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T/ie paper describes objcctives of high-level synthesis. It concentrates on operation
scheduling strategies and thc interaction with the resource allocation. Some transforma-
tional and iterative/constructive scheduling algorithms are described. Moreover, a new
scheduling/alhcation approach is prcsented and compared with other known algorithms.
Finally, some open problems of the high-levcl synthesis are givcn.

1 Introduction

The high-level synthesis task is to takc a specifi-
cation of the bchavior rcquired of a system and
a set of constraints and goals to be satisfied, and
to find a structurc that implements the behav-
ior while satisfying the goals and constraints. In
rccent years therc has been a trcnd tovvard au-
tomating synthesis at higher and higher lcvcls of
the dosign hicrarchy. Therc aro a number reasons
for this: shorter design cycle, fewer errors, thc
ability to scarch the design spacc, documenting
the design process, and availability of IC technol-
ogy to morc people [28].

Thc roots of high-level synthesis can be traced
back to the 1960s [15]. During thc 1970s most of
the efFort went into automating tasks at lower lcv-
els of thc design hicrarchy, such as layout. Grcat
progress was madc in thc dcvclopment of algo-
rithms and techniques [4, 51]. In tho 1980s work
on high-level synthesis started to sprcad from thc
academic community to industry. Iligh-level syn-
thesis systems are now producing manufacturablc
chip designs for applications such as signal pro-
cessing [10], pipelined processors [32], and inter-
faces [7]. However, there are still many unan-
swered questions related to such issues as specifi-
cation, input/output, designer intervention, com-
plex timing constraints, and the relation of syn-
thesis to the overall design and fabrication pro-
cess.

Thc paper starts with the description of high-
level synthcsis structure and then concentrates on
scheduling which seems to bc thc most important
stcp during the synthosis. In particular, some of
thc basic scheduling techniques arc discussed.

2 High-Level Synthesis

Given a sijstem, its slructuml description is a
specification of a sct of components and their in-
terconnections. More rccently, however, behav-
ioral descriptions of systems are used. Such a de-
scription specifies what the system needs to do,
i.c. the way that cach of the systems components
interacts with its cnvironment.

High-level sijnthesis transforms behavioral de-
scription to the structural one. A typical way of
describing behavior is to writc a program in an
ordinary computcr language or in a special hard-
ware description language.

The first step in high-level synthesis is usu-
ally the compilation of the hardware description
languagc into an internal representation. Most
approaches use graph-based representations that
contain both the data flow and the controlflow im-
plied by the specification. Control dependencies
arc dcrived directly from the explicit order given
in the program and from the compiler's choice
of parsing the aritlimetic expressions. Data de-
pendencies show the essential ordering of opera-



72 Informatica 18 (1994) 71-79 J. Šilc

tions. Some important tasks that should be per-
formed by the compiler at this stage include vari-
able disambiguation, taking care of the scope of
variables, converting complex datastructurcs into
simple types, and type checking. Moreover, some
optimizing transformations rnay be done at this
stage, such as expression simplification. These
graphs are given different names in difFercnt syn-
thesis systems (e.g. value trace [47], data depen-
dency graph [2], directed acyclic graph [14], con-
trol and data flow graph [17]) but are simply dif-
ferent adaptations of similar basic concept. In
many systems, the control and data flow graphs
are integrated into one structure. In this paper we
will use the term flow graph. Before proceeding
to the second step it is desirable to do some ini-
tial optimization of the flow graph, such as dead
code elimination, constant propagation, common
subexpresion elimination, and loop unrolling.

