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Abstract

The Möbius (84) configuration is generalized in a purely combinatorial approach. We
consider (2nn) configurations M(n,ϕ) depending on a permutation ϕ in the symmetric
group Sn. Classes of non-isomorphic configurations of this type are determined. The para-
metric characterization of M(n,ϕ) is given. The uniqueness of the decomposition of M(n,ϕ)

into two mutually inscribed n-simplices is discussed. The automorphisms of M(n,ϕ) are
characterized for n ≥ 3.
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1 Introduction
The Möbius (84) configuration is a certain configuration in a projective 3-dimensional
space consisting of two mutually inscribed and circumscribed tetrahedra (cf. [7]). Each
vertex of one tetrahedron lies on a face plane of the other tetrahedron and vice versa. Con-
figurations with parameters (n4) were studied in detail in [4], but this is not the case, since
the Möbius (84) configuration is not a point-line structure. An important role of the the-
orem connected with the Möbius configuration (which says, roughly speaking, that the
Möbius configuration “closes”) in a projective 3-dimensional space was presented in [12]:
it is equivalent to the commutativity of the ground division ring.

In this paper we deal with two n-simplices (simplices with n vertices, n ≥ 3)1 instead
of two tetrahedra (4-simplices). The way how an n-simplex is inscribed into another we de-
fine by a permutation ϕ in the group Sn. The generalization of the Möbius configuration we
obtain, is a (2nn)-configuration and it will be referred to as a Möbius pair of n-simplices,
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1In geometry an n-simplex usually means a simplex having n+1 vertices. Our definition is slightly different.
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or shortly a Möbius n-pair. Only a combinatorial scheme (an abstract incidence structure,
see e.g. [2, 10]) of a Möbius n-pair is investigated and we do not discuss problems regard-
ing embeddability into projective (or other) spaces. Although these problems have been
partially solved in [5] (the case with ϕ = id), they are interesting and still open in general.

As we know from [6], in a projective space, up to an isomorphism there are five (84)
point-plane configurations with the property that at most two planes share two points, and
dually at most two points are shared by two planes. These are precisely those configurations
with two mutually circumscribed tetrahedra, and thus all of them are sometimes called the
Möbius configurations. It is also known (cf. [10]), that these (84) configurations correspond
to conjugacy classes of the permutation group S4. We shall prove, that two Möbius n-pairs
are isomorphic if and only if the permutations, that determine them, are conjugate. Another
important impact of the permutation on the geometry of the Möbius n-pair is that the cycle
structure of ϕ is associated with circuits in the incidence graph of the Möbius n-pair.

As we shall see, the decomposition of the points of the generalized Möbius configura-
tion into two complementary and mutually inscribed simplices is, generally, a unique one.
Exceptions appear “near” the classical case n = 4. Three of five (84) Möbius configura-
tions contain at least two distinct pairs of complementary 4-simplices.

The next problem, which is considered in the paper, involves Möbius subpairs of a
Möbius n-pair. We simply delete some number of points and blocks of one n-simplex and
the same number of points and blocks of the second n-simplex with a hope to obtain a
Möbius pair again. The conditions, under which we get a subpair in the Möbius n-pair, are
determined.

In the last part we use most of the established properties to characterize the automor-
phism group of the Möbius n-pair for n ≥ 3.

2 Definitions, parameters and basic properties
By a configuration we mean any point-block structure M = 〈S,L〉, where the blocks are
subsets of the set of points, i.e. L ⊆ 2S . The rank of a point is the number of blocks
containing this point, and dually the size of a block is the number of points contained in
this block. Let n be a natural number and X be a set. The family of all n-subsets of the set
X will be denoted by ℘n(X). Let n ≥ 3. We say that a configuration M is an n-simplex
iff |L| = n, there is a subset V ∈ ℘

n(S) such that for every V ′ ∈ ℘
n−1(V ) there is a

unique block L ∈ L containing V ′, and the rank of each point s ∈ S \ V is less than
n− 1. Elements of V will be called vertices of the simplex, and blocks of the simplex are
said to be its faces. We say that two configurations M1 = 〈S1,L1〉, M2 = 〈S2,L2〉 are
isomorphic (and we write M1

∼= M2) iff there exists a bijective map f : S1 −→ S2 such
that conditions k ∈ L1 and f(k) ∈ L2 are equivalent. In case M1 = M2 = M the map f
will be called an automorphism of M.

Let us consider two setsA = {a1, . . . , an} andB = {b1, . . . , bn} such thatA∩B = ∅.
Let ϕ ∈ Sn be a permutation of the set I = {1, . . . , n}. Now we introduce the following
sets:

LA := {A′ ∪ {bi} : A′ ∈ ℘n−1(A) and ai /∈ A′},
LB := {B′ ∪ {aϕ(i)} : B′ ∈ ℘n−1(B) and bi /∈ B′}.

The configuration
M(n,ϕ) := 〈A ∪B,LA ∪ LB〉,
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will be called a Möbius n-pair. The Möbius configurations can be identified with the
Möbius 4-pairs, which Levi graphs are Figures 1, 2, 3, 4, 5. All of them are also presented
in [10]. In particular, M(4,id) is the classical (84) Möbius configuration.

Let M be a Möbius n-pair. We write: Ai, Bi for blocks of M not containing ai, bi,
respectively; a-points, b-points, A-blocks, B-blocks for points in A, B, and blocks in LA,
LB , respectively. The configurationM reflects the main abstract properties of the classical
Möbius configuration.

1. The a-points yield a simplex inM: for any (n− 1)-subset A \ {ai} of the a-points
there is a unique block ofM, which contains this subset (Ai, a face of the simplex
in question); the remaining points (b-points) yield another simplex.

2. The simplex with a-points and the simplex with b-points are mutually inscribed: on
each face, Ai, of the first simplex there is a unique vertex (bi) of the second one;
on each face, Bi, of the second simplex there is a unique vertex (aϕ(i)) of the first
simplex.

Thus, we can decompose M into two complementary substructures SA(M) = 〈A,LA〉
and SB(M) = 〈B,LB〉, which we call simplices of M (although, formally, a block of
each of them is not a subset of its points; there is one extra point on each of its faces).

