2023 | št.: 66/1 ISSN Tiskana izdaja / Print edition: 0016-7789 Spletna izdaja / Online edition: 1854-620X GEOLOGIJA 66/1 – 2023 GEOLOGIJA 2023 66/1 1-198 Ljubljana GEOLOGIJA ISSN 0016-7789 http://www.geologija-revija.si/userfiles/image/BY.jpg Izdajatelj: Geološki zavod Slovenije, zanj direktor Miloš Bavec Publisher: Geological Survey of Slovenia, represented by Director Miloš Bavec Financirata Javna agencija za raziskovalno in inovacijsko dejavnost Republike Slovenije in Geološki zavod Slovenije Financed by the Slovenian Research and Innovation Agency and the Geological Survey of Slovenia Glavna in odgovorna urednica / Editor-in-Chief: Mateja Gosar Tehnicna urednica / Technical Editor: Bernarda Bole Uredniški odbor / Editorial Board Dunja Aljinovic Marko Komac Rudarsko-geološki naftni fakultet, Zagreb Poslovno svetovanje s.p., Ljubljana Maria Joăo Batista Harald Lobitzer National Laboratory of Energy and Geology, Lisbona Geologische Bundesanstalt, Wien Miloš Bavec Miloš Miler Geološki zavod Slovenije, Ljubljana Geološki zavod Slovenije, Ljubljana Mihael Brencic Rinaldo Nicolich Naravoslovnotehniška fakulteta, Univerza v Ljubljani Universitŕ di Trieste, Dip. di Ingegneria Civile Giovanni B. Carulli Simon Pirc Dip. di Sci. Geol., Amb. e Marine, Universitŕ di Trieste Naravoslovnotehniška fakulteta, Univerza v Ljubljani Katica Drobne Mihael Ribicic Znanstvenoraziskovalni center SAZU, Ljubljana Naravoslovnotehniška fakulteta, Univerza v Ljubljani Jadran Faganeli Nina Rman Nacionalni inštitut za biologijo, MBP, Piran Geološki zavod Slovenije, Ljubljana Janos Haas Milan Sudar Etvös Lorand University, Budapest Faculty of Mining and Geology, BelgradeMateja Jemec Auflic Sašo Šturm Geološki zavod Slovenije, Ljubljana Institut »Jožef Stefan«, Ljubljana Bogdan Jurkovšek Miran Veselic Geološki zavod Slovenije, Ljubljana Fakulteta za gradbeništvo in geodezijo, Univerza v Ljubljani Roman Koch Institut fr Paläontologie, Universität Erlangen-Nrnberg Naslov uredništva / Editorial Office: GEOLOGIJA Geološki zavod Slovenije / Geological Survey of Slovenia Dimiceva ulica 14, SI-1000 Ljubljana, Slovenija Tel.: +386 (01) 2809-700, Fax: +386 (01) 2809-753, e-mail: urednik@geologija-revija.si URL: https://www.geologija-revija.si/ GEOLOGIJA izhaja dvakrat letno. / GEOLOGIJA is published two times a year. GEOLOGIJA je na voljo tudi preko medknjižnicne izmenjave publikacij. / GEOLOGIJA is available also on exchange basis. Izjava o eticnosti Izdajatelji revije Geologija se zavedamo dejstva, da so se z naglim narašcanjem števila objav v svetovni znanstveni literaturi razmahnili tudi poskusi plagiatorstva, zlorab in prevar. Menimo, da je naša naloga, da se po svojih moceh borimo proti tem po.javom, zato v celoti sledimo eticnim smernicam in standardom, ki jih je razvil odbor COPE (Committee for Publication Ethics). Publication Ethics Statement As the publisher of Geologija, we are aware of the fact that with growing number of published titles also the problem of plagia.rism, fraud and misconduct is becoming more severe in scientific publishing. We have, therefore, committed to support ethical publication and have fully endorsed the guidelines and standards developed by COPE (Committee on Publication Ethics). Baze, v katerih je Geologija indeksirana / Indexation bases of Geologija: Scopus, Directory of Open Access Journals, GeoRef, Zoological Record, Geoscience e- Journals, EBSCOhost Cena / Price Posamezni izvod / Single Issue Letna narocnina / Annual Subscription Posameznik / Individual: 15 € Posameznik / Individual: 25 € Institucija / Institutional: 25 € Institucija / Institutional: 40 € Tisk / Printed by: TISKARNA JANUŠ d.o.o. Slika na naslovni strani: Na sliki je oligocenski tuf s Smrekovškega vulkanskega kompleksa, zbrusek v presevni polarizirani svetlobi, med navzkrižnimi nikoli. Beli in sivi minerali so heulandit, v njem so tudi drobni minerali z visokim reliefom, ki pripa.dajo analcimu. Oranžno-rumeni filosilikatni minerali so glineni minerali z zmesno strukturo vrste corrensit-klorit (foto: Polona Kralj). Cover page: The image shows thin section of Oligocene tuff from the Smrekovec Volcanic Complex, north-eastern Slovenia, plain-polarised light, crossed nicols. White and light-grey minerals are heulandite, which includes tiny minerals of analcime characterised by very high relief. Orange-yellow phyllosilicate minerals belong to randomly mixed-layered corrensite-chlorite (photo: Polona Kralj). VSEBINA – CONTENTS Gosar, M. Uvodnik - 70 let revije Geologija .....................................................................................................................................5 Placer, L., Rižnar, I. & Novak, A. Transverse Dinaric zone of increased compression between the Kraški rob and Hrušica Regions, NE Microadria ....................................................................................................................................9 Precnodinarska cona povecane kompresije med Kraškim robom in Hrušico, NE Mikroadrija Cadež, F. Geološka spremljava poskusnega odkopa uranove rude na Žirovskem vrhu ........................................................ 73Geological control of trial excavation of Uranium ore in Žirovski vrh Spatzenegger, A. & Poltnig, W. Taxonomic and stratigraphic remarks on Placites urlichsi Bizzarini, Pompeckjites layeri (Hauer), Carnites floridus (Wulfen) and Sageceras haidingeri (Hauer) ............................................................................... 87 Taksonomija in stratigrafski razpon vrst Placites urlichsi Bizzarini, Pompeckjites layeri (Hauer), Carnites floridus (Wulfen) and Sageceras haidingeri (Hauer) Oselj, K., Kolar-Jurkovšek, T., Jurkovšek, B. & Gale, L. Microfossils from Middle Triassic beds near Mišji Dol, central Slovenia..............................................................107 Mikrofosili iz srednjetriasnih plasti pri Mišjem Dolu, osrednja Slovenija Rajver, D. & Adrinek, S. Overview of the thermal properties of rocks and sediments in Slovenia .............................................................. 125 Pregled toplotnih lastnosti kamnin in sedimentov v Sloveniji Koren, K., Brajkovic, R., Bajuk, M., Vranicar, Š. & Fabjan, V. Hydrogeological characterization of karst springs of the white (Proteus anguinus anguinus) and black olm (Proteus anguinus parkelj) habitat in Bela krajina (SE Slovenia).......................................................................... 151 Hidrogeološka karakterizacija kraških izvirov na obmocju habitata belega (Proteus anguinus anguinus) in crnega mocerila (Proteus anguinus parkelj) v Beli krajini (JV Slovenija) Zhyrnov, P. & Solomakha, I. Geological-genetic structure of Irpin city, the role of lithological factors during engineering-geological zoning and construction assessmenta ....................................................................................................................... 167 Geološko-genetska zgradba mesta Irpin, vloga litoloških dejavnikov pri inženirsko-geološkem dolocanju con in oceni gradnje Khalili, R., Satour, L. & Mennad, S. Borers and epizoans on oyster shells from the upper Tortonian, Lower Chelif Basin, NW Algeria...................185 Vrtalci in epizoji na zgornjetortonijskih ostreidnih lupinah iz Spodnjega Chelif bazena, SZ Alžirija GEOLOGIJA 66/1, 5-7, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.000 70 let revije Geologija Revija Geologija je bila ustanovljena leta 1953 kot slovenska znanstvena revija za podrocje geologije. Po drugi svetovni vojni so bile potrebe po mineralnih surovinah precejšnje. Jugoslavija je ubrala sa­mostojno pot kolikor se je le dalo neodvisno od Sovjetske zveze. Zato je jugoslovanska politika želela, da bi bili samozadostni. Takratna generacija geologov je imela veliko in pomembno nalogo: zagotoviti cim vec mineralnih surovin. Za to je bilo potrebno dobro poznavanje geološke zgradbe. Prva povojna gene-racija geologov je imela tako polne roke dela. Naša najpomembnejša rudnika kovin, Idrija in Mežica, sta takrat proizvajala velike kolicine dragocenih kovin in tako izdatno polnila državno blagajno. Razcvet so doživljali tudi premogovniki. To je bil tudi cas, ko je bilo treba po razdejanju med vojno na novo zgra­diti državo. Za gradnjo novih stanovanjskih objektov in ostale infrastrukture so potrebovali ogromne kolicine nekovinskih mineralnih surovin. Vse to je zahtevalo veliko geoloških raziskav in hkrati terjalo precejšnje napore takratne skromne generacije geologov. Geologov je v tistem casu mocno primanjkovalo. Veliko jih je delalo in študiralo obenem, poleg tega pa so delali tudi na pomembnih geoloških in rudarskih projektih po celi Jugoslaviji in tudi v tujini. Da si bomo lažje predstavljali, kako dolgo že izhaja naša revija, osvežimo znanje zgodovine in pog­lejmo, kaj vse se je dogajalo leta 1953. James D. Watson in Francis Crick z Univerze v Cambridgeu sta razvozlala kemijsko zgradbo molekule DNK, britanski pisatelj Ian Fleming je izdal prvi roman o Jamesu Bondu, Edmund Hillary in šerpa Tenzing Norgay sta kot prva cloveka osvojila vrh Mount Everesta. To je bil cas, ko geologi še niso vedeli za teorijo o tektoniki plošc, in moja starša se še nista poznala. Kljub temu, da to obdobje ni bilo zelo naklonjeno poglobljenemu znanstvenemu delu in publiciranju, vsaj ne na podrocju geologije, se je vodstvo takratnega Geološkega zavoda Ljubljana, predhodnika da­našnjega Geološkega zavoda Slovenije, skupaj s stanovskimi kolegi, združenimi v Slovenskem geološkem društvu, odlocilo, da je treba ustanoviti slovensko znanstveno revijo za podrocje geologije. Že takrat so se zavedali velikega pomena znanstvenega publiciranja in z ustanovitvijo Geologije omogocili objavljanje znanstvenih dognanj s podrocja geologije v domaci reviji. Znanost je ena izmed temeljnih clovekovih dejavnosti. Od nje je odvisen razvoj družbe, saj ga poganja­jo prav znanstvena dognanja. Rezultate znanstvenega dela pa je treba predstaviti znanstveni in širši jav­nosti. Zato je objavljanje v znanosti izjemno pomembno in pravzaprav predstavlja precejšen del našega dela. To je kratko in jedrnato v eno misel strnil ameriški založnik in znanstveni urednik vec znanstvenih revij Gerard Piel, ki je leta 1986 v uvodniku revije Science zapisal: »Neobjavljena znanost je mrtva zna­nost.« Znanstveniki se zavedamo, da je vsakršno znanstveno dognanje - najsibo še tako izvirno - nepo­polno in nedokoncano, dokler rezultati niso objavljeni. Cloveštvo se med seboj sporazumeva od nekdaj, znanstveno komuniciranje pa je relativno mlado. Prve znanstvene revije so nastale konec 17. stoletja. Takrat je najverjetneje nastalo tudi prvo znanstveno delo s podrocja geologije. Nicolas Steno je spoznal, da je v zemeljski skorji zapisana zgodovina geoloških dogodkov, ki jo je mogoce razvozlati s skrbnim preucevanjem plasti in fosilov, in to leta 1669 zapisal v svojem doktorskem delu. V 19. stoletju je pricelo število znanstvenih revij hitro narašcati. Nacela znanstvenega publiciranja pa so se zacela razvijati v zacetku 20. stoletja. Filozofija znanosti temelji na dejstvu, da morajo biti izsled­ki znanstvenih raziskav objavljeni. To pomeni, da morajo biti primerno dokumentirani, interpretirani in predstavljeni ter dosegljivi mednarodni znanstveni javnosti. Samo tako jih je mogoce prepoznati, preveriti, jih vkljuciti v obstojece znanstveno vedenje ter jih tudi uporabiti za nadaljnje raziskave. Ko znanstveniki objavijo rezultate svojih raziskav in njihovo interpretacijo, raziskovalnemu okolju omogo-cijo, da presodi, kakšno znanstveno vrednost imajo. Znanstveni clanki so namenjeni deljenju rezultatov lastnega izvirnega raziskovalnega dela z drugimi znanstveniki ali pregledu raziskav dolocene teme. Zato so kljucnega pomena za razvoj sodobne znanosti, v kateri delo enega znanstvenika oziroma ene skupine nadgrajuje delo drugih. Pri znanstvenikih, zlasti naravoslovcih, je zanimivo, da vecinoma ne pišejo zelo radi. Že Charles Darwin je zapisal: »Kako srecno bi bilo življenje naravoslovca, ko bi le opazoval in nikoli pisal.« Je pa res, da je pisanje clankov obrt, ki se je moramo nauciti. Motivi za objavljanje clankov so se skozi zgodovino spreminjali. Poleg prej naštetih, ki so vsekakor trden temelj, so se pojavili še mnogi drugi, kot na primer: pridobiti izkušnje oz. usvojiti pisanje clan-kov, rešiti težavo, omogociti spoznanje, interes za razvoj znanstvenega podrocja, pa tudi postati viden, (samo)promocija, izpolnitev pogojev za pridobitev naziva ali za habilitacijo ali za zagovor doktorskega dela, nabiranje 'tock' … Žal je tako, da živimo v zelo tekmovalni dobi, kar je Saša Pavcek v knjigi Živi ogenj gledališca komentirala z naslednjimi besedami: »Oh, tekme, primerjave, rezultati, prosim, ne!«. Pisala je o režiserjih in igralcih, a menim, da v znanosti ni prav nic drugace. Vcasih pa brez tega ne gre, zato v nadaljevanju sledi nekaj statistike v zvezi z objavami v Geologiji. Naj nam popestrijo pogled v zgo­dovino izdajanja Geologije in naj ne služijo tekmovalnosti. V vseh 70 letih (1953–2022) je Geologija objavila 1157 clankov in dve monografiji, pri tem je sodelo­valo 1835 avtorjev. Poleg tega je bilo objavljeno še 63 nekrologov, 156 raznih porocil in 133 ocen novih publikacij. V tem casu je najvec clankov (52) napisal Anton Ramovš, sledi Vasja Mikuž s 50 clanki in potem Bogdan Jurkovšek z 31 clanki. Zanimivo je, da je deset najbolj dejavnih avtorjev sodelovalo pri kar 334 clankih. V zadnjih desetih letih je bilo najvec avtorjev zaposlenih na Univerzi v Ljubljani, teh je bilo kar 85. Vecinoma delujejo na Oddelku za geologijo Naravoslovnotehniške fakultete. Iz Geološkega zavoda Slo­venije je bilo 76 avtorjev, ostali so bili zaposleni na Agenciji republike Slovenije za okolje (18), Institutu »Jožef Stefan« (17), Znanstvenoraziskovalnem centru Slovenske akademije znanosti in umetnosti (13) ter v drugih organizacijah doma in v tujini. V naši reviji so bile objavljene vsebine, ki so pomembne za razvoj geoloških znanosti. V prvih desetle­tjih so pisali o novih spoznanjih v zvezi z geološko zgradbo Slovenije in rudnih nahajališcih. Dognanja o nastanku, razvoju in geoloških razmerah v naših najpomembnejših rudišcih so bila objavljena v številnih clankih v Geologiji in so bila tudi temelj za ugotavljanje novih zalog rude in s tem za uspešno izkorišcanje rude v teh rudišcih. V monografiji »Nastanek rudišc v SR Sloveniji«, ki so jo 1980 napisali Matija Drove-nik, Mario Plenicar in Franc Drovenik, so zbrani podatki o naših rudišcih, zato predstavlja temelj za vsa naslednja dela na tem podrocju. Drugo monografijo z naslovom »Mikrofacies mezozojskih karbonatnih kamnin Slovenije« je leta 2011 napisal Bojan Ogorelec. Ker karbonatne kamnine mezozojske starosti v Sloveniji zavzemajo okoli 40 % ozemlja in je njihova celotna skladovnica debela preko 5000 metrov, je na­tancen pregled njihovega razvoja in njihovih znacilnosti zelo relevantna tema. Delo pa je pomembno tudi zato, ker v mikrofaciesu apnencev in dolomitov prepoznamo skoraj vse strukturne tipe, saj so nastajali v razlicnih sedimentacijskih okoljih, znacilnih za karbonatne kamnine. Zato je ta monografija tudi odlicen pripomocek pri študiju. Med najpogosteje navajanimi deli pa so clanki o geotektonski zgradbi Slovenije avtorja Ladislava Placerja. V Geologiji so bila objavljena pomembna dognanja, pridobljena v okviru diplomskih, magistrskih in tudi doktorskih raziskav. Verjetno je mnogo slovenskih geologov svoj prvi znanstveni clanek objavilo prav v Geologiji. Zato ima naša revija pomembno vlogo pri vzgoji mladih geologov. Geologijo so vodili štirje uredniki: Štefan Kolenko 1953–1982 (30 let), Stanko Buser 1983–1997 (15 let), Bojan Ogorelec 1998–2009 (12 let) in Mateja Gosar od 2010 dalje. Tehnicno pomoc urednikom je do leta 1999 zagotavljala Metka Karer, ki je poskrbela tudi za tehnicno brezhibnost vecine slikovnega in tabelaricnega gradiva za objave. Edina uradna tehnicna urednica je Bernarda Bole, ki to funkcijo zelo skrbno in z osupljivo natancnostjo opravlja od leta 1999. Torej že 24 let. Spomnim se besed, s katerimi me je bodril Bojan Ogorelec, ko je predajal uredništvo v moje roke: »Mateja, naj te ne bo strah, saj bo šlo, imela boš Bernardo, ona obvlada tekoce uredniško delo in ti bo pomagala. Ti pa veš kam moraš Geologijo peljati.« Bernardi sem iskreno hvaležna za odlicno sodelovanje. Clanki so bili v vseh letih pisani v tujih jezikih, pretežno anglešcini, in tudi v slovenšcini. Zelo po­membno je, da imajo vsi clanki povzetek v tujem in tudi v slovenskem jeziku. Tako skrbimo, da se razvija tudi slovenska geološka terminologija. Znanstvene revije morajo sodelovati s strokovnjaki, ki opravijo recenzijo prejetih del. Recenzija je kriticna in objektivna presoja prikazanih raziskav, predstavljenih rezultatov in zakljuckov. Prav vsi, ki delujemo v znanosti, se zavedamo izjemnega pomena ocenjevalcev pri vseh fazah našega dela: od oce­njevanja projektnih prijav na razpisih doma in v svetu do ocenjevanja naših del. Vendar se vsi soocamo z izjemnim pomanjkanjem strokovnjakov, ki bi to delo opravili. Zato smo zelo hvaležni kolegicam in kole­gom, ki se odzovejo na našo prošnjo za recenzijo in potem to recenzijo tudi objektivno in vestno opravijo v predvidenem roku. V zadnjem desetletju so se pri recenzentskem delu še posebno izkazali (navajam v abecednem vrstnem redu): Mihael Brencic, Luka Gale, Špela Gorican, Petra Jamšek Rupnik, Miloš Miler, Nina Rman, Boštjan Rožic, Timotej Verbovšek in Nina Zupancic. Uredništvo sledi trendom v svetovni znanstveni publicistiki in potrebam slovenskih raziskovalcev. Naj omenim le najpomembnejše novosti, ki smo jih uvedli v zadnjih desetih letih. Geologija je revija z diamantnim odprtim dostopom. Clankom v Geologiji pripisujemo DOI (identifikator digitalnega objek­ta), s cimer je vsak clanek enoznacno oznacen in omogoca trajno povezavo besedila do njegove lokacije na internetu ter enostavno spremljanje njegovega citiranja. Oblikovanje in postavitev vsebine Geologije je prevzelo uredništvo. To že vrsto let uspešno opravlja Vida Pavlica. Clanki so objavljeni pod licencnim pogojem CC BY. Ta priznava avtorstvo, podpira prosto izmenjavo, iskanje in ponovno uporabo. Najpo­membnejši dosežek je bil vkljucitev revije Geologija v multidisciplinarno bibliografsko zbirko s citatnim indeksom Scopus, ki jo gradi založniški velikan Elsevier. V zvezi s tem se moram še posebno zahvaliti Ireni Trebušak, ki mi je z nasveti in širokim znanjem pomagala, da smo premagali neštete ovire in leta 2014 dosegli ta pomemben mejnik. Opravljena je bila digitalizacija in indeksacija vsebin, objavljenih v Geologiji v vseh 70 letih. Hvaležna sem, da je to obsežno delo prevzel naš Geološki informacijski center pod vodstvom Jasne Šinigoj. Za uspešno izpeljano digitalizacijo je zaslužen predvsem Maks Šinigoj, ki je skrbno pregledal vse digitalizirane letnike ter izjemno vestno in dosledno popravljal številne napake vseh vrst. Za to si zasluži posebno pohvalo. Naša stara internetna stran je bila prenesena na sistem OJS (Open Journal Systems), za kar gre zasluga Marku Zakrajšku. S tem je odprto dostopno vse, kar je bilo kadarkoli objavljeno v naši reviji, in omogoceno je iskanje po celotnem arhivu revije. Ker se zavedamo, kako pomembna je dostopnost podatkov in kakšno vlogo imajo pri tem znanstvene revije, letos uvajamo rubriko 'podatkovni clanek'. Zagotovo je še veliko novosti in ljudi, ki so prispevali k dobremu delovanju Geologije. Ne moremo omeniti vseh, smo pa vsem, ki sodelujejo z uredništvom, hvaležni. Uredba o izvajanju znanstvenoraziskovalnega dela v skladu z naceli odprte znanosti, ki je bila sprejeta konec letošnjega maja, zahteva odprto dostopnost znanstvenih publikacij in zagotavlja, da se pri vred­notenju dosežkov vrednoti bistvene vsebinske dosežke dela, in ne mesta objave oziroma metrik revije ali založnika. To je vsekakor v prid objavljanju v reviji Geologija, ki izpolnjuje vse zahteve te uredbe. Zavedamo se, da so pred nami novi izzivi. Danes, ko je umetna inteligenca v razvitejši fazi svojega razvoja (ChatGPT in drugi podobni tehnološki programi) in kot valjar melje in spreminja prakticno vse, kar si predstavljamo pod družbeno realnostjo, so bojazni zaradi umetne inteligence povsem realne, tudi v znanosti in še posebno pri znanstvenem publiciranju. Zahvala za financno podporo gre Javni agenciji za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije (ARIS) in vsem njenim predhodnikom. Najpomembnejše financno breme revije Ge-ologija pa vsekakor nosi založnik Geološki zavod Slovenije. Hvaležni smo, da razumevajoce podpira de­lovanje uredništva, in financno poskrbi, da revija preživi, in to ne glede na to, ali smo v letih suhih ali debelih krav. Spoštovane raziskovalke in raziskovalci s podrocja znanosti o Zemlji, Geologija je naša revija, pravza­prav revija vseh generacij povojnih slovenskih geologov in seveda tudi širše. Vsak od nas je dodal kamen-cek ali dva v mozaik, ki predstavlja 70 let njenega delovanja. Hvaležno se spominjamo starejših kolegic in kolegov, ki jih danes ni med nami, so pa s svojim delom postavili trdne temelje na katerih smo lahko gradili. Zavedajmo se, da prav vsi lahko prispevamo, da bo naša Geologija še naprej dobro delovala, da nam bo vsem koristila pri znanstvenoraziskovalnem delu, da se bo razvijala v koraku s casom, ki prihaja, in da bo v ponos tudi bodocim generacijam. Mateja Gosar, glavna in odgovorna urednica Geologije GEOLOGIJA 66/1, 9-71, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.001 Transverse Dinaric zone of increased compression between the Kraški rob and Hrušica Regions, NE Microadria Precnodinarska cona povecane kompresije med Kraškim robom in Hrušico, NE Mikroadrija Ladislav PLACER1, Igor RIŽNAR2 & Ana NOVAK1 1Geološki zavod Slovenije, Dimiceva ul. 14, SI-1000 Ljubljana, Slovenija; e-mails: ladislav.placer@telemach.net, ana.novak@geo-zs.si 2Geološke ekspertize Igor Rižnar s. p., SI-1000 Ljubljana, Slovenija; e-mail: igor.riznar@telemach.net Prejeto / Received 21. 3. 2023; Sprejeto / Accepted 29. 6. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Key words: NE Microadria (Adria Microplate), Istra peninsula, Istra Pushed Area, Crni Kal Anomaly, Kraški rob – Mt. Hrušica Traverse, stacked structure, envelope fault Kljucne besede: NE Mikroadrija (Jadranska mikroplošca), Istra, istrsko potisno obmocje, crnokalska anomalija, traverza Kraški rob – Hrušica, zložbena zgradba, ovojni (envelopni) prelom Abstract The Kvarner fault divides the Microadria (Adria microplate, the Adria stable core) into the Po and Adria segments. The Istra block, which is sandwiched between the right-lateral Kvarner Fault and the left-lateral Sistiana Fault lies at the extreme eastern edge of the Po segment. Both faults run transversely to the Dinarides and reach their thrust boundary in the east. The Microadria has been moving towards the Dinarides since the Middle Miocene. The movement of the Istra block is exposed in relation to the neighbouring blocks, so an extensive pushed area (the Istra Pushed Area) was formed in the External Dinarides, which is bent towards the northeast. It is defined by two flexural zones, one lying in the extension of the Sistiana Fault and the other in the extension of the Kvarner Fault. The structure of the Dinaric thrust border on the north-eastern side of the Istra block is complex. Its prominent structural element is the Crni Kal Anomaly, due to which a zone of increased compression developed within the Istra Pushed Area and transversely to the Dinarides (Kraški rob – Hrušica Traverse), which lies between the Sistiana and Kvarner Flexural Zones. In terms of kinematics, it differs greatly from these two, and various geomorphologically responsive deformations have occurred within it. Mt. Vremšcica (1027 m), which represents a transpressive anticline within the wider zone of the Raša Fault is the most prominent. In order to understand the genesis of the Classical Karst relief, it is important to know that the Mt. Vremšcica ridge rose from the levelled karst surface. Izvlecek Kvarnerski prelom deli Mikroadrijo (Jadranska mikroplošca, stabilno jedro Adrije) na padski in jadranski segment. Na skrajnem vzhodnem robu padskega segmenta leži istrski blok, ki je umešcen med desnozmicni Kvarnerski in levozmicni Sesljanskim prelom. Oba preloma potekata precno na Dinaride in segata do njihove narivne meje. Mikroadrija se že od srednjega miocena naprej pomika proti Dinaridom, premikanje istrskega bloka je nasproti sosednjim blokom eksponirano, zato se je v Zunanjih Dinaridih izoblikovalo obsežno potisno obmocje (istrsko potisno obmocje), ki je usloceno proti severovzhodu. Dolocata ga dve upogibni coni, ena leži v podaljšku Sesljanskega, druga v podaljšku Kvarnerskega preloma. Zgradba narivne meje Dinaridov na severovzhodni strani istrskega bloka je zapletena, njen izstopajoci strukturni element je crnokalska anomalija, zaradi katere se je v istrskem potisnem obmocju in precno na Dinaride razvila cona povecane kompresije (traverza Kraški rob - Hrušica), ki leži med sesljansko in kvarnersko upogibno cono. V kinematskem smislu od obeh mocno odstopa, v njej so nastale razlicne geomorfološko odzivne deformacije, najbolj vidna med njimi je Vremšcica (1027 m), ki predstavlja transpresivno antiklinalo znotraj širše cone Raškega preloma. Za razumevanje geneze reliefa Klasicnega krasa je pomembno vedeti, da se je greben Vremšcice dvignil iz uravnanega kraškega površja. Introduction Blaškovic & Aljinovic (1981), and Blaškovic (1991; 1999) already showed that the Dinaric foot­hills in the Istra and Kvarner are moving towards the Dinarides, and a more specific structural justi­fication for the movement of Istra was given in the discussion on the basics of understanding the tec­tonics of the north-western Dinarides and Peninsu­la Istra (Placer et al., 2010) and in discussion of the Sistiana Fault and Sistiana Bending Zone (Placer et al., 2021b). In these discussions, it was established that Istra, which is part of the Microadria (Adriatic microplate), lies in a block (the Istra block) between two strike-slip faults: the left-lateral Sistiana Fault in the northwest and the complex right strike-slip Kvarner Fault in the southeast (Fig. 1). Both faults lie transversely to the Dinarides and extend only as far as the Dinaric Thrust Belt boundary. In the Dinarides, their influence is reflected in the clock­wise Sistiana and anticlockwise Kvarner Flexural Zones, which run in the direction of both faults. In this article, the term Sistiana Bending Zone is re­placed by the term Sistiana Flexural Zone because it better corresponds to the tectonic terminology. The part of the Microadria northwest of the Sistia­na Fault was designated as the Friuli block, which is less exposed to the Dinarides than the Istra block. The movement of the Istra block is compensated by the lateral bending of the External Dinarides to­wards the northeast and by underthrusting in the area of their thrust boundary. This is how the Is-tra-Friuli Thrust-Underthrust Zone and the Istra Pushed Area, defined by both flexural zones, were formed. The process of pushing is more important Uvod Da se Dinarsko predgorje na obmocju Istre in Kvarnerja premika proti Dinaridom sta opozori-la že Blaškovic in Aljinovic (1981) ter Blaškovic (1991; 1999), dolocnejša strukturna utemeljitev premikanja Istre pa je bila podana v razpravi o osnovah razumevanja tektonike severozaho­dnih Dinaridov in Istre (Placer et al., 2010) ter v razpravi o Sesljanskem prelomu in sesljanski upogibni coni (Placer et al., 2021b). V teh raz­pravah je bilo ugotovljeno, da leži Istra, ki je del Mikroadrije (Jadranske mikroplošce), v bloku (istrski blok) med dvema zmicnima prelomoma, levozmicnim Sesljanskim prelomom na severo­zahodu in desnozmicnim Kvarnerskim prelo-mom na jugovzhodu. Oba preloma ležita precno na smer Dinaridov in segata le do njihove na­rivne meje. V Dinaridih se njun vpliv odraža v levosucni sesljanski in desnosucni kvarnerski upogibni coni, ki potekata v smeri obeh prelo­mov. Del Mikroadrije severozahodno od Sesljan­skega preloma je bil oznacen kot furlanski blok, ki pa je proti Dinaridom manj izpostavljen od istrskega bloka. Premikanje istrskega bloka je kompenzirano z bocnim upogibom Zunanjih Di-naridov proti severovzhodu in s podrivanjem v obmocju njihove narivne meje. Tako sta nastala istrsko-furlanska podrivna cona in istrsko po­tisno obmocje, ki ga dolocata obe upogibni coni. Proces potiskanja je pomembnejši od podriva­nja. V podrivni coni naj bi se paleogenski na­rivi, ki oznacujejo konec dinarske narivne faze, transformirali v neogenske do recentne podri­ve. Recentno dviganje krovnih grud v obmocju Fig. 1. Tectonic subdivision of Istra penninsula and its Dinaric hinterland. Updated after Placer et al. (2010, Fig. 3; 2021b, Fig. 1). Sl. 1. Tektonska rajonizacija polotoka Istre in dinarskega zaledja. Dopolnjeno po Placer et al. (2010, sl. 3; 2021b, sl. 1). 1 Dinarides. External Dinaric Thrust Belt: T – Trnovo Nappe, H – Hrušica Nappe, S – Snežnik Nappe / Dinaridi. Zunanjedinarski narivni pas: T – Trnovski pokrov, H – Hrušiški pokrov, S – Snežniški pokrov 2 Dinarides. External Dinaric Imbricated Belt / Dinaridi. Zunanjedinarski naluskani pas 3 Microadria: stable core, imbricated borderland (autochton sensu lato) / Mikroadrija: stabilno jedro, naluskano obrobje (avtohton sensu lato) 4 Microadria: stable core (autochton sensu stricto) / Mikroadrija: stabilno jedro (avtohton sensu stricto) 5 Southern Alps / Južne Alpe 6 Southern Alps thrust boundary / narivna meja Južnih Alp 7 External Dinaric Thrust Belt boundary, nappe bondary / meja Zunanjedinarskega narivnega pasu, meja pokrova 8 Thrust plane within Dinaric thrust boundary / nariv v coni narivne meje Dinaridov 9 Istra-Friuli Thrust-Underthrust Zone (Placer et al., 2010, Istra-Friuli Underthrust Zone) / istrsko-furlanska narivno-podrivna cona (Plac­er et al., 2010, istrsko-furlanska podrivna cona) 10 BuF – Buje reverse Fault / BuF – Bujski reverzni prelom 11 Anticlinoria: a – Cicarija Anticlinorium, b – Trieste-Komen Synclinorium, c – Ravnik Anticlinorium / antiklinoriji: a – Cicarijski antiklinorij, b – Tržaško-Komenski antiklinorij, c – Ravenski antiklinorij 12 Synclinoria: d – Brkini Synklinorium, e – Vipava Synclinorium / sinklinoriji: d – Brkinski sinklinorij, e – Vipavski sinklinorij 13 Important sub-vertical fault: SF – Sistiana Fault, KF – Kvarner Fault, RF – Raša fault, IF – Idrija Fault / pomembnejši subvertikalni prelom: SF – Sesljanski prelom, KF – Kvarnerski prelom, RF – Raški prelom, IF – Idrijski prelom 14 Microadria structural block: A – Istra block (A1 – South Istra Structural Wedge, A2 – North Istra Structural Wedge), B – Friuli block / strukturni blok Mikroadrije: A – istrski blok (A1 – južnoistrski strukturni klin, A2 – severnoistrski strukturni klin), B – furlanski blok 15 Relative movement direction of the fault block / relativna smer premika prelomnega krila 16 General direction of South Istra Structural Wedge movement / generalna smer premikanja južnoistrskega strukturnega klina than underthrusting. In the underthrust zone, the Paleogene thrusts, which mark the end of the Di-naric thrust phase, are supposed to transform into Neogene to recent thrusts. The recent uplift of the Paleogene nappes in the Istra-Friuli Thrust-Under-thrust Zone was determined in Istra by the ream-bulation of levelling lines (Rižnar et al., 2007). Istra is a visible part of the Istra block, divid­ed into the South Istra and North Istra Structural Wedges (Fig. 1). According to the established direc­tions of movement and parallel deformations, the South Istra Structural Wedge should move towards the Dinarides faster than the northern one. The above-mentioned fundamental findings stimulated a series of focused researches: the re­cent movement of Istra towards the Dinarides was proven by GPS measurements (Weber et al., 2010), the more intense movement of the tip of the South Istra Structural Wedge towards the Dinarides was confirmed by measurements of the local rotation of magnetic poles in cave sediments in the thrust units of the Dinarides (Vrabec et al., 2018); large sub-recent gravity phenomena in the area of the Istra Pushed Area were investigated (Placer et al., 2021a), and more precisely the Sistiana Flexural Zone was investigated (Placer et al., 2021b). Publi­cations regarding the seismicity of the area in ques­tion are not covered here. Geophysical surveys of the seabed of the Gulf of Trieste have shown that the mapped structures from Istra continue to the northwest. In this sense, the articles published after the discovery of the Buzet Thrust (Placer et al., 2004), which forms the south-western border of the Istra-Friuli Thrust-Un­derthrust Zone, are important. The subsea struc­ture is shown in the articles by Carulli (2006; 2011), Busetti et al. (2010a; 2010b; 2012; 2013), Trobec et al. (2017), and Novak et al. (2020). The findings of the aforementioned research are shown in Figure 1 within the structure of this part of the Dinarides. When studying the geomorphology of the Istra Pushed Area, it was shown that the movement of the Istra block caused not only lateral faulting, but also contraction of the Dinarides. Thus, the folds folded more intensively, and the blocks adapted to the con­traction by moving along the existing discontinu­ities. Therefore, it is necessary to solve the structure of geological objects within the Pushed Area in two stages: firstly, the structural geometry in the Paleo­gene at the end of thrusting must be determined, and then the successive deformations that occurred during the phase of Neogene-recent thrusting ac­cording to the Paleogene structural pre-set. Among the studied features, e.g. Kras (Trieste-Komen istrsko-furlanske podrivne cone, je bilo v Istri ugotovljeno z reambulacijo nivelmanov (Rižnar et al., 2007). Istra je vidni del istrskega bloka, razdeljena na južnoistrski in severnoistrski strukturni klin (sl. 1). Po ugotovljenih smereh gibanja in vzpore­dnih deformacijah, naj bi se južnoistrski struk­turni klin premikal proti Dinaridom hitreje od severnega. Zgoraj omenjene temeljne ugotovitve so vzpod­budile vrsto usmerjenih raziskav: z meritvami GPS je bilo dokazano