The second step of the high-level synthesis,
which is the core of transforming behavior into
structure, includes operation scheduling and hard-
ware allocation. Since these two tasks are essen-
tial in high-level synthesis they have been studied
extensively and a variety of algorithms have been
published. An excellent overwiev of the different
schools of thought has been given in [28]. The
scheduling and allocation are closely interrelated.
In order to have an optimal design, both tasks
should be performed simultaneously [19]. How-
ever, due to the time complexity, many systems
perform them separately [10, 23, 27, 30, 48, 50]
or introduce iteration loops betvveen the two sub-
tasks [17, 33, 35, 45]. Scheduling involves assign-
ing the operation to so-called control steps. A
control step is the fundamental sequencing unit
in synchronous systems; it corresponds to a clock
cycle. (Different methods for scheduling will be
examined in detail in the follovving sections.) Al-
location involves assigning the operations and val-
ues to hardvvare, i.e., providing storage, function
units, and communication paths, and specifying
their usage. To rninimize them together is usually
too complex, so in many high-level synthesis svs-
tems they arc minimized separately. Thercforc,
allocation is usually further divided into tlnce
subtasks - variable binding, operation assignment,
and data transjer hinding. Variable binding refcrs
to the allocation of registers to data, i.e., values
that arc generated in one control step and used in

another must bc assigncd to rcgisters. Sorne sys-
tems have a one-to-one correspondence betvveen
variables and registers [42], vvhile others allow
register sharing for those variables vvhich have
disjoint lifetimes [34, 50]. Operation assignment
binds operations (e.g., addition) to function units
(c.g., an adder or an ALU). Of course, operations
can share functional units only if they are mutu-
ally cxclusive, that is, they are assigned to difFer-
ent control steps. The problem is then to form the
minimum nurnber of groups consisting of mutu-
ally cxclusivc operations since this will minimize
tlic numbcr of function units. Data transfer bind-
ings rcpresent the allocation of connections (e.g.,
busses, multiplexers) between hardware compo-
nents (i.c, registers and function units) to create
thc neccssary inforrnation paths as required by
thc specification and thc schedule. Connections
consist of busses and/or multiplexers. Busses of-
fer the advantagc of requiring lcss vviring, but they
may be slovvcr than multiplexcrs. A combination
of both is oftcn tlic bcst solution.

Once thc schedule and allocation havc been ac-
complished, it is neccssary to synthcsize a con-
troller (hardvvired or microcoded) that \vill drive
allocated resources as required by tho schedule.
Finally, the design has to be convcrted into rcal
hardware. Lower level tools such as logic synthcsis
and larjout synthesis complete thc design.

3 Scheduling Strategies

As noted earlier, a good scheduler is vcry im-
portant to a high-level synthesis system. Therc
are three dimensions along \vhich scheduling al-
gorithms may differ:

1. the objective function and constraints that
algorithms use;

2. the interaction between scheduling and allo-
cation;

3. thc typc of schoduling algorithm used.

3.1 Constraints

Rouglily spcaking, opcration schcduling deter-
rnines the cost-speed tradeofls of thc design. A
timc-constrained schcduling problem can bc de-
fined as follovvs: given the mazimum number of
conlrol. stepa, find a minimal cost schcdule that
salisfies l.hc given set. of construints. Here the
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cost may consist of the costs of function units,
connections, and registers. Some systems that
perform time-constrained scheduling are HAL
[34, 35], MAHA [33], and Sehwa [32]. A resource-
constrained scheduling problem is stated as fol-
lows: given the maximum number of resources,
find the fastest schedule that satisfies the given
set of constraints. Until recently, the resourccs
included only function units. Lately, connections
and registers are also taken into consideration.
Some systems that perform resource-constrained
scheduling arc CMUDA [12, 18, 50], MIMOLA
[27, 51], MAHA [33], and Sehwa [32]. The previ-
ous two formulations can be combined into afeasi-
ble scheduling problem [22]: given a fixed amount
of resources and a specified number of time steps,
decide if therc is a schedule vohich satisfies all
the constraints, and output the solution if it ex-
ists. A system that performs feasible-constarincd
scheduling is BUD [29].

If the design is subject to a time-constraint,
the scheduling algorithm will attempt to par-
allelizc thc operations to meet the timing con-
straint. Conversely, if there is a limit on thc cost
of resources, tlie scheduler will serializc operations
to meet the rcsource-constraint.