In the forthcoming part we will use the notion of the incidence graph (the Levi graph)
GM associated withM. Recall that a Levi graph is a bipartite graph with partition induced
by points vs. blocks (cf. [9, 10]). Two of its vertices x, y are said to be adjacent (which is
written x ∼ y) if x is a point, y is a block (or vice versa) and x ∈ y (or y ∈ x). Otherwise
x is not adjacent to y, which we write x � y. The rank of a vertex is the number of vertices
adjacent to it. A vertex of GM will be called point-vertex, block-vertex, a,b-vertex, A,B-
vertex, or simply ai, bi, Ai, Bi as it corresponds to the point or to the block ofM. The Levi
graph associated with SA(M), SB(M) will be denoted by GSA(M),GSB(M), respectively.

Remark 2.1. LetM be a Möbius n-pair. The Levi graph GM has the following properties:

(i) for X = A,B, every point-vertex from GSX(M) is adjacent to all but one block-
vertices from GSX(M), and vice versa,

(ii) for X,Y = A,B and X 6= Y , every point-vertex from GSX(M) is adjacent to
precisely one block-vertex from GSY (M), and vice versa.

Immediately from the definition of M(n,ϕ), the number of its points coincides with the
number of its blocks and equals 2n, and the rank of every point coincides with the size of
every block and equals n. Thus the structures we investigate are (2nn)-configurations. A
standard parametric question related to configurations is: what is the number of points that
are contained in two distinct blocks, and dually: what is the number of blocks containing
two distinct points.

Proposition 2.2. Let k, l be two different blocks of the structure M(n,ϕ). Then |k ∩ l| ∈
{0, 1, 2, n − 2}. If both k, l are A-blocks, or both k, l are B-blocks then |k ∩ l| = n − 2.
Otherwise, k = Ai and l = Bj for some i, j ∈ I , and the following equivalences hold

(i) |Ai ∩Bj | = 0 iff ϕ(j) = i = j,

(ii) |Ai ∩Bj | = 1 iff ϕ(j) = i 6= j or ϕ(j) 6= i = j,
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(iii) |Ai ∩Bj | = 2 iff ϕ(j) 6= i 6= j.

Proof. It is straightforward from the definition that if k, l are both A-blocks or B-blocks
then k ∩ l has n − 2 elements. Let k = Ai ∈ LA and l = Bj ∈ LB for some i, j ∈ I .
Let i 6= j. If ϕ(j) 6= i then Ai ∩ Bj = {bi, aϕ(j)}. Otherwise, for ϕ(j) = i, we get
Ai ∩ Bj = {bi}. Let i = j. If ϕ(i) 6= i we obtain Ai ∩ Bi = {aϕ(i)}. In case ϕ(i) = i it
holds Ai ∩Bi = ∅.

Each conjugacy class of Sn corresponds to exactly one decomposition of a permutation
ϕ ∈ Sn into cycles, up to a permutation of the elements of I . Now we describe how the
cycle structure of ϕ is reflected in block paths of M(n,ϕ).

Fact 2.3. A permutation ϕ contains a cycle of length k ≤ n iff there is a closed path of
length 2k consisting of blocks of M(n,ϕ) such that every two consecutive blocks intersect
in precisely one point of M(n,ϕ).

Proof. Assume that ϕ contains the cycle (i1i2 . . . ik). Then aij+1
∈ Aij ∩Bij and bij+1

∈
Bij , Aij+1

for each j ≤ k. Thus, the closed path in question is the following: Ai1 , Bi1 ,
Ai2 , Bi2 , . . . , Aik , Bik .

Now assume that there exists a closed path l1, l′1, . . . , lk, l
′
k of blocks of M(n,ϕ) such

that every two consecutive blocks intersect in a point. By Proposition 2.2(ii) every two
consecutive blocks of the path are Ai ∈ LA, Bj ∈ LB with ϕ(j) = i 6= j or ϕ(j) 6= i = j.
Suppose ϕ(j) 6= i = j holds for the first two blocks of our path, namely l1 = Ai, l′1 = Bi
and ϕ(i) 6= i for some i ∈ I . To obtain |l′1 ∩ l2| = 1 we must have l2 = Aj with ϕ(i) = j.
Thus the next two blocks are l2 = Aϕ(i), l′2 = Bϕ(i) and ϕ(ϕ(i)) 6= ϕ(i). In general we
obtain lj = Aϕj−1(i), l′j = Bϕj−1(i) and ϕj−1(i) 6= ϕj−2(i) for every j = 2, . . . , k. To
close the path we need ϕk(i) = i. Let us put i = i0. Then the cycle (i0, i1, . . . , ik−1),
where ij = ϕj(i) for j = 0, . . . , k − 1, is one of the cycles in the cycle decomposition of
ϕ.

As the configuration M(n,ϕ) is symmetric, it makes sense to consider the dual configu-
ration M◦(n,ϕ).

Fact 2.4. The configuration M◦(n,ϕ) is isomorphic to M(n,ϕ).

Proof. It is easy to note that M◦(n,ϕ) ∼= M(n,ϕ−1). Consider α ∈ Sn such that α(1) = 1

and α(m) = n−m+2 for m ∈ I \{1}. Let x ∈ {a, b, A,B}, i ∈ I . Then F : xi 7→ xα(i)
is an isomorphism mapping M(n,ϕ−1) onto M(n,ϕ).

The problem of two isomorphic Möbius n-pairs will be considered in general in the last
section of the paper. Another parametric characterization is now a simple consequence of
Proposition 2.2 and Fact 2.4.

Proposition 2.5. Let x, y be two different points of M(n,ϕ). There exist 0, 1, 2, or n − 2
blocks of M(n,ϕ) containing x and y.

3 Hidden Möbius pairs
The goal of this section is to characterizeM = M(n,ϕ) that can be transformed into Möbius
pair with simplices distinct from SA(M), SB(M) by a decomposition of the points or by a
deletion of some points and blocks. Informally, we say that these Möbius pairs are hidden
inM.
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a1 a2 a3 a4 b1 b2 b3 b4

A1 A2 A3 A4 B1 B2 B3 B4

Figure 1: The Levi graph of M(4,id) (isomorphic to the hypercube graph Q4).

a1 a2 a3 a4 b1 b2 b3 b4

A1 A2 A3 A4 B1 B2 B3 B4

Figure 2: The Levi graph of M(4,ϕ) with ϕ = (1234).

a1 a2 a3 a4 b1 b2 b3 b4

A1 A2 A3 A4 B1 B2 B3 B4

Figure 3: The Levi graph of M(4,ϕ) with ϕ = (123)(4).

a1 a2 a3 a4 b1 b2 b3 b4

A1 A2 A3 A4 B1 B2 B3 B4

Figure 4: The Levi graph of M(4,ϕ) with ϕ = (1)(2)(34).

a1 a2 a3 a4 b1 b2 b3 b4

A1 A2 A3 A4 B1 B2 B3 B4

Figure 5: The Levi graph of M(4,ϕ) with ϕ = (12)(34).
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3.1 Möbius n-pairs with the special decompositions

Let us start with the following combinatorial observation:

Remark 3.1. The Möbius configuration M = M(4,id) can be presented in 3 distinct
ways as two mutually circumscribed simplices such that each of them is distinct from
SA(M), SB(M).