recentno premikanje Istre proti Dinaridom (Weber et al., 2010), intenzivnejše pre­mikanje konice južnoistrskega strukturnega klina proti Dinaridom je bilo potrjeno z meritvami lokal­ne rotacije magnetnih polov v jamskih sedimentih, ki ležijo v narivnih enotah Dinaridov (Vrabec et al., 2018), raziskani so bili veliki subrecentni gravita­cijski pojavi v obmocju istrskega potisnega obmocja (Placer et al., 2021a), natancneje je bila raziskana sesljanska upogibna cona (Placer et al., 2021b). Objave o seizmiki obravnavanega prostora tu niso zajete. Geofizikalne raziskave podmorja Tržaškega zaliva so pokazale, da se kartirane strukture iz Istre nadaljujejo proti severozahodu. V tem smis­lu so pomembni clanki, ki so bili objavljeni po odkritju Buzetskega nariva (Placer et al., 2004), ki tvori jugozahodno mejo istrsko-furlanske pod-rivne cone. Zgradbo podmorja prikazujejo clanki Carulli-ja (2006; 2011), Busetti-jeve in sodelav­cev (2010a; 2010b; 2012; 2013), Trobceve in sode­lavcev (2017) in Novakove in sodelavcev. (2020). Ugotovitve omenjenih raziskav so v okviru zgradbe tega dela Dinaridov prikazane na sliki 1. Pri proucevanju geomorfologije istrskega po­tisnega obmocja se je pokazalo, da premikanje istrskega bloka ni povzrocilo le bocne uslocit­ve, temvec tudi krcenje Dinaridov. Tako so se gube intenzivneje nagubale, bloki pa so se krce­nju prilagodili s premiki po obstojecih diskon­tinuitetah. Zato je potrebno zgradbo geoloških objektov znotraj potisnega obmocja reševati dvostopenjsko, najprej je treba dolociti struktur-no geometrijo v paleogenu ob koncu narivanja, potem pa nasledstvene deformacije, ki so nastale v fazi neogensko-recentnega potiskanja po pale-ogenskem strukturnem predrisu. Izmed prouce­nih objektov, npr. Krasa (Tržaško-Komenskega antiklinorija), Škocjanskih jam, Brkinov (Brkin­skega sinklinorija) ali Cicarije (Cicarijskega an-tiklinorija), po kompleksnosti dogajanja izstopa osameli hrbet Vremšcice (1027 m). V tej razpravi je opisano zaporedje deformacij, ki je privedlo do nastanka omenjenega hrbta. Anticlinorium), Škocjan caves, Brkini (Brkini Syn-clinorium) or Cicarija (Cicarija Anticlinorium), the isolated ridge of Mt. Vremšcica (1027 m) stands out in terms of complexity. This discussion describes the sequence of deformations that led to the forma­tion of the aforementioned ridge. Instead of the term Istra-Friuli Underthrust Zone, the term Istra-Friuli Thrust-Underthrust Zone is used in this discussion, which better illus­trates the role of this zone in the process of Paleo­gene thrusting and Neogene-recent underthrusting. The structural geometry, kinematics, and geomorphology of Istra The visible part of Istra consists of the South Istra (A1) and North Istra Structural Wedges (A2), which rest on the Istra-Friuli Thrust-Un­derthrust Zone (Fig. 1). Due to the movement of this part of Microadria, and thus also Istra, both units behave differently towards the Dinarides, so it makes more sense to name them according to their dynamic characteristics. Thus, we introduce the terms South Istra Pushed Wedge and North Is-tra Extrusion Wedge (Fig. 2): the first moves with its tip towards the Dinarides, while the other is being extruded to the northwest towards the Gulf of Trieste. Both of them created corresponding structural and resulting geomorphological forms. The boundaries of the two dynamic units are not entirely identical to their formal structural bound­aries on the surface, so the designation Ad1 is in­troduced for the South Istra Pushed Wedge, and Ad2 for the North Istra Extrusion Wedge. South Istra Pushed Wedge Ad1 The South Istra Structural Wedge is bounded by the Buje reverse Fault in the north, and in the east by the Kvarner Fault and the segment of the out­er boundary of the Istra-Furlania Thrust-Under-thrust Zone between the Kvarner and Buje Faults. It is built of Jurassic, Cretaceous, Paleocene, and Eocene carbonate rocks and Eocene clastics. The bedding forms a gently buckled anticline, the axis of which plunges very gently to the east-northeast, but its direction is impossible to determine precise­ly because the dip of the bedding is so low. Given the location of the anticline between the Buje and Kvarner Faults, where the main geomorphological object is the Limska draga (Lim channel/dry val­ley), it is called the Lim Anticline. It should not be confused with the north–south trending West Istra Anticline, which lies offshore, west of Istra. The Lim Anticline is discussed in more detail later. A closer examination of the structural wedge boundaries showed that the reverse Buje Fault Namesto izraza istrsko-furlanska podrivna cona, je v tej razpravi uporabljen izraz istrsko--furlanska narivno-podrivna cona, ki bolje po­nazarja vlogo te cone v procesu paleogenskega narivanja in neogensko-recentnega podrivanja. Strukturna geometrija, kinematika in geomorfologija Istre Vidni del Istre sestavljata južnoistrski (A1) in severnoistrski strukturni klin (A2), ki se nasla­njata na istrsko-furlansko narivno-podrivno cono (sl. 1). Obe enoti se zaradi premikanja tega dela Mikroadrije, in s tem tudi Istre, proti Dina-ridom, obnašata razlicno, zato ju je smiselneje imenovati tudi po njunih dinamskih znacilno­stih, tako uvajamo termina južnoistrski potisni klin in severnoistrski iztisni klin (sl. 2), prvi se s konico premika proti Dinaridom, drugi pa se iztiska (izriva) na severozahod proti Tržaškemu zalivu. Oba sta pri tem ustvarila ustrezne struk­turne in iz njih izhajajoce geomorfološke oblike. Meje obeh dinamicnih enot niso povsem iden­ticne z njunimi formalnimi strukturnimi mejami na površini, zato je za južnoistrski potisni klin uvedena oznaka Ad1 , za severnoistrski iztisni klina pa Ad2. Južnoistrski potisni klin Ad1 Južnoistrski strukturni klin je na severu omejen z Bujskim reverznim prelomom, na vzho­du pa s Kvarnerskim prelomom in segmentom zunanje meje istrsko-furlanske narivno-pod­rivne cone med Kvarnerskim in Bujskim prelo-mom. Zgrajen je iz karbonatnih kamnin jurske, kredne, paleocenske in eocenske starosti ter iz eocenskih klastitov. Plasti tvorijo rahlo usloce-no antiklinalo, katere os zelo blago tone proti vzhodu do severovzhodu, vendar je njeno smer natancneje nemogoce dolociti, ker je vpad plasti majhen. Glede na lego antiklinale med Bujskim in Kvarnerskim prelomom, kjer je glavni geo­morfološki objekt Limska draga, jo imenujemo Limska antiklinala. Menimo, da je ne smemo za­menjevati z Zahodnoistrsko antiklinalo, ki leži v podmorju zahodno od Istre v smeri sever-jug. Limska antiklinala bo natancneje obravnavana pozneje. Natancnejši pregled mej strukturnega klina je pokazal, da Bujski reverzni prelom ne kaže znakov sekundarnega premikanja, vendar ga na zahodu seka Zambratijski prelom in vec nje-mu vzporednih za katere domnevamo, da nap-rej proti vzhodu-jugovzhodu potekajo južno od Bujskega preloma. Zambratijski prelom ima vi-dne horizontalne drse (sl. 2, tocka 1; sl. 5/1) iz ZaF Fig. 2. Istra structural sketch and hydrographic network. Sl. 2. Strukturna skica Istre in hidrografska mreža. shows no signs of secondary movement, but it is cut in the west by the Zambratija Fault and several par­allel ones, for which we assume continue south of the Buje Fault to the east-southeast. The Zambrati­ja Fault has visible horizontal slickensides (Fig. 2, point 1; Fig. 5/1), from which it was not possible to determine the direction of the movement. It was determined on the basis of the rotation of the paleo-magnetic poles in the vicinity of the fault, from which it indirectly follows that it is a left lateral strike- slip fault (Placer et al., 2010, fig. 4). The reverse Buje Fault did not become a left-lateral strike-slip, probably due to its uneven horizontal cross-section, which is manifested in a large bulge-like protrusion north of the lower Mirna River, which inhibited its movement. The Istra-Friuli Thrust-Underthrust Zone is morphologically strongly expressed in east­ern Istra and runs almost parallel to the eastern Istrian coast, and thus also parallel to the Kvarner Fault. From the viewpoint above the Flanona Hotel in Plomin (Fig. 2, point 2), a south-easterly dipping fault plane (110/30) with prominent subhorizontal slickenides (Fig. 5/2), indicating dextral strike-slip (Placer et al., 2010, fig. 4) were found. It is obvious­ly a Paleogene thrust plane rotated clockwise along the right strike-slip Kvarner Fault in the Neogene and then transformed into a strike slip fault plane. From these facts follows that the left-lateral strike-slip Zambratija Fault and several parallel ones formed next to the reverse Buje Fault, from which the left-lateral strike-slip Zambratija Zone was formed. Along the right-lateral strike-slip Kvarner Fault, the Istra-Friuli Thrust-Underthrust Zone bent to the south-southwest and became parallel to katerih pa ni bilo mogoce ugotoviti smisla pre­mika, ta je bil dolocen na podlagi rotacije pale-omagnetnih polov v bližini preloma iz cesar po­sredno izhaja, da gre za levo zmikanje (Placer et al., 2010, sl. 4). Bujski reverzni prelom ni pos­tal levozmicni verjetno zato, ker mu je to prep-receval njegov neravni horizontalni presek, ki se kaže v veliki trebušasti izboklini severno od spodnje Mirne. Istrsko-furlanska narivno-pod­rivna cona je v vzhodni Istri morfološko mocno izražena in poteka skoraj vzporedno z vzhodno obalo Istre, s tem pa tudi s Kvarnerskim pre­lomom. Na razgledišcu nad hotelom Flanona v Plominu (sl. 2, tocka 2) je bila odkrita ploskev v smeri 110/30 z izrazitimi subhorizontalnimi drsami (sl. 5/2), ki kažejo na desno zmikanje (Placer et al., 2010, sl. 4). Ocitno gre za paleo­gensko narivno ploskev, ki je bila v neogenu ob desnozmicnem Kvarnerskem prelomu zasukana v smeri urinega kazalca in nato transformirana v zmicno ploskev. Iz dejstev torej izhaja, da je ob Bujskem reverznem prelomu nastal Zambra­tijski levozmicni prelom in nekaj njemu vzpo­rednih, iz katerih se je oblikovala zambratijska levozmicna cona. Ob Kvarnerskem desnozmic­nem prelomu se je istrsko-furlanska narivno--podrivna cona upognila proti jugo-jugozahodu in se postavila vzporedno s prelomom. Nastala je kombinirana kvarnerska desnozmicna cona. Da obstaja južnoistrski potisni klin potrjujejo tudi podatki paleomagnetnih raziskav jamskih sedimentov v Cicariji, ki kažejo na levo in desno krajevno omejeno rotacijo enot istrsko-furlanske narivno-podrivne cone. Konica klina je delovala 1 J + K + Pc + E – Jurassic, Cretaceous, Paleocene, and Eocene carbonates, E – Eocene flysch, Al – aluvium. Bedding strike and dip / J + K + Pc + E – jurski, kredni, paleocenski in eocenski karbonati, E – eocenski fliš, Al – aluvij. Vpad plasti 2 External Dinaric Thrust Belt boundary / meja Zunanjedinarskega narivnega pasu 3 Thrust plane within Dinaric thrust boundary: BuF – reverse Buje Fault, BT – Buzet Thrust / nariv v coni narivne mejne Dinaridov: BuF – Bujski reverzni prelom, BT – Buzetski narivni prelom 4 Strike-slip fault in the Microadria area: SF – Sistiana Fault, KF – Kvarner Fault / zmicni prelom v obmocju Mikroadrije: SF – Sesljanski prelom, KF – Kvarnerski prelom 5 Lateral strike-slip faults: ZaF – Zambratija Fault, ZrF – Zrenj Fault / zmicni prelomi: ZaF – Zambratijski prelom, ZrF – Zrenjski prelom 6 Istra-Friuli Thrust-Underthrust Zone / istrsko-furlanska narivno-podrivna cona 7 Neogene-recent right lateral strike-slip movements in the Paleogene thrust zone / desnozmicni neogensko-recentni premiki v paleogenski narivni coni 8 Right lateral strike-slip fault in the Crni Kal Anomaly / desnozmicni prelom v crnokalski anomaliji 9 Anticlines: LA – Lim Anticline, SbA – Savudrija-Buzet Anticline, ViA – East Istra Anticline / antiklinale: LA – Limska antiklinala, SbA – Savudrijsko-Buzetska antiklinala, ViA – Vzhodnoistrska antiklinala 10 Profile in Fig. 12 / Profil na sl. 12 11 North Istra Extrusion Wedge extrusion boundary / meja iztiskanja severnoistrskega iztisnega klina 12 Istra block: Ad1 – South Istra Pushed Wedge, Ad2 – North Istra Extrusion Wedge, A3 – Trieste parallelepiped / istrski blok: Ad1 – južnoistrski potisni klin, Ad2 – severnoistrski iztisni klin, A3 – tržaški paralelepiped 13 Observed evidence of strike-slip movement: 1 – Zambratija, 2 – Flanona / mesta vidnih dokazov zmikanja: 1 – Zambratija, 2 – Flanona 14 Strike–slip in the section in Fig. 3: left lateral strike-slip, right lateral strike-slip / zmicni premik v profilu na sl. 3: levozmicni prelom, desnozmicni prelom 15 General direction of pushing, extrusion / generalna smer potiskanja, iztiskanja the fault. Thus, a combined right-lateral strike-slip Kvarner Zone was formed. The existence of the South Istra Pushed Wedge is also confirmed by the data from paleomagnetic research of the cave sediments in Cicarija, which indicate left and right locally limited rotation of the units of the Istra-Friuli Thrust-Underthrust Zone. The tip of the wedge worked so that the thrust units in front of it bent, with some rotating to the left and some to the right (Vrabec et al., 2018). The structure of the South Istra Pushed Wedge is given in the sketch of the Lim Anticline cross-sec­tion in Figure 3, where the simplified structures of the Zambratija and Kvarner shear zones, and the Lim Anticline with the dry Limska draga are pre­sented in dark hatch, and the surface flows of Mirna River with Butoniga and Raša River with Boljuncica are present in the anticline limbs. The reverse Buje Fault abuts on the Zambratija Fault at depth, with its left-lateral movement related to the Zambratija Fault or to its zone. The Kvarner Fault abuts on the outer border of the Istra-Friuli Thrust-Underthrust Zone, with dextral displacement along the Kvarner Fault and along the transformed segment of the Is-tra-Friuli Thrust-Undrethrust Zone. We cannot yet speak more precisely about the age of the individual structural elements and geo­morphology of the South Istra Pushed Wedge, but we can determine the sequence of their formation. There was no deposition in Istra in the Oligocene (Basic Geological Map - OGK sheets: Trieste, Il­irska Bistrica, Rovinj, Labin, Pula, Cres), so we assume that the area rose to the surface at the be­ginning of the Oligocene and a period of erosion tako, da so se narivne enote pred njo upognile, del se je zasukal v levo, del pa v desno (Vrabec et al., 2018). Zgradba južnoistrskega potisnega klina je po­dana v skici precnega prereza Limske antiklina­le na sliki 3, tu se vidi poenostavljeni strukturi zambratijske in kvarnerske zmicne cone, Limsko antiklinalo s suho Limsko drago v temenu in po­vršinska tokova Mirne z Butonigo in Raše z Bo­ljuncico v krilih gube. Na Zambratijski prelom se v globini naslanja Bujski reverzni prelom, levoz­micni premik je vezan na prvega, oziroma na nje­govo cono. Kvarnerski prelom se naslanja na zu­nanjo mejo istrsko-furlanske narivno-podrivne cone, desnozmicni premik se dogaja ob Kvarner­skem prelomu in ob transformiranem segmentu istrsko-furlanske narivno-podrivne cone. O starosti posameznih elementov struktu-re in geomorfologije južnoistrskega potisnega klina še ne moremo natancneje govoriti, lahko pa dolocimo zaporedje njihovega nastajanja. V Istri niso bile odložene oligocenske plasti (OGK, listi: Trst, Ilirska Bistrica, Rovinj, La-bin, Pula, Cres), zato domnevamo, da se je v zacetku oligocena obmocje dvignilo na površje in pricelo se je obdobje erozije v katerem se je izoblikovala primarna recna mreža. Pricetek premikanja Mikroadrije proti Dinaridom še ni natancneje dolocen, domnevamo, da se je zacelo v srednjem miocenu, kljub temu pa lahko razp­ravljamo o zaporedju dogodkov. Zaradi napre­dovanja klina med konvergentnima prelomoma (Kvarnerski prelom, Zambratijski prelom) pro-ti severo severovzhodu je pricela rasti Limska began, during which the primary river network (was) formed. The beginning of the Microadria movement towards the Dinarides is not yet pre­cisely determined. It is assumed that it started in the middle Miocene; however, we can discuss the sequence of events. Due to the progress of the wedge between the convergent faults (Kvarner Fault, Zambratija Fault) towards the north-north­east, the Lim Anticline began to grow, and the Paleo-Mirna and Paleo-Raša flows, which were directed along the thrust wedge shear boundar­ies, submitted to its geometry. The Paleo-Pazinci-ca River flow, however, remained trapped in the crest of the anticline where it carved a deep val­ ley. The karst surface peneplanation of southern Istra is today slightly buckled, as its uplift along the anticline axis was faster than the erosion of the Paleo-Pazincica, which is why it retreated un­derground. The process of formation of the current geomorphological image of the South Istra Pushed Wedge was either continuous or multi-stage, but without detailed research it is impossible to deter­mine this. The South Istra Pushed Wedge geometry and dynamics are also strengthened by the springs of the most important rivers at its tip, Mirna and Bu-toniga rivers, Raša with its former tributary the Boljuncica river, and Pazincica. In the immediate hinterland of the pushed wedge tip is the highest peak of Cicarija, Mt. Veli­ki Planik (1272 m). Nearby is Mt. Vojak (1394 m), Mt. Ucka’s peak, which lies in the East Istra Anti­cline. It was formed from multiple structural units as a consequence of Paleogene thrusting and sub­sequent Neogene to recent movements along the Kvarner Fault. North Istra Extrusion Wedge Ad2 Formally, the North Istra Structural Wedge (Figs. 2 and 4A) is a unit between the reverse Buje Fault (BuF) and the Istra-Friuli Thrust-Under-thrust Zone, more precisely the Buzet thrust Fault (BT), along its south-western border. The reverse Buje Fault lies under the Istra-Friuli Thrust-Un­derthrust Zone in the Buzet area. This point for­mally represents the tip of the wedge. The North Istra Structural Wedge is built of Cretaceous, Paleocene, and Eocene carbonates overlain by Eocene clastites; carbonates are exposed in the Savudrija-Buzet Anticline, which is an accom­panying structure of the reverse Buje Fault, and in the tectonic window or half-window at Izola, which is an accompanying structure of the Križ Thrust (KT). The flysch beds plunge below the Is-tra-Friuli Thrust-Underthrust Zone. antiklinala, njeni geometriji sta se podredi-la tokova paleo-Mirne in paleo-Raše, ki sta se usmerila vzdolž zmicnih meja potisnega kli­na, tok paleo-Pazincice pa je ostal ujet v teme-nu antiklinale kjer je urezoval globoko dolino. Kraška uravnava južne Istre je danes rahlo uslocena, njeno dviganje je bilo v osi antikli­nale hitrejše od erozije paleo-Pazincice, zato se je ta umaknila v podzemlje. Proces nastajanja sedanje geomorfološke podobe južnoistrskega potisnega klina je bil ali kontinuiran ali vecsto­penjski, brez detajlnih raziskav tega ni mogoce ugotoviti. Geometrijo in dinamiko južnoistrskega poti­snega klina utrjujejo tudi izviri pomembnejših rek v njegovi konici, Mirne in Butonige, Raše z nekdanjim pritokom Boljuncico in Pazincice. V neposrednem zaledju konice potisnega kli­na se nahaja najvišji vrh Cicarije, Veliki Planik (1272 m). V bližini je vrh Ucke, Vojak (1394 m), ki pa leži v Vzhodnoistrski antiklinali. Ta je sestavljena iz vec strukturnih enot in je nastala v prepletu ucinkov paleogenskega narivanja in neogensko-recentnih premikov ob Kvarnerskem prelomu. Severnoistrski iztisni klin Ad2 Severnoistrski strukturni klin (sl. 2 in 4A) je v formalnem smislu enota med Bujskim re-verznim prelomom (BuF) in istrsko-furlansko narivno-podrivno cono, natancneje Buzetskim narivnim prelomom (BT), ki leži na njeni ju­gozahodni meji. Na obmocju Buzeta leži Bujski reverzni prelom pod istrsko-furlansko narivno--podrivno cono. Ta tocka formalno predstavlja konico klina. Severnoistrski strukturni klin je zgrajen iz krednih, paleocenskih in eocenskih karbonatov, ki jih prekrivajo eocenski klastiti; karbonati izdanjajo v Savudrijsko-Buzetski an-tiklinali, ki je spremljajoca struktura Bujskega reverznega preloma in v tektonskem oknu ali poloknu v Izoli, ki je spremljajoca struktura Križnega narivnega preloma (KT). Flišne plasti tonejo pod istrsko-furlansko narivno-podrivno cono. V dinamicnem smislu je južna meja sever-noistrskega iztisnega klina identicna s severno mejo južnoistrskega potisnega klina, obstaja pa možnost, da je poleg zambratijske levozmicne cone levozmicno aktiven tudi Zrenjski prelom na severni strani Savudrijsko-Buzetske antiklinale. Severovzhodna meja severnoistrskega iztisnega klin pa ni identicna z Buzetskim narivnim pre­lomom, temvec poteka poševno na do 12 km ši­roko istrsko-furlanske narivno-podrivne cono, In a dynamic sense, the southern border of the North Istra Extrusion Wedge is identical to the northern boundary of the South Istra Pushed Wedge, but there is a possibility that, in addition to the strike-slip Zambratija Zone, the Zrenj Fault on the north side of the Savudrija-Buzet Anticline is active as well. The north-eastern border of the North Istra Extrusion Wedge is not identical to the Buzet Thrust, but runs obliquely to the 8 to 12 km-wide Istra-Friuli Thrust-Underthrust Zone, ap­proximately from the upper Mirna to the lower Glinšcica/Rosandra rivers in a SSE-NNW direc­tion. This boundary is not represented by only one structural element, but rather by a complex fault zone in which subvertical faults in the SSE-NNW direction are the most important (Figs. 2 and 4A). Before describing the zone between the upper Mirna and lower Glinšcica/Rosandra rivers, let’s look at the most important signs of lateral thrusting within the North Istra Extrusion Wedge (Figs. 2 and 4A). The most important is the normal Rokava Fault, which runs transversely to the wedge and in­dicates the direction of extrusion towards the Gulf of Trieste. The middle Dragonja and Rokava valleys were formed along the Rokava Fault (Placer et al. 2004; Placer, 2005). A large part of the upper Drag-onja valley also runs transversely to the extrusion približno od zgornje Mirne do spodnje Glinšcice v smeri SSE-NNW. Te meje ne predstavlja le en element strukture, temvec kompleksna prelom­na cona v kateri so najpomembnejši deznozmicni subvertikalni prelomi v smeri SSE-NNW (sl. 2 in 4A). Preden opišemo cono med zgornjo Mirno in spodnjo Glinšcico, si oglejmo najpomembnejše znake bocnega izrivanja znotraj severnoistrske­ga iztisnega klina (sl. 2 in 4A); na prvem mestu je Rokavin normalni prelom, ki poteka precno na klin in kaže na smer iztiskanja proti Trža­škemu zalivu. Po njem sta se izoblikovali dolini srednje Dragonje in Rokave (Placer et al., 2004; Placer, 2005). Precno na iztisni klin poteka tudi vecji del doline zgornje Dragonje in pa številne doline potokov, ki med srednjo Dragonjo in Bra­cano ponikajo v apnencu Savudrijsko-Buzetske antiklinale. Precno na klin tece tudi srednja Mirna preko Savudrijsko-Buzetske antiklinale. Severozahodno od Rokavinega preloma ne pre­vladujejo vec precne doline, tu so spodnja Dra­gonja, Drnica, Badaševica, Rižana in Osapska reka poglobile svoje struge po drugih elementih strukture. Glede na to izgleda, da se je severo­zahodni del klina iztisnil kot sorazmerno ho-mogen blok. Fig. 4. North Istra Extrusion Wedge: A. North Istra structural sketch (updated and symplified after Placer, 2005, Fig. 1; 2007, Fig. 2; Placer et al., 2010, Fig. 5). B. Neogene to recent extrusion evidence in the northern Istra relief. Sl. 4. Severnoistrski iztisni klin: A. Strukturna skica severne Istre (dopolnjeno in poenostavljeno po Placer, 2005, sl. 1; 2007, sl. 2; Placer et al., 2010, sl. 5). B. Znaki neogensko-recentnega iztiskanja v reliefu severne Istre. 1 K + Pc + E – Cretaceous, Paleogene and Eocene carbonates, E – Eocene flysch. Bedding strike and dip / 1 K + Pc + E – kredni, paleocenski in eocenski karbonati, E – eocenski fliš. Vpad plasti 2 Paleogene reverse and thrust faults: BuF – reverse Buje Fault, BT – Buzet Thrust KT – Križ Thrust IT – Izola Thrust / paleogenski reverzni in narivni prelomi: BuF – Bujski reverzni prelom, BT – Buzetski narivni prelom, KT – Križni narivni prelom, IT – Izolski narivni prelom 3 Paleogene backthrust fault (Strunjan structure) / paleogenski povratni reverzni prelom (Strunjanska struktura) 4 Neogene-recent reverse fault / neogensko-recentni podrivni reverzni prelom 5 Istra-Friuli Thrust-Underthrust Zone / istrsko-furlanska narivno-podrivna cona 6 Larger sub-vertical fault with prevailing strike-slip component, extrusion boundary: proved ZaF – Zambratija Fault, inferred ZrF – Zrenj Fault / vecji subvertikalni prelom s prevladujoco zmicno komponento, meja iztiskanja: dokazano ZaF – Zambratijski prelom, domnevno ZrF – Zrenjski prelom 7 Right lateral strike-slip faults in the Crni Kal Anomaly zone, extrusion boundary: 3 – Gracišce series, 4 – Kastelec series / desnozmicni prelomi v obmocju crnokalske anomalije, extrusion boundary: 3 – graciški niz, 4 – kastelski niz 8 Right lateral offset in the Neogene to recent underthrust reverse fault, extrusion boundary / desnozmicni premik v ploskvi neogenskega do recentnega podrivnega reverznega preloma, meja iztiskanja 9 Normal fault. Proved, inferred: RoF – Rokava Fault / normalni prelom. Ugotovljen, domneven: RoF – Rokavin prelom 10 Extensional crack (Gracišce) / ekstenzijska razpoka (Gracišce) 11 Neogene antiformal deformation of the Paleogene thrust plane: a – Glinšcica/Rosandra, b – Varda, c – Crni Kal, d – Movraž, e – Perci village near Buzet / v neogenu antiformno deformirane paleogenske narivne ploskve: a – Glinšcica, b – Varda, c – Crni Kal, d – Movraž, e – Perci pri Buzetu 12 Spatialy restricted folds : Strunjan structure, Tinjan structure or Tinjan Extrusion Wedge / gube prostorsko omejenega obsega: strunjan-ska struktura, tinjanska struktura ali tinjanski iztisni klin 13 Larger folds: SbA – Savudrija-Buzet Anticline, BaA – Bazovica Anticline, LiS – Lipica Syncline / vecje gube: SbA – Savudrijsko-Buzetska antiklinala, BaA – Bazovska antiklinala, LiS – Lipiška sinklinala 14 Extrusion direction / smer iztiskanja 15 Extrusion evidence locations: 1 – Zambratija, 3 – Gracišce, 4 – Kastelec / mesta z dokazi iztiskanja: 1 – Zambratija, 3 – Gracišce, 4 – Kastelec 16 A saddle above Trieste between Mt. Mai/Maj and Mt. Mote Calvo/Globojnar at elevation point 416 m / sedlo nad Trstom med Majem (Mai) in Globojnarjem (Monte Calvo) na koti 416 m ZaF ZrF a - e SbA 1, 3, 4 wedge, as well as numerous valleys of streams that sink between the middle Dragonja and Bracana rivers in the limestone of the Savudrija-Buzet An­ticline. The middle Mirna also flows transversely across the wedge and the Savudrija-Buzet Anti­cline. Northwest of the Rokava Fault, transverse valleys no longer dominate: here the lower Drag-onja, Drnica, Badaševica, Rižana and Osapska reka rivers have deepened their beds along other struc­ tural elements. Based on this, it appears that the north-western part of the wedge was extruded as a relatively homogeneous block. Now let’s take a look at the north-eastern bor­der of the North Istra Extrusion Wedge between the upper Mirna and lower Glinšcica/Rosandra riv­ers. In order to understand the causes of the shear zone formation that runs obliquely in the direction of thrusting, or underthrusting, we need to take a closer look at the Istra-Friuli Thrust-Underthrust Zone structure. In the Cicarija, it consists of sev­eral similar structural duplexes. The anticlines in the fronts of duplexes are composed of Paleogene limestone followed by the transitional marl or by flysch in some places. Each duplex is covered by the Pg limestone core of the next duplex of the same structure. The axes of the frontal limestone anti­clines regionally plunge towards the northwest, so that in the north-western part of the Istra-Friuli Thrust-Underthrust Zone, the Paleogene limestones are no longer at the surface, but the transitional marl or flysch of the upper duplexes is thrust on the transitional marl and flysch of the lower ones. The described conditions can be seen on the OGK (sheet Trieste), simplified on the tectonic sketch of northern Oglejmo si zdaj severovzhodno mejo sever-noistrskega iztisnega klina med zgornjo Mir-no in spodnjo Glinšcico. Da bi razumeli vzroke nastanka zmicne cone, ki poteka poševno na smer narivanja, oziroma podrivanja, si moramo podrobneje ogledati zgradbo istrsko-furlanske narivno-podrivne cone. Ta je na obmocju Cica­rije sestavljena iz vec podobnih narivnih lusk. V njenem jugovzhodnem delu ležijo v celih lusk cel­ne antiklinale iz paleogenskega apnenca na kate-rem ležijo prehodni laporji in ponekod tudi fliš, ki ga prekriva paleogenski apnenec, ki gradi celo naslednje luske enake zgradbe. Osi celnih antik­linal iz apnenca regionalno tonejo proti severo­zahodu, tako da v severozahodnem delu istrsko--furlanske narivno-podrivne cone paleogenski apnenci niso vec na površju, temvec je prehodni lapor ali fliš zgornjih lusk narinjen na prehodni lapor in fliš spodnjih lusk. Opisane razmere so vidne na OGK (list Trst), poenostavljeno na tek­tonski skici severne Istre, kjer je fliš oznacen s sivim odtenkom (sl. 2 in 4A). Severozahodni boki karbonatnih antiklinal v celih lusk se na površju izklinjajo v pasu med zgornjo Mirno in spodnjo Glinšcico v smeri SSE-NNW, narivne ploskve pa potekajo naprej po flišu proti NW. Potek narivnic v flišu na sliki 4A ni izrisan, temvec le nakazan v bližini morske obale, kjer narivnice praviloma ležijo v dnu zalivov, kar pomeni, da so ti nastali po tektonsko prizadetih conah. Narivnice v fli­šu med obalo in zmicno cono v smeri SSE-NNW niso izrisane zato, ker jih je potrebno detajlno geološko skartirati. Karbonatne antiklinale v ce-lih lusk med zgornjo Mirno in spodnjo Glinšcico Fig. 5. Structural peculiarities of Istra and Istra-Friuli Thrust-Underthrust Zone. Sl. 5. Strukturne posebnosti Istre in istrsko-furlanske narivno-podrivne cone. 1 Left-lateral strike-slip Zambratija Fault: sub-horizontal slickensides on the plane 30/90 (Fig. 2, location 1; Fig. 4A, location 1) / Zambrati­jski levozmicni prelom: subhorizontalne drse v ploskvi 30/90 (sl. 2, tocka 1; sl. 4A, tocka 1) 2 Right-lateral strike-slip Kvarner Zone: right-lateral strike-slip along the plane 110/30, which was primarily parallel to the Dinarides. Above Flanona Hotel near Plomin (town) (Fig. 2, location 2) / kvarnerska desnozmicna cona: desno zmikanje v ploskvi 110/30, ki je imela prvotno smer Dinaridov. Nad hotelom Flanona pri Plominu (sl. 2, tocka 2) 3 Extensional crack in direction 340/50 at Gracišce (Fig. 4A, location 3) / ekstenzijska razpoka v smeri 340/50 pri Gracišcu (sl 4A, tocka 3) 4 Fault zone in flysch in direction 50/50 zone of Neogene-recent underthrust reverse faults above Gabrovica village (Fig. 4A, location »c«; Fig. 8, Istra-Friuli Thrust-Underthrust Zone) / prelomna cona v flišu v smeri 50/50 cona neogensko-recentnih podrivnih reverznih prelo­mov nad Gabrovico (sl. 4A, tocka »c«; sl. 8, istrsko-furlanska narivno-podrivna cona) 5 Antiformally bent paleogene thrust plane in the Varda road cut (Fig. 4A, location »b«) / antiformno uslocena paleogenska narivna ploskev v cestnem useku Varda (sl. 4A, tock »b« 6 Antiformally bent paleogene thrust plane above Movraž village (Fig. 4A, location »d«) / antiformno uslocena paleogenska narivna ploskev nad Movražem (sl. 4A, tocka »d«) 7 Fault zone in flysch in direction 25/45 Paleogene thrust with stepped oblique cut, Valmarin (Škofije). Structural type of disordered jump (Fig. 7D) / prelomna cona v flišu v smeri 25/45 cona paleogenskega nariva, ki ima stopnicasti poševni rez, Valmarin (Škofije). Strukturni tip neurejenega preskoka (sl. 7D) 8 Backthrust in the Strunjan structure in direction 230/60 (Figs. 4A and 8) / povratni reverzni prelom v strunjanski strukturi v smeri 230/60 (sl. 4A in 8) 9 Transverse folding in the Tinjan Extensional Wedge. Axial planes in direction 310/90 .Construction cave for the water reservoir at Slatine village (Fig. 4A, location 4) / precno gubanje v tinjanskem iztisnem klinu. Osna ravnina gub v smeri 310/90 Izkop za vodohran v Slatinah (sl. 4A, tocka 4) Istra, where the flysch is marked with a grey hatch (Figs. 2 and 4A). The north-western flanks (if a sim­ple fold is determined e.g. by the northern and the southern limbs and an axial plane between them we are missing the term to describe the western and the eastern part of the fold. As there is no adequate term for these in the literature, a term flank is used here. Flank and limb should therefore not be in­terchangeable terms) of the carbonate anticlinesin the fronts of the duplexes pinch out on the surface in the SSE-NNW trending belt between the upper Mirna and the lower Glinšcica/Rosandra, and the thrust planes continue in flysch towards the NW. The course of the thrusts in the flysch in Fig. 4A is not drawn, but only indicated near the sea coast, where thrust planes generally lie at the bottom of bays, which means that they were formed along tectonically affected zones. Thrusts in the flysch between the coast and the shear zone in the SSE­ NNW direction are not fully drawn because they need to be geologically mapped in detail. The car­bonate anticlines in the fronts of the duplexes be­tween the upper Mirna and the lower Glinšcica/ Rosandra lie in an echelon series, which in reality represents a wider zone and not just a single set of duplexes. The north-western edges of the echelon-ar­ranged frontal carbonate anticlines are accom­panied by the SSE-NNW trending subvertical right-lateral faults. These were mapped at the highway construction site in two areas (Placer, 2003; 2004): between the lower entrance to the Kastelec tunnel and the upper entrance to the Dekani tunnel (260/90, 250/90, 240/80) (Fig. 4A, point 4) and in the vicinity of Gracišce, where a fault (70/80) was measured, otherwise without visible slickensides, but in its western flank there are pronounced extensional fractures in the 350­0/70 direction, which indicate extrusion towards the north-northwest (Fig. 4A, point 3; Fig. 5/3). These two groups are referred to as the Kastelec and Gracišce sets of right-lateral strike-slip faults throughout the article. To understand their mean­ing, let’s look at the structural analysis of the re­lationship between these faults and the thrust duplexes of the Istra-Friuli Thrust-Underthrust Zone, with