3.2 Interaction with AUocation

In order to know whether two operations can
be schcduled in the same control stcp, onc must
know whether they use common hardwarc rc-
sources. Moreover, finding thc rnost cfficicnt
possiblc schedulc for the real hardwarc roquires
knowing tlie delays for tho difTercnl operations,
an those can only bc found after the dctails of
the function units and their intcrconncctions aro
known. On thc other hand, in order to inako a
good allocation, one must know what opcralions
will be done in parallel, vvhich comes form thc
schedule. Therefore, scheduling and allocation
are strongly interdependent tasks.

The most straightfonvard approach to this
problem is to set somc limit (or no limit at all)
on the resource cost and then to schedule, as it
is done in systems CMUDA [12, 18, 50],-Flamel
[48], and V [5]. A more flexible approach is to iter-
ate the whole process changing the resource limits
until a satisfactory design has been found. This
approach is used in MIMOLA [27, 51] and Sehvva
[32]. Another approach is to develop the sched-

ule and allocation simultaneously, as in systems
HAL [34, 35] and MAHA [33]. Some recent ap-
proaches formulate scheduling and allocation to-
gether as an optimization problem to be solved by
general optimization techniques such as simulated
annealing [3, 11,41] or integer programming [22].
Finally, the allocation can be done first, follovved
by schcduling, as it is the case in BUD system

[29]-

3.3 Scheduling Algorithms

The simplest way to pcrform schcduling is to rcl-
ogato the task to thc uscr, \vliidi is the approach
favored by tlic Silc system [6]. Thcrc is, howevcr,
a trend toward automated scheduling. Sucli algo-
rithrns can bc classificd into transformational or
itcrative/constructive algorithms.

A transformational typc of algoritlim starts
with an initial schedule (e.g., rnaximally scrial
or maximally parallel) and applies transforma-
tions to it to obtain other schedulcs. These al-
gorithms differ in how they choosc transforma-
tions (e.g., using exhaustive search [4], branch-
and-bound [19], or somc heuristics [37]).

The other type of algorithms, tlic itora-
tive/constructive ones, build up a schcdulc by
adding operations onc at a time till all the.op-
erations liavc been schedulcd. Thcsc algorithms
diflcr in liow thc ncxt opcration to bc scheduled is
chosen and into which control stop it is put. The
simplest way is to schcdulc operations as soon as
possible (ASAP) as is done in the Facct [50], carly
CMUDA [18], MIMOLA [27, 51], and Flamel [48]
svstems. ASAP assigns cach opcration to carlicst
possiblc control stop such that data and control
dependencies allo\v il to cxecutc. A similar ap-
pioach is to schcdulc opcrations as late as possi-
blc (ALAP). Thc problcm vvith ASAP and ALAP
sclicduling is that when therc are lirnits on re-
sourcc usagc no priority is givcn to operations on
critical paths. Henco, less critical opcrations can
be scheduled first and thus block critical ones [39].
Continuing along the scale of increasing complex-
ity, there are algorithms that use list scheduling.
For cach control step, the operations available to
bc scheduled into that step are kept in a list,
vvliich ordered by some prioritij function. Each
operation on the list is scheduled if the resources
it need are still free in that step; othenvise it is
deferred to the next step. In some cases, this form
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of scheduling works nearly as well as branch-and-
bound. Schedulers differ in the priority function
they use. A priority function may use the length
of the longest path from the opcration to the end
of graph [39, 40, 43]. This is approach taken in
the BUD system [29]. Elf system [17] uses thc ur-
gencijofthc operation, i.c. the length of the short-
est path from the operation to nearest local time
constraint. In Slicer system [30] thc priority func-
tion is based on increasing operation mobilities,
i.e., difFerences between ASAP and ALAP times
of operations. A compositc priority is used in
MAHA system [33] vvhere the operations on crit-
ical paths are scheduled first (and also assigned
to function units). Then the other operations are
scheduled (and assigned) one at a time according
to the least mobility. Thc HAL system [34, 35]
does list scheduling with force as a priority. The
force between an operation and a particular con-
trol step is proportional to the number of oper-
ations of the same typc that could be scheduled
into that step. To conclude, in list scheduling op-
erations that might present more difficult schedul-
ing problerns are taken care of first.