One could say that there are four Möbius 4-pairs hidden in M(4,id). Let n ≥ 4,
M = M(n,ϕ), and assume that it is possible to decompose the points ofM into two com-
plementary and mutually inscribed simplices S1(M), S2(M) such that St(M) 6= SX(M)
for each t = 1, 2,X = A,B. Such a decomposition will be called a special decomposition.

Lemma 3.2. Let S1(M), S2(M) be two simplices, that arise from a special decomposition
ofM.

(i) For each i ∈ I , and each t = 1, 2, it is impossible to have both Bi,bi in St(M),
or both Ai,ai in St(M).

(ii) For each t = 1, 2, the blocks of St(M) are two B-blocks and two A-blocks.

Proof. The proof involves only S1(M), since the reasoning for S2(M) will be the same.
(i) Assume that S1(M) contains both ofBi, bi. Then also some aj is a point of S1(M)

for j ∈ I . Consider the graph GM. The vertices Bi, bi are not adjacent, so from Re-
mark 2.1(i) aj ∼ Bi and j = ϕ(i). The unique block-vertex not adjacent to aj in GS1(M)

is Aj or Bs for some s 6= ϕ−1(j).
Let Aj be this vertex, so from Remark 2.1(ii) Aj ∼ bi, and thus j = i. Consider in

GS1(M) another vertex at or bt with t 6= i. Since ϕ(i) = i 6= t, a contradiction arises:
bt � Ai, and at � Bi (see the scheme presented in Figure 6).

bi ai = aϕ(i) at bt

Bi Ai

Figure 6: The fragment of Gf(M) containing Bi, bi and Ai, ai.

bi aϕ(i) br

Bi Bs Ai

Figure 7: The fragment of Gf(M) containing Bi, bi and Bs, aϕ(i).

Assume that s 6= ϕ−1(j) and Bs is a unique vertex not adjacent to aj in GS1(M). We
get s 6= i, as far as bi ∼ Bs. Let us take another vertex: At or Bt. For t 6= i there is no
B-vertex adjacent to aj , and At ∼ aj , bi if t = i. A vertex, which is not adjacent to Ai, is
ai or br with r 6= i, s. The vertex ai is not adjacent to Bi since ϕ(i) = j 6= i, and thus ai
cannot be the vertex in question. Consequently, this vertex is br ∼ Bi, Bs. Following the
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assumption n ≥ 4, there exists another block in S1(M), that is different from Bi, Bs, Ai.
We have two b-points in S1(M) so far, thus this block is a B-block. The B-vertex of GM,
that is associated with this block, must be adjacent to aϕ(i). So this block is Bi, which
is already one of the blocks in S1(M) (comp. with the scheme presented in Figure 7), a
contradiction.

(ii) LetBi be the uniqueB-block of S1(M) for some i ∈ I . Then the remaining blocks
of S1(M) are A-blocks. In view of Lemma 3.2(i), there are n − 1 b-vertices in GS1(M):
every A-vertex is associated with the b-vertex, which is not adjacent to it. For n ≥ 4 a
contradiction with Remark 2.1(i) arises: every b-vertex is adjacent to precisely one of A-
vertices, and thus it is not adjacent to at least two A-vertices in GS1(M).
Let S1(M) contain at least three B-blocks. Without loss of generality, assume B1, B2, B3

are blocks of S1(M). From Lemma 3.2(i), b1, b2, b3 are not in S1(M). Thus, from Re-
mark 2.1(i), S1(M) contains ai1 , ai2 , ai3 such that ij 6= ϕ(j) for j = 1, 2, 3. Every block-
vertex Bj must be adjacent to at least two of the point-vertices aij′ with j′ 6= j. On the
other hand, it is adjacent to at most one of them, what follows from Remark 2.1(ii) applied
to GM. This contradiction actually completes the proof as other cases run dually.

By Lemma 3.2 we prove a generalization of Remark 3.1.

Proposition 3.3. LetM = M(n,ϕ). The following conditions are equivalent

(i) there is a special decomposition ofM,

(ii) n = 4 and there is X ⊂ I such that |X| = 2 and ϕ(X) = X .

Proof. (i) ⇒ (ii): From Lemma 3.2(ii) we get n = 4, and two B-vertices and two A-
vertices in GS1(M). Let (e.g.) B1, B2 be the B-vertices of GS1(M). In view of Re-
mark 2.1(i), there are vertices x, y in GS1(M) such that x ∼ B1, y ∼ B2 and x � B2, y �
B1. By Lemma 3.2(i), x 6= b2, y 6= b2, and thus x = ai, y = aj where ϕ(1) = i, ϕ(2) = j.
Then two A-vertices in GS1(M) are As, At with s, t 6= i, j. The remaining two point-
vertices must be of the form bs′ , bt′ with s′, t′ 6= 1, 2, since they must be adjacent to both
of B1, B2. On the other hand, bs′ , bt′ need to be adjacent to precisely one of As, At, so
{s′, t′} = {s, t}. Thus s, t 6= 1, 2, {1, 2} = {i, j} = {ϕ(1), ϕ(2)}, and X = {1, 2} is the
required set.

(ii)⇒ (i): Assume, without loss of generality, X = {1, 2} and considerM = M(4,ϕ)

with ϕ(X) = X . Take blocks B1, B2, A3, A4 and points aϕ(1), aϕ(2), b3, b4 of M, and
consider GM. We have B1 � aϕ(2), B2 � aϕ(1), and B1, B2 ∼ b3, b4. Similarly A3 � b4,
A4 � b3, and A3, A4 ∼ aϕ(1), aϕ(2), since ϕ(1), ϕ(2) ∈ {1, 2}. Thus the Levi graph
we consider is a Levi graph of a 4-simplex. It is easy to verify that A1, A2, B3, B4 and
b1, b2, a3, a4 form another 4-simplex. The two obtained simplices are mutually circum-
scribed. Indeed, B1, b2; B2, b1; A3, a4; A4, a3, and A1, aϕ(1) (or A1, aϕ(2)); A2, aϕ(2) (or
A2, aϕ(1)); B3, b4; B4, b3 are all pairs of adjacent vertices representing blocks (points) of
the first simplex and points (blocks) of the second simplex in each pair. In other words, we
have found a special decomposition ofM.