frontal anticlines composed of Paleo­gene limestone and Eocene flysch in the Figure 6. In the analysis, we proceed from the idealized ech­elon arrangement of duplexes and frontal anticlines (Fig. 6A), where in the ground plane the edges of the Paleogene limestone anticlines are connected to form an envelope »e«, which runs in a 340° di­rection. This direction was chosen because it il­lustrates the location of the right-lateral strike-slip ležijo torej v ešalonskem nizu, ki pa ni linearen, oziroma ne obsega le enega niza lusk, temvec za­jema širšo cono. Severozahodne robove ešalonsko razpore­jenih celnih karbonatnih antiklinal spremljajo subvertikalni desnozmicni prelomi v smeri SSE -NNW. Ti so bili na delovišcu avtoceste kartira­ni na dveh obmocjih (Placer, 2003; 2004); med spodnjim vhodom v predor Kastelec in zgornjim vhodom v predor Dekani 260/90, 250/90, 240/80 (sl. 4A, tocka 4) in v okolici Gracišca, kjer je bil izmerjen prelom 70/80, sicer brez vidnih drs, toda v njegovem zahodnem krilu nastopajo iz­razite ekstenzijske razpoke v smeri 350-0/70, ki kažejo na iztiskanje proti severo-severozahodu (sl. 4A, tocka 3; sl. 5/3). V nadaljevanju clanka ti dve skupini imenujemo kastelski in graciški niz desnozmicnih prelomov. Da bi razumeli njihov pomen, si na sliki 6 oglejmo strukturno analizo odnosa med temi prelomi in narivnimi luska-mi istrsko-furlanske narivno-podrivne cone v celu katerih ležijo antiklinale iz paleogenskega apnenca in eocenskega fliša. V analizi izhajamo iz idealizirane ešalonske razporeditve lusk in celnih antiklinal (sl. 6A), kjer so v tlorisni ravni­nin robovi antiklinal iz paleogenskega apnenca povezati z ovojnico ali envelopo »e«, ki poteka v smeri 340°. Ta smer je bila izbrana zato, ker ponazarja lego desnozmicnih prelomov kastel­skega in graciškega niza. Ovojnica ali envelo­pna »e« leži v ravnini, ki jo imenujemo ovojna ali envelopna ravnina »E«. Da bi ugotovili njen vpad je bila iz terenskih podatkov dolocena sre­dnja lega paleogenskih narivnih ploskev »P«, ki znaša 50/30 in srednja lega plasti »D« v krilu celne antiklinale, ki znaša 35/20. Konstruirana presecnica »s« na sliki 6B ima smer 341/11, zao­kroženo 340/10, kar je enako smeri envelope »e« na sl. 6A. To pomeni, da ležita ovojnica »e« in presecnica »s« v ovojni ravnini »E«, ki ima smer 340 ° in vpad 90 °. V našem primeru je ovojna ravnina »E« konstruirana meja med obmocjem, kjer v luskah prevladuje paleogenski apnenc in obmocjem, ki je zgrajeno iz mehkejšega fliša, zato predstavlja labilno cono po kateri bi lahko nastal zmicni prelom. Konstrukcija na sliki 6 je idealizirana, ven­dar dobro ponazarja razmere v pasu med zgor­njo Mirno in spodnjo Glinšcico. Ovojna ravnina »E« ponazarja vzroke za nastanek kastelskega in graciškega niza subvertikalnih desnozmic­nih prelomov v smeri SSE-NNW, le da v naravi ne gre za eno ovojno ravnino ali zmicni prelom, temvec za cono, ki je sestavljena iz vec podob­nih ešalonskih segmentov. Izlocena sta kastelski faults of the Kastelec and Gracišce series. The en­velope »e« lies in a plane called the envelope plane »E«. In order to determine its elements (azimuth and dip), the middle position of Paleogene thrust surfaces »P« was determined from the field data, which is 50/30, and the middle position of layer »D« in the limb of the frontal anticline, which is 35/20. Constructed intersection »s« in Figure 6B has a bearing of 341/11 rounded to 340/10, which is parallel to the direction of envelope »e« in Fig­ure 6A. This means that envelope »e« and the in­tersection »s« lie in the envelope plane »E«, which has a 340° bearing and vertical dip. In our case, the enveloping plane »E« is a constructed bound­ary between an area dominated by duplexes of Pa­leogene limestone and an area built of softer (less rigid) flysch, so it represents a labile zone along which a strike-slip fault could occur. The construction in Figure 6 is idealized, but it well illustrates the conditions in the belt between the upper Mirna and lower Glinšcica/Rosandra rivers. The enveloping plane »E« illustrates the causes of the formation of the SSE–NNW trend­ing Kastelec and Gracišce series of subvertical right-lateral strike-slip faults, except that in-situ it is not a single enveloping plane or strike-slip fault, but a zone consisting of several similar echelon segments. Kastelec and Gracišce series are oblite­rated here because they are emphasized in the Fig­ure 4A due to their importance. Echelon-arranged carbonate anticlines, as pre­sented in Figue 6A, represent a stack of competent blocks in a less competent medium, therefore we propose introducing the name stacked structure, and envelope fault for the fault that occurred along the envelope plane of the stacked structure. The complex dextral strike-slip zone between the upper Mirna and the lower Glinšcica/Rosan­dra, which is characterized by a stacked struc­ture and enveloping faults, is called the Crni Kal Anomaly. The regional cause of its formation is explained in the chapter on the formation of the North Istra Extrusion Wedge and the South Istra Pushed Wedge. In addition to the Paleogene thrust faults, re­verse faults (Figs. 4A and 5/4) also occur in the Istra-Friuli Thrust-Underthrust Zone, represent­ing the leading structures of the Kraški rob (geo­graphic region along the SW margin of the Cicarija plateau between the villages of Socerb and Mlini Fig. 11) recent uplift. Next to them, the Paleogene thrusts planes are anticlinally bent (Fig. 5/5). In Fig. 4A, some examples of such deformation are marked with the letters »a« (Glinšcica/Rosandra), »b« (Varda, Fig. 5/5), »c« (Crni Kal), »d« (Movraž, Fig. 6. Formation of Kastelec and Gracišce series of faults. Sl. 6. Nastanek prelomov kastelskega in graciškega niza. A. Stacked structure: ideal echelon arrangement of Paleogene lime­ stone and flysch duplexes. The north-western edges of the thrusted frontal anticlines of Pale­ogene limestone form an echelon series whose »e« envelope is straight and runs due NNW (340°), which is oblique to the trust planes running NW (50°). / Zložbena zgradba: idealni ešalonski niz narivnih lusk iz paleogenskega apnenca in fliša. Severozahodni robovi celnih antiklinal iz paleogenskega apnenca tvorijo ešalonski niz, katerega ovojnica »e« ali envelopa je ravna in poteka v smeri NNW (340°), kar je poševno na narivne ploskve lusk, ki potekajo v smeri NW (50°). B. Construction of the intersection between the middle position of the thrust surfaces of the scales (»P« = 50/30) and the middle position of the bedding (»D« = 35/20). The intersection »s« lies in the direction 341/11, rounded 340/10, with its direction iden­tical to the direction of the envelope »e«, which means that both lines lie in a single plane. It is vertical and called the enveloping plane »E«, which lies in the direction 70/90, (or 250/90). / Kon­strukcija presecnice med srednjo lego narivnih ploskev lusk (»P« = 50/30) in srednjo lego plasti (»D« = 35/20). Presecnica »s« leži v smeri 341/11, zaokroženo 340/10, njena smer je identicna s smerjo ovojnice ali envelope »e«, kar pomeni, da ležita obe premici v eni ravnini. Ta je vertikalna. Imenujemo jo ovojna ali envelopna ravnina »E«, ki leži v smeri 70/90, oziroma 250/90. Fig. 5/6) and »e« (Perci near Buzet). Some of these Paleogene thrust surfaces show a certain degree of metamorphosis (verbally communicated by Dr. Bogomir Celarc, 2021), which, in addition to be­ing folded, undoubtedly indicates their inactivity and that the reverse faults are younger, i.e. of Neo-gene-recent age. Unlike the others, they are called underthrust reverse faults. The antiformly bent thrust surface in Glinšcica/Rosandra a, marked with »a«, is probably related to the Bazovica An­ticline. In the area of the Crni Kal Anomaly, there are SSE–NNW trending (Kastelec and Gracišce se­ries) subvertical right-lateral strike-slip faults and SE-NW trending reverse underthrust faults. The relationship between them is multi-phased, in some places the first intersect the others, in oth­ers it is the other way around. In the zones char-acterised by reverse underthrust faults, signs of sub-horizontal extrusion towards the northwest to north-northwest are also found in the area of the Crni Kal Anomaly. Based on the geometrical conditions on the tip of the North Istra Extrusion Wedge, we conclude that there exists an underthrusting reverse fault between Gracišce and Buzet, which is occasionally active also as a right-lateral strike-slip. The un­derthrusting kinematics next to it is indicated by the anticlinal folding »e«, while the extrusion is indicated by the transverse valleys parallel to the Rokava Fault (Fig. 4B). The Rokava Fault also ter­minates next to this underthrusting fault (Fig. 4A, point 3), due to which the Rokava valley suddenly turns to the southeast, and the Buzet Thrust also leans on it. We assume that the oscillation between subho­rizontal dextral strike-slip and underthrusting is a characteristic of the Istrian Pushed Area. With this mechanism and intermediate variants, we can explain large tectonic mirrors in the Raša fault zone mentioned in the chapter on the Raša fault in this article. The discovery of the underthrust reverse faults requires a new geological mapping of the Istra-Fri­uli Thrust-Underthrust Zone, especially the part that takes place in flysch. The sketch of its already published (thrust) structure (Placer et al., 2004, Fig. 1; 2010, Fig. 5; Placer, 2005, Fig. 1; 2007, Fig. 2), is based on knowledge of the Buzet Thrust, ex­amined from Buzet to the Gulf of Trieste coast and takes place exclusively in flysch layers (Placer et al., 2004). The Buzet Thrust Thrust plane on the surface obliquely intersects the strata everywhere at an angle of around 30°, and beds are folded into a flanking fold along the thrust plane, thus we in graciški niz, ki sta zaradi svojega pomena po­udarjena na sliki 4A. Ešalonsko razporejene karbonatne antikli­nale, kot je to predstavljeno na sliki 6A, pred­stavljajo skladovnico ali zložbo kompetentnih blokov v manj kompetentnem mediju, zato predlagamo, da se uvede naziv zložbena zgradba ali zložbena struktura, za prelom ki je nastal po ovojni ravnini zložbene strukture pa ovojni ali envelopni prelom. Izraz zložbena zgradba izva­jamo iz skladovnice drv, ki so zložena v zložbo, izraz skladovna zgradba bi bil neprimeren, ker se prekriva s skladi, oziroma plastmi. Kompleksno desnozmicno cono med zgornjo Mirno in spodnjo Glinšcico, za katero je znacil­na zložbena zgradba in ovojni prelomi, imenu­jemo crnokalska anomalija. Regionalni vzrok za njen nastanek bo razložen v poglavju o na­stanku severnoistrskega iztisnega in južnoistr­skega potisnega klina. Poleg paleogenskih na­rivnih prelomov nastopajo v istrsko-furlanski narivno-podrivni coni tudi reverzni prelomi (sl. 4A in 5/4), ki predstavljajo vodilne struktu-re recentnega dviganja kraškega roba. Ob njih so ploskve paleogenskih narivov antiklinalno uslocene (sl. 5/5). Na sliki 4A so nekateri pri­meri takih uslocitev oznaceni z malimi crkami »a« (Glinšcica), »b« (Varda, sl. 5/5), »c« (Crni Kal), »d« (Movraž, sl. 5/6) in »e« (Perci pri Bu-zetu). Nekatere paleogenske narivne ploskve od teh kažejo doloceno stopnjo metamorfoze (ustno posredoval dr. Bogomir Celarc 2021), kar poleg tega, da so nagubane, nedvomno kaže na njiho­vo neaktivnost in da so reverzni prelomi mlaj­ši, torej neogensko-recentne starosti. Za razli­ko od drugih jih imenujemo podrivni reverzni prelomi. Antiformna uslocitev narivne ploskve v Glinšcici, ki je oznacena z »a« je verjetno po­vezana z Bazovsko antiklinalo (Bazovica, ba­zovski: Merku, 2006, 42). V obmocju crnokalske anomalije torej nasto­pajo subvertikalni desnozmicni prelomi smeri SSE-NNW (kastelski in graciški niz) in pod-rivni reverznimi prelomi smeri SE-NW. Odnos med njimi je vecfazen, ponekod prvi sekajo dru­ge, ponekod je obratno. V conah podrivnih re-verznih prelomov najdemo v obmocju crnokalske anomalije tudi znake subhorizontalnega iztiska­nja proti severozahodu do severo-severozahodu. Po geometrijskih razmerah na obmocju ko-nice severnoistrskega iztisnega klina sklepamo, da obstoja med Gracišcem in Buzetom podriv­ni reverzni prelom, ki je postal obcasno tudi desnozmicen. Na podrivno kinematiko ob njem kaže antiklinalna uslocitev »e«, na iztiskanje conclude that it is the same in depth. An example of an oblique cut is presented in Figure 7A. Oth­er thrust faults in the flysch within the Istra-Friuli Thrust-Underthrust Zone have so far been inter­preted in accordance with the structure of the Buzet Thrust. During later detailed research of this area, it was shown that the oblique cut in the flysch is not always straight, but is often stepped (Fig. 7B), which means that the thrust plane sometimes runs between the layers, and sometimes obliquely to them. The thrust plane dip in such a case is some­what steeper. When it passes between layers, iden­tical parallel interlayer deformations appear next to it, and locally duplexes may evolve, and when they kažejo precne doline potokov, ki so vzporedne Rokavinemu prelomu (sl. 4B). Ob njem se izkli­nja tudi Rokavin prelom (sl. 4A, tocka 3), zaradi cesar dolina Rokave nenadoma zavije proti jugo­vzhodu. Nanj se naslanja tudi Buzetski narivni prelom. Domnevamo, da je nihanje med subho­rizintalnim desnim zmikanjem in podrivanjem znacilnost istrskega potisnega obmocja, s tem mehanizmom in vmesnimi variantami lahko razložimo velika tektonska zrcala v prelomni coni Raškega preloma, ki jih v tem clanku ome­njamo v poglavju o Raškem prelomu. Odkritje podrivnih reverznih prelomov terja ponovno geološko kartiranje istrsko-furlanske narivno-podrivne cone. Zlasti tistega dela, ki poteka v flišu. Skica njene narivne zgradbe, ki je bila doslej veckrat objavljena (Placer et al., 2004, sl. 1; 2010, sl. 5; Placer, 2005, sl. 1; 2007, sl. 2) je izhajala iz poznavanja Buzetskega narivnega preloma, ki je bil pregledan od Buzeta do obale Tržaškega zaliva in poteka izkljucno v flišnih pla­steh (Placer et al., 2004). Njegova narivna plo­skev na površju povsod poševno seka plasti pod kotom okoli 30°, ob njej so plasti vecinoma po­vite v obnarivno gubo, zato sklepamo, da je tako tudi v globini, na sliki 7 ga predstavljamo kot primer premega poševnega reza. Ostale narivne prelome v flišu znotraj istrsko-furlanske nariv­no-podrivne cone, smo doslej interpretirali v skladu z zgradbo Buzetskega narivnega preloma. Pri poznejših detajlnih raziskavah tega ozemlja pa se je pokazalo, da poševni rez v flišu ni ved- no raven, zelo pogosto je stopnicast (sl. 7B), kar pomeni, da poteka narivna ploskev nekaj casa med plastmi, nekaj casa poševno nanje. V takem primeru je vpad narivne ploskve nekoliko bolj strm. Ko poteka med plastmi, nastopajo ob njej identicne vzporedne medplastne deformacije, ponekod pa se razvijejo dupleksi. Pri preskoku iz enega nivoja plasti v drugega se pojavljata dva tipa zgradbe prelomne cone. V prvem primeru so se plasti zasukale v obprelomno gubo (sl. 7C), v drugem se razvije neurejeno zaporedje sko-raj izoklinalnih gub in reverznih prelomov (sl. 7D in 5/7). Struktura drugega ali neurejenega tipa preskoka je na moc podobna novonastalim conam podrivnih reverznih prelomov (sl. 5/4). Pomemben kriterij razlikovanja so strukturni žepi, ki se nahajajo v celih narivnih struktur ne­urejenega tipa (sl. 7D) in dupleksov (sl. 7B). V njih obicajno nastopajo mocno stlacene pretrte kamnine ali zgošcine, ki imajo glede na okoliški pretrti medij povecano volumsko gostoto. Obrav­navane žepe imenujemo tlacni strukturni žepi, skrajšano tlacni žepi, ki predstavljajo novost v jump from one level to another, two types of frac­ture zone structure appear. In the first case, the lay­ers are twisted into a fold along the fault (Fig. 7C), in the second a disordered sequence of almost iso­clinal folds and reverse faults develops (Figs. 7D and 5/7). The structure of the second or disordered type of jump is very similar to newly formed zones of underthrust reverse faults (Fig. 5/4). An important distinguishing criterion is the structural pockets located in the faces of thrust structures of disordered type (Fig. 7D) and du­plexes (Fig. 7B). They usually contain highly compressed crushed rocks or clusters, which are denser compared to the surrounding crushed (but not compressed as in the pressure pocket) medi­um. Said pockets are structural pressure pockets, abbreviated as pressure pockets representing a novelty in the case of the thrust duplexes of the described type. Pressure pockets of this type were observed in thrust zones, while other zones of un­derthrust reverse faults have not been explored in this sense. However, they do not form in duplexes, which accompany the phenomena of underwater synsedimentary gravitational sliding. An excep­tional example of the latter can be seen in the fly-sch cliff of Simonov zaliv (Simon bay) near Izola, which does not feature a pressure pocket at the head of the landslide, but a relaxed intertwining of layers that were only partially lithified at the time of sliding along the inclined seabed. Due to the importance of this phenomena, the structure is named the Kane landslide after the nearby ham­let and cape. In the Summaries and Excursions for the 4th Slovenian Geological Congress in Ankaran in 2014, the mentioned landslide was shown as an example of a thrust duplex structure (Vrabec & Rožic, 2014, 84-91). The task of re-mapping is to take into account all these peculiarities; above all it is necessary to dis­tinguish the zones of disordered jump of step thrust surfaces (Figs. 7B and 5/7) from the Neogene-re­cent zones of reverse thrust faults (Fig. 5/4). The structural relationships in the North Istra Extrusion Wedge are sketched in profile in Fig­ure 8. The Paleogene thrusts (Buzet Thrust, Izola Thrust, Križ Thrust, antiformally folded thrusts of the Kraški rob) and the reverse Buje Fault with its backthrusts. The left-lateral strike-slip Zambratija Fault, enveloping or envelope right-lateral strike-slip faults of the Crni Kal Anomaly, and underthrust reverse faults are also of Neogene-recent age. Underthrusting occurs only in the north-east­ern part of the profile along the underthrust re­verse faults, where their hanging blocks are being uplifted. This is geomorphologically manifested primeru narivnih dupleksov opisanega tipa. Tlacne žepe tega tipa smo opazovali v narivnih conah, medtem ko so ostale cone podrivnih re-verznih prelomov v tem smislu neraziskane. Ne nastajajo pa v dupleksih, ki spremljajo pojave podvodnega singenega gravitacijskega drsenja, izjemen primer slednjega je viden v flišnem klifu Simonovega zaliva v Izoli, kjer se v celu plazu ne nahaja tlacni žep temvec sprošceni preplet plasti, ki so bile v casu polzenja po nagnjenem morskem dnu le delno strjene. Predlagamo, da ta primer poimenujemo po bližnjem zaselku in rticu plaz Kane. V Povzetkih in ekskurzijah za 4. slovenski geološki kongres v Ankaranu leta 2014, je bil omenjeni plaz prikazan kot primer strukture narivnega dupleksa (Vrabec & Rožic, 2014, 84–91). Naloga ponovnega kartiranja je upoštevati vse te posebnosti, predvsem je potrebno lociti cone neurejenega preskoka stopnicastih nariv­nih ploskev (sl. 7E in 5/7) od con neogensko-re­centnih podrivnih reverznih prelomov (sl. 5/4). Strukturni odnosi v severnoistrskem izti­snem klinu so skicirani v profilu na sliki 8. Pa-leogenske starosti so narivi (Buzetski, Izolski, Križni nariv, antiformno usloceni narivi Kraške­ga roba) in Bujski reverzni prelom s povratnimi narivi. Neogensko-recentne starosti so Zambra­tijski levozmicni prelom, desnozmicni ovojni ali envelopni prelomi crnokalske anomalije in pod-rivni reverzni prelomi. Podrivanje se dogaja le v severovzhodnem delu profila ob podrivnih reverznih prelomih, ob katerih se dvigujejo njihove krovninske grude. To se geomorfološko kaže kot dviganje Kraškega roba, kar je povzrocilo antiformni upogib pale-ogenskih narivnih ploskev. Aktualno dviganje kraškega roba dokazuje kontrolni izracun nivel­manskega vlaka preko Kraškega roba (Rižnar et al., 2007). V profilu na sliki 8 je shematsko prikazana tudi lega desnozmicnih ovojnih prelomov. Njihov odnos do podrivnih reverznih prelomov je am-bivalenten, prva opažanja so pokazala, da pre­vladujejo podrivne strukture z drsami po vpadu, vendar najdemo znake desnega zmikanja tudi v conah podrivnih reverznih prelomov. Domneva-mo, da je v zacetni fazi razvoja severnoistrskega iztisnega klina prevladovalo iztiskanje, pozneje podrivanje, verjetno pa se obcasno še vedno po­javlja tudi iztiskanje. V jugozahodnem delu profila pri kartiranju površja nismo našli neogensko-recentnih pod-rivnih struktur. V tem primeru je zanimiva primerjava seizmicnega profila morskega dna Fig. 8. Sketch of the cross-section of the North Istra Extrusion Wedge. The course of the profile in Fig. 4A. Adapted after Placer et al. (2010, Fig. 6). Sl. 8. Skica precnega profila severnoistrskega iztisnega klina. Potek profila na sl. 4A. Dopolnjeno po Placer et al. (2010, sl. 6). 1 K + Pc + E – Cretaceous, Paleocene and Eocene carbonates, E – Eocene flysch / K + Pc + E – kredni, paleocenski in eocenski karbonati, E – eocenski fliš 2 Paleogene reverse and thrust fault: reverse Buje Fault, Izola Thrust, Križ Thrust, Buzet Thrust / paleogenski reverzni in narivni prelom: Bujski reverzni prelom, Izolski narivni prelom, Križni narivni prelom, Buzetski narivni prelom 3 Paleogene backthrust fault / paleogenski povratni reverzni prelom 4 Neogene-recent underthrust reverse fault / neogensko-recentni podrivni reverzni prelom 5 Left strike-slip Zambratija Zone, a set of right strike-slip faults of the Crni Kal Anomaly (envelope faults) / zambratijska levozmicna cona, niz desnozmicnih prelomov crnokalske anomalije (ovojni ali envelopni prelomi) 6 Area of interlayer movements in the Strunjan structure (Placer et al., 2010, Figs. 18 and 19) / obmocje medplastnih premikov v strunjanski strukturi (Placer et al., 2010, sl. 18 in 19) 7 Mirror folded area in the Strunjan structure / zrcalno nagubano obmocje v strunjanski strukturi 8 Direction of the Neogene-recent movement of the Istra block / smer neogensko-recentnega pomikanja istrskega bloka 9 Recent uplift of the Kraški rob / recentno dviganje kraškega roba 10 Sketch of the envelope faults position within the Crni Kal Anomaly / skica lege ovojnih (envelopnih) prelomov znotraj crnokalske anom­ alije as the uplift of the Kraški rob, which caused the antiform bending of the Paleogene thrust surfaces. The current uplift of the Kraški rob is evidenced by the recalculation of the levelling lines across the Kraški rob (Rižnar et al., 2007). The position of the right-lateral strike-slip en­velope faults is schematically presented in pro­file in Figure 8. Their relationship to underthrust reverse faults is ambivalent: first observations showed that underthrust structures with slicken-sides along (parallel to) the bedding predominate, but evidence of dextral slip are also observed in underthrust reverse fault zones. It is assumed that extrusion was dominant in the initial phase of the North Istra Extrusion Wedge development, fol­lowed by underthrusting, but extrusion probably still occurs from time to time. precno na Izolsko antiklinalo (Busetti et al., 2013, sl. 3) z odsekom profila na sliki 8 med Sa­vudrijsko-Buzetsko in Izolsko antiklinalo. Kar­tiranje je pokazalo, da sta poleg Izolske antik­ linale vidna še medplastni nariv v prehodnem laporju antiklinale, ki smo ga poimenovali Izol-ski nariv in Križni nariv za katerega na kopnem ni bilo mogoce ugotoviti v kakšnem struktur­nem odnosu je z Izolsko antiklinalo. Med Sa­vudrijsko-Buzetsko antiklinalo in Križnim na­rivom ležijo povratni narivi, ki so spremljajoca struktura Bujskega reverznega preloma. V bloku med povratnimi narivi in Križnim narivom je fliš zrcalno simetricno naguban. V seizmicnem profilu se Izolska antiklinala nagiba proti jugo­ zahodu, kar kaže na paleogensko celno narivno gubo, ki je najbližja Križnemu narivu. Vendar ta In the south-western part of the profile, no Neo-gene-recent underthrust structures were found during surface mapping. In this case a comparison of the seismic profile of the seabed transverse to the Izola Anticline (Busetti et al., 2013, Fig. 3) with the section of the profile in Figure 8 between the Savudrija-Buzet and Izola Anticlines is interesting. Geological mapping showed that there are also inter­layer thrusts (the Izola, and the Cross Thrusts) vis­ible in the transitional marl, in the Izola Anticline. It was not yet possible to determine their structural relationship with the Izola Anticline. Backthrusts and related structures between the Savudrija-Buzet Anticline and the Križ Thrust belong to the reverse Buje Fault. The flysch is mirror-symmetrically fold­ed in the structural block between the backthrusts and the Križ Thrust. The Izola Anticline is tilted to the southwest in the seismic profile, indicating a Paleogene frontal thrust fold, which is closest to the Križ Thrust. The thrust fault is not visible in the seismic profile, so we assume that only a fold has de­veloped there, which has not yet been broken by the thrust plane. Post-Paleogene reactivation is men­tioned in the description of the seismic profile that only affected subvertical faults without significant impact on the structure. A fold in the flysch along the reverse underthrust indicates the symmetry of fold vergence in the Strunjan structure between the reverse thrusts and the Križ Thrust and is pre­sented in Figure 5/8. This was formed successively: first, folds formed in the Križ Thrust footwall, then along backthrusts. Justification of the sequence of events is given in the chapter on the formation of the North Istra Extrusion Wedge and the South Is-tra Pushed Wedge. The Kane landslide in Simonov zaliv lies in the area of the Strunjan structure, but, as we have already mentioned, it is not a tectonic formation in origin, but rather a synsedimentary phenomenon in the flysch. The landslide slid in a direction of roughly 310°, while signs of Paleogene thrusting show a direction of some 220°. The important question – the amount of dis­placement along the Paleogene thrusts, which rep­resent the boundary of the Dinaric thrust struc­ture – remains unanswered. While it could be relatively large, the debates regarding the struc­ture of the Dinarides have failed to produce an ac­ceptable solution. Interpretation of the profile in Figure 8 rep­resents some progress in understanding the mech­anism of movement of the Microadria towards the External Dinarides, which includes thrusting and underthrusting. The progress is obvious after comparison with the Umag - Kozina profile (Placer et al., 2010, fig. 6), where the underthrusting was v seizmicnem profilu ni viden, zato domneva-mo, da se je na obmocju geofizikalnega profila razvila le guba, ki je narivna ploskev še ni pre­trgala. V opisu seizmicnega profila je omenje­na popaleogenska reaktivacija, ki pa je zajela le subvertikalne prelome brez pomembnega vpli­va na zgradbo. Na sliki 5/8 je prikazana guba v flišu ob povratnem narivu, ki kaže na sime­trijo vergence gub v strunjanski strukturi med povratnimi narivi in Križnim narivom. Ta je nastala zaporedoma, najprej so se razvile gube v talnini Križnega nariva, nato ob povratnih nari­vih. Utemeljitev zaporedja dogodkov je podana v poglavju o nastanku severnoistrskega iztisnega in južnoistrskega potisnega klina. Plaz Kane v Simonovem zalivu leži v obmocju strunjanske strukture, vendar, kot smo že omenili, po izvoru ni tektonska tvorba, temvec je sinsedimentarni pojav v flišu. Plaz je drsel v smeri okoli 310°, medtem ko kažejo znaki paleogenskega nariva­nja na smer okoli 220°. Odprto ostaja vprašanje dolžine premika ob paleogenskih narivih, ki predstavljajo mejo di­narske narivne zgradbe. Ta bi bil lahko soraz­merno velik, vendar nam dosedanje razprave o zgradbi Dinaridov o tem še ne dajejo sprejemlji­vega odgovora. Interpretacija profila na sliki 8 pomeni na­predek pri razumevanju mehanizma premikanja Mikroadrije proti Zunanjim Dinaridom, ki zaje-ma potiskanje in podrivanje. Napredek je viden po primerjavi s profilom Umag -Kozina iz leta 2010 (Placer et al., 2010, sl. 6), ko se je podri­vanje obravnavalo kot reaktivacija paleogenskih narivnih ploskev v nasprotni smeri. Antikli­nalno uslocene paleogenske narivne ploskve ob podrivnih reverznih prelomih, ki so na sliki 4A oznacene z »a«, »b«, »c«, »d« in »e«, nastopa­jo tudi v jugovzhodnem delu istrsko-furlanske narivno-podrivne cone, npr. nad Brestom pod najvišjim vrhom Cicarije, Velikim Planikom (1272 m). V tem smislu predstavlja strukturni izziv tudi zgradba Ucke, zato je potrebno ponov-no strukturno obdelati celotno narivno-podriv-no cono med Tržaškim in Reškim zalivom. Narivi in prelomi znotraj severnoistrskega iztisnega klina se nadaljujejo proti severozaho­du. Iz strukturne rekonstrukcije podmorja Trža­škega zaliva (Carulli, 2011, sl. 3) in geofizikal­nega profila v smeri SW-NE (Busetti et al., 2012, sl. 2) je moc sklepati, da se zahodno od Savudrije os Savudrijsko-Buzetske antiklinale obrne proti severozahodu (sl. 2). O Zambratijskem prelomu ni podatkov, domnevamo pa, da spremlja Savu­drijsko-Buzetsko antiklinalo v podmorju Bujski considered as a reactivation of Paleogene thrust planes in the opposite direction. Anticlinally de­formed Paleogene thrust planes next to under-thrust reverse faults, shown in Figure 4A, marked with »a«, »b«, »c«, »d« and »e«, also occur in the south-eastern part of the Istra-Friuli Thrust-Un­derthrust Zone, e.g. above Brest under Mt. Veliki Planik (1272 m), the highest peak of Cicarija. In this sense, Mt. Ucka also represents a structural challenge, so it is necessary to structurally remap the entire thrust-underthrust zone between the Gulf of Trieste and the Gulf of Rijeka. Thrusts and faults within the North Istra Ex­trusion Wedge continue to the northwest. From the structural reconstruction of the Gulf of Trieste sea­bed (Carulli, 2011, fig. 3) and the geophysical profile in the SW-NE direction (Busetti et al., 2012, fig. 2), it can be concluded that the axis of the Savudrija-Buzet Anticline west of Savudrija turns to the northwest (Fig. 2). There is no information about the Zambrati­ja Fault, but we assume that the reverse Buje Fault follows the Savudrija-Buzet Anticline, and Carulli (ib.) also assumed the same. The change of direc­tion occurs also on the opposite side of the extru­sion wedge. Here the SSE-NNW trending Crni Kal Anomaly (the complex shear zone between the upper Mirna and lower Glinšcica/Rosandra rivers), turns due SE-NW. The Bazovica Anticline and the Lipica Syncline north-northwest of the lower Glinšcica/ Rosandra (Fig. 4A) have the same direction, so we believe that they probably represent the extreme structural limit of the Crni Kal Anomaly. This is also indicated by the change in the Kraški rob trend on the saddle between Mt. Mai /Maj (~ 443 m) and Mt. Monte Calvo/Globojnar (~ 442 m) above Trieste, where the Kraški rob turns from the SSE-NNW to the SE-NW direction (Fig. 4). Despite the apparent­ly well-defined boundary on the mentioned saddle (elevation 416 m), it is quite clear that it is correct to speak only of the belt between the upper Mirna and the lower Glinšcica/Rosandra, since the Crni Kal Anomaly cannot be strictly bounded. The North-Istra Extrusion Wedge thus transits into a parallelepiped roughly between Savudri­ja and Trieste, which is called the Trieste paral­lelepiped block or the Trieste parallelepiped. It is clear that due to the parallelopiped shape, the ef­fect of extrusion is completely absent, therefore the space between Savudrija and Trieste is also the north-western limit of the extrusion wedge (Fig. 2). The Trieste parallelepiped (A3) formally lies in the extension of the North Istra Extrusion Wedge (Ad2) and represents its south-eastern margin extrusion boundary, so it makes sense to use the term only in the discussion of block dynamics. reverzni prelom. Podobno je domneval tudi Ca-rulli (ib.). Sprememba smeri se dogodi tudi na nasprotni strani iztisnega klina, tu se crnolak-ska anomalija, oziroma kompleksna strižna cona med zgornjo Mirno in spodnjo Glinšcico v smeri SSE-NNW, obrne v smer SE-NW. Severo-seve­rozahodno od spodnje Glinšcice se nahajata Ba-zovska antiklinala in Lipiška sinklinala (sl. 4A), ki imata enako smer, zato menimo, da verjetno predstavljata skrajno strukturno mejo crnokal­ske anomalije. Na to kaže tudi sprememba smeri Kraškega roba na sedlu med Majem (Mai, oko­li 443 m) in Globojnarjem (Monte Calvo, okoli 442 m) nad Trstom, kjer se kraški rob iz smeri SSE-NNW obrne v smer SE-NW. Kljub na vi-dez dokaj natancno doloceni meji na omenjenem sedlu (kota 416 m), pa je povsem jasno, da je korektno govoriti le o pasu med zgornjo Mirno in spodnjo Glinšcico, saj crnokalske anomalije ni mogoce ostro omejiti. Severnoistrski iztisni klin preide torej prib­ližno med Savudrijo in Trstom v paralelepiped, ki ga imenujemo tržaški paralelepipedni blok ali tržaški paralelepiped. Jasno je, da je zaradi paralelepipedne oblike povsem izostal ucinek iztiskanja, zato je prostor med Savudrijo in Tr-stom hkrati tudi severozahodna meja iztisnega klina (sl. 2). Tržaški paralelepiped (A3) leži for-malno v podaljšku severnoistrskega iztisnega klina (Ad2), vendar predstavlja njegovo jugo­vzhodno stranico meja iztiskanja, zato je termin smiselno uporabljati le v diskusiji o dinamiki blokov. Glede na dinamiko severnoistrskega iztisne­ga klina bi bilo povsem mogoce, da bi zaradi ekstenzije v jugovzhodni polovici klina in bloka­de nasproti tržaškemu paralelepipedu, prišlo v severozahodni polovici iztisnega klina do guba­nja precno na iztiskanje, podobno kot v tinjan­skem iztisnem klinu (Placer, 2005, sl. 3), kjer so te gube lepo razvite (sl. 4A in 5/9). Tinjanski iztisni klin je miniaturni pendant severnoistr­skega iztisnega klina, zato bi tudi pri slednjem pricakovali med Rokavinim prelomom in jugo­vzhodno mejo tržaškega paralelepipeda vec gub, ali pa vsaj eno veliko. Pri kartiranju površja teh nismo odkrili. Geofizikalne raziskave Tržaškega zaliva so pokazale, da je predplio-kvartarna (vecinoma flišna) kamninska podlaga prekrita z nekaj de-set do nekaj