In what follovvs we will briefly describe some
known scheduling algorithms. First we give somc
common definitions. Let G(V, A) bc a flow graph,
where V is the set of operations and A is the sct
of dependencies (arcs), which is to be scheduled
into š control steps. Let n = \V\ and a = \A\.
Each of the operations is labeled as o,, 1 < i < n.
A precedence relation between operations o, and
Oj is denoted by o, —» Oj, where o, is immediate
predecessor of Oj. The earliest possible start timc
and the latest possible start time of o, are 5, and
Li, respectively. There are m types of function
units available. A function unit of type t is de-
noted by Ft. A relation betvveen operation o, and
a function unit Ft is denoted by o, £ Ft, if Ft can
perform ot.

Integer Linear Programming Algorithm
In [22] integer linear programming ILP is used
to formulate the feasible scheduling problem. Let
the cost of a function unit of type t be ct and
Mt be integer variables denoting the number of
function units of type t needed. Finally, let x,>
be 0 — 1 integer variables where x i r = 1 if o, is
scheduled into control step r; othenvise, a.',> = 0.
Assuming a one-cycle propagation delay for each

operation and a nonpipelined execution, the fea-
siblc scheduling problem can finally be stated as
follows:

< Mt, 1 < r < s, 1 < i < m;

xiT = 1, 1 < i < n;

L, Lk

T *
T * XkT - -1' °« ~* °k

T = S, T = Sk

The first constraint statcs that no schedule should
havc a control step containing morc than Mt func-
tion units of type (. It is clear that o, can only bc
scheduled into a step betwcen 6", and //,, which is
reflected in the second constraint. The third con-
straint ensures that precedencc relations of the
flow graph will bc prcserved. Thc objective func-
tion is a cornbination of time-constraint objectivc
function minJ2^.j ct*Mt and rcsource-constraint
objective function m\nCstep, wherc CsteP is total
number of control steps required. This approach
allows the user to control the resource-time tradc-
ofF. More explicit resource-time tuning is the ad-
vantage of the next algorithm to be presented.

Simulated Annealing Based Algorithm
Another type of transformational feasible sched-
uler based on the simulated annealing idea is given
in [3]. The simulated annealing algorithm can
be used for combinatorial optimization problems
specified by a finite set of configurations and a
cost function defined on all the configurations.
Thc algorithm randomly generates a new configu-
ration which is then accepted or rejectcd accord-
ing to a random acceptance rule governed by the
parametcr analogous to temperature in the phys-
ical annealing process [26]. Algorithm starts on
an initial configuration which is the schedule ob-
tained by applying ASAP strategy, i.e. the start
time of o, is 5,, for each o, € V. The function
Cost evaluates how good a configuration is. It
is defined as Cost(X) = aArea{X) + /3Time(X),
where Area(X) is the estimated total area of the
resources used and Time(X) is the total execu-
tion time corresponding to the given configura-
tion X. The tuning of the algorithm is performed
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by taking different valucs for a and /3. For cxam-
ple, if a <C P the algorithm is closcr to resource-
constrained scheduler (since solutions cfficient in
spced become more important) whilc a >> /3
makes the algorithm morc tirne-constrained. Ini-
tially, a high tcmperaturc 7',n,(,a/ is givcn in order
to accept most new configurations cvcn if thev
increase the cost. As tcrnperaturc decrcases, less
configurations are acceptcd unlcss thcy liavc im-
proved cost. Given a configuration A', a nc\v
configuration Y is generatcd either by insertion
or removal of a register, scheduling an operation
to next or previous control step, or by shrink-
ing/expanding a control step. A similar algo-
rithm appears in [11] where it is also reported tliat
the algorithm achievcs excellent results. Hovvevcr,
it performs scheduling and allocation simultane-
ously. This is also the charactcristics of the ap-
proach which is to bc presented ncxt.