Due to Proposition 3.3 there is a correspondence between the special decompositions
of M(n,ϕ) and 2-subsets of I preserved by ϕ. The correspondence is established up to
complements, since the special decompositions arise only for n = 4, and thus if ϕ pre-
serves a 2-subset of {1, 2, 3, 4} then it preserves its complement as well. So, directly from
Proposition 3.3 we get:
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Corollary 3.4. All (up to an isomorphism) Möbius n-pairs with a special decomposition
are the following:

1. M(4,id) with 3 distinct special decompositions associated with
X = {1, 2}, {1, 3}, {1, 4},

2. M(4,(13)(24)) with the special decomposition associated with X = {1, 3},

3. M(4,(12)(3)(4)) with the special decomposition associated with X = {1, 2}.

3.2 Subpairs of Möbius n-pairs

LetM = M(n,ϕ), n ≥ 4, k ≥ 3, k < n, andM′ be a Möbius k-pair obtained fromM by
deleting 2(n−k) points and 2(n−k) blocks. We callM′ a k-subpair ofM. The blocks of
M′ are subblocks ofM, that is every block ofM′ arises as a block ofM with n−k points
removed. The subblocks of the A-blocks, the B-blocks are called the A-subblocks, the B-
subblocks, respectively. Let S1(M′), S2(M′) be two simplices ofM′. For any t = 1, 2,
X = A,B we write St(M′) ≺ SX(M) if all the points and the blocks of St(M′) are
points and subblocks of SX(M). Otherwise we write Si(M′) ⊀ SX(M). For Y ⊂ I by
ϕ � Y we mean the restriction of ϕ to the set Y .

In order to determine all Möbius n-pairs with k-subpairs we need to prove some auxil-
iary facts.

Lemma 3.5. One of the following conditions holds

(i) S1(M′) ≺ SA(M) and S2(M′) ≺ SB(M),

(ii) S2(M′) ≺ SA(M) and S1(M′) ≺ SB(M),

(iii) S1(M′) ⊀ SA(M), SB(M) and S2(M′) ⊀ SA(M), SB(M).

Moreover, ifM′ satisfies (iii) then there is a special decomposition ofM′.

Proof. Let S1(M′) ≺ SA(M) and S2(M′) ⊀ SB(M). So there is an a-point or A-
subblock in S2(M′). We consider only the case with an a-point, as the case with an
A-subblock is symmetric. From Remark 2.1(ii) applied to GM, and Remark 2.1(i) applied
to GM′ , there are at most two B-subblocks in S2(M′). Since k ≥ 3, there is at least one
A-subblock in S2(M′). Note that a unique A-subblock, which does not contain an a-point
of S1(M′), is a block of S1(M′). Thus all the points of S1(M) are in an A-subblock
of S2(M′). This yields a contradiction with Remark 2.1(ii). The proof for each of the
remaining cases (i.e. S2(M′) ≺ SA(M) and S1(M′) ⊀ SB(M), S1(M′) ≺ SB(M)
and S2(M′) ⊀ SA(M), or S2(M′) ≺ SB(M) and S1(M′) ⊀ SA(M)) is analogous.

LetM′ satisfy (iii). The steps of the proof of Lemma 3.2 can be repeated for simplices
ofM′. As a result we get k = 4, and two A-subblocks and two B-subblocks in each of
simplices of M′. Let Y ⊂ I be the set of subscripts of A-subblocks and B-subblocks
in one of these simplices. From the reasoning analogous to the first part of the proof of
Proposition 3.3 we get that Y is the set of all the subscripts used for labelling the points
and the blocks ofM′, and there is a two-element set X ⊂ Y such that ϕ � Y (X) = X .
Therefore, in view of Proposition 3.3, there is a special decomposition ofM′.

Lemma 3.6. If the number of deleted B-blocks and the number of deleted A-blocks coin-
cide (and equals n− k), then there is X ⊂ I such that |X| = n− k and ϕ(X) = X .
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Proof. Assume that Bi1 , . . . , Bin−k and Aj1 , . . . , Ajn−k are removed blocks. Consider a
vertex aϕ(is) with s = 1, . . . , n−k of GM′ , and assume aϕ(is) is in GS1(M′) (the case with
aϕ(is) in GS2(M′) will be analogous). Note that aϕ(is) ∼ Bis , and from Remark 2.1(ii) Bis
is a unique B-vertex adjacent to aϕ(is). According to Lemma 3.5 two cases arise: (i) or
(iii) holds forM′. LetM′ satisfy (i) of Lemma 3.5. Then there is a B-vertex in GS2(M′)
adjacent to aϕ(is), a contradiction. IfM′ satisfies (iii) of Lemma 3.5 then there is a special
decomposition of M′. So, by Proposition 3.3, there is a B-vertex in GS1(M′) adjacent
to aϕ(is), a contradiction again. Therefore all aϕ(i1) . . . , aϕ(in−k) are removed. Likewise
we consider the pairs ajs , Ajs , bjs , Ajs , and bis , Bis . Each of these reasonings leads us
to contradiction. Consequently points aj1 . . . , ajn−k , bj1 . . . , bjn−k , and bi1 . . . , bin−k are
deleted as well. Hence

{j1, . . . , jn−k} = {ϕ(i1), . . . , ϕ(in−k)} and {i1, . . . , in−k} = {j1, . . . , jn−k}.
Finally we get {ϕ(i1), . . . , ϕ(in−k)} = {i1, . . . , in−k}, and X = {i1, . . . , in−k} is the set
from our claim.

Let us present a condition, which is sufficient and necessary to find a k-subpair in
M(n,ϕ).

Proposition 3.7. LetM = M(n,ϕ). The following conditions are equivalent

(i) there isM′, which is a k-subpair ofM,

(ii) there is X ⊂ I such that |X| = n− k and ϕ(X) = X .

Furthermore, if (ii) holds thenM′ ∼= M(k,ϕ� (I\X)).

Proof. (i)⇒ (ii): By Lemma 3.5M′ satisfies one of (i) – (iii) of Lemma 3.5. In cases (i)
and (ii) of Lemma 3.5 the numbers ofA-blocks andB-blocks deleted fromM coincide and
are equal to n− k. The claim follows directly from Lemma 3.6. If case (iii) of Lemma 3.5
holds, then there is a special decomposition ofM′, and we get our claim by Proposition 3.3.