sto metri plio-kvartarnega sedi­menta (Busetti et al., 2010a, 2010b; Morelli & Mosetti, 1968; Trobec et al., 2018) Relief fli­šne podlage v skrajnem vzhodnem delu zaliva je bil v vecji meri izoblikovan med mesinijsko Considering the dynamics of the North Istra Ex­trusion Wedge, it would be quite possible that due to the extension in the south-eastern half of the wedge and the blockage opposite the Trieste parallelepiped, folding transverse to the extrusion would occur in the north-western half of the extrusion wedge, much like the Tinjan Extrusion Wedge (Placer, 2005, Fig. 3), where these folds are well developed (Figs. 4A and Fig. 5/9). The Tinjan Extrusion Wedge is a miniature pendant of the North Istra Extrusion Wedge, so we would expect several folds, or at least one large one between the Rokava fault and the south-eastern Trieste parallelepiped boundary, but these were not detected at surface mapping. Geophysical surveys of the Gulf of Trieste have shown that the Pre-Plio-Quaternary bed­rock (mostly flysch) is covered by tens to sever­al hundred meters of Plio-Quaternary sediment (Busetti et al., 2010a, 2010b; Morelli and Mosetti, 1968; Trobec et al., 2018). The relief of the flysch substrate in the easternmost part of the bay was formed to a great extent during the Messinian ero­sion phase and to a lesser extent during a short­er Pliocene erosion episode (Busetti et al., 2010a, 2010b). The complex formation of the relief indi­cates that the surface currents during periods of erosion generally flowed westward (Morelli and Mosetti, 1968), which is comparable to the direc­tion of the present-day river network in the ex­treme north-western part of Istra (i.e. Dragonja, Rižana, Glinšcica/Rosandra, etc.). The youngest Late Pleistocene sedimentary sequences, deposit­ed just before the last transgression in the eastern and central part of the area of the present-day Gulf of Trieste, show the general direction of the wa­ter currents towards the south, with one channel even running roughly parallel to the present-day coastline of the eastern part of the Gulf of Trieste (Novak et al., 2020; Ronchi et al., 2023; Trobec et al., 2017). It is very difficult to compare Late Qua­ternary river networks with river networks on fly-sch due to the far younger geomorphology, where sedimentation plays a greater role in shaping the surface compared to erosion. The shape of the riv­er network in the Late Pleistocene was largely in­fluenced by the topography of the time (Ronchi et al., 2023), since in the area of the present-day Gulf of Trieste, the terrain rose to the northwest (Tro­bec et al., 2018) due to the Soca megafan from the last glacial maximum (Fontana et al., 2014, 2010, 2008), which also covers the south-eastern part of the Gulf of Trieste. Possible transverse folding in the south-eastern part of the Gulf of Trieste could therefore only be determined from the structural map of the contact between carbonates and flysch. erozijsko fazo ter deloma med krajšo pliocensko erozijsko epizodo (Busetti et al., 2010a, 2010b) Kompleksna izoblikovanost reliefa nakazuje, da so površinski tokovi v obdobjih erozije v splo­ šnem tekli proti zahodu (Morelli & Mosetti, 1968), kar je primerljivo s smerjo današnje rec­ne mreže v skrajnem severozahodnem delu Istre (i.e.Dragonja, Rižana, Glinšcica, itd.). Najmlaj­ša poznopleistocenska sedimentna zaporedja, ki so se odložila tik pred zadnjo transgresijo na vzhodnem in osrednjem delu današnjega obmo-cja Tržaškega zaliva, pa kažejo generalno smer vodotokov proti jugu, pri cemer je en kanal tekel celo približno vzporedno z današnjo obalno crto vzhodnega dela Tržaškega zaliva (Novak et al., 2020; Ronchi et al. 2023; Trobec et al., 2017). Poznokvartarne recne mreže zelo težko primer-jamo z recno mrežo na flišu, saj gre za precej mlajšo geomorfologijo, kjer ima sedimentacija vecjo vlogo pri izoblikovanju površja v primer-javi z erozijo. Na obliko recne mreže v poznem pleistocenu je v vecji meri vplivala takratna paleotopografija (Ronchi et al., 2023), saj se je na obmocju današnjega Tržaškega zaliva teren dvigal proti severozahodu (Trobec et al., 2018) zaradi Socine megapahljace iz zadnjega glacial-nega viška (Fontana et al., 2014, 2010, 2008), ki prekriva tudi jugovzhodni del Tržaškega zaliva. Morebitno precno gubanje v jugovzhodnem delu Tržaškega zaliva, bi bilo torej mogoce ugotovi-ti le iz strukturne karte stika med karbonati in flišem. To je sicer objavil Carulli (2011, sl. 3), vendar je njegov izdelek pregleden, zato ga ni mogoce uporabiti v ta namen. Precnodinarska cona povecane kompresije v zaledju crnokalske anomalije V tem poglavju so opisane deformacije, ki so v istrskem potisnem obmocju nastale zaradi dinamike severnoistrskega iztisnega klina. Tu je med crnokalsko anomalijo, ki je prostorsko blizu Kraškemu robu in Hrušico nastala cona povecane kompresije, ki v celoti precka Zuna­njedinarski naluskani pas in sega še v celni del Zunanjedinarskega narivnega pasu. Zaradi nju­ne specificne zgradbe in zaradi nasledstvenega znacaja novih deformacij, so te v vsaki enoti opi-sane posebej. Samostojno poglavje je namenjeno Raškemu prelomu, ker je v njegovi prelomni coni povecana kompresija povzrocila nastanek tran­spresivne antiklinale, ki se je iz kraške uravnave dvignila kot Vremšcica (1027 m). This was published by Carulli (2011, Fig. 3), but as his work represents a review article it cannot be used for this purpose. Transverse Dinaric zone of increased compression in the hinterland of the Crni Kal Anomaly This chapter describes the deformations that occurred in the Istra Pushed Area due to the North Istra Extrusion Wedge dynamics. Here, between the Crni Kal Anomaly, which is close to the Kraški rob, and Mt. Hrušica a zone of increased compres­sion has formed, which crosses the entire External Dinaric Imbricated Belt and extends into the fron­tal part of the External Dinaric Thrust Belt. Due to their specific structure and due to the heredi­tary nature of the new deformations, they are de­scribed separately in each unit. A separate chapter is devoted to the Raša Fault, because the increased compression of its fault zone caused the formation of a transpressive anticline, which rose from the karstic levelled terrain as Mt. Vremšcica (1027 m). External Dinaric Imbricated Belt The External Dinaric Imbricated Belt in the territory under consideration is bounded by the Istra-Friuli Thrust-Underthrust Zone and the Ex­ternal Dinaric Thrust Belt boundary. (Fig. 1). The term »imbricated belt« is inappropriate for this part of the Dinarides because it doesn’t consist of imbricates (horses) but of folds. Nevertheless, the term is acceptable because horses characterize the rest of this belt in the External Dinarides. The Istra hinterland is made up of large, folded units, the Trieste-Komen and Cicarija Anticlinoria and the Vipava and Brkini Synclinorium. There is also slightly smaller Ravnik Anticlinorium. All of the listed units represent an example of complete (ideal) folding and are spatially displaced across compartments (Placer, 2005, Fig. 2), which means that equivalent folded structures do not lie in consecutive compartments but skip across the width of the compartment. The Vipava Synclinori-um continues in its direction into the Ravnik An-ticlinorium, the Trieste-Komen Anticlinorium into the Brkini Synclinorium, and the Cicarija Anticli­norium is exposed and does not transit into the syn-clinorium. In theory, complete folding is expressed in sets of linear folds displaced for a compartment (a set width). It usually covers larger homoge­neously constructed areas, but there are only two folded sets with a frontal anticlinorium and a rear synclinorium that are being displaced (offset). The term frontal refers to the thrust structure of the Di-narides: the Trieste-Komen frontal Anticlinorium Zunanjedinarski naluskani pas Zunanjedinarski naluskani pas je na obrav­navanem ozemlju omejen z istrsko-furlansko na­rivno-podrivno cono in mejo Zunanjedinarskega narivnega pasu (sl. 1). Termin »naluskani pas« je za ta del Dinaridov neustrezen, ker ga ne ses­tavljajo luske temvec gube, vendar je kljub temu sprejemljiv, ker so luske znacilne za preostali del tega pasu v Zunanjih Dinaridih. Zaledje Istre je zgrajeno iz velikih nagubanih enot, Tržaško-Ko­menskega in Cicarijskega antiklinorija ter Vipa­vskega in Brkinskega sinklinorija. Tu je še Ravni­ški antiklinorij, ki je nekoliko manjši. Vse naštete enote predstavljajo primer popol­nega gubanja in so prostorsko zamaknjene po pre­dalih (Placer, 2005, sl. 2), kar pomeni, da ekviva­lentne nagubane strukture ne ležijo v zaporednih predalih, temvec preskakujejo za širino predala. Vipavski sinklinorij se po smeri nadaljuje v Rav­niški antiklinorij, Tržaško-Komenski antiklino­rij v Brkinski sinklinorij, Cicarijski antiklinorij pa je izpostavljen in se ne izteka v sinklinorij. V teoriji se popolno gubanje izraža v linearnih in predalcno zamaknjenih gubah in obicajno zaje-ma obsežnejša homogeno zgrajena obmocja, tu pa gre za specificen primer, kjer obstojata le dva na­gubana niza s celnim antiklinorijem in zacelnim sinklinorijem, ki sta zamaknjena. Termin celni se nanaša na narivno zgradbo Dinaridov, Tržaško--Komenski celni antiklinorij se previje v zacelni Vipavski sinklinorij, Cicarijski celni antiklinorij se previje v zacelni Brkinski sinklinorij, ta pa v Ravniški antiklinorij (sl. 9A). Predalcna nagubana zgradba ima dolocene za­konitosti, ki so zastopane tudi v našem primeru, pomembne so tri: 1. prehod antiklinale (antikli­norija) v sinklinalo (sinklinorij) in obratno, po smeri, se dogodi s cepljenjem gub, 2. v pravilni predalcni nagubani zgradbi se gube cepijo v prec­no ležeci coni, imenovani cona cepljenja gub (sl. 9A in 9B), 3. ekvivalentne strukture v predalcno nagubani zgradbi se povezujejo z navzkrižni-mi povezovalnimi gubami (nov termin), ki ima­jo usloceno os (undacija). Predalcno zamaknjeni antiklinali povezuje precna antiklinala s konkav-no usloceno osjo, sinklinali povezuje sinklinala s konveksno usloceno osjo (sl. 9C). Cona cepljenja gub je nasproti predalcnim gubam manj deforma­bilna (sl. 9D). Vzrok za nastanek predalcne nagubane zgradbe v Zunanjedinarskem naluskanem pasu tici v zgradbi in dinamiki Zunanjedinarske­ga narivnega pasu. Precnodinarska cona cep­lenja gub se namrec nahaja v podaljšku sti­ka Snežniškega in Hrušiškega pokrova proti folds into the rear Vipava Synclinorium, and the Cicarija frontal Anticlinorium folds into the rear Brkini Synclinorium, which in turn folds into the Ravnik Anticlinorium (Fig. 9A). The compartment-like folded structure has certain regularities (rules), which are also pre­sented in our case, of which three are important: 1. the transition of an anticline (anticlinorium) to a syncline (synclinorium) and vice versa, according to direction, occurs by the splitting of folds. 2. in the correct crosswise-connecting folds, the folds are split in a transverse zone called the folds split­ting zone (Figs. 9A and 9B). 3. equivalent struc­tures in the crosswise-connecting folds are con­ nected by crosswise-connecting folds (new term), which have a folded (buckled) axis (undation). The anticlines displaced by a compartment connect transverse anticlines with a concave folded axis, while synclines connect a syncline with a convex folded axis (Fig. 9C). The splitting folds zone is less deformable compared to the longitudinal folds (Fig. 9D). The cause of the formation of the compart-ment-like folded structure in the External Dinaric Imbricated Belt lies in the structure and dynamics of the External Dinaric Thrust Belt. The Trans­verse Dinaric folds splitting zone is located in the extension of the contact between the Snežnik and Hrušica Nappes towards the southwest in the di­rection of thrusting. There is no similar phenom­enon in the extension of the contact between the Hrušica and Trnovo Nappes, which could mean two things: that the position of the Transverse Di-naric folds splitting zone is accidental, or that the Hrušica Nappe extends far to the northwest under the Trnovo Nappe, and both nappes act together as a single unit. In contrast, the Snežnk Nappe under the Hrušica Nappe is expected to pinch out over a relatively short distance. That such an explanation is possible is shown by the hydrological connection between the Vipava River spring in the Hrušica Nappe and the sinks east of the Postojna basin in the Snežnik Nappe (Petric et al., 2020). The Trno­vo and Hrušica Nappes are older than the Snežnik Fig. 9. Compartment-like folded structure, folds splitting and cross­wise connecting folds: A. Structural sketch of the compartment-like folded territory of the External Dinaric Imbricated Belt. B. Folds splitting. C. Crosswise connecting folds: concavely bent anticline axis, convexly bent syncline axis; D. Reduced compressibility of the Senožece Folds Splitting Zone. Sl. 9. Predalcna nagubana zgradba, cepljenje gub in navzkrižno-pov­ezovalne gube: A. Strukturna skica predalcno nagubanega ozemlja Zunanjedinarskega naluskanega pasu. B. Cepljenje gub. C. Navz­križno-povezovalne gube: konkavno uslocena os antiklinale, kon­veksno uslocena os sinklinale; D. Zmanjšana stisljivost senožeške cone cepljenja gub. Sl. 10. Strukturno-geološka karta senožeške cone cepljenja gub. Dopolnjeno po Jurkovšek et al. (1996, 2008, 2013) in Placer (2015). Dopol­nitve ne posegajo v narivno zgradbo. Legenda poimenovanja gub na sl. 11. Nappe; this corresponds to the spatial lag between the Trieste-Komen and the Cicarija Anticlinoria, as well as a temporal lag, since in the nappe struc­ture the younger units are formed below the older ones. In the Glinšcica/Rosandra area, where the Trieste-Komen and Cicarija Anticlinoria meet, the thrust structures of the latter lie below the thrust structures of the former. The area of the described splitting of folds is shown on a simplified structural map of the con­sidered territory (Fig. 10), from where it is trans­ferred to the digital model of the relief in Fig­ure 11. Based on previous research, we conclude (OGK, sheets: Gorica, Postojna, Ilirska Bistrica; Jurkovšek et al., 1996; Placer, 2015) that there are three major folds on the south-eastern margin of the Trieste-Komen Anticlinorium, which are also part of the north-western margin of the Brkini Synclinorium. For the sake of easier discussion, we have now named them. In Figures 10 and 11 they are marked with numbers, the Artviže (3) and Gornje Ležece Synclines (5), and the Faml­je Anticline (4). Senožece (7) and Laže Syncline (9), and Jelenje (8) and Razdrto Anticline (10) are clearly visible at the junction of the Vipava Syncli­norium and the Ravnik Anticlinorium. The latter is presented only in Figure 11. Between the Gornje Ležece and Senožece Synclines, there is an anti­cline that also belonged to this group of split folds; however, it lies in the wider zone of the Raša Fault and is therefore strongly deformed. In Figures 10 and 11 it is only symbolically presented and named after the Vremšcica Paleo-Vremšcica Anticline (6). jugozahodu v smeri narivanja. V podaljšku sti­ka Hrušiškega in Trnovskega pokrova ni po­dobnega pojava, kar bi lahko pomenilo dvoje, da je lega precnodinarske cone cepljenja gub slucajna, ali pa, da se Hrušiški pokrov razteza pod Trnovskim pokrovom še dalec proti seve­rozahodu in delujeta obe krovni enoti skupaj kot enotna narivna gruda. V nasprotju s tem pa naj bi se Snežniški pokrov pod Hrušiškim kmalu izklinil. Da je taka razlaga mogoca, kaže hidrološka povezava med izvirom reke Vipa­ve v Hrušiškem pokrovu in ponori vzhodno od Postojnske kotline v Snežniškem pokrovu (Pe­tric et al., 2020). Trnovski in Hrušiški pokrov sta starejša od Snežniškega; to ustreza prostor­skemu zamiku med Tržaško-Komenskim in Ci­carijskim antiklinorijem, pa tudi casovnemu zamiku, saj v krovni zgradbi mlajše enote na­stajajo pod starejšimi. Na obmocju Glinšcice, kjer se stikata Tržaško-Komenski in Cicarijski antiklinorij, narivne strukture slednjega ležijo pod narivnimi strukturami prvega. Obmocje opisanega cepljenja gub je prikaza-no na poenostavljeni strukturni karti obravna­vanega ozemlja (sl. 10), od koder je preneseno na digitalni model reliefa na sliki 11. Po dose-danjih raziskavah povzemamo (OGK, listi: Go-rica, Postojna, Ilirska Bistrica; Jurkovšek et al., 1996; Placer, 2015), da nastopajo na jugovzho­dnem obrobju Tržaško-Komenskega antiklinori­ja tri vecje gube, ki so hkrati tudi del severoza­hodnega obrobja Brkinskega sinklinorija. Zaradi lažjega pogovora smo jih zdaj poimenovali, na Fig. 11. Geomorphology of the Senožece Folds Splitting Zone. Sl. 11. Geomorfologija senožeške cone cepljenja gub. 1 External Dinaric Thrust Belt boundary, nappe boundary, nappe unit (T – Trnovo Nappe, H – Hrušica Nappe, S – Snežnik Nappe) / meja Zunanjedinarskega narivnega pasu, meja pokrova, pokrov (T – Trnovski pokrov, H – Hrušiški pokrov, S – Snežniški pokrov) 2 Istra-Friuli Thrust-Underthrust Zone / istrsko-furlanska narivno-podrivna cona 3 Crni Kal Anomaly / crnokalska anomalija 4 Two folds in the Crni Kal Anomaly influence zone: 1 – Bazovica Anticline, 2 – Lipica Syncline / gubi v vplivnem obmocju crnokalske anomalije: 1 – Bazovska antiklinala, 2 – Lipiška sinklinala 5 Subvertical NW striking faults (»Dinaric trend«) with a predominant shear offset component: IF – Idrija Fault, PF – Belsko Fault, RF – Raša Fault / subvertikalni prelomi dinarske smeri s pretežno zmicno komponento premika: IF – Idrijski prelom, BF – Belski prelom, RF – Raški prelom 6 Compartment-like folded area: a – Cicarija Anticlinorium, b – Trieste-Komen Anticlinorium, c – Ravnik Anticlinorium, d – Brkini Syn-clinorium, e – Vipava Synclinorium / predalcno nagubano ozemlje: a – Cicarijski antiklinorij, b – Tržaško-Komenski antiklinorij, c – Ravniški antiklinorij, d – Brkinski sinklinorij, e – Vipavski sinklinorij 7 Splitting folds: 3 – Artviže Syncline, 4 – Famlje Anticline, 5 – Gornje Ležece Syncline, 6 – Paleo-Vremšcica Anticline, 7 – Senožece Syn-cline, 8 – Jelenje Anticline, 9 – Laže Syncline, 10 – Razdrto Anticline / cepilne gube: 3 – Artviška sinklinala, 4 – Fameljska antiklinala, 5 – Gornjeležeška sinklinala, 6 – Paleovremška antiklinala, 7 – Senožeška sinklinala, 8 – Jelenja antiklinala, 9 – Laženska sinklinala, 10 – Razdrška antiklinala 8 Cross-connecting folds: 11 – Rodik-Preloka Anticline, 12 – Pared Syncline / navzkrižno-povezovalne gube: 11 – Rodiško-Preloška an-tiklinala, 12 – Paredska sinklinala 9 Undation of the nappe units: I – Nanos-Caven antiform, II – Hrušica-Trnovo synform / undacija krovnih enot: I – nanoško-cavenska antiforma, II – hrušiško-trnovska sinforma 10 Sistiana Flexural Zone / sesljanska upogibna cona The considered folds splitting zone is several kilometres wide and lies transversely in the direc­tion of the Dinaric fold axes. It is named after the village of Senožece – the Senožece Folds Splitting Zone. The cross-connecting folds are partially pre­served between the Trieste-Komen and Cicarija Anticlinoria, and the Brkini Synclinorium and the flysch depression in front of the Trieste-Komen Anticlinorium. They can be seen in the junction between the Rodik and Preloka Anticlines, named the Rodik-Preloka Anticline (11), which has a con­cave folded axis, and a convexly folded syncline lying transversely to it, which runs between the Brkini Synclinorium and the depression in front of the Trieste-Komen Anticlinorium. We named it the Pared Syncline (12). The degree of curvature of the axes of cross-connecting folds is weak, so in some places they are not mapped at all. Between the Trieste-Komen and Ravnik Anticlinoria and the Vipava and Brkini Synclinoria the cross-con­necting folds are deformed along the Raša Fault. As was already noted, the Lipica Syncline (2) and the Bazovica Anticline (1) on the margin of the Trieste-Komen Anticlinorium do not belong to the theoretical model of the Senožece Folds Split­ting Zone. This assumption is also confirmed by the general structural setting, since there are no folds connecting the lagged Trieste-Komen and Cicarija Anticlinoria southwest of the cross-con­necting Rodik-Preloka Anticline (11) and Pared Syncline (12). The formation of the two mentioned folds (1 and 2) is related to the Crni Kal Anom­aly, presumably with the antiformly bent Paleo­gene thrust surface in Glinšcica/Rosandra area (Fig. 4A, area »a«). Deformations that cannot be related to folds splitting but rather to an increased compression northeast of the Crni Kal Anomaly occur in the Senožece Folds Splitting Zone. The connection to the increased compression is obvious, as the gen­eral structures of the south-western part of the Senožece Folds Splitting Zone run parallel to the Crni Kal Anomaly (Fig. 11), which applies to the extreme north-western part of the Cicarija Anticli­norium and the Artviže Syncline (3) in the Brkini Synclinorium and also for the Lipica Syncline (2) and Bazovica Anticline (1). The cross-connecting folds of the Rodik-Preloka Anticline (11) and the Pared Syncline (12) also have a modified position. We will not discuss the kinematic mechanism of the adjustment of the mentioned structures in the direction of the Crni Kal Anomaly herein, but it would certainly be necessary to conduct some slikah 10 in 11 so oznacene s številkami, tu le­žijo Artviška (3) in Gornjeležeška sinklinala (5) ter Fameljska antiklinala (4). Na stiku Vipa­vskega sinklinorija in Ravniškega antiklinorija so lepo vidne Senožeška (7) in Laženska sin-klinala (9) ter Jelenja (8) in Razdrška antikli­nala (10). Slednja je vidna le na sliki 11. Med Gornjeležeško in Senožeško sinklinalo je obsta­jala antiklinala, ki je tudi pripadala tej skupini cepilnih gub, vendar leži v širši coni Raškega preloma in je zaradi tega mocno deformirana. Na sliki 11 je le simbolno zabeležena in poime­novana po Vremšcici Paleovremška antiklinala (6) (Paleovremšcica anticline). Izognili smo se izrazu Paleovremšciška, ker je neroden, izraz paleoantiklinala Vremšcice pa bi odstopal od pridevniške rabe za ostale gube, ki je prijaznejša do slovenšcine. Obravnavana cona cepljenja gub je široka nekaj kilometrov in leži precno na osi gubanja Dinari­dov. Imenujemo jo senožeška cona cepljenja gub. Navzkrižno-povezovalne gube so delno ohra­njene med Tržaško-Komenskim in Cicarijskim antiklinorijem ter Brkinskim sinklinorijem in flišno udorino pred Tržaško-Komenskim antikli­norijem. Vidimo jih v povezavi med Rodiško in Preloško antiklinalo, poimenovano Rodiško-Pre­loška antiklinala (11), ki ima konkavno usloceno os in precno nanjo ležeco konveksno usloceno sin-klinalo, ki poteka med Brkinskim sinklinorijem in udorino pred Tržaško-Komenskim antiklinori­jem. Poimenovali smo jo Paredska sinklinala (12). Stopnja ukrivljenosti osi navzkrižno-povezoval­nih gub je šibka, zato ponekod sploh niso kartira­ne. Med Tržaško-Komenskim in Ravniškim anti-klinorijem ter Vipavskim in Brkinskim sinklinori­jem sta navzkrižno-povezovalni gubi deformirani ob Raškem prelomu. Kot je bilo že receno, Lipiška sinklinala (2) in Bazovska antiklinala (1) na robu Tržaško-Komen­skega antiklinorija, ne sodita v teoretski model senožeške cone cepljenja gub. To predpostavko potrjujejo tudi splošne razmere, saj jugozahodno od navzkrižno-povezovalnih Rodiško-Preloške antiklinale (11) in Paredske sinklinale (12) ni gub, ki bi povezovale zamaknjena Tržaško-Ko­menski in Cicarijski antiklinorij. Nastanek obeh omenjenih gub (1 in 2) je povezan s crnokalsko anomalijo, domnevno z antiformno uslocitvijo paleogenske narivne ploskve v Glinšcici (sl. 4A, obmocje »a«). V senožeški coni cepljenja gub nastopajo defor­macije, ki jih ne moremo povezovati s cepljenjem temvec s povecano kompresijo severovzhodno od Sl. 12. Skica vzdolžnega geomorfološkega profila Krasa. Lega profila na sl. 2. detailed structural research before answering this question. The effect of locally increased compression in the Dinaric hinterland of the Crni Kal Anomaly is also reflected in the longitudinal geomorpholog­ical profile of the Kras region (Fig. 12). Initially, the original peneplanation of the Trieste-Komen Plateau was sub-horizontal, whereas today it is inclined. From the Doberdob Plateau on the Spod­nji Kras at an elevation of about 110 m, it grad­ually rises towards Gornji Kras to about 440 m on the Divaca Kras, where the rise terminates at the Matavun Fault Zone, along which the Škocjan structural bend was formed (Placer, 2015). Be­hind the Škocjan structural bend lies the plateau of Gorice Kras (after the village of Gorice near Famlje), which is not inclined but remains hor­izontal at around 440 m. Somewhat below this settlement, at an elevation of about 400 m, lies the Naklo level, as a remnant of the blind Vreme valley highest terrace. The Škocjan structural bend played an active role in the formation of the present Notranjska Reka (river) sinking area and the longitudinal profile of the Škocjan Caves. In the simplified structural map of the Karst (Placer, 2015), the term Škocjanski prag (Škocjan tresh-old) was used for the structural bend, but it is not an elevation level, only an escarpment, which requires a new corresponding term. crnokalske anomalije. Povezava je ocitna zato, ker so generalne strukture jugozahodnega dela seno­ žeške cone cepljenja gub vzporedne crnokalski anomaliji (sl. 11), to velja za skrajni severozaho­dni del Cicarijskega antiklinorija in za Artviško sinklinalo (3) v Brkinskem sinklinoriju in za Li-piško sinklinalo (2) in Bazovsko antiklinalo (1). Spremenjeno lego imata tudi navzkrižno-povezo­valni gubi Rodiško-Preloška antiklinala (11) in Paredska sinklinala (12). Kakšen je bil kinemat-ski mehanizem prilagoditve omenjenih struktur smeri crnokalske anomalije v tem clanku ne bomo razpravljali, vsekakor pa bi bilo potrebno pred odgovorom na to vprašanje, izvesti detajlne us-merjene strukturne raziskave. Ucinek lokalno povecane kompresije v dinar-skem zaledju crnokalske anomalije se odraža tudi v vzdolžnem zbirnem geomorfološkem profilu Krasa (sl. 12). Prvotna uravnava Tržaško-Komen­ske planote je bila ob svojem nastanku subho­rizontalna, danes je nagnjena. Od Doberdob­ske planote na Spodnjem Krasu na višini okoli 110 m, se proti Gornjemu Krasu polagoma dviga do okoli 440 m na Divaškem Krasu, kjer se dviga­nje ustavi ob matavunski razpoklinsko-prelomni coni, po kateri je nastal škocjanski pregib (Placer, 2015). Za škocjanskim pregibom leži uravnava Goriškega Krasa (po vasi Gorice pri Famljah), ki ni nagnjena temvec ostaja na enaki višini okoli External Dinaric Thrust Belt Figure 11 also shows part of the External Di-naric Thrust Belt with the Snežnik, Hrušica and Trnovo Nappes. According to the regional research data (OGK, sheets: Tolmin, Videm, Kranj, Gori-ca, Postojna; Mlakar, 1969), we conclude that the overlying thrust plane of the Trnovo Nappe bends transversely to the Dinarides, so that from south­west to northeast the Trnovo synform, the Idrija antiform, Žiri synform and the Poljane-Vrhnika antiform (Placer et al., 2021a) stand out. In Figure 11, only a part of the Trnovo synform (II) is visible, the axis of which continues towards the southeast into the Hrušica Syncline. It is not possible from the data on the geologic map to determine whether the underlying Hrušica Nappe thrust plane is also synformly bent. In the article on the relationship between tec­tonics and gravity phenomena at the boundary of the External Dinaric Thrust Belt (Placer et al., 2021a), it was established that the underlying thrust surfaces of the Hrušica Nappe below Nanos and the Trnovo Nappe below Mt. Caven are con­vexly folded. The new terms Nanos and Caven an-tiforms were introduced. Both therefore lie at the head of both thrust fronts, but they differ in ampli­tude – in the first it is around 250 m, in the second around 30 m. The Nanos and Caven antiforms at the head of the Hrušica and Trnovo Nappe belong to the same antiform unit (Placer et al., 2021a), so it makes sense to introduce the term Nanos-Caven antiform (Fig. 11, I). The relationship between them is not clear because the intervening space is denuded, and the Sistiana Flexural Zone also passes through it (Placer et al., 2021b), due to which the axis of the antiform is bent laterally and its convex part rests on the Belsko Fault (formerly Predjama fault, Plac­er et al., 2021a). The lateral bending of the Nanos-Caven antiform and the unusual change of the Belsko Fault trace are the result of the crossing of two Transverse Dinaric deformation zones in this area, the flexural zone of the Sistiana Fault and the now described zone of increased compression in the Dinaric hinterland of the Crni Kal Anomaly. A more detailed description of the effect of the afore­mentioned deformations in this area is beyond the scope of this article, and to prove the existence of a zone of increased compression it is important to note that the Nanos segment of the Nanos-Caven antiform has a significantly larger amplitude than the Caven segment. 440 m. Nekaj pod to uravnavo leži na koti okoli 400 m nakelski nivo, ki je ostanek najvišje terase Vremske slepe doline. Škocjanski pregib je imel dejavno vlogo pri nastajanju sedanjega ponorne­ga obmocja notranjske Reke in vzdolžnega pro-fila Škocjanskih jam. V poenostavljeni struktur­ni karti Krasa (Placer, 2015) je bil za škocjanski pregib uporabljen termin škocjanski prag, vendar ne gre za višinsko stopnjo temvec le za pregib, ki terja ustrezno spremembo naziva. Zunanjedinarski narivni pas Na sliki 11 je viden tudi del Zunanjedinarske­ga narivnega pasu s Snežniškim, Hrušiškim in Trnovskim pokrovom. Po podatkih dosedanjih regionalnih raziskav povzemamo (OGK, listi: Tolmin in Videm, Kranj, Gorica, Postojna; Mla­kar, 1969), da krovna narivna ploskev Trnovske­ga pokrova undira precno na Dinaride, tako da od jugozahoda proti severovzhodu izstopajo trno­vska sinforma, idrijska antiforma, žirovska sin-forma in poljansko-vrhniška antiforma, oziroma poljansko-vrhniški nizi (Placer et al., 2021a). Na sliki 11 je od naštetih viden le del trnovske sin-forme (II), katere os se proti jugovzhodu nada­ljuje v Hrušiško sinklinalo, medtem ko iz podat­kov na karti ni mogoce ugotoviti ali je sinformno uslocena tudi krovna narivna ploskev Hrušiškega pokrova. V clanku o odnosu med tektoniko in gravi­tacijskimi pojavi na meji Zunanjedinarskega na­rivnega pasu (Placer et al., 2021a) je bilo ugoto­vljeno, da sta krovni narivni ploskvi Hrušiškega pokrova pod Nanosom in Trnovskega pokrova pod Cavnom konveksno usloceni. Uvedena sta bila termina nanoška in cavenska antiforma. Obe torej ležita v celu obeh pokrovov, vendar se razlikujeta po velikosti amplitude, pri prvi znaša okoli 250 m, pri drugi okoli 30 m. Nanoška in cavenska antiforma v celu Hruši­škega in Trnovskega pokrova pripadata isti an-tiformni enoti (Placer et al., 2021a), zato je smi­selno uvesti termin nanoško-cavenska antiforma (sl. 11, I). Odnos med njima je nejasen zato, ker je vmesni prostor denudiran, preko njega pa po­teka tudi sesljanska upogibna cona (Placer et al., 2021b), zaradi katere je os antiforme bocno upog­njena, njen izboceni del pa se naslanja na Belski prelom (prej Predjamski prelom, Placer et al., 2021a). Bocni upogib nanoško-cavenske antifor-me in nenavadna sprememba smeri Belskega pre­loma sta posledica križanja dveh precnodinarskih Raša Fault In order to understand the deformations along the Raša Fault in the area of the Transverse Di-naric zone of increased compression between the Kraški rob and Hrušica, it is necessary to look at its trace from a greater distance. The Raša Fault trace (Fig. 1) is drawn on the Italian side accord­ing to Carulli’s (2006) data. On the Slovenian side, it is interpreted anew between Gorica and Dorn-berk, and from here to Vremšcica by Poljak (2007), Jurkovšek et al. (1996), Jurkovšek (2010); Placer (2015), Placer et al. (2021b), and according to OGK data (sheets: Gorica, Trieste, Postojna and Ilirska Bistrica). Southeast of Vremšcica, the Raša Fault trace is drawn on the basis of an exposed fault zone in the Stržen stream valley (Fig. 13) and on the basis of the interpretation of the formation of the pull-apart Ilirska Bistrica coal basin, which is said to have formed along the Raša Fault (Placer & Jamšek, 2011). In Figure 1, the visible part of the fault trace is marked with a solid line, and the invisible or presumed part with a dashed line. For the purposes of this article, it is import­ant to show in greater detail the conditions along the Raša Fault between Gorica and Vremšcica (Fig. 13) and the Stržen valley. The damage zone is exposed in several places, in the village of Brdo near Dornberk (village) (Fig. 13, point 1), in the ravines and on the intermediate ridges between Tabor and Cvetrož village (Fig. 13, point 2), in the Zajcica road cut on the highway near Senožece (Fig. 13, point 3), in three sand pits »V žlebu« (toponime) above Cepno beneath the Mt. Vremšci-ca slope (Fig. 13, point 4) and along the Stržen (Fig. 13, point 5). There are also several small sand pits in the Raša valley next to the Raša Fault. The structure of the Raša Fault is best visible in the Zajcica terraced road cut on the highway near Senožece (Fig. 13, point 3; Fig. 14), and was also revealed in a large, abandoned sand pit near the road cut. The entire fault zone, about 80 m wide, is exposed in the east wall of the road cut (Fig. 14A). Its major part is enlarged in Figure 14B. Here, an anticlinal fold is still visible in the third terrace. The anticline can be detected upon closer inspection of the entire roadcut. The first terrace riser is already built up and covered with grass, which is why Figure 14C shows the mirror image of the western wall of the road cut at the height of the first terrace, which is no longer there today but the mentioned anticline was clearly vis­ible here. In Figure 14D, the structure of the sec­tion is sketched with the stratigraphic data from Jurkovšek et al. (1996); on the left half, there is bedded Lipica Formation limestone (LF/K24 -5), deformacijskih con na tem prostoru, upogibne cone Sesljanskega preloma in sedaj opisovane cone povecane kompresije v dinarskem zaledju cr­nokalske anomalije. Natancnejši opis ucinka ome­njenih deformacij na tem prostoru presega okvir tega clanka, za dokazovanje obstoja cone povecane kompresije pa je pomembno, da ima nanoški se­gment nanoško-cavenske antiforme bistveno vecjo amplitudo od cavenskega segmenta. Raški prelom Za razumevanje deformacij ob Raškem pre­lomu v obmocju precnodinarske cone poveca­ne kompresije med Kraškim robom in Hrušico, je potrebno pogledati na njegov potek z nekoliko vecje razdalje. Trasa Raškega preloma (sl. 1) je na italijanski strani potegnjena po podatkih Caru­lli-ja (2006). Na slovenski strani je od Gorice do Dornberka interpretirana na novo, od tu do Vrem-šcice pa po podatkih Poljaka (2007), Jurkovška et al. (1996), Jurkovška (2010), Placerja (2015) in Placerja et al. (2021b), ter po podatkih OGK (listi Gorica, Trst, Postojna, Ilirska Bistrica). Jugovzho­dno od Vremšcice je potegnjena na podlagi vidne prelomne cone v dolini potoka Stržena (sl. 13) in na podlagi interpretacije nastanka ilirskobistri­škega premogovnega pull apart-skega ali razmic­nega bazena, ki naj bi nastal ob Raškem prelomu (Placer & Jamšek, 2011). Na sliki 1 je vidni del tra­se oznacen s polno crto, nevidni ali domnevni del pa s prekinjeno crto. Za ta clanek je pomembno, da podrobneje pri­kažemo razmere ob Raškem prelomu med Gorico in Vremšcico (sl. 13) ter dolino potoka Stržena. Zdrobljena cona je vidna na vec mestih, v naselju Brdo pri Dornberku (sl. 13, tocka 1), v grapah in na vmesnih grebenih med Taborom in Cvetrožem (sl. 13, tocka 2), v useku Zajcica na avtocesti pri Senožecah (sl 13, tocka 3), v treh peskokopih »V žlebu« nad Cepnim pod Vremšcico (sl. 13, tocka 4) in ob potoku Strženu (sl. 13, tocka 5). Tudi v dolini Raše je ob Raškem prelomu vec manjših pe­skokopov. Najlepše je vidna zgradba Raškega preloma v terasastem useku avtoceste Zajcica pri Senože-cah (sl. 13, tocka 3; sl. 14), razkrita pa je bila tudi v veliki jami nekdanjega peskokopa blizu useka. Na sliki 14A je fotografija vzhodne stene useka, kjer je vidna celotna zdrobljena cona preloma, široka okoli 80 m. Njen vecji del je povecan na sliki 14B, tu je v ježi tretje terase kljub poruše­nosti še opazna antiklinalna guba, ki jo je pri bolj natancnem pregledu mogoce zaznati na ce­lotni višini useka. Ježa prve terase je že podzida­na in zatravljena, zato je na sliki 14C prikazana Sl. 13. Raški prelom od Gorice do potoka Stržen. 