Force Directed Algorithm Lct us first dc-
scribe a force-directed scheduling algorithm vvliich
is based on list scheduling with a forcc as a prior-
ity function. The first step consists of detcrmining
the time frames [5,, L,] of cach operation o, G V.
Let piT denotc the probability that o; vvill be
scheduled into control step r € [5,-, Li\. A useful
heuristic is to assume a uniform probability, i.e.

P'T = i+L -S • ^ e n e x * s t e P ' s ^° ^&kc ^xc snm~
mation of the probabilities of cach typc t of opcra-
tion for each control stcp r: P(t, r) = Ylo,el-\ P>>-
The final step is to calculate thc force T asso-
ciated with each operation o, and bounded to a
temporarily reduced time framc [5,-,Z/,-]:

u

T = s ; l + Li bi T=S,
 + ' l

where t is the type of the operation o,. Oncc
all the forces are calculated, thc operation-control
step pair with largest negative force (or least pos-
itive force) is scheduled. Then P and T valucs
are updated. The process is repeated untill all
operations are scheduled. The scheduling pro-
cess described abovc is a part of the HAL system
[34, 35]. In particular the scheduling/allocation is
performed simultaneously by stepwise refinement
in an iterative loop consisting of four phases. The
first phase (default allocation) allocates single-
function processor to each type of operation. Tlie

sccond phase (preliminary schedule) balances the
distribution of similar of operations using force-
dircctcd scheduling. Thc third phase (refined al-
location) allocates single and multi-function pro-
ccssors. Thc last, fourth phase (final schedule)
balanccs the distribution of operations reqiiiring
similar processor types.

4 Global Arc Minimization
Algorithm

In last soction we briefly described three ap-
proaches to the scheduling/allocation problem. In
this section vve present a ncw algorithm named
Global Arc Minimization (GAM). The algorithm
was developed by the author [44, 45, 46] where
both timc and rcsource constrained scheduling al-
gorithms werc described.

In this paper, however, we \vill concentrate only
on thc time constrained scheduling. We consider
situation with m = 1, i.e., all function units are
of the satne type (as it is thc case in preliminary
scheduling in HAL system). Thc first step con-
sists of determining the time framcs [S,-,L,-] of
each operation o, 6 V using ASAP and ALAP
schedules. Next, thc minimum numbcr fmin of
function units needed is evaluated. To do this, a
rnethod based on the eztended critical parallelism
of flovv graph was introduccd in [44]. During the
exccution of the scheduling algorithm the follovv-
ing sets of operatioris are maintained at each con-
trol step T = 1,2,... , s :

Oready(r) '•= {<>i\Si <T< L(},
OUTgent(T):= {Oi\Si = T= Li},
OdeferTable(T) = Oready(T) - Ourgent(T), and

Ofinished(T) := {oi G V\oi has finished at r } .

Lct / ( r ) denote the number of occupied function
units at some control step r. Hence, there are
fmin - f(T) frcc function units at r. Since urgent
operations are always taken carc of first, in case
of / ( r ) < fmin some additional operations can be
started. Note, that these operations are selected
among deferrable ones. Selection was performed
accordirig to three priority functions: random se-
lcction, increasing execution time selection, and
decreasing execution time selection. Since none of
these criteria proved to be superior [45], we used
the random selection strategy. Therefore, the al-
gorithm is of a list-scheduling type and is given
belovv:
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T = 0

/(r) = 0
repeat

if /(r) > 0 then

endif
f(T) = f(r) + \OUTgent(r)\
if /(r) < /m)n then

Let Oadditional(T) C Oje/er ra(,/e(r),
where \Oadditional(T)\ < fmin - / ( r ) .
fiT) = f{r) + |Oaddt(lona/(r)|

endif
T = T+l

until r = s

After scheduling has been completed the allo-
cation is performed, i.e., the index y>(o,), 1 <
ip(oi) < f, f = maxi<T< s / ( r ) of a functipn unit
is computed for each operation o, £ V. Sincc thc
communication betvveen operations allocated to
different function units is a time consuming oper-
ation, the goal is to allocate operations so that the
communication time is minimized. Lct us call an
arc o, —* Oj a global arc if <p(oi) / ¥>(°j)> i-e-> if op-
erations o, and Oj are allocated different function
units. In order to minimize communication timc
an allocation criterion which keeps the number
of global arcs as low as possible was successfully
applied. Namely, the allocation problcm can bc
transformed into the weighted bipartite-matching
problern [21]. The global arc minimization algo-
rithm GAM is described in [46].