(ii)⇒ (i): Without any loss of generality, let X = {1, . . . , n− k}. Recall that the rank
of every vertex in GM is n. Observe the Levi graph obtained from GM by removing the
vertices ai, Ai and bi, Bi for every i ∈ X , and all edges passing through these vertices. We
denote this Levi graph by H. Note that aϕ(i) is not a vertex of H, since ϕ(i) ∈ X . Let
j /∈ X and take Aj . Clearly Aj is a vertex of H. There are n − k edges joining Aj with
all ai in GM. Thus, the rank of Aj in H is n− (n− k) = k. Similarly we set ranks of the
remaining vertices aj , bj , Bj of H. All these ranks are k. From this and the construction
of H we get that H is the Levi graph of two mutually circumscribed k-simplices, where
the way they are inscribed one into another is induced by the action of ϕ on the set I \X .
ThereforeH = GM′ for someM′, which is a k-subpair ofM.

4 Isomorphisms and automorphisms
4.1 Isomorphic Möbius n-pairs

Recall that the Möbius (84) configurations (i.e. Möbius 4-pairs) correspond to conjugacy
classes of the permutation group S4. In this section we generalize this property to all
Möbius n-pairs.

Let us start with a key lemma that gives an account on isomorphisms of configurations
M(n,ϕ) with the unique decomposition into two n-simplices.
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Lemma 4.1. Let f be an isomorphism mapping M(n,ϕ) onto M(n,ψ). Assume that either
n = 4 and both ϕ,ψ 6= id contain no cycle of length 2, or n ≥ 5. There is α ∈ Sn such
that f(Bi) = Bα(i) for each i ∈ I , or f(Bi) = Aα(i) for each i ∈ I .

(i) If f(Bi) = Bα(i) then f(bi) = bα(i), f(Ai) = Aα(i), f(ai) = aα(i) for each
i ∈ I .

(ii) If f(Bi) = Aα(i) then f(bi) = aα(i), f(Ai) = Bψ−1(α(i)), f(ai) = bψ−1(α(i))

for each i ∈ I .

Furthermore, αϕ = ψα holds in both cases: (i) and (ii).

Proof. LetM1 := M(n,ϕ) andM2 := M(n,ψ). Let i, j ∈ I and Bi be an arbitrary B-
block ofM1. Clearly, either f(Bi) = Bj for some B-block Bj ofM2, or f(Bi) = Aj
for some A-block Aj ofM2.

Assume that f(Bi) = Bj . In view of Corollary 3.4, both M1, M2 are Möbius n-
pairs without the special decompositions. Thus all the B-blocks ofM1 are mapped onto
B-blocks ofM2. We introduce a map α ∈ Sn associated with f by the formula

α : i 7→ j iff f(Bi) = Bj ,

for all i, j ∈ I . Then f(Bi) = Bα(i). Let us analyze graphs GM1
and GM2

: f(bi) = bα(i)
as bi, bα(i) are unique b-vertices not adjacent to Bi, Bα(i) respectively in graphs GM1

,
GM2 ; f(Ai) = Aα(i) as Ai, Aα(i) are unique A-vertices adjacent to bi, bα(i) respectively
in GM1 , GM2 ; f(ai) = aα(i) as ai, aα(i) are unique a-vertices not adjacent to Ai, Aα(i)
respectively in GM1

, GM2
. On the other hand, f(aϕ(i)) = aψ(α(i)) as aϕ(i), aψ(α(i)) are

unique a-vertices adjacent to Bi, Bα(i) respectively in GM1
, GM2

. So aα(ϕ(i)) = aψ(α(i))
and thus αϕ = ψα.

In case f(Bi) = Aj the map α ∈ Sn is determined by the condition

α : i 7→ j iff f(Bi) = Aj ,

for all i, j ∈ I . Then we proceed in a similar way as in the former case, namely: f(bi) =
aα(i) as bi, aα(i) are a unique b-vertex and a-vertex not adjacent to Bi, Aα(i) respectively
in GM1 , GM2 ; f(Ai) = Bψ−1(α(i)) as Ai, Bψ−1(α(i)) are a unique A-vertex and B-vertex
adjacent to bi, aα(i) respectively in GM1

, GM2
; f(ai) = bψ−1(α(i)) as ai, bψ−1(α(i)) are a

unique a-vertex and b-vertex not adjacent toAi,Bψ−1(α(i)) respectively in GM1
, GM2

. But
also f(aϕ(i)) = bα(i) as aϕ(i), bα(i) are a unique a-vertex and b-vertex adjacent toBi,Aα(i)
respectively in GM1

, GM2
. Hence bψ−1(α(ϕ(i))) = bα(i), and consequently αϕ = ψα.

We are ready to characterize two isomorphic Möbius n-pairs.

Theorem 4.2. Let n ≥ 4 and ϕ,ψ, α ∈ Sn. The following conditions are equivalent:

(i) ϕα = ψ,

(ii) M(n,ϕ)
∼= M(n,ψ).

Proof. LetM1 = M(n,ϕ) andM2 = M(n,ψ).
(i)⇒ (ii): Let i ∈ I , ai, bi be points and Ai, Bi be blocks ofM1. Consider a map f

associated to the permutation α given by the formula

f(xi) = xα(i) for x ∈ {a, b},
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which maps the points ofM1 onto the points ofM2. Then f(Ai) = Aα(i) and f(Bi) =
Bα(i), as the conditions ai /∈ Ai, bi /∈ Bi uniquely determine blocks Ai, Bi, respectively.
Clearly, conditions bi ∈ Ai and bα(i) ∈ Aα(i) are equivalent. Note that aα(ϕ(i)) ∈ Bα(i)
is equivalent to aψ(α(i)) ∈ Bα(i) as well, since αϕ = ψα. Thus f is the required isomor-
phism.

(ii) ⇒ (i): We restrict ourselves to n ≥ 5 since for n = 4 this fact is well known, as
it was mentioned at the beginning of this section. Let f be an isomorphism mappingM1

ontoM2. By Lemma 4.1, there is α ∈ Sn associated with f such that αϕ = ψα.

According to Theorem 4.2, the number of non-isomorphic configurations M(n,ϕ) is
equal to the number of partitions p(n) of a positive integer n. There is the generating
function, recursive formula, asymptotic formula, and direct formula for p(n) (cf. [1]).
The increase of n implies quick growth of p(n): p(5) = 7, p(6) = 11, . . . , p(100) =
190569292, . . . , p(1000) = 24061467864032622473692149727991.