1 Adjusting faults: TF – Tomacevo Fault, KF – Kobjeglava Fault, LF – Lukovec Fault / izravnalni prelomi: TF – Tomacevski prelom, KF – Kobjeglavski prelom, LF – Lukovski prelom 2 Sistiana Flexural Zone / sesljanska upogibna cona 3 Bent structures in the Sisitiana Flexural Zone: TKA – Trieste-Komen Anticlinorium axis, VS –Vipava Synclinorium axis, FOB – External DinaricThrust Belt front / upognjene strukture v sesljanski upogibni coni: TKA – os Tržaško-Komenskega antiklinorija, VS – os Vipavskega sinklinorija, FOB – celo Zunanjedinarskega narivnega pasu 4 Profiles across the Raša Fault: A – A Štorje - Stomaž, B – B Povir - Griško polje, C – C Vremska dolina - Mt. Vremšcica - Ravnik, D – D Košanska dolina, E – E Brezavšcak stream valley / profili preko Raškega preloma: A – A Štorje - Stomaž, B – B Povir - Griško polje, C – C Vremska dolina - Vremšcica - Ravnik, D – D Košanska dolina, E – E Dolina potoka Brezavšcka 5 Observation sites of the Raša Fault: 1 – Brdo near Dornberk, 2 – Saksidi, 3 – Zajcica, 4 – Cepno, 5 – Stržen / mesta opazovanja Raškega preloma: 1 – Brdo pri Dornberku, 2 – Saksidi, 3 – Zajcica, 4 – Cepno, 5 – Stržen gently dipping to the northeast, followed by two zrcalna podoba zahodne stene useka v višini stronger subvertical fault planes with an interme-ježe prve terase, ki je danes ni vec. Tu je bila diate tectonized block, then the block folded into omenjena antiklinala lepo vidna. Na sliki 14D je an asymmetric anticline slightly inclined to the zgradba useka skicirana, stratigrafski podatki so southwest. Its wavelength is 20 m to 25 m with an navedeni po Jurkovšku et al. (1996); na levi po-amplitude of about 8 m. Towards the southwest, lovici so plasti Lipiške formacije (LF/K24 -5), ki the anticline limb lies on a subvertical fault plane, behind which lies a block of tectonized beds of the Lipica Formation. It is completed by a set of several parallel fault surfaces, behind which lie Liburnia Formation beds (LIB/K-Pc), already a part of the south-western block of the Raša Fault. As the Liburnian Formation makes a part of the Karst Group of Formations, the KGF is used in­stead of the LIB/K-Pc designation in Figure 14D. In the sand pit, right-lateral strike slip fault sur­faces with sub-horizontal slickensides and several completely flat subvertical tectonic mirrors, from a few metres to 25 m2 in size, were observed in the Lipica Formation limestones. Tectonic mirrors were polished to a high gloss, and clearly indicate periodic polygonal movement of the fault blocks, confirmed also by barely visible striae in differ­ent directions. Signs of polygonal movement of the fault blocks were also observed in the fault zone of the Idrija Fault (Placer, 1980, fig. 12) and in the thrust plane of the Hrušica Nappe in the sand pit near Planina (Placer, 1994/95). In the profile sketch (14D), it is necessary to draw attention to the compatibility of the geologi­cal structure and the surface: on the left, the gentle slope of the upland adapts to the gently inclined bedding; the top of the upland lies above the top of the extruded anticline; and the steep slope on the right lies in the inner fault zone. From the condi­tions in the profile, we conclude that the relief here is the result of tectonic formation. Three successive sand pits opened in the lime­stones of the Lipica and Liburnia Formations (LF/ K24 -5, LIB/K-Pc), separated by the main fault plane of the damage zone of the Raša Fault in the »V žlebu« valley above Cepno village (Fig. 13, point 4). The most telling are the fault surfaces in the middle sand pit, where horizontal tectonic slicken-sides occur, which indicate right-lateral strike slip motion and vertical slides with block movements in different directions. Other directions are also present. Flysch rocks occur in outcrops of the Raša Fault damage zone at Brdo near Dornberk (Fig. 13, point 1), between Tabor and Cvetrož (Fig. 13, point 2) and near Stržen (Fig. 13, point 5). In all cases, the main fault plane dips steeply towards the northeast; next to it lies a cut reverse flexure, which at first glance would indicate a simple re­verse movement, but conditions at Zajcica and Cepno show that other movements also exist, so conclusions based on a limited set of data can be deceptive. Without detailed research of different parts of the fault zone, it is not possible to discuss the kinematics of the blocks along the Raša Fault. položno vpadajo proti severovzhodu, sledita dve mocnejši subvertikalni prelomni ploskvi z vme­snim zdrobljenim blokom, zatem blok naguban v asimetricno antiklinalo, ki je rahlo nagnjena proti jugozahodu. Njena valovna dolžina znaša okoli 20 m do 25 m, amplituda okoli 8 m. Proti jugozahodu se krilo antiklinale naslanja na sub- vertikalno prelomno ploskev, za katero je blok iz zdrobljenih plasti Lipiške formacije. Zakljuci ga snop vec prelomnih ploskev za katerimi leži­jo plasti Liburnijske formacije (LIB/K-Pc), ki že pripadajo jugozahodnemu bloku Raškega prelo-ma. Na sliki 14D je namesto Liburnijske forma­cije oznaka KGF (Kraška grupa formacij), katere del je tudi Liburnijska formacija. V peskokopu so bile v apnencih Lipiške formacije zabeležene des­nozmicne prelomne ploskve s subhorizontalnimi tektonskimi drsami in vec povsem ravnih, od nekaj do 25 m2 velikih subvertikalnih tektonskih zrcal, ki so bila polirana do visokega sijaja, kar jasno kaže na obcasno poligonalno premikanje prelomnih kril, ki so ga potrjevale tudi komaj vi-dne strije v razlicnih smereh. Znaki poligonalne­ga premikanja prelomnih kril so bili opazovani tudi v prelomni coni Idrijskega preloma (Placer, 1980, sl. 12) in v narivni ploskvi Hrušiškega po­krova v peskokopu pri Planini (Placer, 1994/95). V skici profila (14D) je potrebno opozoriti na skladnost geološke zgradbe in površja; na levi se položno pobocje vzpetine prilagaja položnim plastem, vrh vzpetine leži nad vrhom izrinjene antiklinale, strmo pobocje na desni leži v coni glavne prelomne ploskve. Iz razmer v profilu povzemamo, da je relief na tem mestu posledica tektonskega oblikovanja. »V žlebu« nad Cepnim (sl. 13, tocka 4) so odprti trije zaporedni peskokopi v apnencih Li- piške in Liburnijske formacije (LF/K24 -5, LIB/ K-Pc), ki ju razdvaja glavna prelomna ploskev Raškega preloma. Najbolj povedne so prelomne ploskve v srednjem peskokopu, kjer nastopa­jo tektonske drse horizontalne smeri, ki kažejo na desno zmikanje in vertikalne drse z razlicno usmerjenimi premiki blokov. Prisotne pa so tudi druge smeri. Izdanki zdrobljene cone Raškega preloma v Brdu pri Dornberku (sl. 13, tocka 1), med Ta-borom in Cvetrožem (sl. 13, tocka 2) ter ob Str­ženu (sl. 13, tocka 5), so v flišnih kamninah. V vseh primerih glavna prelomna ploskev strmo vpada proti severovzhodu, ob njej leži pretrgana reverzna fleksura, kar bi na prvi pogled kaza-lo na enostavni reverzni premik, vendar Zajci-ca in Cepno kažeta, da obstojajo tudi drugacni premiki, zato je sklepanje na podlagi omejenega A B C Only faulted rocks were observed in the outcrop next to Stržen (Fig. 13, point 5), but not the struc­ture of the fault zone or the kinematics. Displacements along the Raša Fault have not yet been investigated more precisely, but Jurkovšek et al. (1996, profile A – B) provides relatively reli­able information about the vertical displacement between the two fault blocks in the profile between the villages of Štorje and Stomaž, which amounts 150 to 200 m (measured from the cross-section on the map). The direction of the horizontal com­ponent of the displacement is right-lateral, but its magnitude has not yet been determined. In this article we are interested in the section of the Raša Fault, where the vertical uplift of its north-eastern block was measured (Jurkovšek et al., 1996, profile A – B). This profile is shown again (Fig. 15, profile A – A) for the sake of un­derstanding the topic under discussion. The men­tioned offset of 150 m to 200 m is significant be­cause it was determined on the basis of systematic mapping and a good knowledge of the thickness of the strata. However, since we are studying the re­lationship between tectonics and geomorphology, it was necessary to check whether a similar verti­cal movement also exists in the karst formations between the two blocks of the Raša Fault. A single karst ridge extends from Štanjel to Gorice pri Famljah, and plunges gently to the north­west in the south-western block of the Raša Fault in Figure 13. In the north-eastern block, there are fewer peneplained areas, which are found only in the vicinity of Senožece, Volce and in Košanska do-lina valley (Fig. 18). For a comparison with profile A – A it was necessary to choose a control profile as close as possible to that of Štorje for the sake of credibility. As such, the B – B profile from Povir village through the Divaca-Sežana lowland (about 390 m), the Mt. Sopada ridge, the Senadolski dol (a dol is usually an elongated shallow valley in Dinaric Karst), the Mt. Selivec ridge, and the flat Griško polje field (about 540 m) below Mt. Veliki Ognjivec (636 m) seemed suitable (Fig. 15, profile B - B). The difference in the peneplane elevations between the Divaca - Sežana lowland and the Griško polje field is around 150 m. The bottom of Senadolski dol is not števila podatkov lahko varljivo; brez detajlnih raziskav razlicnih predelov prelomne cone ni mogoce govoriti o kinematiki blokov ob Raškem prelomu. V golici ob potoku Strženu (sl. 13, toc­ka 5) je bila zabeležena le prelomna porušitev, ne pa tudi zgradba prelomne cone ali kinema­tika. Premiki ob Raškem prelomu še niso bili na­tancneje raziskani, vendar podajajo Jurkovšek et al. (1996, profil A – B) sorazmerno zanes­ljiv podatek o vertikalnem premiku med obema prelomnima kriloma v profilu med Štorjami in Stomažem, ki znaša okoli 150 m do 200 m (iz­merjeno iz profila na karti). Smer horizontalne komponente premika je desna, vendar njena ve­likost še ni dolocena. V tem clanku nas zanima odsek Raškega preloma, kjer je bil izmerjen vertikalni dvig njegovega severovzhodnega krila (Jurkovšek et al., 1996, profil A – B). Zaradi razumevanja obravnavane teme, ta profil ponovno prikazuje-mo (sl. 15, profil A – A). Omenjeni skok 150 m do 200 m je pomemben zato, ker je bil dolocen na podlagi sistematicnega kartiranja in dobrega poznavanja debeline plasti. Ker pa proucujemo razmerje med tektoniko in geomorfologijo, je bilo potrebno preveriti ali obstoja podoben ver­tikalni premik tudi pri kraških uravnavah med obema kriloma Raškega preloma. Na sliki 13 se v jugozahodnem krilu Raške­ga preloma razteza enotna kraška uravnava od Štanjela do Goric pri Famljah, ki neznatno visi proti severozahodu. V severovzhodnem krilu je uravnanih površin manj, najdemo jih le v okolici Senožec, v Volcah in v Košanski dolini (sl. 18). Za primerjavo s profilom A – A je bilo potrebno zaradi verodostojnosti izbrati kontrolni profil cim bliže Štorjam. Kot tak se je zdel primeren profil B – B od Povirja preko Divaško-Sežanske­ga podolja (okoli 390 m), grebena Sopade, Se-nadolskega dola, grebena Selivca in uravnanega Griškega polja (okoli 540 m) pod Velikim Og­njivcem (636 m). Razlika v koti uravnav med Divaško-Sežanskim podoljem in Griškim poljem znaša tu okoli 150 m. Dno Senadolskega dola ni primerno za primerjavo, ker je preoblikovano ob Fig. 14. Raša fault in the Zajcica roadcut (highway) (Figs. 13 and 18): A. Photo of the section. B. Part of the damage zone. C. Oblique anticline within the damage zone indicating reverse movement of the northeast limb. D. Sketch of the section: about 80 m wide Raša Fault damage zone. I – Southwestern boundary fault plane, which is also the main one; II, III, IV – internal fault planes; V – northeastern boundary fault plane. Key for the stratigraphic markers in Fig. 15. Sl. 14. Raški prelom v useku avtoceste Zajcica (sl. 13 in 18): A. Fotografija useka. B. Del zdrobljene cone. C. Poševna antiklinala znotraj zdrobljene cone, ki kaže na reverzni premik severovzhodnega krila. D. Skica useka: okoli 80 m široka zdrobljena cona Raškega preloma. I – jugozahodna mejna prelomna ploskev, ki je hkrati glavna; II, III, IV – notranje prelomne ploskve; V – severovzhodna mejna prelomna ploskev. Legenda stratigrafskih oznak na sl. 15. Sl. 15. Profili preko Raškega preloma: A – A Štorje - Stomaž (po Jurkovšek et al. 1996, profil A – B). B – B Povir - Griško polje; C – C Vremska dolina - Vremšcica - Ravnik, na fotografiji prirocni model Vremške transpresivne antiklinale; D – D Košanska dolina; E – E dolina potoka Brezavšcka. 1 približni nivo primerjalne uravnave. suitable for comparison, because it was transformed by the Raša Fault, nor is the flood plain near Dolenja vas village, which was transformed and deepened by the Senožeški potok stream. The second control profile C – C runs from Zavrhek village through the Vreme valley, across the Vremšcica ridge to the part of the plateau at Volce (around 590 m) and over Mt. Markiževa gora to Ravnik peneplain (around 590 m) northeast of here (Fig. 15, profile C – C). The starting peneplanation level in the south-western block lies in the vicinity of Gorice pri Famljah vil­lage (around 440 m), but the profile does not cover it, so its projection on the profile plane is indicated. Also in this profile, the difference in the height of the settlements between Gorice, Volce, and Ravnik peneplain is about 150 m. Both control profiles therefore indicate that the difference in the height of the peneplained territory between the north-eastern and south-western blocks of the Raša Fault is com­parable to the geological offset in the A – A profile between Štorje and Stomaž. Raškem prelomu, primerna pa ni tudi naplavna ravnica pri Dolenji vasi, ki jo je preoblikoval in poglobil Senožeški potok. Drugi kontrolni pro-fil C – C poteka od Zavrhka preko Vremske do-line, cez greben Vremšcice na del uravnave pri Volcah (okoli 590 m) in preko Markiževe gore na Ravnik (okoli 590 m) severovzhodno od tod. Izhodišcna uravnava v jugozahodnem krilu je v okolici Goric pri Famljah (okoli 440 m), vendar je profil ne zajema, zato je nakazana njena pro-jekcija na profilno ravnino. Tudi v tem profilu znaša razlika v višini uravnav med Goricami ter Volcami in Ravnikom okoli 150 m. Oba kontrol­na profila torej kažeta na to, da je razlika v viši­ni uravnanega ozemlja med severovzhodnim in jugozahodnim krilom Raškega preloma primer-ljiva z geološkim skokom v profilu A – A med Štorjami in Stomažem. Profila D – D in E – E kažeta drugacno po­dobo. Profil D – D poteka precno na Raški pre­lom jugovzhodno od Vremšcice mimo Nove Su­šice, ki leži na uravnavi Košanske doline. Ta je v celoti v severovzhodnem krilu Raškega prelo-ma, trasa samega preloma pa poteka od Gornje Košane na golico št. 5 (sl. 13 in 18) ob strugi Stržena. Med Gornjo Košano in Strženom Ra-ški prelom ni zaznan v geomorfologiji terena, preseneca pa kota uravnave Košanske doline, ki znaša pri Novi Sušici okoli 440 m, kar je toliko kot v okolici Goric pri Famljah severozahodno od Vremšcice, to pa prakticno pomeni, da se se­verovzhodno krilo Raškega preloma med Gor­njo Košano in Strženom ni dvignilo nad jugoza­hodnim krilom. Koti uravnav Košanske doline (okoli 440 m) in v okolici Goric (okoli 440 m) sta približno enaki. Podoben ali enak, je podatek v profilu E – E preko doline Brezavšcka med Gorico in Volcjo Drago, v katerem so povezani najvišji uravnani grebeni flišnega gricevja v jugozahodnem krilu Raškega preloma (Martinjak okoli 100 m, Bu-kovnik okoli 100 m in 110 m), s tistimi v seve­rovzhodnem krilu (Široki hrib okoli 100 m, La-movo okoli 100 m). Uravnana slemena in vrhovi na približno enako nadmorsko višino kažejo na vecje uravnano flišno ozemlje, ki ga seka Ra-ški prelom, vendar brez vidnega vertikalnega premika. Flišna uravnava na tem obmocju ni povezana z uravnanim Krasom, vendar je od-nos med obema kriloma Raškega preloma mo­goce primerjati med seboj. Obravnavana flišna uravnava je omejenega obsega in se proti severu kmalu konca ob geomorfološki meji v smeri za-hod-vzhod. Ni raziskano ali gre za tektonsko ali erozijsko mejo. Profiles D – D and E – E provide a different picture. Profile D – D runs across the Raša Fault southeast of Mt. Vremšcica past Nova Sušica vil­lage, which lies on the Košana valley plateau en­tirely on the north-eastern block of the Raša Fault (Fig. 15, profile D – D). The Raša Fault trace runs from Gornja Košana village to outcrop No. 5 (Figs. 13 and 18) along the Stržen. The Raša Fault is not detected in the geomorphology of the terrain be­tween Gornja Košana and Stržen, but the eleva­tion of the Košana valley is surprising, which is roughly 440 m near Nova Sušica village, as much as in the vicinity of Gorice pri Famljah northwest of Mt. Vremšcica, which in practical terms means that the northeast block of the Raša Fault between Gornja Košana and Stržen did not rise above the south-western block. The peneplanation eleva­tions of the Košana valley (around 440 m) and in the vicinity of Gorice (around 440 m) are approxi­mately the same. The information in the profile E – E across the Brezavšcek valley between Gorica and Volcja Dra­ga village is similar or identical (Fig. 15, profile E –E), where the highest levelled ridges of the flysch hills in the south-western block of the Raša Fault (Mt. Martinjak about 100 m, Mt. Bukovnik about 100 m and 110 m) are connected, with those in the north-eastern block (Mt. Široki hrib about 100 m, Mt. Lamovo about 100 m). Level ridges and peaks at approximately the same altitude indicate a larg­er peneplained flysch area cut by the Raša Fault, but without visible vertical displacement. The pe­neplained flysch in this area is not related to the peneplained Karst, but the relationship between the two blocks of the Raša Fault can be compared with each other. The discussed peneplanation of flysch formation is of limited extent and soon ends to the north at the geomorphological boundary in the E–W direction. The question whether it is a tectonic or erosional boundary has not been inves­ tigated. Let’s return again to profiles B – B and C – C in Fig. 15. In profile B – B, in addition to the already mentioned peneplanation in both blocks of the Raša Fault, there are four more hills, Mt. Straža (542 m) above Povir village, Mt. Sopada ridge, Mt. Selivec ridge, and Mt. Veliki Ognjivec ridge (636 m). Mt. Straža among the Tabor hills was formed due to selective corrosion and is built from less soluble rocks of the upper part of the Povir Formation (dolomite). As a result of selective cor­rosion, Mt. Sopada was also formed, as until re­cently it was covered by flysch, which is still visible along the Gabrk Fault (Jurkovšek et al., 1996). The formation of Mt. Selivec and Mt. Veliki Ognjivec, Vrnimo se ponovno k profiloma B – B in C – C na sliki 15. V profilu B – B so poleg že ome­njenih uravnav v obeh krilih Raškega preloma še štiri vzpetine, Straža (542 m) nad Povirjem, greben Sopade, greben Selivca in greben Velike­ga Ognjivca (636 m). Straža v Taborskih gricih je nastala zaradi selektivne korozije, zgrajena je iz manj topnih kamnin zgornjega dela Povirske formacije (dolomit). Zaradi selektivne korozije je nastala tudi Sopada, saj jo je še do nedavnega pokrival fliš, ki je še viden ob Gabrškem prelomu (Jurkovšek et al., 1996). Drugacen je nastanek Selivca in Velikega Ognjivca, med katerima leži Raški prelom. V prelomnih krilih vpadajo plasti v nasprotnih smereh in so ob Raškem prelomu najbolj strme, ko se pa od preloma oddaljujemo, je vpad vse manjši, pri tem pa je pomembno, da je hkrati z bolj strmo lego plasti dvignjen tudi relief. Pred seboj imamo transpresivno antikli­nalo, ki se je dvignila iz uravnanega sveta za­radi predisponirane lege plasti v coni Raškega preloma, imenujemo jo Selivška transpresivna antiklinala. Po zdrobljeni coni preloma je ero­zija ustvarila grapo, ki se izteka v dolino Raše. Grebena Selivca in Velikega Ognjivca sta ostanek vrha transpresivne antiklinale, ki jo je erozija po grapi med dviganjem razdelila na dva dela. Po taki analizi se Senadolski dol pokaže kot netipicna asimetricna kraška depresija, njegovo jugozahodno pobocje je del Sopade in je nastalo zaradi selektivne korozije, severovzhodno po­bocje pa predstavlja krilo Selivške transpresiv­ne antiklinale, zaradi katere se je že uravnano površje izbocilo. Senadolski dol je torej kombi­nirana tvorba, ki v strukturnem smislu predsta­vlja korozijsko modificirano krilo tranapresiv­ne antiklinale. Podobnih in drugacnih dolov je na Krasu kar nekaj, brez dvoma pa bi jih našli tudi drugod, zato je smiselno, da tak genetsko mešani ali kombinirani kraški dol poimenujemo nevtralno, predlagamo termin kombinirani dol, kombidol ali komdol. Genetskih kombinacij, ki so prispevale k nastanku dolov je vec, zato je nemogoce najti za vsako specificno kombinacijo posebno ime. Pred kratkim imenovani genetski tip dola razdol (Placer et al., 2021a), je nastal po snopu razpok ali po razpoklinski coni in je genetsko vezan samo na en fenomen. Ker gre za kraške pojave, je korozija dejavnik, ki ga ni tre­ba vkljucevati v termin. Termin pradol, ki so ga predlagali Diercks et al. (2021) je recnoerozijska tvorba, tu imata struktura in korozija drugoten pomen. between which lies the Raša Fault, is different. Layers in both fault blocks plunge in opposite di­rections and are steepest at the Raša Fault and become continuously less steep as we move away from the fault. It is important that with increased dip of the bedding, the relief is also raised. The described structure is a transpressive anticline, which rose from the peneplained relief due to the predisposed position of the strata in the Raša Fault zone, hence the transpressive Selivec Anticline. Along the damage zone erosion carved a canyon that runs into the Raša valley. The Mt. Selivec and Mt. Veliki Ognjivec ridges are the remains of the top of the transpressive anticline, divided into two parts by erosion along the fault during uplift. According to such analysis, Senadolski dol appears as an atypical asymmetric karst depres­sion, its south-western slope is part of Mt. Sopa­da and was formed by selective corrosion, while its north-eastern slope represents the limb of the transpressive Selivec Anticline, due to which the already levelled surface bulged. Senadolski dol is therefore a combined formation, which structural­ly represents a corrosion-modified limb of a trans-pressional anticline. There are a number of similar and different dols in the Kras, and can no doubt be found elsewhere as well, so it makes sense to name such a genetically combined karst dol neu­trally, thus we suggest the term combined dol called komdol (new term). There are several genet­ic combinations that contributed to the formation of dols, so it is impossible to find a special name for each specific combination. Razdol, one recent-ly-named genetic type of dol (Placer et al., 2021a) was formed in a fracture system or in a fault zone and is genetically related to only one phenome­non. Since these are karst phenomena, corrosion is a factor that does not need to be included in the term. The term pradol proposed by Diercks et al. (2021) is used for a dol formed by river erosion. Structure and corrosion are of secondary impor­tance here. On this occasion, it makes sense to point out that there are also dols that are entirely the result of folding: for example, »Vrhpoljski dol« between the Krvavi potok stream and the village of Vrhpol­je near Kozina, which is not a name given by the locals but represents a valley along the syncline, which is a secondary formation of the Materija Fault. Here we have a nice example of a folded pri­mary peneplanation, but since it is a karst relief, this type of valley or dol could be called a synclinal valley or sindol (new term). From the interpretation of the relief in profile B – B, it therefore follows that before the formation Ob tej priliki je smiselno poudariti, da obsto­jajo tudi doli, ki so v celoti posledica gubanja. Tak je npr. »Vrhpoljski dol« med Krvavim po­tokom in Vrhpoljem pri Kozini, ki ga domacini sicer tako ne imenujejo, predstavlja pa dolino po sinklinali, ki je sekundarna tvorba Matarskega preloma. Tu imamo lep primer nagubane pri­marne uravnave, ker pa gre za kraški relief, bi ta tip doline ali dola lahko imenovali sinklinalni dol ali sindol. Iz razlage reliefa v profilu B – B torej izha­ja, da je pred nastankom Raškega preloma, na nivoju profila, obstajala enotna kraška uravnava iz katere sta se dvigala samo grebena Taborskih gricev in Sopade. Po nastanku Raškega preloma in v fazi transpresije se je severovzhodno krilo preloma dvignilo, hkrati pa je nastala tudi tran­spresivna antiklinala, ki jo je omogocila ugodna lega plasti v krilih preloma, ki so že pred na­stankom Raškega preloma tvorile antiklinalo v sestavi senožeškega pasu cepljenja gub (sl. 11). Grapa po grebenu transpresivne antiklinale je lahko nastala samo v primeru, da je bila erozij­sko dejavna že pred transpresivnim dvigom, saj je ob dviganju izgubila hidrografsko zaledje. V profilu C – C je prikazana zgradba Vrem-šcice, ki je podobna Selivcu, le da je izhodna struktura izrazitejša, ker se Vremšcica, oziro-ma obmocje, ki ga prikazuje profil C – C, na­haja bliže osrednjega dela senožeškega pasu cepljenja gub. V njem sta zajeti Gornjeležeška in Senožeška sinklinala, med katerima je pred na­stankom Raškega preloma ležala Paleovremška antiklinala. Po nastanku cepilnih gub je bilo ce­lotno ozemlje, skupaj s Fameljsko in Paleovrem­ško antiklinalo, uravnano. Za tem je poševno na Paleovremško antiklinalo (okoli 20°) nastal zmicni Raški prelom, ob katerem se je, tako kot v primeru Selivca, v fazi transpresije dvignila transpresivna guba ob hkratnem dvigu seve­rovzhodnega krila preloma. Gubo imenujemo Vremška transpresivna antiklinala. V primeru Vremšcice je zaradi obstoja vzporednega kraka ob Raškem prelomu, verjetno prišlo tudi do iz­rivanja vmesnega bloka. Tako pri Selivcu kot pri Vremšcici, je bilo dviganje severovzhodnega kri-la Raškega preloma in transpresivne antiklinale, lahko enofazen ali vecfazen proces, v vsakem primeru pa je Vremška transpresivna antiklina-la nasledstvena struktura Paleovremške antik­linale. V profilu C – C je tik ob Raškem prelomu še vidno njeno sleme. Fotografija pod profilom poenostavljeno ponazarja mehanizem nastanka Vremške antiklinale; položene talne plošce na tleh predstavljajo uravnano ozemlje, dve sta se of the Raša Fault, at the level of the profile, there was a single karstic peneplanation from which only the ridges of the Tabor hills and Mt. Sopada rose. After the formation of the Raša Fault and during the transpression phase, the north-eastern block of the fault rose, and at the same time a transpres­sive anticline was formed, which was made pos­sible by the favourable position of the bedding in the fault blocks that already formed an anticline in the Senožece Folds Splitting Zone before the formation of the Raša Fault (Fig. 11). The ravine along the crest of the transpressive anticline could only have formed if it was erosively active before the transpressive uplift, as it lost its hydrographic hinterland during the uplift. Profile C – C shows the building of Mt. Vremšcica, which is similar to Mt. Selivec, except that the outgoing structure is more pronounced because Mt. Vremšcica, or the area shown by profile C – C, is located closer to the central part of the Senožece Folds Splitting Zone. It includes the Gornje Ležece and Senožece Synclines, be­tween which the Paleo-Vremšcica Anticline took place before the formation of the Raša Fault. Af­ter the formation of split folds, the entire territo­ry, together with the Famlje and Paleo-Vremšci-ca Anticlines, was levelled (peneplained). Afterwards, the Raša Fault was formed oblique­ly (around 20°) to the Paleo-Vremšcica Anti­cline, along which, as in the case of Mt. Selivec, a transpressive fold rose during the transpres­sion phase at the same time as the north-eastern block of the Raša Fault rose. The fold is called the transpressive Vremšcica Anticline. The in­termediate block was probably pushed out in the case of Mt. Vremšcica, due to the existence of a parallel fault branch along the Raša Fault. Both at Mt. Selivec and at Mt. Vremšcica, the up­lift of the north-eastern flank of the Raša Fault and the transpressive anticline may have been a single-phase or multiphase process, but in any case, the transpressive Vremšcica Anticline is the successor structure of the Paleo-Vremšcica Anticline. In profile C – C, its hinge is still visi­ble right next to the Raša Fault. The photo below the profile illustrates the formation mechanism of the Mt. Vremšcica Anticline; laid floor slabs on the ground represent a levelled area, with two of them later rising due to the shrinkage of that part of the bridge construction on which the slabs are laid. The contact between them illus­trates the role of the Raša Fault. The transpressive Vremšcica Anticline is sepa­rated from the Selivec Anticline by a saddle, which is conditioned by a less pronounced anticlinal pozneje dvignili zaradi krcenja dela konstruk­cije mostu, na katerem so plošce položene. Stik med njima ponazarja vlogo Raškega preloma. Vremška transpresivna antiklinala je od Seli­vške locena s sedlom, ki je pogojeno z manj izra­zito antiklinalno lego plasti. Sedlo leži v bližini useka Zajcica (sl. 14) in nima imena, vendar ga zaradi lažjega sporazumevanja imenujemo Sena-dolsko sedlo. Transpresivna guba tu ni odsotna temvec le manj izrazita, profil Zajcica lepo poja­snjuje njegovo zgradbo. Domnevamo, da je zaradi transpresije dvig­njena tudi Markiževa gora med uravnavama okoli Volc in na Ravniku (sl. 15, profil C – C) . Razteza se ob Markiževem prelomu vzpored-no z Vremšcico, le da je dvig tu skromnejši in asimetricen. Na obstoj Markiževega preloma posredno kažeta smer Markiževe gore in njeno dolgo, ravno, strmo severovzhodno pobocje, ki je verjetno zaradi hitrega dviga skoraj v celo-ti prekrito z deluvijem. Obstoj preloma podpira tudi izstopajoci linearni niz vrtac v smeri WNW -ESE, ki poteka preko manjše uravnave seve­rozahodno od Markiževe gore proti Senožecam (sl. 16). Da gre za pomembnejšo mejo nakazu­jejo nizi vrtac v smeri NNW-SSE do N-S, ki se naslanjajo na omenjeni niz in so razviti v obeh krilih. Prostorska lega Markiževega preloma je vidna na sl. 18. Sl. 17. Vertikalni premik ob Raškem prelomu, ki temelji na razliki v višinskem nivoju uravnav: a – idealizirani izhodišcni uravnani nivo v jugozahodnem krilu Raškega preloma; b – nivo uravnav v severovzhodnem krilu Raškega preloma (b´ – varianta); c – nivo slemena Selivške in Vremške transpresivne antiklinale; 1 do 5 – opazovalna mesta ob Raškem prelomu. position of the strata. The saddle is located near the Zajcica section (Fig. 14) and has no name, but for ease of communication we called it the Senadole saddle (after the village of Senadole). The transpressive fold is not absent here, but only less pronounced; the Zajcica profile nicely explains its structure. We assume that Mt. Markiževa gora was also raised between the levelled relief around Volce and on Ravnik peneplain (Fig. 15, profile C – C) due to transpression. It stretches along the Markiž Fault parallel to Mt. Vremšcica, except that the rise here is less pronounced and asymmetrical. The exis­tence of the Markiž Fault is indirectly indicated by the direction of Mt. Markiževa gora and its long, flat, steep north-eastern slope, which is probably almost entirely covered by deluvium due to rapid uplift. The existence of the fault is also support­ed by a prominent linear series of dolines (usual­ly round sinkholes) in the WNW-ESE direction, which runs over a small plane northwest of Mt. Markiževa gora towards Senožece (Fig. 16). The importance of the boundary is indicated by the series of dolines in the NNW-SSE to N-S direc­tion, which rest on the mentioned series and are developed in both fault