the vertices of Vp ∪ Vq since otherwise we would find S3(ε1, ε2, 0)
as an induced edge-signed subgraph, a contradiction. Thus S is isomorphic to Qp,q,r+1.
Hence the theorem holds.

Lemma 3.5. The smallest eigenvalues of the signed adjacency matrices of the edge-signed
graphs in Figure 6 are given as follows:

λmin(S) =


−
√

2 ≈ −1.414213 if S ∈ {S3,1,S4,4},
1−
√
17

2 ≈ −1.561553 if S ∈ {S4,5,S5,5,S5,6},
1 + t ≈ −1.601679 if S = S6,3,
−τ ≈ −1.618034 otherwise,
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S3,1 S4,1 S4,2 S4,3 S4,4

S4,5 S5,1 S5,2 S5,3 S5,4

S5,5 S5,6 S6,1 S6,2 S6,3

Figure 6: The 15 connected edge-signed graphs with smallest eigenvalue at least −τ not
containing T1, other thanQp,q,r where p, q, r are some non-negative integers with p+q ≤ r

where t is the smallest zero of the polynomial x3 − 6x+ 2.

Proof. This can be checked by a direct calculation.

Remark 3.6. Among edge-signed graphs in Figure 6, the maximal ones with respect to
taking induced edge-signed graphs are S4,1, S5,2, S5,3, S5,6, S6,1, S6,2, S6,3.

3.2 The special graphs of fat (−1 − τ )-irreducible Hoffman graphs

Lemma 3.7. Let H be a Hoffman graph with smallest eigenvalue at least −1 − τ . Then
every slim vertex of H has at most two fat neighbors.

Proof. If a slim vertex v of H has at least 3 fat neighbors, then H contains an induced
Hoffman subgraph isomorphic to the Hoffman graph K1,3 (see Example 2.13). By Lemma
2.6, we have λmin(H) ≤ λmin(K1,3) = −3, which is a contradiction to λmin(H) ≥ −1 −
τ .

Lemma 3.8. Let S be a connected edge-signed graph with three vertices. Let D be a 3×3
diagonal matrix with diagonal entries 1 or 2 such that at least one of the diagonal entries
is 2. Then M(S)−D has the smallest eigenvalue less than −1− τ .

Proof. This can be checked by a direct calculation.
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Lemma 3.9. Let H be a fat indecomposable Hoffman graph with smallest eigenvalue at
least−1− τ . If some slim vertex of H has at least two fat neighbors, then the special graph
S(H) of H is isomorphic to Q0,0,1, Q1,0,1, or Q0,1,1.

Proof. In view of Lemma 2.6, it suffices to show that every fat indecomposable Hoffman
graph with three slim vertices, in which some slim vertex has two fat neighbors, has the
smallest eigenvalue less than −1− τ .

Let H be such a Hoffman graph. Then S(H) is connected by Lemma 2.21 and B(H) =
M(S(H)) −D for some diagonal matrix D with diagonal entries 1 or 2 such that at least
one of the diagonal entries is 2. Then we have a contradiction by Lemma 3.8.

Example 3.10. Let HXVI and HXVII be the Hoffman graphs in Figure 7. The special graphs
of HXVI and HXVII areQ1,0,1 andQ0,1,1, respectively, and λmin(HXVI) = λmin(HXVII) =
−1− τ .

HXVI HXVII

Figure 7: Fat indecomposable Hoffman graphs

Lemma 3.11. Let H be a Hoffman graph in which every slim vertex has at most one fat
neighbor. Then the special graph S(H) of H does not contain an induced edge-signed
subgraph isomorphic to T1.

Proof. Suppose that the special graph S(H) of H contains T1 = ({v1, v2, v3}, {{v1, v2}},
{{v1, v3}, {v2, v3}}) as an induced edge-signed subgraph. Since v3 is incident to a (−)-
edge, v3 must have a fat neighbor. Since every slim vertex of H has at most one fat neighbor,
v3 has a unique fat neighbor f . Then f is adjacent to v1 and v2. This is a contradiction to
{v1, v2} ∈ E+(T1).

Lemma 3.12. Let H be a Hoffman graph in which every slim vertex has exactly one fat
neighbor. If the special graph S(H) of H is isomorphic to Qp,q,r for some non-nega-
tive integers p, q, r, then H is an induced Hoffman subgraph of a Hoffman graph H′ with
V s(H′) = V s(H) which has a decomposition {Hi}ri=1 such that Hi is isomorphic to HXVI,
HXVII, or HII for all i = 1, . . . , r. In particular, if r ≥ 2, then H is (−1− τ)-reducible.

Proof. By the assumption, V s(H) = V (S(H)) is partitioned into Vp∪Vq∪Vr as Definition
3.1. Consider the Hoffman graph H′ defined by V s(H′) := V s(H), V f (H′) := V f (H) ∪
{f∗}, and E(H′) := E(H) ∪ {{v, f∗} | v ∈ Vr}, where f∗ is a new fat vertex. Note
that H is an induced Hoffman subgraph of H′ with V s(H) = V s(H′). Then H′ has a
decomposition {Hi}ri=1 with Hi ∼= HXVI for 1 ≤ i ≤ p, Hi ∼= HXVII for p < i ≤ p + q,
and Hi ∼= HII for p + q < i ≤ p + q + r (see Examples 2.4 and 3.10). Since r ≥ 2 and
each of the Hoffman graphs Hi has the smallest eigenvalue at least −1− τ , it follows that
H is (−1− τ)-reducible.
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Theorem 3.13. Let H be a fat indecomposable Hoffman graph with smallest eigenvalue at
least −1− τ . Then the following hold:

(i) If some slim vertex of H has at least two fat neighbors, then the special graph S(H)
of H is isomorphic to Q0,0,1, Q1,0,1, or Q0,1,1.