4.2 The automorphism group structure of a Möbius n-pair

For n = 3 the structure M(n,ϕ) consists of two mutually inscribed triangles. From [8]
the automorphism group of M(3,ϕ) is isomorphic to S3 n C2. From the original paper
of Möbius [7] the automorphism group of M(4,id) has order 192. The Möbius configu-
ration is also a particular case of the Cox configuration. Recall the definition of the Cox
configuration (comp. [3]). Let X be a set with n elements. The incidence structure

(Cx)X = (Cx)n =
〈⋃
{℘2k+1(X) : 0 ≤ k ≤ n}, {℘2k(X) : 0 ≤ k ≤ n},⊂ ∪ ⊃

〉
is the (2n−1n) configuration, which is called the Cox configuration. Since the automor-
phism group of (Cx)n is established in [11] and M(4,id) = (Cx)4 (see Figure 8), we get
the following:

Fact 4.3. The automorphism group of M(4,id) is isomorphic to S4 n C3
2 .

It follows from Theorem 4.2 that the centralizer ofϕ in Sn consists of automorphisms of
M(n,ϕ) for any n. Nevertheless, we will give a detailed characterization of automorphism
group of M(4,ϕ) with ϕ 6= id, and of M(n,ϕ) with n ≥ 5.

Let M = M(n,ϕ) and 1 ≤ ν1 < . . . < νr be the lengths of the cycles which are
contained in the cycle decomposition of ϕ ∈ Sn. Assume that there are mt cycles of
length νt, so n =

∑r
t=1mtνt. In other words

ϕ = ϕν11 ϕ
ν1
2 . . . ϕν1m1

ϕν21 ϕ
ν2
2 . . . ϕν2m2

. . . ϕνr1 ϕ
νr
2 . . . ϕνrmr ,

where ϕνtk is a cycle of length νt for k ≤ mt, t ≤ r. In view of Theorem 4.2 we can assume,
that each cycle consists of consecutive natural numbers. If we set µtk :=

∑t−1
i=1miνi+(k−

1)νt + 1 then

ϕνtk : µtk 7→ µtk + 1 7→ µtk + 2 7→ ... 7→ µtk + (νt − 1) 7→ µtk,

and the effective domain of ϕνtk is the set Xνt
k := {µtk, µtk + 1, . . . , µtk + (νt − 1)} ⊆

I . Taking all the domains of all the cycles we obtain the family of pairwise disjoint sets
Xν1

1 , . . . , Xν1
m1
, Xν2

1 , . . . , Xν2
m2
, . . . , Xνr

1 , . . . , Xνr
mr that yields a covering of I . Thus for

any cycle ϕνtk we have ϕνtk (Xνt
k ) = Xνt

k and ϕνtk � I\Xνtk = id.
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Figure 8: The Möbius configuration as (Cx)4.

The points and the blocks of M can be identified with the sequences (t, k, i, ε) such
that t ≤ r, k ≤ mt, i = 0, . . . , νt − 1, and ε ∈ {1, 2,−1,−2} according to the formula:

(t, k, i, ε) =


ai+µtk for ε = 1,

bi+µtk for ε = −1,
Ai+µtk for ε = 2,

Bi+µtk for ε = −2.

(4.1)

Let vt = (vt1, . . . , v
t
mt) ∈ Cmtνt , αt ∈ Smt , and v = (v1, . . . , vr) ∈ ×r

t=1C
mt
νt , α =

(α1, . . . , αr) ∈×r
t=1Smt . With the pair (v, α) we associate the map f(v,α) as follows:

f(v,α)((t, k, i, ε)) = (t, αt(k), i+ vtk mod νt, ε). (4.2)

In like manner we define the map g(v,α) by:

g(v,α)((t, k, i, ε)) =

{
(t, αt(k), i+ vtk − 1 mod νt,−ε) for ε = 1, 2,
(t, αt(k), i+ vtk mod νt,−ε) for ε = −1,−2. (4.3)

Lemma 4.4. The map f(v,α) is an automorphism ofM, which preserves each of simplices
SA, SB .

Proof. It follows directly from (4.2), that f(v,α) maps SA onto SA, and f(v,α) maps SB
onto SB . Let i ∈ Xνt

k and j ∈ I .
Assume that bj ∈ Bi. By (4.1), Bi = (t, k, i0,−2) for some i0 ∈ {0, . . . , νt − 1}, and

bj = (t′, k′, j0,−1) for some t′ ≤ r, k′ ≤ mt′ , j0 ∈ {0, . . . , νt′ − 1}. Then f(Bi) =

(t, αt(k), i0 + vtαt(k) mod νt,−2) and f(bj) = (t′, αt′(k
′), j0 + vt

′

αt′ (k
′) mod νt′ ,−2).

Set i′ = (i0 + vtαt(k) mod νt) + µtαt(k) and j′ = (j0 + vt
′

αt′ (k
′) mod νt′) + µt

′

αt′ (k
′), so
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f(Bi) = Bi′ and f(bj) = Bj′ . Recall that bj ∈ Bi iff j 6= i. If j′ 6= i′ then: firstly t′ = t,
next αt(k′) = αt(k) and thus k′ = k, and finally j0 = i0. It means that j = i, which yields
a contradiction. Hence f(bj) ∈ f(Bi).

Let aj ∈ Bi. Then j = ϕ(i). We have aϕ(i) = (t, k, i0 + 1 mod νt, 1), so f(aϕ(i)) =
(t, k, i0 + 1 + vtk mod νt, 1) = aϕ(i′). Therefore f(aϕ(i)) ∈ f(Bi).

The incidence (membership) relation is preserved by f(v,α) in case aj ∈ Ai and in case
bj ∈ Ai as well, that can be easily proved by similar reasoning.

Let vt = (v, . . . , v︸ ︷︷ ︸
t

) for all t ≤ r, and v = (v1, . . . ,vr). Let us put g0 := g(0,id).

Lemma 4.5. The map g0 is an automorphism ofM, which interchanges simplices SA, SB .

Proof. Immediately from (4.2), g0 maps SA onto SB , and SB onto SA. We restrict our
proof to the incidence relation involving the B-blocks, as the case with the A-blocks runs
similarly. Let i ∈ Xνt

k . From (4.1) Bi is represented by the sequence (t, k, i0,−2) for
some i0 ∈ {0, . . . , νt− 1}. The points that belongs to Bi are bj with j ∈ I \ {i} and aϕ(i).
Clearly, g0(bj) = aj ∈ Ai = g0(Bi). We have aϕ(i) = (t, k, i0 + 1 mod νt, 1) and thus
g0(aϕ(i)) = (t, k, i0,−1) = bi. Then finally g0(aϕ(i)) ∈ g0(Bi).