blocks. The position of the Markiž Fault is presented in Figure 18. Before the uplift of Mt. Vremšcica, the area around Gorice, Volce and Ravnik was levelled, as in the case of Mt. Selivec. Since it is more or less obvious that Mt. Selivec, Mt. Vremšcica, and Mt. Tako kot pri Selivcu je tudi pri Vremšci­ci prvotno uravnano površje pred nastankom Vremšcice, združevalo obmocja Goric, Volc in Ravnika. Ker je vec ali manj ocitno, da so Seli­vec, Vremšcica in Markiževa gora nastali zaradi povecane transpresije, domnevamo, da so zara­di nasledstvenih deformacij ob povecani tran­spresiji nastale tudi nekatere druge pozitivne in negativne reliefne oblike okoli danes obsto­jecih uravnav. Kraški relief opisovanega ozemlja je torej seštevek primarno uravnanega ozemlja, selektivne korozije, erozije in nasledstvene tek­tonike, kar pomeni, da je treba h genezi reliefa posameznih obmocij pristopati kompleksno. V profilu C – C je zajeta tudi flišna Gornjeležeška sinklinala, ki pripada Brkinskemu sinklinori­ju, zato jo je potrebno obravnavati drugace po litološki in strukturni plati. V sorazmerno sti­snjeni sinklinali so bili ugotovljeni znaki ver­tikalnega izrivanja jedra, ki ga povezujemo z ucinkom transpresije. Ob regionalni cesti Vrem-ska dolina - Ribnica je nasproti vodarne Draga viden reverzni prelom 65/60, ki poteka v smeri osi Gornjeležeške sinklinale. Ob njem je videti tudi prevrnjene plasti. Obmocje ni detajlno kar­tirano, zato le sklepamo na obstoj konjugiranih dislokacij. Zaradi pomena omenjenega preloma za razumevanje zgradbe ozemlja, ga po bližnjem Drajnem potoku (sl. 18) imenujemo Drajni re-verzni prelom. Markiževa gora were formed due to increased transpression, we assume that some other posi­tive and negative relief forms around the existing levelled areas were also formed due to successive deformations in the zone of increased transpres­sion. The karst relief of the described area is there­fore the sum of a primarily regulated territory, selective corrosion, erosion, and successive tec­ tonics, which means that the genesis of the relief of individual areas must be approached with this complexity in mind. The Gornje Ležece Syncline, covered in the C – C profile, belongs to the Brkini Synclinorium, so it needs to be treated differently in terms of lithology and structure. Signs of ver­tical core extrusion were found in the relatively tight syncline, associated with the transpression effect. A reverse fault 65/60 is exposed, running in the direction of the Gornje Ležece Syncline axis along the Vremska dolina (Vreme valley) - Ribnica regional road, opposite the Draga water reservoir. Inverse bedding can also be seen next to it. The area is not mapped in detail, so we only infer the existence of conjugate dislocations. Due to the importance of the aforementioned fault for understanding the structure of the territory, it is called the reverse Drajna Fault after the nearby Drajna Stream (Fig. 18). The Divaca and Gabrk Faults, visible in profiles B – B and C – C, are older than the Raša Fault. No deformation was found in the area that could be definitively related to successional offsets. The transverse profiles data is supplemented by a longitudinal schematically comparative geo­morphological profile, which combines the two fault blocks of the Raša Fault (Fig. 17). Such com­parison does not deal with real geomorphological data, but instead is meant to show the differenc­es in the absolute elevation of the compared lev­elled areas between the two fault blocks: between those in the south-western block are shown with a horizontal line »a«, and with a dashed line »b« in the north-eastern block, which in the individual profiles is offset from the line »a« as much as the difference in the absolute elevation of the levelled areas. The two lines completely overlap in the area between Gorica and Volcja Draga, and there is no comparative data on the villages of Volcja Draga and Štorje, but in the vicinity of Štorje they are al­ready well apart, at around 150 m to 200 m. From Štorje to Volce, the lines illustrating the elevations are separated, with the difference in elevation be­tween them around 150 m everywhere. They are reunited in the Košana valley. Line »a« is not only a construction aid but is very close its natural state, as the elevations of the Divaški in Gabrški prelom, ki sta vidna v profilih B – B in C – C, sta starejša od Raškega preloma. Na obravnavanem prostoru ob njima nismo opazili deformacij, ki bi jih brez vsakega dvoma lahko pripisali nasledstvenim premikom. Podatki precnih profilov so dopolnjeni z vzdolžnim shematskim primerjalnim geomorfo­loškim profilom, ki združuje obe prelomni krili Raškega preloma (sl. 17). Tu ne gre za stvarne geomorfološke podatke temvec za prikaz razlik v absolutni višini primerjanih uravnav med obe-ma prelomnima kriloma; tiste v jugozahodnem krilu so prikazane z vodoravno crto »a«, v seve­rovzhodnem krilu s crto »b«, ki je v posameznih profilih toliko odmaknjena od crte »a«, kolikor znaša razlika v absolutni koti uravnav. Crti se povsem prekrivata na obmocju med Gorico in Volcjo Drago, od Volcje Drage do Štorij ni pri­merjalnih podatkov, vendar sta v bližini Štorij že krepko narazen, okoli 150 m do 200 m. Od Štorij do Volc sta crti, ki ponazarjata uravnave loce­ni, višinska razlika med njima je povsod okoli 150 m. V Košanski dolini sta ponovno združeni. Crta »a« ni le konstrukcijsko pomagalo, tem­vec je zelo blizu stanja v naravi, saj sta koti urav­nav na obmocju Goric in Košanske doline zelo blizu, okoli 440 m. Obmocje doline Brezavšcka med Gorico in Volcjo Drago je izven take primer-jave, vendar vseeno ustreza kriteriju vertikalne­ga premika. Kakšen je potek crte »b« med Volcjo Drago in Štorjami ne vemo, lahko pa sklepamo, da se loci od crte »a« že dalec pred Štorjami, brez dvoma pa se ji ponovno prikljuci v Gornji Košani. Pre-den spregovorimo o tem si oglejmo strukturno skico Košanske doline na sliki 18. Raški prelom se od peskokopov »V žlebu« nad Cepnim (sl. 18, tocka 4) spusti po geomorfološko mocno odzivni grapi do Gornje Košane, od tu naprej proti strugi Sušice (sl. 18, tocka 5) pa ga prakticno na površ­ju ni mogoce zaznati. Skrivnost nenadne spre­membe v geomorfologiji tici v reverznem pre­lomu, ki se v Gornji Košani odcepi od Raškega preloma in ga je potem mogoce slediti pod robom Košanskega hriba (589 m) najprej proti vzhodu in nato vzhodu-jugovzhodu do potokov Suši­ce in Stržena. Imenujemo ga Košanski reverzni prelom, v katerega celu se je razvila Košanska antiklinala. Velikost premika ob Košanskem pre­lomu se od Raškega preloma proti vzhodu nag-lo zmanjšuje, kar pomeni, da gre za sekundarno tvorbo v širši coni Raškega preloma. Pomik ob Košanskem prelomu je pomemben zato, ker kaže, da se je prvotno enotno uravnano obmocje v se­verovzhodnem krilu preloma razdelilo na zgornji Sl. 18. Strukturno-geomorfološka skica Košanske doline. 1 Fault: RF – Raša Fault, MF – Markiž Fault / prelom: RF – Raški prelom, MF – Markižev prelom 2 Reverse Drajna Fault / Drajni reverzni prelom 3 Reverse Košana Fault / Košanski reverzni prelom 4 Approximate adjustment level (approx. 440 m) / približna kota uravnave (ok. 440) 5 Neverke ramp / neverška klancina (rampa) 6 Observation site: 3 – AC Zajcica section, 4 – sand pits »V žlebu« above Cepno, 5 – Stržen valley / opazovalno mesto: 3 – usek AC Zajcica, 4 – peskokopi »V žlebu« nad Cepnim, 5 – dolina Stržena levelled areas of Gorice and the Košana valley are, at around 440 m, very close. The area of the Breza­všcek valley between Gorica and the Volcja Draga valley is beyond such comparison, but still meets the criterion of vertical movement. We do not know what the course of line »b« is between Volcja Draga and Štorje, but we can con­clude that it separates from line »a« long before Štorje, and rejoins it at Gornja Košana village. Be­fore we talk further about it, let’s take a look at the structural sketch of the Košana valley in Figure 18. The Raša Fault descends from the »V žlebu« sand pits above Cepno village (Fig. 18, point 4) along a geomorphologically strongly responsive ravine to Gornja Košana; from here in the direction of the Sušica riverbed (Fig. 18, point 5) it is practically impossible to detect it on the surface. The secret nivo okoli Volc (okoli 580 m) in spodnji nivo v Ko­šanski dolini (okoli 440 m). Povezuje ju pas danes nagnjene uravnave severno od Košanskega hriba. Nagnjeni povezovalni pas nekdaj enotne uravna­ve imenujemo po bližnjem naselju Neverke never-ška klancina ali neverška rampa. Vzhodno od sti­ka neverške klancine z uravnavo Košanske doline se v krovni grudi Košanskega reverznega prelo- ma dviga vzpetina, katere del je viden na sliki 18 (kota 467), ki ne potrjuje koncepta pojemanja re-verznega premika ob tem prelomu proti vzhodu. Anomalija je slej ko prej povezana s prelomom v smeri SW-NE, ki poteka preko sedla med dolina-ma reke Pivke in notranjske Reke (OGK, list Ilir-ska Bistrica; Šebela, 2005, sl. 1). Nanj se naslanja Košanski reverzni prelom. Natancnejša razlaga presega okvir tega clanka. of the sudden change in geomorphology lies in the reverse fault, which splits off from the Raša Fault at Gornja Košana village and can then be followed under Mt. Košanski hrib (589 m) first to the east and then east-southeast to the Sušica and Stržen streams. We named it the reverse Košana Fault, at the head of which the Košana Anticline devel­ oped. The offset along the Košana Fault rapidly decreases from the Raša Fault to the east, which means that it is a secondary formation in the wider zone of the Raša Fault. The offset along the Košana Fault is important because it shows that the origi­nally uniformly levelled area in the north-eastern block of the fault was divided into an upper level around Volce (around 580 m) and a lower level in the Košana valley (around 440 m). They are con­nected by a belt of what is today the inclined plane north of Mt. Košanski hrib. The inclined connect­ing belt is called Neverke ramp after the nearby village of Neverke. An elevation rises in the hang­ing wall of the reverse Košana Fault, part of which can be seen in Figure 18 (elevation point 467), to the east of the junction of the Neverke ramp with the levelled Košana valley, which does not confirm the concept of a decrease in the offset along this reverse fault to the east. The anomaly is in one way or another related to a fault in the SW-NE direc­tion, which runs across the saddle between valleys of the Pivka and Reka rivers (OGK, sheet: Ilirska Bistrica; Šebela, 2005, fig. 1) and terminates at the reverse Košana Fault. A more detailed explanation is beyond the scope of this article. Line »b« in the longitudinal profile in Figure 17 therefore joins line »a« along the Neverke ramp. The discussion about where northwest of Štorje the effect of transpression along the Raša Fault should cease is theoretically interesting. A direct comparison with the Neverke ramp is not possi­ble, but a hypothetical discussion is possible, for which we find a basis in the discussion of the Sistiana Flexural Zone (Placer et al., 2021b). The left-lateral strike-slip Sistiana Fault in the seabed of the Gulf of Trieste has a WSW-ENE trend in the area of Sistiana Bay. The fault is wedged out at the north-eastern boundary of the Istra-Friuli Thrust-Underthrust Zone. Further to the north­east, a flexural zone was formed in that direction, where the Trieste-Komen Anticlinorium, the Vipa­va Synclinorium, and the frontal part of the Exter­nal Dinaric Thrust Belt are clearly bent (Fig. 13). The bending was the result of the movement of the Istran block towards the Dinarides, as its axis runs from Sistiana Bay towards the village of Spodnja Branica and Ajdovšcina (Fig. 1). The Dinarides between the Sistiana and Kvarner Flexural Zones Crta »b« v vzdolžnem profilu na sliki 17 se torej prikljuci crti »a« po neverški klancini. Razprava o tem, kje severozahodno od Što­rij naj bi izzvenel ucinek transpresije ob Raškem prelomu, je teoreticno zanimiva. Neposredna primerjava z neverško klancino ni mogoca, mo-žna pa je hipoteticna obravnava za katero najde-mo osnovo v razpravi o sesljanski upogibni coni (Placer et al., 2021b). Sesljanski levozmicni pre­lom v podmorju Tržaškega zaliva poteka v smeri WSW-ENE, na obmocju Sesljanskega zaliva se izklini ob severovzhodni meji istrsko-furlanske narivno-podrivne cone, naprej proti sevrovzho­du pa se je v njegovi smeri izoblikovala upogib­na cona v kateri sta se lateralno vidno upognila Tržaško-Komenski antiklinorij, Vipavski sinkli­norij in celni del Zunanjedinarskega narivnega pasu (sl. 13). Os upogiba poteka od Sesljanske­ga zaliva proti Spodnji Branici in Ajdovšcini, nastala pa je zaradi pomikanja istrskega blo­ka proti Dinaridom (sl. 1). Obmocje Dinaridov med sesljansko in kvarnersko upogibno cono je bilo torej izpostavljeno povecani transpresiji in ucinku raznolike nasledstvene tektonike. Ker je v sesljanski upogibni coni bocno uslocen tudi Raški prelom, bi se v apikalnem delu uslocitve, torej na obmocju Spodnje Branice, vsaj teoretic­no crta »b« lahko odcepila od crte »a«. Vendar os upogibne cone ni ozka, niti natancno dolo-cena, v najširšem smislu bi njen vpliv proti se­verozahodu lahko segal do severovzhodne meje izravnalne zgradbe Raškega preloma, torej do sticišca Tomacevskega preloma z Raškim prelo-mom (sl. 13). V tem primeru bi se crta »b« lahko odcepila od crte »a« že na obmocju Volcje Dra­ge. Za tako možnost govori deformacija flišnih plasti v Brdu pri Dornberku (sl. 13, tocka 1). Za potrditev hipoteze bi bilo potrebno opraviti us-merjene terenske in modelne raziskave. Na sliki 17 sta za potek crte »b« od Selivca do meje iz­ravnalne zgradbe Raškega preloma nakazani dve možnosti, »b« in »b´«. Dvig Selivca in ekstremni dvig Vremšcice je na sliki 17 prikazan s crto »c«, ki shematsko sle­di njunemu slemenu in Senadolskemu sedlu med obema vzpetinama. Razmere na profilu na sliki 17 torej kažejo, da je transpresija dosegla naj­vecji ucinak na obmocju Vremšcice. Poleg strukturnih kazalcev, da so Selivec, Vremšcica in Markiževa gora antiklinalne, ali bolje antiformne deformacije prej uravnanega kraškega površja, obstajajo tudi krasoslovni po­kazatelji, ki pa še niso dovolj raziskani, da bi bili zanesljivi. Najpomembnejše so vrtace, ki so na uravnanem ozemlju pogoste, na znatno nagnjenem were therefore exposed to increased transpression and the effect of diverse successional tectonics. Since the Raša Fault trace is also laterally bent in the Sistiana Flexural Zone, in the apical part of the folding, i.e. in the area of Spodnja Branica, line »b« could, at least theoretically, split off from line »a« (Fig. 13). However, the Sistiana Flexural Zone axis is neither narrow nor precisely defined; in the broadest sense its influence towards the northwest could extend as far as the north-eastern border of the Raša Fault adjusting structure i.e. to the junc­tion of the Tomacevo Fault with the Raša Fault (Fig. 13). In this case, line »b« could split off from line »a« already in the area of Volcja Draga village. The deformation of the flysch beds at the village of Brdo near Dornberk supports such a possibili­ty (Fig. 13, point 1). To confirm the hypothesis, it would be necessary to carry out focused field and model research. In Figure 17, two options are in­dicated for the course of line »b« from Mt. Selivec to the boundary of the Raša Fault adjusting struc­ ture, »b« and »b’«. The uplift of Mt. Selivec and the extreme up­lift of Mt. Vremšcica are represented by line »c« in Figure 17, which schematically follows their ridge and the Senadole saddle between the two eleva­tions. The conditions on the profile in Figure 17 therefore show that the transpression reached its greatest effect in the Mt. Vremšcica area. In addition to the structural indicators that Mt. Selivec, Mt. Vremšcica and Mt. Markiževa gora are anticlinal, or rather antiform deformations of the previously levelled karst surface, there are also karstological indicators that have not yet been suf­ficiently studied as to be considered reliable. The most important are dolines, which are common on flat land, yet absent or markedly rarer on a signifi­cantly tilted relief. Two tentative conclusions can be drawn from this: 1. dolines do not develop on slopes or only exceptionally under special condi­tions, and 2. dolines only develop on levelled relief and eventually disappear if the levelled relief tilts. The second assumption is more likely, because do-lines are often found on antiform hinges, which is a kind of confirmation of what has been said, since the antiform hinge maintains a more or less hori­zontal (untilted) position, but there are no dolines or there are significantly fewer on the slopes. The rare dolines on the slopes could be the remnants of the larger ones from the previous peneplanation, while the smaller ones may have already disap­peared. In this sense, we could interpret the sit­uation on Mt. Markiževa gora above the village of Volce (Fig. 18): its north-eastern slope is condi­tioned by a fault, so it is steep and covered with svetu jih ni ali pa so bistveno bolj redke. Iz tega je mogoce postaviti dva zacasna sklepa: 1. vrtace se na pobocjih ne razvijejo ali le izjemoma kadar nastopijo posebni pogoji in 2. vrtace se razvijejo le na uravnanem svetu in scasoma izginejo, ce se uravnano ozemlje nagne. Verjetnejša je dru­ga domneva, pogosto namrec najdemo vrtace na slemenih antiform, kar je svojevrstna potrditev povedanega, saj ohrani sleme antiforme vec ali manj vodoravno lego, na pobocjih jih pa ni ali jih je bistveno manj. Redke vrtace na pobocjih bi lahko bile ostanki vecjih vrtac prvotne urav-nave, medtem ko so manjše morda že izginile. V tem smislu bi lahko interpretirali razmere na Markiževi gori nad Volcami (sl. 18), njeno seve­rovzhodno pobocje je pogojeno s prelomom, zato je strmo in pokrito z deluvijem, jugozahodno pobocje pa položnejše, na njem je nekaj manjših vrtac, vendar bistveno manj kot spodaj na urav­nanem Vrepolju pri Volcah, na slemenu pa sta dve vecji vrtaci. Lahko bi torej dejali, da so red-ke vrtace na jugozahodnem pobocju preostanek vecjih vrtac, ki so obstajale pred dvigom. Pas ob Volcah in navzdol proti Košanskemu hribu je kultiviran in ni primeren za primerjavo. Preko Ravnika se na severovzhodni strani Markiževe gore vlece niz vrtac, ki kaže na brezstropo jamo (1), konca se ob severovzhodnem pobocju z veli­ko udorno tvorbo podobno zatrepu (2). Ta pokri­va celotno severno pobocje in del grebena, kar pomeni, da je nastala po dvigu Markiževe gore in je verjetno posledica sekundarnih procesov, zato ne ruši predlagane interpretacije. Vremšcica in Selivec sta prakticno brez vecjih vrtac, obstajajo pa manjše, ki so na lidarju komaj zaznavne. Razmeroma enostavna razlaga pa je manj pre­pricljiva za Sopado za katero smo ugotovili, da ni nastala zaradi tektonskega dviga temvec za­radi selektivne korozije, saj je Sopado dolgo casa prekrival pokrov flišnih kamnin, katerega osta­nek je še viden ob Gabrškem prelomu v Brestovi­ci pri Povirju (sl. 15, profil B – B). Ce zanemari-mo udornico Petnjak nad Brestovico, preseneca ena velika vrtaca in nekaj manjših ter nizi vrtac v grapah. Vsi ti pojavi bi lahko nastali zaradi po­sebnih pogojev pri postopnem umikanju flišnega pokrova od slemena Sopade navzdol, vendar bi bilo treba to možnost še preuciti. Korelacija V coni povecane kompresije med crnokalsko anomalijo in Hrušico (sl. 11) so zaporedoma razvršcene naslednje strukturno-geomorfološke posebnosti: 1. deformirani severozahodni robovi deluvium, while the south-western slope is flatter with a few small dolines, but significantly fewer than further below, on the levelled Vrepolje field near Volce, and there are two larger dolines on the ridge. It could therefore be said that the rare dol­ines on the south-western slope are the remnants of larger dolines that existed before the uplift. The zone along Volce and down towards Mt. Košanski hrib is cultivated and not suitable for comparison. A series of dolines stretches across the Ravnik plane north of Mt. Markiževa gora and indicate an unroofed cave (1), ending on the north-eastern slope with a large collapse form similar to a steep-head (2). It covers the entire northern slope and part of the ridge, which means that it was formed after the uplift of Mt. Markiževa gora and is prob­ably the result of secondary processes, so it does not affect the proposed interpretation. Mt. Vremšcica and Mt. Selivec are practically free of larger dolines, but there are smaller ones that are barely detectable on the lidar. A relatively simple explanation, however, is less convincing for Mt. Sopada, which we found to have been formed not by tectonic uplift but by selective corrosion, as Mt. Sopada was covered by flysch rocks for a long time, so flysch remnants can still be seen next to the Gabrk Fault at the village of Brestovica pri Povirju (Fig. 15, profile B – B). Ig­noring the collapse doline Petnjak above Brestovica pri Povirju, one large and several smaller dolines and series of dolines in the ravines are surpris­ing. All these phenomena could have formed due to special conditions during the gradual retreat of the flysch cover from the Mt. Sopada ridge down, but such a possibility should still be studied. Correlation In the zone of increased compression between the Crni Kal Anomaly and Mt. Hrušica (Fig. 11), the following structural-geomorphological pecu­liarities are sequentially classified: 1. the deformed north-western edges of the Brkini Synclinorium and the Cicarija Anticlinorium, 2. the Škocjan structural bend, which represents the highest part of the NW-tilted levelled karst surface (Fig. 12), 3. transpressive Selivec and Vremšcica Anticlines (Fig. 15, profile B – B, profile C – C; Fig. 17) and 4. the Nanos part of the Nanos-Caven antiform, which has a larger amplitude than the Caven part. The interdependence of the described structur­al-geomorphological peculiarities is shown on the correlation diagram (Fig. 19), where their position on the common imaginary axis in the direction of N25° is given schematically. It is roughly per­pendicular to the local trend of the larger Dinaric Brkinskega sinklinorija in Cicarijskega antikli­norija, 2. škocjanski pregib, ki predstavlja naj­višji del proti NW nagnjene uravnave Krasa (sl. 12), 3. Selivška in Vremška transpresivna an-tiklinala (sl. 15, profil B – B, profil C – C; sl. 17) in 4. nanoški del nanoško-cavenske antiforme, ki ima vecjo amplitudo od cavenskega dela. So-odvisnost opisanih strukturno-geomorfoloških posebnosti je prikazana na korelacijskem di­agramu (sl. 19), kjer je shematsko podana nji­hova lega na skupni namišljeni osi v smeri 25°. Ta je približno pravokotna na tukajšnjo smer vecjih dinarskih struktur in poteka med hribom Zjat (449 m) na Kraškem robu nad Podpecjo in najvišjim vrhom Nanosa, Suhim vrhom (1313 m). V spodnjem delu diagrama je prika­zano vplivno obmocje crnokalske anomalije. Vse omenjene strukturno-geomorfološke poseb­nosti na korelacijskem diagramu ležijo v coni, ki je dolga okoli 40 km in široka okoli 10 km do 15 km. Zaradi prekrivanja strukturnih in geomorfoloških vrhuncev uvajamo namesto opisnega termina precnodinarska cona pove-cane kompresije med crnokalsko anomalij in Hrušico, skrajšani termin traverza Kraški rob structures and runs between Zjat hill (449 m) on the Kraški rob above the village of Podpec and the highest peak of Mt. Nanos, Mt. Suhi vrh (1313 m). The influence area of the Crni Kal Anomaly is shown in the lower part of the diagram. All of the mentioned structural-geomorpholog­ical features on the correlation diagram lie along a zone some 40 km long and 10 km to 15 km wide. Due to the overlap of structural and geomorpholog­ical peaks, instead of the descriptive term Trans­verse Dinaric zone of increased compression be­tween the Crni Kal Anomaly and Mt. Hrušica«, we introduce the abbreviated term Kraški rob – Hruši-ca Traverse. For the sake of simplified use, we re­placed the term Crni Kal Anomaly with the term Kraški rob (Žitko, 1990; Placer, 2007), with which it mainly overlaps (Fig. 11). The aforementioned zone of increased compression is not an exception within the Istra Pushed Area, as there is a dispro­portionately larger unit located in the hinterland of the South Istra Pushed Wedge. The Crni Kal Anomaly is a peculiarity, a special feature, which was the cause of the North Istra Extrusion Wedge formation. Without the discovery of the Crni Kal Anomaly and the zone of increased compression, we would not be able to explain the formation of Mt. Vremšcica and other structural-geomorpho­logical peculiarities in it, e.g. structural character­istics of the Škocjan Caves sinking area. The Kraški rob - Hrušica Traverse spatial­ly overlaps with the Senožce Folds Splitting Zone. The overlap is not accidental, as the Crni Kal Anomaly between the fronts of the Trieste -Komen and Cicarija Anticlinorium is an integral part of the Senožece Folds Splitting Zone. If we look at the problem from the point of view of space shortening, the folds splitting zone is more (de­formed) than the synclinorium and anticlinorium next to it (Fig. 9D), so the deformations are more pronounced in it. In this article, we did not deal with the defor­mation kinematics of the north-western edges of the Brkini Synclinorium and the Cicarija Anticli­norium, which is related to the Crni Kal Anomaly. The exposed position of the Ravnik Anticlinorium could also be the result of increased compression, as it lies in the traverse zone. There are still some problems, but the tectonic geomorphology of the Istra Pushed Area is still in its infancy. Formation of the North Istra Extrusion Wedge and South Istra Pushed Wedge The main cause of the formation of the North Istra Extrusion Wedge and the South Istra Pushed Wedge is the structure of the border area between - Hrušica. Izraz crnokalska anomalija smo za­radi poenostavljene rabe zamenjali s pokrajino Kraški rob (Žitko, 1990; Placer, 2007) s katero se v glavnem prekriva (sl. 11). Omenjena cona povecane kompresije ni izjema znotraj istrskega potisnega obmocja, saj se neprimerno vecja na­haja v zaledju konice južnoistrskega potisnega klina, posebnost je crnokalska anomalija, ki je bila vzrok za njen nastanek. Brez odkritja cr­nokalske anomalije in cone povecane kompre­sije ne bi mogli razložiti nastanka Vremšcice in drugih strukturno-geomorfoloških posebnosti v njej, npr. strukturnih znacilnosti ponornega ob-mocja Škocjanskih jam. Traverza Kraški rob - Hrušica se prostorsko prekriva s senožeško cono cepljenja gub. Prek­rivanje ni slucajno, saj je crnokalska anomalija med celoma Tržaško-Komenskega in Cicarij­skega antiklinorija sestavni del senožeške cone cepljenja gub. Ce gledamo na problem s strani krcenja prostora, je cona cepljenja gub bolj toga od sinklinorijev in antiklinorijev ob njej (sl. 9D), zato so deformacije tu povecane. V tem clanku se nismo ukvarjali s kinema­tiko deformacije severozahodnih robov Brkin­skega sinklinorija in Cicarijskega antiklinorija, ki je povezana s crnokalsko anomalijo. Tudi iz­postavljena lega Ravniškega antiklinorija bi lah­ko kazala na posledico povecane kompresije, saj leži v obmocju traverze. Problemov je še nekaj, vendar je tektonska geomorfologija istrskega po­tisnega obmocja šele v povojih. Nastanek severnoistrskega iztisnega in južnoistrskega potisnega klina Glavni vzrok nastanka severnoistrskega izti­snega klina in južnoistrskega potisnega klina je zgradba mejnega obmocja med Mikroadrijo in Dinaridi v Istri v katerem ima posebno vlogo cr­nokalska anomalija. Uvodoma si najprej oglejmo standardni horizontalni presek ene izmed manj­ših narivnih lusk, ki so sestavni del istrsko-fur­lanske narivno-podrivne cone (sl. 20). Vzorcna narivna luska je omejenega obsega. Njeno celo ima obliko loka, zato se bocno izklinja, premik ob narivni ploskvi je najvecji v njenem srednjem delu, kjer se razvije celna antiklinala, ki tone proti obema bokoma (sl. 20A), lahko pa se pla­sti preprosto naslanjajo na narivno ploskev brez izrazite celne antiklinale (sl. 20B). Med nariva­njem so zgornje luske s svojo težo izzvale nasta­nek spodnjih lusk, tako da se je izoblikoval splet lusk, ki je prikazan na sl. 20C. Iz tega sledi, da ležijo mlajše luske pod starejšimi. Taka zgrad­ba je znacilna za cicarijski del istrsko-furlanske Microadria and the Dinarides in Istra, in which the Crni Kal Anomaly plays a special role. As an intro­duction, let us first take a look at the standard hori­ zontal section of one of the smaller duplexes that are an integral part of the Istra-Friuli Thrust-Under-thrust Zone (Fig. 20). The sample thrust duplex is limited in scope. Its front has the shape of an arch, so it curves laterally, and the offset along the thrust plane is largest in its central part, where a fron­ tal anticline develops and its axis (gently) plunges towards both flanks (Fig. 20A), but the layers can simply rest on the thrust plane without a distinct frontal anticline (Fig. 20B). During thrusting, the upper duplexes provoked the formation of the low­er scales with their weight, so that the scales-like network of duplexes was formed, which is shown in Fig. 20C. It follows that the younger scales lie below the older ones. Such a structure is typical for the Cicarija part of the Istra-Friuli Thrust-Underthrust Zone. The frontal anticlines (the duplex cores) are from the oldest layers that come to the surface, in our case Paleogene limestone. The formation of the North Istra and South Is-tra Structural Wedges and their dynamic versions is shown schematically in Figure 21 in four sketch­es A, B, C and D. The first three show what hap­pened in the Paleogene, the last one in the Neo­gene, which extended into the recent period. Figure 21A shows the Trieste-Komen and Cicarija frontal Anticlines in the initial stage of the formation of the Trieste-Komen and Cicarija Anticlines. The two frontal anticlines had already shifted in the beginning, which is described in the chapter on thestructure of the External Dinaric Imbricated Belt. Figure 21B shows the beginning of the devel­opment of a single thrust zone, when two anticli­noria formed from the two anticlines. From the present-day structure it can be concluded that there was no direct connection between the fron­tal thrusts of the two offset folds, but that a series of thrust duplexes of monotonous structure was formed between them, in which the north-west­ern edges of the frontal anticlines of the Paleogene limestone were arranged in an echelon series. In the figure, the situation is simplified, whereby a situation developed where the envelope of the north-western flanks of the Paleogene limestone frontal anticlines was linear in two-dimension­al space, and the subvertical plane or enveloping plane »E« in three-dimensional space. The spatial arrangement of frontal anticlines from Paleogene limestone can be compared to a stack of firewood, where the sawn surfaces of individual logs create a constructed plane. That this is possible is shown Sl. 20. Geometrija luskanja: A. Idealna narivna luska, varianta s celno antiklinalo. B. Idealna narivna luska, varianta brez celne an-tiklinale. C. Narivna cona iz narivnih lusk. 1 Carbonates / karbonati 2 Flysch / fliš 3 Thrust plane / narivna ploskev 4 Overturned Anticline / prevrnjena antiklinala 5 Bedding: normal, inverse / plasti: normalne, inverzne narivno-podrivne cone. Celne antiklinale so iz najstarejših plasti, ki izdanjajo na površje, v na­ šem primeru je to paleogenski apnenec. Nastanek severnoistrskega in južnoistrskega strukturnega klina ter njunih dinamskih izve­denk je shematsko prikazan na sliki 21 v skicah A, B, C in D, prve tri kažejo dogajanje v pale-ogenu, zadnja v neogenu, ki se je podaljšalo v recentno obdobje. Na sliki 21A sta narisani Tržaško-Komenska in Cicarijska celna antiklinala v zacetni fazi na­stajanja Tržaško-Komenskega in Cicarijskega antiklinorija. Celni antiklinali sta bili zamaknje­ni že v zacetku, kar je opisano pri zgradbi Zuna­njedinarskega naluskanega pasu. in the structural diagram in Figure 6. Therefore, a special type of building was created, for which we proposed the term composite building. Figure 21C shows the further development of the thrust structure. Erosion thrusts developed in front of the thrust zone front, such as the Iso-la Thrust, which initiated the formation of inter­layer thrust surfaces in the flysch (Fig. 8). As the last thrust unit of the Dinarides in this area, the reverse Buje Fault, or the Buje Thrust Sheet, was formed, which has all the characteristics of the ini­tial thrust unit, except that it is larger (Fig. 20). Five structural features indicate this: 1. The Savudrija-Buzet Anticline is the fron­tal anticline of the Buje Thrust Sheet, whose car­bonate core is visible from the Savudrija penin­sula to the Mirna valley before Buzet, where the limestone is covered by flysch layers in such a way that is typical for the carbonate cores of the initial thrust scales frontal folds in Figures 20A and 20C. The Savudrija-Buzet Anticline continues from Savudrija towards the northwest in the Gulf of Trieste seabed (Carulli, 2011, Fig. 3). The anti­cline is also indicated by the geophysical profile in the WSW-ENE direction (Busetti et al., 2012, Fig. 2). Figures 21C shows its presumed position at the time of its formation in the Paleogene. 2. The steep position of the reverse Buje Fault corresponds to the initial stage of thrust develop­ ment. 3. Northeast verging reverse faults are visible in the cliff of the south-western coast of Strunjan Bay (Figs. 4A and 8). Judging by their position, they are related to the backthrusting in the hinter­ land of the Buje reverse Fault. 