(ii) If every slim vertex of H has exactly one fat neighbor, then the special graph S(H)
of H is isomorphic toQp,q,r for some non-negative integers p, q, r with p+ q ≤ r or
one of the 15 edge-signed graphs in Figure 6.

Proof. The statement (i) follows from Lemma 3.9. We show (ii). Suppose that every slim
vertex of H has exactly one fat neighbor. By Lemma 2.21, S(H) is connected, and by
Lemma 2.25, S(H) has smallest eigenvalue at least −τ . Moreover, by Lemma 3.11, S(H)
does not contain an induced edge-signed subgraph isomorphic to T1. Now Theorem 3.4
implies that S(H) is isomorphicQp,q,r or one of the 15 edge-signed graphs in Figure 6.

Corollary 3.14. Let H be a fat (−1 − τ)-irreducible Hoffman graph. Then the special
graph S(H) of H is isomorphic to Q0,0,1, Q1,0,1, Q0,1,1, or one of the 15 edge-signed
graphs in Figure 6.

Proof. Since H is (−1 − τ)-irreducible, H is indecomposable. If some slim vertex of H
has at least two fat neighbors, then the statement holds by Theorem 3.13 (i). Suppose
that every slim vertex of H has exactly one fat neighbor. By Theorem 3.13 (ii), S(H) is
isomorphic to Qp,q,r for some non-negative integers p, q, r, or one of the 15 edge-signed
graphs in Figure 6. Since H is (−1− τ)-irreducible, the former case occurs only for r = 1
by Lemma 3.12. Hence the corollary holds.

3.3 The classification of fat Hoffman graphs with smallest eigenvalue at least −1 − τ

H1
3,1 H1

4,1 H1
4,2 H1

4,3

H2
4,3 H1

4,4 H1
4,5 H2

4,5

Figure 8: The fat (−1− τ)-irreducible Hoffman graphs with 3 or 4 slim vertices

Lemma 3.15. Let H be a fat indecomposable Hoffman graph with smallest eigenvalue at
least −1 − τ . If the number of slim vertices of H is at most two, then H is isomorphic to
one of HI, HII, HIII, HIV, HXVI, and HXVII.
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H1
5,1 H2

5,1 H3
5,1

H1
5,2 H1

5,3 H1
5,4

H2
5,4 H3

5,4 H4
5,4

H1
5,5 H2

5,5 H3
5,5

H1
5,6

Figure 9: The fat (−1− τ)-irreducible Hoffman graphs with 5 slim vertices
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H1
6,1 H2

6,1 H3
6,1

H1
6,2 H2

6,2 H3
6,2

H4
6,2 H5

6,2

H1
6,3 H2

6,3 H3
6,3

Figure 10: The fat (−1− τ)-irreducible Hoffman graphs with 6 slim vertices
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Proof. Straightforward.

Lemma 3.16. Let H be a fat (−1− τ)-irreducible Hoffman graph. If S(H) is isomorphic
to Si,j in Figure 6, then H is isomorphic to Hk

i,j for some k in Figures 8, 9, and 10.

Proof. By Lemma 3.9, every slim vertex has exactly one fat neighbor. It is then straight-
forward to establish the lemma.

Theorem 3.17. Let H be a fat (−1− τ)-irreducible Hoffman graph. Then H is isomorphic
to one of HI, HII, HIII, HXVI, HXVII, and the 32 Hoffman graphs given in Figures 8, 9, and
10.

Proof. By Corollary 3.14, the special graph S(H) of H is isomorphic to Q0,0,1, Q1,0,1,
Q0,1,1, or one of the 15 edge-signed graphs in Figure 6. If the number of slim vertices of H
is at most two, then the statement holds by Lemma 3.15 and Example 2.15. If the number
of slim vertices of H is at least three, then the statement holds by Lemma 3.16.

Theorem 3.18. Let H be the set of isomorphism classes of the maximal members of the
37 fat (−1− τ)-irreducible Hoffman graphs given in Theorem 3.17, with respect to taking
induced Hoffman subgraphs. More precisely,H is the set of isomorphism classes of HXVI,
HXVII, H1

4,1, H2
4,3, H1

5,2, H1
5,3, H1

5,6, and the 11 Hoffman graphs in Figure 10. Then every
fat Hoffman graph with smallest eigenvalue at least −1− τ is anH-line graph.

Proof. It suffices to show that every fat indecomposable Hoffman graph H with smallest
eigenvalue at least −1 − τ is an H-line graph. First suppose that some slim vertex of
H has two fat neighbors. Then by Lemma 3.9, H has at most two slim vertices, and by
Lemma 3.15, H is isomorphic to one of HI, HII, HIII, HIV, HXVI, and HXVII. Since
HI and HII are induced Hoffman subgraphs of HXVI, and HIII is an induced Hoffman
subgraph of HXVII, they are H-line graphs. Note that HIV is also an H-line graph since
Example 2.15 shows that HIV is an induced Hoffman subgraph of a Hoffman graph having
a decomposition into two induced Hoffman subgraphs isomorphic to HI. Thus the result
holds in this case.

Next suppose that every slim vertex of H has exactly one fat neighbor. Then by The-
orem 3.13 (ii), S(H) is isomorphic to Qp,q,r for some non-negative integers p, q, r with
p + q ≤ r or one of the 15 edge-signed graphs in Figure 6. In the former case, H is an
H-line graph by Lemma 3.12. In the latter case, Lemma 3.16 implies that H is an H-line
graph since H contains all the maximal members of the isomorphism classes of Hoffman
graphs Hk

i,j .
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