As we already mentioned, we have designed
both time and resource constrained scheduling al-
gorithms. Together these algorithms can be used
to solve the feasible scheduling problem. In par-
ticular, the total cost of scheduling/allocation can
be defined as a function Cost(s, / , c) of the nurn-
ber of control steps s, the number of function
units / , and the communication time c. Now,
given some default number of control stepš s (de-
termined by the critical path of the flow graph),
the time constrained scheduling/allocation (as dc-
scribed above) results in / function units and
the total communication time c. Next, wc iter-
ativelly apply the resource constrained schedul-
ing/allocation with / — k, k = 1, 2 , . . . function
units. Finally, we chose the most appropriate k,
i.e. the scheduling with the lowest Cosi. Onc can
also iterativelly repeat the whole process starting
at higher values of s. (Note, tliat the process inav

stop \vhen s cquals the sequential cxecution time
of the flow graph.)

Ilence, our algorithm iterates the schedul-
ing/allocation process changing the resource lim-
its until a satisfactory design has been found. Re-
call, that a similar approach has been taken in
MIMOLA [27, 51] and Sehwa [32].

5 £xperimental results and
comparitions

Thc scheduling/allocation approach GAM has
been implemented and tested [45]. The flovv graph
used in this cxample irnplements a fifth-order
wave digital elliptic filter.

a b

a b f g h i OUT

Figure 1: Elliptic filter.

VVe assume that multipliers require two control
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Tablc 1: Comparision of scheduling results for the elliptic filter.

Adders
Multipliers
Control steps

ASAP
4
4
17

ALAP
4
3
17

ILP
3
3
17

122]
2
1

21

HAL [35]

3
3
17

2
1

21

GAM
2
2
17

2
1

21

steps for execution and the adders only onc. Thc
critical path length is thus 17 control steps long.
Figure 1 shows the results of applying GAM algo-
rithm on the elliptic filter. Note, that in case of
time constraint scheduling only 2 multipliers and
2 adders were used.

Finally, Table 1 shows the scheduling results
for thc elliptic filter using both approaches from
section 3 and our GAM algorithm.

6 Concluding remarks

The problem of translating behavioral description
of a system into structural a one has been divided
into a number of subtasks among which the oper-
ation scheduling and hardware allocation arc the
most important.

The scheduling problem has been researched
quite extensively in the past [1, 9, 13, 16, 20, 24].
However, most of the solutions concentratc on
systems with homogeneous function units. Morc-
over, neither of the eflbrts includes communi-
cation overhead. In order to be more realistic
the communication delay has to be considered
in high-level synthesis. Since allocation involves
assigning the operations to hardware, it also de-
termines the communication overhead. Thus, in
high-level synthesis the scheduling and allocation
are closely interrelated [5, 12, 19, 27, 29, 32, 33,
34, 38, 48, 50, 51]. In order to have an optimal
design, both should be performed simultaneously.
Due to the time complexity, hovvever, many sys-
tems perform them separately, or introduce iter-
ation loops betvveen the two tasks, as it.was the
case in our GAM scheduling/allocation approach.

We may conclude that the key tasks of schedul-
ing and allocation are relatively well understood
since there are a variety of effective techniques
that have been applied to therri. Hovvever, there
are many other areas \vhere high-level synthesis
must continue to develop if it is to become a use-

ful tool for designing computer systems. Such
areas include specification, designer intervention,
input/output, complex timing constraints han-
dling, and the relation of synthesis to the overall
design and fabrication process [28].
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