4. Thicker sub-horizontal layers of calcarenite are visible in the flysch cliff between Piran and Fiesa, i.e. in the uplifted block between the reverse Buje Fault and its backthrusts. Internal rotation is developed along the internal structures paral­ lel to lamination in these layers via interlayer slips (Placer et al., 2010, fig. 19). The slips of the hang­ing wall beds are directed in a southwestern di­ rection (Figs. 4A and 8). The data is not evidence of thrusting or underthrusting, but interlayer slip­ping could have been established only before the formation of the reverse Buje Fault and its back-thrusts. The reverse Buje Fault is therefore related to the Paleogene thrusting. An interlayer thrust was discovered in the sub-horizontal bedding of the transitional marl between Paleogene limestone and flysch in Izola, which is the apparent equiv­alent of interlayer offsets in the cliff between Pi- ran and Fiesa, which we named the Izola Thrust (Figs. 4A and 8). Na sliki 21B je viden pricetek razvoja enotne narivne cone, ko sta iz antiklinal nastala antikli­ norija. Iz današnje zgradbe je moc sklepati, da ni prišlo do neposredne povezave med celnima na­rivoma obeh zamaknjenih gub, temvec, da je med njima nastal niz narivnih lusk monotone zgrad-be, v katerih so se severozahodni robovi celnih antiklinal iz paleogenskega apnenca razporedili v ešalonski niz. Na sliki so razmere poenostavlje­ne, razvilo se je stanje, ko je ovojnica (envelopa) severozahodnih bokov celnih antiklinal iz pale-ogenskega apnenca bila v dvodimenzionalnem prostoru lineara, v tridimenzionalnem prostoru pa subvertikalna planara ali ovojna ravnina (en­velopna ravnina) »E«. Prostorsko razporeditev celnih antiklinal iz paleogenskega apnenca lahko primerjamo s skladovnico drv, kjer žagane plo­skve posameznih polen ustvarjajo konstruirano ravnino. Da je to mogoce je pokazano na struk­turnem diagramu na sliki 6. Nastal je torej pose-ben tip zgradbe za katerega smo predlagali ter-min zložbena zgradba. Na sliki 21C je prikazan nadaljnji razvoj na­rivne zgradbe. V predcelju narivne cone so se razvili erozijski narivi, kot npr. Izolski nariv, ki so injicirali nastanek medplastnih narivnih ploskev v flišu (sl. 8). Kot zadnja narivna enota Dinaridov na tem prostoru je nastal Bujski re-verzni prelom, oziroma Bujska narivna luska, ki ima vse znacilnosti inicialne narivne enote, le da je velikih dimenzij (sl. 20). Na to kaže pet struk­turnih znacilnosti: 1. Savudrijsko-Buzetska antiklinala je celna antiklinala Bujske narivne luske, njeno karbo­natno jedro je vidno od Savudrijskega polotoka do doline Mirne pred Buzetom, kjer karbonat prekrijejo flišne plasti na tak nacin, kot je zna-cilno za karbonatna jedra celnih gub inicialnih narivnih lusk na sliki 20A in 20C. Savudrijsko--Buzetska antiklinala se od Savudrije proti seve­rozahodu nadaljuje v podmorju Tržaškega zaliva (Carulli, 2011, sl. 3). Na antiklinalo kaže tudi ge­ofizikalni profil v smeri WSW – ENE (Busetti et al., 2012, sl. 2). Na sliki 21C je prikazana njena domnevna lega ob nastanku v paleogenu. 2. Strmi vpad Bujskega reverznega preloma ustreza inicialnemu stadiju razvoja nariva. 3. V klifu jugozahodne obale Strunjanskega zaliva so vidni reverzni prelomi, ki vergirajo proti severovzhodu (sl. 4A in sl. 8). Po prostorski legi sodec, kažejo na povratno narivanje v zaled­ju Bujskega reverznega preloma. 4. V flišnem klifu med Piranom in Fieso, to-rej v dvignjeni grudi med Bujskim reverznim prelomom in njegovimi povratnimi narivi, so E Sl. 21. Nastanek crnokalske anomalije, severnoistrskega iztisnega klina in južnoistrskega potisnega klina. 5. Folds are developed in the flysch between the reverse Buje Fault backthrusts and the Križ Thrust (Figs. 4A and 8). The Križ Thrust is a Paleogene structure associated with the interlayer Izola Thrust which represents an example of the interweaving of subhorizontal thrust planes in the flysch and inter­layer thrust planes. The vergence of the folds in the intermediate space between the reverse Buje Fault backthrusts and the Križ Thrust is mirror-like. In this case, the symmetry is not evidence of simultaneous formation, but indicates that the older folds were formed together with the Križ Thrust. Later, when the reverse Buje Fault backthrusts were formed, the folds that create the impression of symmetry were also formed. A broader explanation is given in the description of Figure 8. The Buje Thrust Sheet did not develop into a nappe thrust with a large offset along a subhori­ zontal or gently sloping thrust plane but remained as its aborted unit at the end of the Dinarides thrust. Its extreme south-eastern part is today the vidne debelejše subhorizontalne plasti apneceve­ga pešcenjaka. V njih je po internih strukturah vzporednih laminam, razvita interna rotacija, ki je nastala zaradi medplastnih zdrsov (Placer et al., 2010, sl. 19). Zdrsi krovninskih slojev so usmerjeni proti jugozahodu (sl. 4A in 8). Poda­tek ni dokaz za narivanje ali podrivanje, toda medplastno drsenje se je lahko uveljavilo samo pred nastankom Bujskega reverznega preloma in njegovih povratnih narivov. Povezujemo ga torej s paleogenskim narivanjem. V Izoli je bil v subho­rizontalnih plasteh prehodnega laporja med pale-ogenskim apnencem in flišem odkrit medplastni nariv, ki je pojavni ekvivalent medplastnih pre­mikov v klifu med Piranom in Fieso, imenovali smo ga Izolski nariv (sl. 4A in 8). 5.Med povratnimi narivi Bujskega reverznega preloma in Križnim narivnim prelomom so v flišu razvite gube (sl. 4A in 8). Križni narivni prelom je paleogenska struktura, povezujemo ga z Izolskim medplastnim narivnim prelomom, ki predstavlja Paleogene thrusting: A. Formation of shifted primal anticlines of the Trieste-Komen and Cicarija Anticlinoria and frontal reverse faults. B. Anticlines develop into anticlinoria. A jump of movements from the frontal thrust of the Cicarija Anticlinorium to the frontal thrust of the Trieste-Komen Anticlinorium is formed via an echelon set of reverse faults. A stacked structure is formed (updated after Placer et al., 2010, Fig. 25 A). A composite building is created. C. A segmented thrust zone is finally formed, the Buje Thrust Sheet is formed, which is the last (the most external) unit of the thrust structure of this part of the Dinarides with reverse Buje Fault in its front. The South Istra and North Istra Structural Wedges are formed (updated after Placer et al., 2010, Fig. 25 B). Paleogensko narivanje: A. Nastanek zamaknjenih izvornih antiklinal Tržaško-Komenskega in Cicarijskega antiklinorija ter celnih reverznih prelomov. B. Iz antiklinal se razvijeta antiklinorija. Oblikuje se preskok premikov s celnega nariva Cicarijskega antiklinorija na celni nariv Tržaško-Komenskega antiklinorija preko ešalonskega niza reverznih prelomov. Nastane zložbena zgradba (dopolnjeno po Placer et al., 2010, sl. 25 A). C. Dokoncno se oblikuje segmentirana narivna cona, nastane Bujska narivna luska, ki je zadnja enota narivne zgradbe tega dela Dinaridov. V njenem celu Bujski reverzni prelom. Nastaneta južnoistrski in severniostrski strukturni klin (dopolnjeno po Placer et al., 2010, sl. 25 B). Neogene underthrusting and pushing: D. Formation of the South Istra Pushed and North Istra Extrusion Wedges. Neogensko podrivanje in potiskanje: D. Nastanek južnoistrskega potisnega in severnoistrskega iztisnega klina. 1 The segmented Microadria strike-slip faults: SF – Sisitiana Fault, KF - Kvarner Fault / zmicni prelom segmentirane Mikroadrije: SF – Sesljanski prelom, KF – Kvarnerski prelom 2 Subsided fault block / ugreznjeno prelomno krilo 3 Paleogene thrust, reverse fault: BT – Buzet Thrust, BuF – reverse Buje Fault / paleogenski nariv, reverzni prelom: BT – Buzetski nariv, BuF – Bujski reverzni prelom 4 Paleogene thrust zone / paleogenska narivna cona 5 Neogene-recent Istra-Friuli Thrust-Underthrust Zone / neogensko-recentna istrsko-furlansla narivno-podrivna cona 6 Lateral slipping along primary thrust surfaces, along reverse faults and along envelope faults in the Crni Kal Anomaly / zmikanje po pri­ marnih narivnih ploskvah, po reverznih prelomih in po ovojnih ali envelopnih prelomih v crnokalski anomaliji 7 Anticlines: TKA – Trieste-Komen Anticline, CA – Cicarija Anticline, LA –Lim Anticline, a flanking asymetric fold along the Kvarner Fault (LA1 – axis in the axial plane, LA2 – axis in one of the bisector planes) / antiklinale: TKA – Tržaško-Komenska antiklinala, CA – Cicarijska antiklinala, LA – Limska antiklinala, obprelomna asimetricna guba ob Kvarnerskem prelomu (LA1 – os v osni ravnini, LA2 – os v eni izmed simetralnih ravnin) 8 Anticlinoria: TKAm – Trieste-Komen Anticlinorium, CAm – Cicarija Anticlinorium / antiklinoriji: TKAm – Tržaško-Komenski an-tiklinorij, CAm – Cicarijski antiklinorij 9 Geological boundary, dip direction / geološka meja, smer vpada 10 Stacked structure / zložbena zgradba 11 Rellative offset direction / smer relativnega premikanja bloka 12 North Istra Extrusion Wedge extrusion boundary / meja izrivanja severnoistrskega iztisnega klina. North Istra Structural Wedge. We assume that Mi-croadria was already segmented in the Paleogene. This is indicated by the absence of the Oligocene in Istra, which is very likely related to the post-thrust uplift of Istra along the Kvarner Fault. From the above data, it follows that the South Istra Struc­ tural Wedge was also formed in the Paleogene. In the Neogene, the movement of Istra, or rath­er this part of Microadria, towards the Dinarides began, which resulted in the development of push­ing and underthrusting structures. The origin and direction of the deformations now change radically and run in the opposite direction of thrusting. In this process, the segmented Microadria faults also came to life, the most important of which are the Kvarner Fault and the Sistiana Fault in the terri­tory under consideration, between which lies the Istra block. Structural mapping of the selected ar­eas showed that the degree of thrusting and under-thrusting of the Istra block increases from north­west to southeast, which is illustrated by the degree of tectonization of the Istra-Friuli Thrust-Under-thrust Zone. This movement is smaller in the area of the Trieste parallelepiped, larger in the area of the North Istra Extrusion Wedge, and largest in the tip of the South Istra Pushed Wedge. Pushing and underthrusting is reflected in the formation of »pushed« reverse faults and in the folding of Pa­leogene thrust units. Both caused the uplift of the Kraški rob and the deformation of the Dinarides. The mechanism of folding and uplift of the Di-narides due to underthrusting and pushing of the Microadria has not yet been described in detail. Sketch D (Fig. 21D) shows the hypothesis of the formation of the South Istra Pushed and North Istra Extrusion Wedges and envelope faults in the area of the Crni Kal Anomaly. The arcuate shape of the reverse Buje Fault trace and the resulting wedge-shaped south-eastern block should therefore have been designed already in the Paleogene (Fig. 21C). The Neogene movement of the Istra block towards the Dinarides provoked the development of the left-lateral strike-slip Sistiana and right-lateral strike-slip Kvarner Flexural Zones and the formation of pushed and underthrust zones. Within the Is-tra block itself, the wedge-shaped south-eastern part of the Buje Thrust Sheet provoked an extru­sion process that did not follow the disjunctive boundaries of the wedge. Its south-western margin slipped along the newly formed strike-slip Zam­bratija Zone at the head of the Buje Thrust Sheet, while its north-eastern margin slipped along the newly formed dextral strike-slip zone in the envel­oping plane of the Crni Kal Anomaly. The graphic in Figure 21D is a rough schematic of the reverse primer prepletanja položnih narivnih ploskev v flišu in medplastnih narivnih ploskev. Vergenca gub v vmesnem prostoru med povratnimi narivi Bujskega reverznega preloma in Križnim nariv­nim prelomom, je zrcalna. Simetrija v tem prime-ru ni znak hkratnega nastanka, temvec kaže na to, da so starejše gube nastale skupaj s Križnim narivom, ob nastanku povratnih reverznih pre­lomov Bujskega reverznega preloma, pa so zatem nastale tudi gube, ki ustvarjajo podobo simetrije. Pri opisu sliki 8 je podana širša razlaga. Bujska narivna luska se ni razvila v krovni nariv z daljšim premikom in položnejšim vpa­dom, temvec je ob zakljucku narivanja Dinaridov ostala kot njihova abortirana enota. Njen skrajni jugovzhodni del predstavlja danes severnoistr-ski strukturni klin. Predpostavljamo, da je bila Mikroadrija v paleogenu že segmentirana, na to kaže odsotnost oligocena v Istri, kar je zelo verjetno povezano s postnarivnim dvigom Istre ob Kvarnerskem prelomu. Iz naštetih podatkov izhaja, da je bil v paleogenu zasnovan tudi juž­noistrski strukturni klin. V neogenu se je pricelo premikanje Istre, ozi­roma tega dela Mikroadrije, proti Dinaridom, v katerih so se zaradi tega razvile strukture po­tiskanja in podrivanja. Izvor in smer deforma­cij se sedaj radikalno spremenita in potekata v nasprotni smeri narivanja. V tem procesu oži­vijo tudi prelomi segmentirane Mikroadrije, pomembnejša med njimi sta na obravnavanem ozemlju Kvarnerski in Sesljanski prelom med katerima leži istrski blok. Strukturno kartiranje izbranih obmocij je pokazalo, da se stopnja poti­skanja in podrivanja istrskega bloka povecuje od severozahoda proti jugovzhodu. To se najlepše vidi v stopnji porušenosti istrsko-furlanske na­rivno-podrivne cone. Na obmocju tržaškega pa-ralelepipeda je manjša, na obmocju severnoistr­skega iztisnega klina vecja, najvecja na obmocju konice južnoistrskega potisnega klina. Potiska­nje in podrivanje se odraža v nastajanju potisnih reverznih prelomov in v gubanju paleogenskih narivnih enot. Oboje je povzrocilo dvig kraškega roba in deformacijo Dinaridov. Mehanizem gu­banja in dviganja Dinaridov zaradi podrivanja in potiskanja Mikroadrije še ni bil podrobneje opisan. Na skici D (sl. 21D) je podana hipoteza na­stanka južnoistrskega potisnega in severnois­trskega iztisnega klina ter ovojnih ali envelo­pnih prelomov v obmocju crnokalske anomalije. Locna oblika Bujskega reverznega preloma in iz tega izhajajoca klinasta oblika njegovega jugo­vzhodnega boka, naj bi bila torej zasnovana že v Buje Fault area, so it also appears in Figure 22. The formation of the South Istra Pushed Wedge is therefore the result of the movement of the North Istra Extrusion Wedge. The amount of displace­ment along the edges of the North Istra Extrusion Wedge is the same, but it is asymmetric along the edges of the South Istra Pushed Wedge; along the strike-slip Zambratija Zone it is equal to the dis­placement of the North Istra Extrusion Wedge and is relatively small, while it is incomparably larger along the strike-slip Kvarner Fault. This is exter­nally reflected in the formation of the extensive sigmoidal structure of the Kvarner Flexural Zone and the asymmetric Lim Anticline. The dynamics of this process are also confirmed by recent GNSS (Global Navigation Satellite System) data, according to which the part representing the South Istra Pushed Wedge is moving north-north­east, i.e. parallel to the Kvarner Fault (Brancolini et al., 2019, fig. 1). A large asymmetrical anticlinal fold, called the Lim Anticline, developed along the Kvarner Fault. Its asymmetrical structure is pre­sented in Fig. 21D, sketch a; the axis in the axial plane is marked as LA1; and the axis in one of the symmetry planes is marked as LA2, and there are as many of these as there are layers. Due to a gentle bedding dip it is easy to determine anticline axis on the geological map only in the symmetry plane of the unconformity between the Eocene carbonates and clastites (Fig. 21D, fold LA2; Fig. 2), while the axis of the LA1 axial plane can only be construct­ed. When interpreting the current shape of the Lim Anticline it is also necessary to take into account the deformation due to movement along the left-lat­eral strike-slip Zambratija Zone. The Lim Anticline shape (Figs. 2 and 3) is therefore a combination of a flanking fold along the right-lateral strike-slip Kvarner Zone and the left-lateral strike-slip Zam­bratija Zone. By describing the role of the reverse Buje Fault, or the Buje Thrust Sheet it is, in the dynamic scheme of Istra, possible to answer the question of where the border of the Dinarides lies northwest of the Kvarner Fault. Formally, it would lie along the reverse Buje Fault, which is the most distal thrust of the Dinarides which, however, did not experience its full development. Which is why the Buje Thrust Sheet became a part of Microadria in the process of its underthrusting. Thus, the formal thrust bound­ary of the Dinarides in eastern Istra represents the south-western or external edge of the Istra-Friuli Thrust-Underthrust Zone, and in the area of the Gulf of Trieste its north-eastern or inner edge. The Kvarner Fault extends to the external edge, the Sistiana Fault to the internal edge, and with this the paleogenu (sl. 21C). Neogensko premikanje istr­skega bloka proti Dinaridom je izzvalo razvoj sesljanske levozmicne in kvarnerske desnoz­micne upogibne cone ter nastajanje potisne in podrivne cone. Znotraj samega bloka je klinasta oblika jugovzhodnega dela Bujske narivne luske izzvala proces iztiskanja, ki pa ni sledil disjun­ ktivnim mejam klina. Njegov jugozahodni rob je zdrsel po novonastali zambratijski levozmicni coni ob celu Bujske narivne luske, severovzho­dni rob pa po novonastali desnožnicni coni v envelopni ravnini crnokalske anomalije. Grafi­ka na sl. 21D je v obmocju Bujskega reverznega preloma grobo shematska, tako je tudi na sl. 22. Nastanek južnoistrskega potisnega klina je torej posledica premika severnoistrskega iztisnega klina. Velikost premika ob robovih severnoistr­skega iztisnega klina je enaka, ob robovih južno­istrskega potisnega klina pa je asimetricna; ob zambratijski levozmicni coni je enaka premiku severnoistrskega iztisnega klina in sorazmerno majhna, ob Kvarnerskem desnozmicnem prelo-mu pa neprimerljivo vecja. Ta se navzven odraža v nastanku obsežne sigmoidalne zgradbe kvar­nerske upogibne cone in Limske asimetricne obprelomne antiklinale. Dinamiko tega procesa potrjujejo tudi recen­tni podatki GNSS (Global Navigation Satellite System) po katerih se del, ki predstavlja južno­istrski potisni klin, premika proti severo-seve­rovzhodu, torej vzporedno s Kvarnerskim prelo-mom (Brancolini et al., 2019, sl. 1). Razvila se je obsežna obprelomna guba, oziroma obprelomna antiklinala, ki smo jo poimenovali Limska. Nje­na zgradba je asimetricna (sl. 21D, skica a), os v osni ravnini je oznacena z LA1, os v eni izmed simetrijskih ravnin pa z LA2, teh je toliko koli­kor je plasti. Na površinski karti Istre je zaradi blagega vpada plasti mogoce hitro in enostavno dolociti le os v simetralni ravnini diskordancne­ga stika med eocenskimi karbonati in eocenski-mi klastiti (sl. 21D, guba LA2; sl. 2), medtem ko je mogoce os osne ravnine LAl le konstruirati. Pri razlagi sedanje oblike gube pa je potrebno upoštevati tudi deformacijo zaradi premika ob zambratijski levozmicni coni, Limska antiklina-la na slikah 2 in 3 je torej kombinacija obpre­lomne gube ob kvarnerski desnozmicni coni in zambratijski levozmicni coni. Z opisom vloge Bujskega reverznega preloma, oziroma Bujske narivne luske, v dinamicni she-mi Istre, je mogoce dati odgovor na vprašanje, kje poteka meja Dinaridov severozahodno od Kvarnerskega preloma. Formalno po Bujskem reverznem prelomu, ki je skrajni zunanji nariv Crni Kal Anomaly acquires a meaning that must be investigated from other aspects as well, e.g. sedi­mentological. At the moment, we can only suggest that the informal and temporary boundary between the Dinarides and the Adriatic promontory runs along the Crni Kal Anomaly. Considering the offset between the Tri-este-Komen and the Cicarija Anticlinoria, which caused the Crni Kal Anomaly, we believe that the Istra-Friuli Thrust-Underthrust Zone is only so wide in the Istra block. The Zone should therefore be narrower northwest of the Sistiana Fault, but this aspect has not yet been investigated. Dynamic model A structural geometry of the Istra block and the south-western part of the Istra Pushed Area sketch is presented in Figure 22. At first glance, the re­lation between the autochthon (sensu stricto and sensu lato), that is, Microadria, and the Dinarides is noticeable. The only original deformations of the autochthon sensu stricto are the Sistiana and Kvarner Faults, both of which lie transversely to Dinaridov, vendar ta ni doživel popolnega ra­zvoja. Zato je Bujska narivna luska v procesu podrivanja Mikroadrije postala njen aktivni del. Tako predstavlja formalno narivno mejo Dinari­dov v vzhodni Istri jugozahodni ali zunanji rob istrsko-furlanske narivno podrivne cone, na ob- mocju Tržaškega zaliva pa njen severovzhodni ali notranji rob. Kvarnerski prelom sega do zu­nanjega roba, Sesljanski prelom do notranjega roba, s tem pa dobi crnokalska anomalija pomen, ki ga je treba raziskati tudi z drugih vidikov, npr. sedimentološkega. V tem trenutku lahko le predlagamo, da poteka neformalna in zacasna meja med Dinaridi in jadranskim predgorjem po crnokalski anomaliji. Glede na zamik med Tržaško-Komenskim in Cicarijskim antiklinorijem, zaradi katerega je nastala crnokalska anomalija, menimo, da je istrsko-furlanska narivno-podrivna cona tako široka le na obmocju istrskega bloka. Severoza­hodno od Sesljanskega preloma naj bi bila torej ožja, vendar je v tem smislu še neobdelana. Fig. 22. Dynamic model of the Kraški rob - Hrušica Traverse formation. Sl. 22. Dinamski model nastanka traverze Kraški rob - Hrušica. 1 Thrusting classification: autochthon sensu stricto, autochthon sensu lato, allochthon / narivna razclenitev: avtohton sensu stricto, avtoht-on sensu lato, alohton 2 External Dinaric Thrust Belt boundary / meja Zunanjedinarskega narivnega pasu 3 A thrust (plane) in the External Dinaric thrust boundary zone: BuF – reverse Buje Fault, BT – Buzet Thrust / nariv v coni narivne meje Dinaridov: BuF – Bujski reverzni prelom, BT – Buzetski narivni prelom 4 Istra-Friuli Thrust-Underthrust Zone / istrsko-furlanska narivno-podrivna cona 5 Crni Kal Anomaly, the informal boundary between autochthon sensu lato and allochthon / crnokalska anomalija, neformalna meja avtoht­ ona sensu lato in alohtona 6 The segmented Microadria strike-slip faults: SF – Sistiana Fault, KF – Kvarner Fault / zmicni prelom segmentirane Mikroadrije: SF – Sesljanski prelom, KF – Kvarnerski prelom 7 Secondary subsided block of the Kvarner Fault / sekundarno ugreznjeno krilo Kvarnerskega preloma 8 Right lateral strike-slip longitudinal faults: RF – Raša Fault, IF – Idrija Fault / dinarski desnozmicni longitudinalni prelom: RF – Raški prelom, IF – Idrijski prelom 9 Direction of secondary strike-slip movement / smer sekundarnega zmikanja 10 Axis of the flexural zone and the inferred position of the Sistiana and Kvarner Faults beneath nappe units of the External Dinarides: SFZ – Sistiana Flexural Zone, KFZ – Kvarner Flexural Zone / os upogibne cone in domnevna lega Sesljanskega in Kvarnerskega preloma pod narivnimi enotami Zunanjih Dinaridov: SFZ – sesljanska upogibna cona, KFZ – kvarnerska upogibna cona 11 Anticline: LA2 – Lim Anticline (axis in one of the bisector planes), SbA – Savudrija- Buzet Anticline, ViA – East Istra Anticline / 11 antiklinala: LA2 – Limska antiklinala (os po eni od simetralnih ravnin), SbA – Savudrijsko-Buzetska antiklinala, ViA – vzhodnoistrska antiklinala 12 Anticlinorium, synclinorium: a – Trieste-Komen Anticlinorium, b – Cicarija Anticlinorium, c – Ravnik Anticlinorium, d – Vipava Syn-clinorium, e – Brkini Synclinorium / 12 antiklinorij, sinklinorij: a – Tržaško-Komenski antiklinorij, b – Cicarijski antiklinorij, c – Ravniški antiklinorij, d – Vipavski sinklinorij, e – Brkinski sinklinorij 13 Area of the Kraški rob - Hrušica Traverse / obmocje traverze Kraški rob - Hrušica 14 Structural-geomorphological trajectory / strukturno-geomorfološka trajektorija 15 North Istra Extrusion Wedge limit of extrusion / meja izrivanja severnoistrskega iztisnega klina 16 External boundary of the Mesozoic carbonate platform / zunanja meja mezozojske karbonatne platforme 17 Relative direction of movement of the South Istra Pushed and North Istra Extrusion Wedges / relativna smer premikanja južnoistrskega potisnega in severnoistrskega iztisnega klina 18 Exposed peaks: SV– Mt. Suhi vrh (1313 m), V – Mt. Vremšcica (1027 m), A – Mt. Ajdovšcina (804 m) and Mt. Artviže (817 m), S – Mt. Slavnik (1028 m), U – Mt. Ucka (1394 m), VP – Mt. Veliki Planik (1272 m), G – Mt. Gomila (1241 m), VS – Mt. Veliki Snežnik (1796 m) / izpostavljeni vrhovi: SV – Suhi vrh (1313 m), V – Vremšcica (1027 m), A – Ajdovšcina (804 m) in Artviže (817 m), S – Slavnik (1028 m), U – Ucka (1394 m), VP – Veliki Planik (1272 m), G – Gomila (1241 m), VS – Veliki Snežnik (1796 m). SFZ SV V A VS BuF S G VP U ViA KFZ 0 10 20 km KFZ the Dinarides, while the reverse Buje Fault, or rather the Buje Thrust Sheet, is part of the Dinaric thrust structure, which became part of the autoch-ton (sensu lato) in the Neogene-recent pushing and subthrusting phase of the Microadria towards the Dinarides. The Sistiana and Kvarner Faults do not intersect the Dinarides, but only extend to the Istra-Friuli Thrust-Undrerthrust Zone. The Sisti­ana and Kvarner Flexural Zones have developed in their extensions in the Dinarides. The first is sim­pler and weaker, but can be followed on a digital relief model at least 50 km into the Dinarides. The second one is considerably stronger and forms an extensive flexural zone of sigmoidal shape, but its extent in the Dinarides is difficult to determine. According to a rough estimate, it extends at least 70 km to 80 km into the Dinarides. In its exten­sion, the Idrija Fault is not bent in the same way as in the extension of the Sistiana Flexural Zone. Discussion of this issue is beyond the scope of this article; here it is sufficient to explain that the Idri­ja Fault is segmented in the area of the karst fields southeast of Mt. Hrušica and in this sense has not yet been investigated in detail, therefore its trace in Figures 1 and 22 is drawn dashed. The course of the Sistiana Fault in the Gulf of Tri­este is not clear. Carulli (2011, fig. 3) hypothetically stretched it from Sistiana Bay towards the south­west, based on the structural map of the contact be­tween the carbonates and the flysch in the subsea of the Gulf of Trieste, which is based on the geophys­ical profiles. Carulli (2011) was guided by a saddle in the hinge of the Savudrija-Buzet Anticline exten­sion drawn on the structural map. Determination of the Sistiana Flexural Zone in the External Dinarides to 60–56° (Placer et al., 2021b) offered a hypothet­ical possibility that the fault trace runs along the north-western edge of the extension of the Savudri-ja-Buzet Anticline, where Carulli (ib.) assumed the Aquilea Fault. According to this variant, there is a possibility that the Sistiana Fault runs from Sistiana Bay towards the west-southwest to the mentioned edge of the Savudrija-Buzet Anticline and continues along the south-western slope of the Friuli Mesozo­ic Carbonate Platform in the Lignano area. Such an interpretation could also mean that the previously uniform Mesozoic carbonate platform margin was cut along the Sistiana Fault, and its south-south­eastern part was moved together with the Istra block towards the Dinarides. In our opinion, the Aq­uileia Fault does not exist; the structural anomaly on the north-western margin of the Trieste-Komen Anticlinorium, to which Carulli linked the Aquil­eia Fault, is, according to our yet unpublished re­search, similar to the structural anomaly between Dinamski model Na sliki 22 je skicirana strukturna geometrija istrskega bloka in jugozahodni del istrskega po­tisnega obmocja. Že na prvi pogled je opaziti po­vezavo med avtohtonom (sensu stricto in sensu lato), torej Mikroadrijo in Dinaridi. Izvorni de­formaciji avtohtona sensu stricto sta le Sesljan-ski in Kvarnerski prelom, oba ležita precno na Dinaride, medtem ko je Bujski reverzni prelom, oziroma Bujska narivna luska, del dinarske na­rivne zgradbe, ki pa je v fazi neogensko-recen­tnega potiskanja in podrivanja Mikroadrije proti Dinaridom, postala del avtohtona (sensu lato). Sesljanski in Kvarnerski prelom ne sekata Di-naridov, temvec segata le do istrsko-furlanske narivno-podrivne cone, v Dinaridih sta se v nju­nih podaljških razvili sesljanska in kvarnerska upogibna cona. Prva je enostavnejša in šibkejša, vendar jo je mogoce na digitalnem modelu reliefa slediti vsaj 50 km v notranjost Dinaridov. Druga je bistveno mocnejša in tvori obsežno upogibno cono sigmoidalne oblike, ki pa ji je težko dolociti doseg v Dinaridih. Po grobi oceni sega vanje vsaj 70 km do 80 km. V njenem podaljšku Idrijski prelom ni upognjen tako kot v podaljšku sesljan­ske upogibne cone. Razprava o tem vprašanju presega okvir tega clanka, tu zadostuje pojasni-lo, da je Idrijski prelom na obmocju kraških polj jugovzhodno od Hrušice segmentiran in v tem smislu še ni detajlno raziskan, zato je njegova trasa na slikah 1 in 22 narisana crtkano. Potek Sesljanskega preloma v Tržaškem zali­vu ni jasen. Carulli (2011, sl. 3) ga je na podlagi strukturne karte stika med karbonati v podla­gi in flišem v podmorju Tržaškega zaliva, ki je bila izdelana s pomocjo geofizikalnih profilov, hipoteticno potegnil od Sesljanskega zaliva pro-ti jugozahodu. Za vodilo mu je služilo sedlo v temenu podaljška Savudrijsko-Buzetske antikli­nale, ki se je izrisala na strukturni karti. Potem, ko je bila dolocena smer sesljanske upogibne cone v Zunanjih Dinaridih, ki znaša okoli 60° do 65° (Placer et al., 2021b), se je ponudila hipo­teticna možnost, da poteka po severozahodnem robu podaljška Savudrijsko-Buzetske antiklina­le, kjer je Carulli (ib.) domneval Oglejski pre­lom. Po tej varianti obstaja možnost, da poteka Sesljanski prelom od Sesljanskega zaliva proti zahodu-jugozahodu do omenjenega roba Savu­drijsko-Buzetske antiklinale in se nadaljuje po jugozahodnem pobocju Furlanske mezozojske karbonatne platforme na obmocju Lignana (Lignano). Taka interpretacija pa bi lahko tudi pomenila, da je bil ob Sesljanskem prelomu prej enotni rob mezozojske karbonatne platforme the Cicarija and Trieste-Komen Anticlinorium in the Val Glinšcica/Rosandra area, only that the Tri-este-Komen Anticlinorium meets a similar unit in the northwest, which is covered by fluvial deposits on the Friuli Plain. If the proposed interpretation of the Sistiana Fault trace turns out to be correct, it could represent the agreed boundary between the Adriatic and Friuli Mesozoic Carbonate Platforms. This assumption is supported by the consistency of the strike-slip direction along the Sistiana Flexural Zone and along the proposed route of the Sistiana Fault. The offset in both cases is left-lateral. The as­sumption that the Sistiana Fault has not been active recently (Placer et al., 2021b) speaks only in favour of the proposed hypothesis. The location of the Kvarner Fault in the Adriat­ic Sea subsea was well determined by Špelic et al. (2021). At the same time, we must draw attention to the subsided block of the Microadria on the east-south-eastern side of the Kvarner Fault, with which the Kvarner islands, belonging to the External Di-naric Imbricated Belt, also subsided and which we have named the Kvarner block. It is the result of the Paleogene and Neogene-recent Microadria activi­ties southeast of the Kvarner Fault, description of which exceeds the scope of this article. The forma­tion of the East Istrian Anticline is also related to this same scheme (Korbar et al., 2020). Formation of the Istra Pushed Area and the two flexural zones is therefore related to the movement of the Istra block towards the Dinarides. The differ­ence in the size of the flexural zones and the sub­marine response of the Sistiana and Kvarner Faults shows that northwest of the Kvarner Fault the Istra block is only the most exposed object of this part of the Microadria, while the second in the series is the Friuli block. The Sistiana Fault is therefore less im­portant than the Kvarner Fault. Based on this, we believe that the Kvarner Fault divides the Microad­ria into the Po and Adriatic segments. This assump­tion is also supported by the fact that southeast of the Kvarner Flexural Zone there is no structure that would surpass it in terms of size and importance, at least in the middle Adriatic area. The Istra block is therefore the most eastward-pushed part of the Po segment of the Microadria. Three dynamic units lie opposite the Dinarides: the Trieste parallelepiped, the North Istra Extru­sion Wedge, and the South Istra Pushed Wedge in the Istra Block. The formation of the Kraški rob - Mt. Hrušica Traverse can be explained by the blocking of the lateral extrusion of the North Is-tra Extrusion Wedge towards the Trieste paral­lelepiped. We assume that the Extrusion Wedge was therefore compressed and acted as a rigid presekan, njegov jugo-jugovzhodni del pa pre­maknjen skupaj z istrskim blokom proti Dina-ridom. Oglejski prelom po našem mnenju ne obstaja, strukturna anomalija na severozaho­dnem obrobju Tržaško-Komenskega antiklino­rija, na katero je Carulli vezal Oglejski prelom, je po naših, vendar še neobjavljenih raziska­vah, podobna strukturni anomaliji med Cica­rijskim in Tržaško-Komenskim antiklinorijem na obmocju Glinšcice, le da se tu stikata Trža-ško-Komenski antiklinorij in podobna enota na severozahodu, ki pa je prekrita z naplavinami Furlanske nižine. Ce se predlagana interpretaci­ja poteka Sesljanskega preloma izkaže za pravil-no, bi ta lahko predstavljal dogovorno mejo med Jadransko in Furlansko mezozojsko karbonatno platformo. V prid tej domnevi govori skladnost smeri zmika ob sesljanski upogibni coni in ob predlagani trasi Sesljanskega preloma. V obeh primerih je levi. Domneva, da Sesljanski prelom recentno ni aktiven (Placer et al., 2021b), govori le v prid predlagane hipoteze. Lego Kvarnerskega preloma v podmorju Ja­dranskega morja so dobro dolocili Špelic et al. (2021). Ob tem moramo opozoriti na ugreznjeni blok Mikroadrije na vzhodno-jugovzhodni strani Kvarnerskega preloma s katerim so se ugreznili tudi Kvarnerski otoki, ki pripadajo Zunanjedi­narskemu naluskanemu pasu. Poimenovali smo ga kvarnerski blok. Gre za posledico paleogenske in neogensko-recentne dejavnosti Mikroadrije jugovzhodno od Kvarnerskega preloma, katere opis presega okvir tega clanka. S tem je povezan tudi nastanek Vzhodnoistrske antiklinale. O tej problematiki so pisali Korbar et al. (2020). Nastanek