Since g(v,α) = g0f(v,α), from Lemma 4.4 and Lemma 4.5 we infer that:

Corollary 4.6. The map g(v,α) is an automorphism of M, which interchanges simplices
SA, SB .

We writeMνt
k for the set of all the points and the blocks ofM labelled by the elements

of the set Xνt
k , andMνt = {Mνt

k : k ≤ mt}.

Lemma 4.7. Let f be an automorphism ofM, which

(1) maps the B-blocks onto the B-blocks, or

(2) maps the B-blocks onto the A-blocks.

There is v ∈×r
t=1C

mt
νt and α ∈×r

t=1Smt such that

(i) f = f(v,α) in case (1), or

(ii) f = g(v,α) in case (2).

In particular, for each k ≤ mt there is k′ ≤ mt such that f(Mνt
k ) =Mνt

k′ .

Proof. (i): Let i ∈ Xνt
k . Assume that f(Bi) = Bj for some j ∈ I . According to (4.1)

there is i0 ∈ {0, . . . , νt − 1} such that Bi = (t, k, i0,−2), and j0 ∈ {0, . . . , νt′ − 1}
such that Bj = (t′, k′, j0,−2) for some t′ ≤ r, k′ ≤ mt′ . Then, by Lemma 4.1(ii) we
get f((t, k, i0, ε)) = (t′, k′, j0, ε) for each value of ε. The unique B-block containing
ai = (t, k, i0, 1) is Bϕ−1(i) = (t, k, i0 − 1 mod νt,−2), and a unique B-block containing
aj is Bϕ−1(j) = (t′, k, j0 − 1 mod νt′ ,−2). Hence, f maps (t, k, i0 − 1 mod νt,−2)
onto (t′, k′, j0 − 1 mod νt′ ,−2), and f maps (t, k, i0 − 1 mod νt, ε) onto (t′, k′, j0 −
1 mod νt′ , ε) generally. By induction we get

f : (t, k, i0 − u mod νt, ε) 7→ (t′, k′, j0 − u mod νt′ , ε) for all u = 0, . . . , νt − 1.
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This characterizes the action of f on Mνt
k , in particular, f(Mνt

k ) ⊆ Mνt′
k′ . Conversely,

f−1 maps Bj onto Bi. By the reasoning, analogous to this, which has been already done,
we come to f−1(Mνt′

k′ ) ⊆ M
νt
k . Consequently, f(Mνt

k ) = Mνt′
k′ , and therefore t′ = t

since f is a bijection. It provides that f preserves the setMνt . We define the map α ∈ Smt
associated with f �Mνt by the formula

α : k 7→ k′ iff f(Mνt
k ) =Mνt

k′ ,

for all k, k′ ≤ mt. Set vtk = j0 − i0 mod νt. Finally the formula for f is the following:

f : (t, k, i, ε) 7→ (t, α(k), i+ vtk mod νt, ε) for all i = 0, . . . , νt − 1.

(ii): Based on Lemma 4.5, g0f is an automorphism ofM, which maps the B-blocks
onto the B-blocks. Then, from Lemma 4.7(i), g0f = f(v,α) for some v ∈ ×r

t=1C
mt
νt

and α ∈ ×r
t=1Smt , and thus f = g−10 f(v,α). Note that g−10 = g(1,id). Consequently,

f = g(1,id)f(v,α) = g0f(v+1,α) = g(v+1,α). What is more, f preserves the setMνt , that
follows directly from (4.3).

Now we characterize automorphisms of M(n,ϕ), which can be uniquely decomposed
into two mutually inscribed n-simplices.

Theorem 4.8. LetM = M(n,ϕ) and 1 ≤ ν1 < . . . < νr be the lengths of the cycles in the
cycle decomposition of ϕ ∈ Sn. Assume that either n = 4 and ϕ 6= id contains no cycle of
length 2, or n ≥ 5. Then Aut(M) ∼=

⊕r
i=1

(
Cmi2νi

o Smi
)
.

Proof. Let F be an automorphism ofM. By Proposition 3.3, there is no special decom-
position of M. Thus, F either interchanges SA(M) with SB(M) or preserves each of
them. According to Lemma 4.7 there is v0 ∈ ×r

t=1C
mt
νt and α0 ∈ ×r

t=1Smt such
that F = f(v0,α0) or F = g(v0,α0) = g0f(v0,α0). Furthermore, every f(v,α), g(v,α)
with v ∈ ×r

t=1C
mt
νt and α ∈ ×r

t=1Smt is an automorphism of M by Lemma 4.4
and Corollary 4.6. Since, by Lemma 4.7, F preserves each of the sets Mνt , we can
restrict the proof to the one fixed set Mνt . Thus, we assume that i = 0, . . . , νt − 1,
k ≤ mt. For the simplicity of the notation, we will write (α(k), i + vα(k), ε) instead of
(t, αt(k), i+v

t
αt(k)

mod νt, ε). Moreover, we identify f(v,α) with f(v,α) �Mνt , and g(v,α)
with g(v,α) �Mνt , so we assume v ∈ Cmtνt , α ∈ Smt . Let w ∈ Cmtνt , β ∈ Smt and note
that

f(w,β)f(v,α)((k, i, ε)) = f(w,β)((α(k), i+ vk, ε)) = (βα(k), i+ vk + wα(k), ε).

Let φα : Smt −→ Aut(Cmtνt ) be the map defined by

φα : (v1, . . . , vmt) 7→ (vα(1), . . . , vα(mt)).

Then the formula for the composition of f(v,α) and f(w,β) is

f(w,β)f(v,α) = f(v+φα(w),βα).

It is not difficult to check that g0 and f(v,α) commute. Note also that

gz0 =

{
f(− z

2 ,id)
if z is even,

g(− z−1
2 ,id) if z is odd.



K. Petelczyc: On some generalization of the Möbius configuration 121

Let k′ ≤ mt′ . We introduce the family of maps

g0k((k
′, i, ε)) =

{
g0((k

′, i, ε)) if k′ = k,
(k′, i, ε) otherwise.

Then the following equalities hold

{gz0k : z = 0, . . . , 2νt − 1 and z is even} = {f(v,id) : vk′ = 0 for k′ 6= k},
{gz0k : z = 0, . . . , 2νt − 1 and z is odd} = {g(v,id) : vk′ = 0 for k′ 6= k}.

Therefore, for each v ∈ Cmtνt we have f(v,id) = gz101g
z2
02
. . . g

zmt
0mt

, where all numbers
zk = 0, . . . , 2νt − 1 are even. Likewise g(v,id) = gz101g

z2
02
. . . g

zmt
0mt

, where all numbers
zk are odd. Hence, for each F ∈ Aut(M) there is v ∈ Cmtνt and α ∈ Smt such that
F = f(v,id)f(0,α) or F = g(v,id)f(0,α). To complete the proof it suffices to determine the
remaining compositions:

f(v,id)f(w,id) = f(w+v,id),

f(0,α)f(0,β) = f(0,βα),

f(v,id)f(0,α) = f(φα(v),α),

g(v,id)f(0,α) = g0f(v,id)f(0,α) = g0f(φα(v),α) = g(φα(v),α),

f(v,id)g(w,id) = f(v,id)g0f(w,id) = g0f(v,id)f(w,id) = g0f(w+v,id) = g(w+v,id),

g(v,id)g(w,id) = g0f(v,id)g0f(w,id) = g20f(w+v,id) = f(−1,id)f(w+v,id) = f(w+v−1,id).

The Möbius n-pairs, which automorphism groups are not characterized by Theorem 4.8,
admit a special decomposition. We say that an automorphism f of a Möbius n-pair M
yields a special decomposition ofM if f maps the pair {SA, SB} onto a distinct pair of
mutually inscribed simplices.

Theorem 4.9. The automorphism group of M(4,ϕ) is isomorphic to

(i) (C4 ⊕ S2)o C2 if ϕ ∈ S4 contains precisely one cycle of length 2,

(ii) (C2
4 o S2)o C2 if ϕ ∈ S4 contains two cycles of length 2.

Proof. In view of Theorem 4.2, without loss of generality we can considerM1 = M(4,ϕ1)

with ϕ1 = (1)(2)(34) in case (i), and M2 = M(4,ϕ2) with ϕ2 = (12)(34) in case (ii)
(comp. Figures 4, 5). Let Fs ∈ Aut(Ms) for s = 1, 2. By Corollary 3.4, there is the
special decomposition of each ofMs. Thus, Fs maps the pair {SA, SB} onto {SA, SB}
or Fs yields the special decomposition of Ms. In case Fs maps the pair {SA, SB} onto
{SA, SB}, by Lemma 4.7, there is v0 ∈ {0} × {0} × C2, α0 ∈ S2 × {id} for M1, or
v0 ∈ C2 × C2, α0 ∈ S2 forM2 such that Fs = f(v0,α0) or Fs = g(v0,α0) = g0f(v0,α0),
respectively for s = 1, 2. By Lemma 4.4 and Corollary 4.6 all maps Fsf(v,α), Fsg(v,α),
where v ∈ {0} × {0} × C2 and α ∈ S2 × {id} if s = 1, or v ∈ C2 × C2, α ∈ S2 if
s = 2, are automorphisms of Ms preserving the pair {SA, SB}. Based on the proof of
Theorem 4.8, these maps form the group C4⊕S2 if s = 1, and the group C2

4 oS2 if s = 2.
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Consider the following two transformations:

x a1 a2 a3 a4 b1 b2 b3 b4

f̃(x) b1 b2 a4 a3 a1 a2 b3 b4

f̂(x) a2 a1 b3 b4 b1 b2 a3 a4

The map f̃ is an automorphism, which yields a special decomposition ofM1; and f̂ is an
automorphism, which yields a special decomposition ofM2. Assume that Fs yields a spe-
cial decomposition ofMs. Then F1 = f̃F ′1 and F2 = f̂F ′2, where F ′s is the automorphism
ofMs given by (4.2) or (4.3).

Let us set the commutativity rules in the automorphism group of Ms. By (4.1), the
points of M1, M2 correspond to the sequences (t, i, k, ε) with ε = 1,−1. Using the
convention introduced at the beginning of this paragraph we get t = 1, 2, ν1 = 1, ν2 = 2,
m1 = 2, m2 = 1 and X1

1 = {1}, X1
2 = {2}, X2

1 = {3, 4} for M1; t = 1, ν1 = 2,
m1 = 2, and X2

1 = {1, 2}, X2
2 = {3, 4} forM2. To avoid any misunderstanding, in case

M2 we will write Y 2
1 , Y 2

2 instead of X2
1 , X2

2 respectively. Then f̃ maps the points ofM1

by the formula:

f̃((t, k, i, ε)) =

 (t, k, i,−ε) for i+ µtk ∈ X1
1 , X

1
2 ,

(t, k, i+ 1 mod 2, ε) for ε = 1, i+ µtk ∈ X2
1 ,

(t, k, i, ε) for ε = −1, i+ µtk ∈ X2
1 .

(4.4)

The map f̂ can be defined on points ofM2 as:

f̂((t, k, i, ε)) =

 (t, k, i+ 1 mod 2, ε) for ε = 1, i+ µtk ∈ Y 2
1 ,

(t, k, i, ε) for ε = −1, i+ µtk ∈ Y 2
1 ,

(t, k, i,−ε) for i+ µtk ∈ Y 2
2 .

(4.5)

Note, that f̃2 = f̂2 = id. Hence the cyclic group generated by f̃ and the cyclic group
generated by f̂ both coincide with C2. All the formulas for compositions of f̃ with g0, and
f̃ with f = f(v,α) can be calculated using (4.4) and (4.5) (it is rather technical and thus
omitted) and then we get

f̃f = ff̃ and f̃g0 = f̃g(0,id) = g(τ(0,0,1)(0),id)f̃ ,

where τ(0,0,1)(v) = τ(0,0,1)((v
1
1 , v

1
2 , v

2
1)) = (v11 , v

1
2 , v

2
1 +1). Analogous calculation can be

done for f̂ . If we set τ(1,1)(v) = τ(1,1)((v
1
1 , v

1
2)) = (v11 + 1, v12 + 1), then

f̂g0 = f̂g(0,id) = g(τ(1,1)(0),id)f̂ ,

f̂f(v,α) = f(v,α)f̂ if only α = id,

f̂f(v,α) = g0f(v,α)f̂ = g(v,α)f̂ provided that i+ µtk ∈ Y 2
1 and α = (12),

f̂f(v,α) = g−10 f(v,α)f̂ = g(τ(1,1)(v),α)f̂ as long as i+ µtk ∈ Y 2
2 and α = (12).
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