istrskega potisnega obmocja in obeh upogibnih con je torej povezan s premikom istr­skega bloka proti Dinaridom. Razlika v velikosti upogibnih con in podmorske odzivnosti Sesljan­skega in Kvarnerskega preloma kaže, da je seve­rozahodno od Kvarnerskega preloma istrski blok le najbolj izpostavljen objekt tega dela Mikroa­drije, drugi v nizu je furlanski blok. Sesljanski prelom je torej manj pomemben od Kvarnerske­ga preloma. Glede na to menimo, da Kvarnerski prelom deli Mikroadrijo na padski in jadranski segment. Tej domnevi ustreza tudi podatek, da jugovzhodno od kvarnerske upogibne cone vsaj v obmocju srednjega Jadrana ni strukture, ki bi jo prekašala po velikosti in pomenu. Istrski blok je torej najbolj proti vzhodu potisnjeni del padske­ga segmenta Mikroadrije. V istrskem bloku ležijo nasproti Dinaridom tri dinamske enote, tržaški paralelepiped, se­vernoistrski iztisni klin in južnoistrski potisni insert between the active Microadria and the pas­sive Dinarides, in which stress state trajectories grew thicker transversely to their direction. Spe­cific deformations occurred in the area of thicken­ing, presented on the correlation diagram in Fig­ure 19. The lateral boundaries of the zones of these deformations are not sharp, but gradually die out more slowly toward the northwest and more quickly toward the southeast. The visible area of influence of the Kraški rob-Mt. Hrušica Traverse is 10 to 15 km wide and about 40 km long. It is necessary to prove the assumption about the formation of the traverse experimentally, and to determine the mutual influence of three factors: the blocking of the North Istra Extrusion Wedge, the Crni Kal Anomaly, and the Senožece Folds Splitting Zone. The presented dynamic model should work from the beginning of the movement of the Microadria towards the Dinarides. More broadly, the process is related to the anticlockwise rotation of the Mi-croadria (Weber et al., 2006), which is expressed in two components, in the hinterland of the Istra block, transpressive and shear (Placer et al., 2010). The question arises as to which status is recently active. Whether it is a transpressive or shear phase could only be determined from focal mechanisms and targeted surface surveys. However, it should be taken into account that one activity does not ex­clude the other, only that one is the prevailing one and the other is parallel, i.e., relieves the burden. It follows from the field data that the role of the Sisti­ana Fault in the recent dynamics is not important (Placer et al., 2021b), but the assumption needs to be proven. The presented dynamic model forms the basis for focused geodetic measurements. The proposed dynamic model is supported by the following structural-geomorphological indi­cators: in the area of the Kraški rob-Mt. Hrušica Traverse, in addition to Mt. Selivec (619 m) and Mt. Vremšcica (1027 m), are also the highest peaks of Mt. Nanos (Mt. Suhi vrh 1313 m), the north-west­ern part of Brkini (Mt. Ajdovšcina 804 m, Mt. St. Servul 817 m, above Artviže village) and the north-western part of Cicarija (Mt. Slavnik 1028 m). The existence of the South Istra Pushed Wedge is confirmed by the highest peaks of Mt. Ucka (Mt. Vojak 1394 m), Cicarija (Mt. Veliki Planik 1272 m, Mt. Gomila 1241 m) and Snežnik hills (Mt. Veliki Snežnik 1796 m). In terms of geomorphology, the Cicarija Anticlinorium generally rises gradually from the northwest (Mt. Reva by Kozina 587 m) to the southeast (Mt. Veliki Planik). Mt. Slavnik, only some 7 km from Mt. Reva, would therefore be an anomaly if it did not lie in the area of the Kraški klin. Nastanek traverze Kraški rob - Hrušica je moc razložiti z blokado bocnega izrivanja sever-noistrskega iztisnega klina proti tržaškemu pa-ralelepipedu. Domnevamo, da se je iztisni klin zaradi tega komprimiral in deloval kot trd vložek med aktivno Mikroadrijo in pasivnimi Dinaridi, v katerih so se precno na njihovo smer zgosti­le trajektorije napetostnega stanja. V obmocju zgostitve so nastale specificne deformacije, ki so predstavljene na korelacijskem diagramu na sliki 19. Bocne meje obmocij teh deformacij niso ostre, temvec postopoma zamirajo proti severo­zahodu pocasneje in jugovzhodu hitreje. Vidno vplivno obmocje traverze Kraški rob - Hrušica je široko okoli 10 km do 15 km, v dolžino pa sega okoli 40 km. Domnevo o nastanku traverze je potrebno ek­sperimentalno dokazati, pri tem pa dolociti med-sebojne vplive treh dejavnikov: blokade severno­istrskega iztisnega klina, crnokalske anomalije in senožeške cone cepljenja gub. Predstavljeni dinamski model naj bi deloval vse od pricetka pomikanja Mikroadrije proti Dinaridom. Širše je proces povezan z rotacijo Mikroadrije v nasprotni smeri urinega kazalca (Weber et al., 2006), kar se v zaledju istrskega bloka, izraža v dveh komponentah, transpresivni in zmicni (Placer et al., 2010). Postavlja se vpra­šanje, katero stanje je recentno dejavno. Ali gre za transpresivno ali zmicno fazo bi se dalo ugo­toviti le iz potresnih mehanizmov in z usmerje­nimi površinskimi raziskavami. Treba pa je upo­števati, da ena aktivnost ne izkljucuje druge, le da je ena glavna, druga pa vzporedna, oziroma razbremenilna. Iz terenskih podatkov izhaja, da vloga Sesljanskega preloma v recentni dinami­ki ni pomembna (Placer et al., 2021b), vendar je potrebno domnevo dokazati. Predstavljeni di­namski model je osnova za usmerjene geodetske meritve. Predlagani dinamski model podpirajo nas­lednji strukturno-geomorfološki kazalci: v ob-mocju traverze Kraški rob - Hrušica ležijo po-leg Selivca (619 m) in Vremšcice (1027 m), tudi najvišji vrhovi Nanosa (Suhi vrh 1313 m), seve­rozahodnega dela Brkinov (Ajdovšcina 804 m, Sv. Servul v Artvižah 817 m) in severozahod­nega dela Cicarije (Slavnik 1028 m). Obstoj juž­noistrskega potisnega klina potrjujejo najvišji vrhovi Ucke (Vojak 1394 m), Cicarije (Veliki Planik 1272 m, Gomila 1241 m) in Snežniškega hribovja (Veliki Snežnik 1796 m). Cicarijski an-tiklinorij se v geomorfološkem smislu na sploš-no polagoma dviguje od severozahoda (Reva pri Kozini 587 m) proti jugovzhodu (Veliki rob – Mt. Hrušica Traverse. Mt. Veliki Snežnik lies in a structural block that has risen extremely high above the landscape. According to OGK, sheet Il­irska Bistrica, this process was helped along by the appropriate shape of the block, which probably nar­ rows in depth in a wedge-shaped manner. In the intermediate space between the Snežnik hills and Cicarija lies the Brgudsko podolje (plane), a com­pressional trench. A complex view of the geomor­phology of the Istra Pushed Area will be given in the following discussion. The importance and existence of the Crni Kal Anomaly is also reflected in the geomorphology of the Istra Pushed Area, with important structural lines of this zone running parallel to the anoma­ly: the north-eastern boundary of the Istra-Friuli Thrust-Underthrust Zone, the north-western part of the Cicarija Anticlinorium axis, and the north-west­ern part of the Brkini Synclinorium axis. Everything is nicely reflected in the course of the structur­al-geomorphological trajectories between the Sisti­ana and Kvarner Flexural Zones. In this scheme, the unresponsiveness of the Raša Fault stands out in the area of the Kraški rob - Hrušica Traverse, and there are two reasons for this: the Raša Fault was formed at a late stage in the development of the Istra Pushed Area (Placer et al., 2021b), and part of the lateral bending was compensated for by the forma­tion of transpressive Vremšcica Anticline. The presented deformation model covers only Istra and its immediate hinterland, i.e. the Istra Block and the area of the External Dinaric Im­bricated Belt between the Sistiana and Kvarner Flexural Zones. The area of the External Dinaric Thrust Belt is not covered in the discussion. Conclusion Istra is part of the Dinaric promontory (Mi-croadria) on which the External Dinarides are thrusted. Thrusting of the Dinarides ended in the middle of Paleogene, and in the middle of Neo­gene, the movement of the Microadria towards the Dinarides began, which continues today. Istra lies in the Istra Block, which moved significant­ly towards the Dinarides between the left-lateral strike-slip Sistiana and right-lateral strike-slip Kvarner Faults. As it moved, it pushed the Dinar-ides in front of it, creating a large-scale arc-like structure called the Istra Pushed Area. Part of the movement of the Microadria to­wards the Dinarides was also compensated by un­derthrusting, which took place and is still active along newly formed reverse faults. Along these, the hanging block was raised, and the Paleogene thrust planes within it were anticlinally folded. The Planik), Slavnik, le okoli 7 km od Reve, bi bil torej anomalija, ce ne bi ležal v obmocju tra­verze Kraški rob - Hrušica. Veliki Snežnik leži v strukturnem bloku, ki se je ekstremno dvig-nil nad pokrajino. Po podatkih OGK, list Ilirska Bistrica, je k temu pripomogla ustrezna oblika bloka, ki se v globino verjetno klinasto zožuje. V vmesnem prostoru med Snežniškim hribov­jem in Cicarijo leži Brgudsko podolje, ki je kom­presijski jarek. Kompleksen pogled na geomor­fologijo istrskega potisnega obmocja bo podan v naslednji razpravi. Pomen in obstoj crnokalske anomalije se od­raža tudi v geomorfologiji istrskega potisnega obmocja, vzporedno z anomalijo potekajo po­membne strukturne linije tega obmocja: seve­rovzhodna meja istrsko-furlanske narivno-pod­rivne cone, severozahodni del osi Cicarijskega antiklinorija in severozahodni del osi Brkin­skega sinklinorija. Vse se lepo odraža v pote­ku strukturno-geomorfoloških trajektorij med sesljansko in kvarnersko upogibno cono. V tej shemi izstopa neodzivnost Raškega preloma v obmocju traverze Kraški rob - Hrušica, vendar obstajata za to dva razloga, Raški prelom je nas­tal v poznem stadiju razvoja istrskega potisne­ga obmocja (Placer et al., 2021b), del bocnega upogiba se je kompenziral z nastankom Vremške transpresivne antiklinale. Predstavljeni deformacijski model zajema le Istro in njeno neposredno zaledje, torej istrski blok in obmocje Zunanjedinarskega naluskane­ga pasu med sesljansko in kvarnersko upogib-no cono. Obmocje Zunanjedinarskega narivnega pasu v razpravi ni zajeto. Sklep Istra je del dinarskega predgorja (Mikroadri­ja) na katerega so narinjeni Zunanji Dinaridi. Narivanje Dinaridov se je zakljucilo sredi pale-ogena, sredi neogena pa se je pricelo premikanje Mikroadrije proti Dinaridom, ki traja še danes. Istra leži v istrskem bloku, ki se je med levozmic­nim Sesljanskim in desnozmicnim Kvarnerskim prelomom, ekstremno premaknil proti Dina-ridom. Med premikanjem je Dinaride potiskal pred seboj, da je nastala obsežna locna struktura imenovana istrsko potisno obmocje. Del premikanja Mikroadrije proti Dinaridom se je kompenziral tudi s podrivanjem, to se je dogajalo in se še vedno dogaja, ob novonastalih reverznih prelomih, ob katerih se je krovninsko krilo dvignilo, paleogenske narivne ploskve v njem pa so se antiklinalno uslocile. Cona pod-rivanja se v Istri na površju prekriva z mejo underthrusting zone in Istra on the surface over­ laps with the Dinarides boundary, so it makes sense to speak of a thrust-underthrust zone (Istra-Friuli Thrust-Underthrust Zone). On the surface the Sis-tiana and Kvarner Faults only extend as far as the mentioned thrust-underthrust zone, and further to the northeast they continue under the units of the Dinaric thrust structure, so only the lateral and ver­ tical response of the movements along both faults under the thrust units is visible on the surface. In the extension of the Sistiana Fault, a relatively sim­ple Sistiana Flexural Zone was formed, while in the extension of the Kvarner Fault a complicated and far more extensive Kvarner Flexural Zone in the form of a large sigmoid was formed. This lends the Kvar­ner Fault exceptional importance in the breakdown of the Microadria block, which is why we think it divides it into its Po and Adriatic segments. The Istra block is the farthest eastward-pushed part of the Microadria Po segment. The Istra block has a hybrid structure, con­sisting of the autochthonous sensu stricto and the aborted Buje Thrust Sheet, which was part of the Dinarides during the thrusting period and became a connected part of the Microadria (autochthonous sensu lato) during the underthrusting period. The Karški rob – Mt. Hrušica Traverse, which lies in the Istra Pushed Area transversely to the Dinar-ides, was created as a result of the hybrid structure of the Istra block. Its geomorphologically most prominent deformation is Mt. Vremšcica. Mt. Vremšcica is a transpressive anticline that rose from the levelled karst surface. Its formation is a challenge for the study of the geomorphology of karst areas. The direction of the Sistiana Flexural Zone indicates the course of the Sistiana Fault in the seabed of the Gulf of Trieste from Sistiana to the west-southwest. According to such course, it can be assumed that the external boundary of the Mes­ozoic carbonate platform in the area of Lignano is transversally shifted along the Sistiana Fault. If so, the Sistiana Fault could represent an agreed boundary between the Friuli and Adriatic Meso­ zoic Carbonate Platforms. The hydrographic network of Istra is specific and entirely subordinated to the deformations of the South Istra Pushed and North Istra Extrusion Wedges. The Classical Karst (territory between the Gulf of Trieste and the Ljubljana Marshes) lies entirely in the Istra Pushed Area, where the devel­opment of the hydrographic network is mainly re­lated to the deformations of shortening caused by the Neogene to recent movement of Istra towards the Dinarides. Dinaridov, zato je smiselno govoriti o narivno--podrivni coni (istrsko-furlanska narivno-pod­rivna cona). Sesljanski in Kvarnerski prelom segata na površju le do omenjene narivno-pod­rivne cone, naprej proti severovzhodu pa se na­ daljujeta pod enotami dinarske narivne zgradbe, zato je na površju viden le bocni in vertikalni odziv premikov ob obeh prelomih pod narivni-mi enotami. V podaljšku Sesljanskega preloma je nastala razmeroma enostavna sesljanska upo­gibna cona, v podaljšku Kvarnerskega preloma pa komplicirana in po dimenzijah dosti obsež­nejša kvarnerska upogibna cona v obliki velike sigmoide. Ta daje Kvarnerskemu prelomu v blo­kovni razclenitvi Mikroadrije izjemen pomen, zato menimo, da jo deli na njen padski in jadran-ski segment. Istrski blok je najdlje proti vzhodu potisnjeni del padskega segmenta Mikroadrije Istrski blok ima hibridno zgradbo, sestavljen je iz avtohtona sensu stricto in abortirane Bujske narivne luske, ki je bila v obdobju narivanja del Dinaridov, v obdobju podrivanja pa je posta-la prikljuceni del Mikroadrije (avtohton sensu lato). Traverza Kraški rob - Hrušica, ki leži v istrskem potisnem obmocju precno na Dinari­de, je nastala zaradi hibridne zgradbe istrskega bloka. Njena geomorfološko najbolj izstopajoca deformacija je Vremšcica. Vremšcica je transpresivna antiklinala, ki se je dvignila iz uravnanega kraškega površja. Njen nastanek je izziv za študij geomorfologije kra­ških obmocij. Smer sesljanske upogibne cone nakazuje po­tek Sesljanskega preloma v podmorju Tržaške­ga zaliva od Sesljana proti zahodu-jugozahodu. Na podlagi tega je moc domnevati, da je zunanja meja mezozojske karbonatne platforme na ob-mocju Legnana (Legnano) precno premaknjena ob Sesljanskem prelomu. Ce je tako, bi Sesljanski prelom lahko predstavljal dogovorno mejo med Furlansko in Jadransko mezozojsko karbonatno platformo. Hidrografska mreža Istre je specificna in povsem podrejena deformacijam južnoistrskega potisnega in severnoistrskega iztisnega klina. Klasicni kras (ozemlje med Tržaškim zalivom in Ljubljanskim barjem) leži v celoti v istrskem potisnem obmocju, kjer je razvoj hidrografske mreže pretežno povezan z deformacijami krcenja prostora, ki jih je izzvalo neogensko do recentno pomikanje Istre proti Dinaridom. Acknowledgement We would like to thank Petra Jamšek Rupnik (GeoZS) for kindly providing artwork which we modified in or­der to create Figure 1. This study benefited from fund­ing provided by the Slovenian Research and Innovation Agency in the scope of project Z1-3195 and program group P1-0011. Zahvala Avtorji se prijazno zahvaljujemo Petri Jamšek Rup­nik (GeoZS), ki je delila graficno osnovo za izdelavo Slike 1. Raziskava je bila deloma financno podprta s strani ARIS v okviru projekta Z1-3195 in programske skupine P1-0011. References / Literatura Blaškovic, I. & Aljanovic, B. 1981: Mikrotekton-ski elementi kao osnova za model tektonske grade šireg podrucja Kvarnera = Microtec-tonic elements as a basis for tectonic model of the broader Kvarner area. Simp. Komplek­sna naftno-geološka problematika podmorja i priobalnih djelova Jadranskog mora, Split, Zbornik radova (Proceedings), 87–100, Za­greb. Blaškovic, I. 1991: Raspored uzdužnih, reversnih i normalnih rasjeda i konstrukcija oblika i du­bina ploha podvlacenja = Disposition of the longitudinal, reverse and normal faults and the construction of the forms and depths of the underthrusting surfaces. Geol. vjesnik, 44: 247–256. Blaškovic, I. 1999: Tectonics of Part of the Vinodol Valley with in the Model of the Continental Crust Subduction. Geol. Croat., 52/2: 153–189. https://doi.org/10.4154/GC.1999.13 Brancolini, G., Civile, D., Donda, F., Tosi, L., Zec-chin, M., Volpi, V., Rossi, G., Sandron, D., Ferrante, G. M. & Forlin, E. 2019: New in­sights on the Adria plate geodynamics from the northern Adriatic perspective. Marine and Petroleum Geology, 109: 687-697. https://doi. org/10.1016/j.marpetgeo.2019.06.049 Busetti, M., Volpi, V., Barison, E., Giustiniani, M., Marchi, M., Ramella, R., Wardell, N. & Zanol-la, C. 2010a: Meso-Cenozoic seismic stratigra­phy and the tectonic setting of the Gulf of Tri­este (Northern Adriatic). GeoActa SP, 3: 1–14. Busetti, M., Volpi, V., Nicolich, R., Barison, E., Ro­meo, R., Baradello, L., Brancatelli, G., Giustin­iani, M., Marchi, M., Zanolla, C., Wardell, N., Nieto, D. & Ramella, R. 2010b: Dinaric tectonic features in the Gulf of Trieste (Northern Adri­atic Sea). Bollettino di Geofisica Teorica ed Ap­plicata, 51: 117–128. Busetti, M., Zgur, F., Romeo, R., Sormani, L. & Pettenati, F. 2012: Caratteristiche geologico­strutturali del Golfo di Trieste. Meeting Marina ISPRA, Roma, 25-26 ottobre 2012. At: Roma, 6-8 novembre 2001. Volume: Atti Ondine. Busetti, M., Zgur, F., Vrabec, M., Facchin, L., Pelos, C., Romeo, R., Sormani, L., Slavec, P., Tomini, I., Visnovich, G. & Žerjal, A. 2013: Neotecton­ic reactivation of Meso-Cenozoic structures in the Gulf of Trieste and its relationship with fluid seepings. Proceedings of the 32nd Grup­po Nazionale di Geofisica della Terra Solida (GNGTS) Congress, Trieste 19-21, November 2013, 29–34. Carulli, G. B. 2006: Carta geologica del Friuli Venezia Giulia 1:150 000. Regione autonoma F.V.G., Direzione centrale ambiente e lavori publici, Servizio geologico. S.E.L.C.A. Firenze. Carulli, G. B. 2011: Structural model of the Trieste Gulf: A proposal. Journal of Geodynamics, 51/2–3: 156–165. https://doi.org/10.1016/j. jog.2010.05.004 Diercks, M., Grützner, C., Vrabec, M. & Ustasze­wski, K. 2021: A model for the formation of the Pradol (Pradolina) dry valley in W Slovenia and NE Italy. Geologija, 64/1: 21–33. https:// doi.org/10.5474/geologija.2021.002 Fontana, A., Mozzi, P. & Bondesan, A. 2008: Allu­vial megafans in the Venetian–Friulian Plain (north-eastern Italy): Evidence of sedimen­tary and erosive phases during Late Pleis­tocene and Holocene. Quaternary Interna­tional, 189: 71–90. https://doi.org/10.1016/j. quaint.2007.08.044 Fontana, A., Mozzi, P. & Bondesan, A. 2010: Late pleistocene evolution of the Venetian–Friulian Plain. Rendiconti Lincei, 21: 181–196. https:// doi.org/10.1007/s12210-010-0093-1 Fontana, A., Mozzi, P. & Marchetti, M., 2014. Al­luvial fans and megafans along the southern side of the Alps. Sedimentary Geology, 301: 150–171. https://doi.org/10.1016/j.sedg­ eo.2013.09.003 Jurkovšek, B., Toman, M., Ogorelec, B., Šribar, Lu., Drobne, K., Poljak, M. & Šribar, Lj. 1996: Formacijska geološka karta južnega dela Tržaško-Komenske planote 1:50 000 = Ge­ological Map of the Southern Part of the Tri-este-Komen Plateau 1:50 000. Geološki zavod Ljubljana = Geological Survey of Ljubljana, Ljubljana. Jurkovšek, B. 2010: Geološka karta severnega dela Tržaško-komenske planote 1:25 000 = Geo­logical Map of the Northern Part of the Tri-este-Komen Plateau 1:25 000. Geološki zavod Slovenije = Geological Survey of Slovenia, Lju­bljana. Korbar, T., Markušic, S., Hasan, O., Fucek, L., Bru­novic, D., Belic, N., Palenik, D. & Kastelic, V. 2020: Active Tectonics in the Kvarner Region (External Dinarides, Croatia) – An Alternative Approach Based on Fokused Geological Map­ping, 3D Seizmological, and Shallow Seismic Imaging Data. Front. Earth Sci., 25 November. https://doi.org/10.3389/feart.2020.582797 Merků P. 2006: Krajevno imenoslovje na sloven-skem zahodu. Založba ZRC - ZRC SAZU, Lju­bljana: 215 p. Mlakar, I. 1969: Krovna zgradba idrijsko žirovske­ga ozemlja = Nappe structure of the Idrija-Žiri region. Geologija, 12: 5–72. Morelli, C. & Mosetti, F. 1968. Rilievo sismico con-tinuo nel Golfo di Trieste Andamento della for-mazione arenacea (Flysch) sotto il fondo mari-no della zona tra Trieste, Monfalcone e Grado. Bolletino della Societa’ Adriatica di Scienze, 1: 42–57. Novak, A., Šmuc, A., Poglajen, S. & Vrabec, M. 2020. Linking the high-resolution acoustic and sedimentary facies of a transgressed Late Qua­ternary alluvial plain (Gulf of Trieste, north­ern Adriatic). Marine Geology, 419: 106061. https://doi.org/10.1016/j.margeo.2019.106061 OGK: Osnovna geološka karta Jugoslavije 1:100.000 = Basic geological map of Yugosla­via 1:100.000. Listi / Sheets: Tolmin in Videm, Kranj, Gorica, Postojna, Trst, Ilirska Bistrica, Rovinj, Labin, Pula, Cres. Savezni geološki za­vod, Beograd. Petric, M., Ravbar, N., Gostincar, P., Krsnik, P. & Gacin, M. 2020: Vzpostavitev prosto dostopne GIS zbirke rezultatov sledenj toka podzemne vode in možnosti njene uporabe = Establish­ment of a freely accessible GIS database con­taining the results of groundwater tracing and possibilities of its use. Geologija, 63/2: 203–220. https://doi.org/10.5474/geologi­ ja.2020.017 Placer, L. 1994: O zgradbi Sovica nad Postojno = On the structure of Sovic above Postojna. Ge-ologija, 37/38 (1994/95): 551–560. https:// doi.org/10.5474/geologija.1995.020 Placer, L. 1980: Tektonski razvoj idrijskega rudišca. Disertacija, Univerza v Ljubljani, Fakulteta za naravoslovje in tehnologijo, Montanistika, Od­ sek za geologijo, 172 p., tab. 33. Placer, L. 2003: Strukturno-geološke znacilnos-ti trase avtoceste Klanec-Srmin na odseku 11,500 – 19,500 m. Arhiv Geološkega zavoda Slovenije. Placer, L. 2004: Strukturno-geološke znacilnos-ti trase avtoceste Klanec-Srmin na odseku 19,500 – 26,400 m. Arhiv Geološkega zavoda Slovenije. Placer, L., Košir, A., Popit, T., Šmuc, A. & Juvan, G. 2004: The Buzet Thrust Fault in Istria and overturned carbonate megabeds in the Eocene flysch of Dragonja Valley (Slovenia). Geologi­ja, 47/2: 193–198. https://doi.org/10.5474/ge­ ologija.2004.015 Placer, L. 2005: Strukturne posebnosti severne Istre = Structural curiosity of the northern Istria. Geologija, 48/2: 245–251. https://doi. org/10.5474/geologija.2005.020 Placer, L. 2007: Kraški rob. Geološki prerez vzdolž AC Kozina – Koper = Kraški rob (landscape term). Geologic section along the motor­way Kozina – Koper (Capodistria). Geologija, 50/1: 29–44. https://doi.org/10.5474/geologi­ ja.2007.003 Placer, L., Vrabec, M. & Celarc, B. 2010: The bas­es for undertanding of the NW Dinarides and Istria Peninsula tectonics. Geologija, 53/1: 55–86. https://doi.org/10.5474/geologi­ ja.2010.005 Placer, L. & Jamšek, P. 2011: Ilirskobistriški fos­ilni plaz – mesto na plazu = The Ilirska Bis-trica fossil landslide – The town on the land­slide. Geologija, 54/2: 223–228. https://doi. org/10.5474/geologija.2011.017 Placer, L. 2015: Simplified structural map of Kras. Kras (Slovene), Carso (Italian) = Geographi­cal unit. Geologija, 58/1: 89–93. https://doi. org/10.5474/geologija.2015.008 Placer, L., Mihevc, A. & Rižnar, I. 2021a: Tecton­ics and gravitational phenomena (Nanos, Slo­venia). Geologija, 64/1: 35–63. https://doi. org/10.5474/geologija.2021.003 Placer, L., Jamšek Rupnik, P. & Celarc, B. 2021b: Sistiana Fault and the Sistiana Bending Zone. Geologija, 64/2: 221–252. https://doi. org/10.5474/geologija.2021.013 Poljak, M. 2007: Strukturno-tektonska karta Slovenije 1:250 000 = Structural-Tectonic Map of Slovenia 1:250 000. Geološki zavod Sloveni­je = Geological Survey of Slovenia, Ljubljana. Rižnar, I., Koler, B. & Bavec, M. 2007: Recent-na aktivnost regionalnih geoloških struktur v zahodni Sloveniji = Recent activity of the regional geologic structures in western Slo­ venia. Geologija, 50/1: 111-120. https://doi. org/10.5474/geologija.2007.009 Ronchi, L., Fontana, A., Novak, A., Correggiari, A. & Poglajen, S. 2023: Late-Quaternary Evo­lution of the Semi-Confined Alluvial Megafan of Isonzo River (Northern Adriatic): Where the Fluvial System of the Southern Alps Meets the Karst. Geosciences, 13/5: 135. https://doi. org/10.3390/geosciences13050135 Šebela, S. 2005: Tektonske zanimivasti Pivške kot-line = Tectonic sights of the Pivka Basin. Acta carsologica, 34/3: 566-581. Špelic, M., Del Ben, A. & Petrinjak, K. 2021: Struc­tural setting and geodynamics of the Kvarner area (Northern Adriatic). Marine and Petrole­um Geology 125C, 104857. Project: GEOSEK­VA - Geological and seismological aspects of geodynamics in Kvarner area - unveiling of the Kvarner fault. https://doi.org/10.1016/j.mar­ petgeo.2020.104857 Trobec, A., Šmuc, A., Poglajen, S. & Vrabec, M. 2017: Submarged and buried Pleistocene riv­er channels in the Gulf of Trieste (North­ern Adriatic Sea): Geomorphic, stratigraph­ic and tectonic interfaces. Geomorphology, 286: 110–120. https://doi.org/10.1016/j.geo­ morph.2017.03.012 Trobec, A., Busetti, M., Zgur, F., Baradello, L., Bab-ich, A., Cova, A., Gordini, E., Romeo, R., Tomini, I., Poglajen, S., Diviacco, P. & Vrabec, M. 2018: Thickness of marine Holocene sediment in the Gulf of Trieste (northern Adriatic Sea). Earth System Science Data, 10: 1077–1092. https:// doi.org/10.5194/essd-10-1077-2018 Vrabec, M., Pruner, P., Zupan Hajna, N., Mihevc, A. & Bosak, P. 2018: Unraveling neotecton­ic vertical-axis rotations in the AdriaEurasia collision zone: paleomagnetic data from Plio-cene-Quaternary cave sediments (Slovenia). In: Ustaszewski, K., Grützner, Ch. & Navab-pour, P. (eds.): TSK Jena 2018. 1st ed. Jena: Friedrich Schiller University Jena, Institute of Geological Sciences: 134 p. Vrabec, M. & Rožic, B. 2014: Strukturne in sed­imentološkr posebnosti obalnih klifov. In: Rožic, B., Verbovšek, T. & Vrabec, Mi. (eds.): Povzetki in ekskurzije = Abstracts and field trips, 84–91, 4. Slovenski geološki kongres, Ankaran, 2014. Weber, J., Vrabec, M., Stopar, B. Pavlovcic Prešer-en, P. & Dixon, T. H. 2006: The PIVO-2003 ex­periment: A GPS study of Istria peninsula and Adria microplate motion, and active tectonics in Slovenia. In: Pinter, N., Gyula, G., Weber, J., Stein, S. & Medak, D. (eds.): The Adria Mi-croplate: GPS Geodesy, Tectonics and Haz­ards, 305-320. Nato Science Series IV, Earth and Environmental Sciences, 61. https://doi. org/10.1007/1-4020-4235-3_21 Weber, J., Vrabec, M., Pavlovcic Prešeren, P., Dix­on, T., Jiang, Y. & Stopar, B. 2010: GPS-de­rived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites, and geody­namic implications. Tectonophysics, 483/3– 4: 214–222. https://doi.org/10.1016/j.tec­ to.2009.09.001 Žitko, S. (ur.) 1990: Kraški rob in Bržanija (zbornik). Pokrajinski muzej Koper, 152 p. GEOLOGIJA 66/1, 73-85, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.002 Geološka spremljava poskusnega odkopa uranove rude na Žirovskem vrhu Geological control of trial excavation of Uranium ore in Žirovski vrh Franci CADEŽ Gorje 7, SI-5282 Cerkno, e-mail: fcadez@gmail.com Prejeto / Received 28. 12. 2022; Sprejeto / Accepted 20. 3. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Kljucne besede: uranova ruda, poskusno odkopavanje, grödenske klasticne kamnine, Žirovski vrh Key words: uranium ore, trial excavation, Val Gardena clastic rocks, Žirovski vrh Izvlecek Leta 1981–1983 je bilo na Rudniku Žirovski vrh pred pricetkom redne proizvodnje izvedeno poskusno odkopavanje uranove rude za preverjanje metod geološke in radiometricne kontrole ter tehnicnih metod pridobivanja. Poskusni odkop je bil v bloku 1, na skrajnem severozahodnem delu rudišca v zgornji gubi dvojne S strukture. V tem bloku se je orudenje nahajalo samo v horizontu sivega pešcenjaka debeline 20–30 m. Z geološko spremljavo odkopavanja smo potrdili, da so bili pešcenjaki odloženi v sekvencah debelih od par dm do vec kot 2 m. Sekvenca je obicajno pricenjala z debelozrnatim pešcenjakom, veckrat so bili na bazi prisotni še klasti kremena in muljevca. Navzgor je debelozrnat pešcenjak pogosto prehajal v srednjezrnatega, redkeje pa še v drobnozrnatega in meljevec. V pešcenjakih je bila znacilna prisotnost organskih drobcev, ki so v diagenezi ustvarjali redukcijsko okolje v katerem se je iz podtalnice izlocal uran. Najpogosteje se je orudenje nahajalo v debelozrnatih pešcenjakih, obicajno v debelejših sekvencah. Orudenje se je zato pojavljalo v vec nivojih debelih navadno pod 1m, kjer se je združevalo je skupna debelina presegla tudi 5 m. Dolžina sklenjenega orudenja v vzdolžni smeri je znašala do 150 m, širina od nekaj metrov do vec kot 40 m. V vmesnih prekinitvah orudenja smo opazovali, da so pešcenjaki iz temnosive in sive barve prehajali v svetlosive in zelenosive, ki so bili le siromašno orudeni ali jalovi. V vzdolžni smeri se je tak prehod zgodil med prerezi P-35 in P-35a, kjer se je tudi zakljucilo odkopavanje. V jami sta bila raziskana še prereza P-36 in P-37, kjer pa se je pojavljal pretežno zelenosiv pešcenjak z le redkimi lecami siromašnega orudenja. S površinskimi vrtinami sta bila dlje proti zahodu raziskana tudi še dva prereza oddaljena 1,3 in 2,8 km od jamske zgradbe. V teh vrtinah je bilo ugotovljeno nastopanje sivih in zelenosivih pešcenjakov z zelo redkimi sledovi orudenja, ki so se menjavali z bolj drobnozrnatimi razlicki (muljevci), ostanki organske snovi pa so bili v njih zelo redki. Blok 1 je bil zato mejni blok na SZ strani rudišca, predviden za pridobivanje. Abstract In 1981-1983, before the start of full production, trial mining of uranium ore was carried out at the Žirovski vrh mine to test the methods of geological and radiometric control as well as the technical methods of extraction. The trial excavation was done in block 1, in the extreme NW part of the mine in the upper fold of the double S structure. In this block, the ore deposits bodies were found only in the horizon of grey sandstone about 20–30 m thick. Geological monitoring of the excavation confirmed that the sandstones were deposited in sequences from a few dm to more than 2 m thick. The sequence usually graded bed started with coarse-grained sandstone, with pebbles of quartz and mudstone occasionally present at the base. Upwards, coarse-grained sandstone often passed into medium-grained, and more rarely into fine-grained sandstone and siltstone. The sandstones were characterized by the presence of organic fragments, which created an anoxic environment during diagenesis and that in turn enabled uranium to precipitate from the groundwater and concentrate in the host rock. Most often, ore bodies were found in coarse-grained sandstones, usually in several sedimentary sequences. As such, ore bodies appear in several sequences, usually under 1 m thick. In some places ore bodies can join together, exceeding 5 m. The length of the uninterrupted ore body in the longitudinal direction was up to 150 m, the width ranges from a few meters to more than 40 m. In the intermediate areas where the ore body is interrupted, we observed that the sandstones changed from dark grey and grey to light grey and greenish grey. These sandstones were usually barren or contained only small concentrations of uranium. In the longitudinal direction, such a transition took place between cross-sections P-35 and P-35a, where excavation was completed. Cross-sections P-36 and P-37 were also investigated inside the mine, where predominantly greenish-grey sandstone with only rare lenses of poor uranium concentrations appeared. Further to the west, two cross-sections 1.3 and 2.8 km from the mine area were also explored with surface boreholes. Grey and greenish-grey sandstones with very rare remains of organic matter and very rare traces of mineralisation were found in these boreholes, alternating with siltstones. Block 1 is therefore considered the boundary block on the NW side of the mine, intended for extraction. Uvod Na severovzhodnih pobocjih Žirovskega vrha je bila leta 1960 odkrita uranska mineralizaci­ja znotraj grödenskih klasticnih sedimentnih kamnin srednje permske starosti. Po skoraj dveh desetletjih raziskovanj je bil leta 1977 izdelan In-vesticijski program in naslednje leto sprejeta od­locitev o izgradnji rudnika. Leta 1981 je bil izde­lan Glavni rudarski projekt (Rudis Trbovlje) in v njegovem sklopu še Rudarski projekt poskusnega odkopavanja (Spasojevic, 1981). Z izdelavo odkop­nih priprav se je zacelo še istega leta, se nadaljeva-lo s poskusnim odkopavanjem, ki se je zakljucilo v letu 1983. S poskusnim odkopavanjem se je poleg rudarsko tehnoloških možnosti pridobivanja pre­verjalo tudi postopke nacrtovane geološke in ra­diometricne spremljave. V tem clanku podajamo ugotovljene znacilnosti geološke sestave in z njo povezanega orudenja. Kratek pregled predhodnih raziskav in poskusnih odkopavanj Rudišce so po odkritju leta 1960 prvih 10 let raziskovali strokovnjaki Geoinstituta iz Beogra­da. Poleg površinskih radiometricnih raziskav so že v letu 1961 zaceli z vrtanjem površinskih vrtin in izdelavo prvega podkopa. Naprej so raziskave potekale vzporedno. S površine so vrtali globoke strukturne vrtine s katerimi se je ugotavljalo pros-torsko razprostiranje grdenskih plasti in prisot­nost uranskega orudenja. Z detajlnimi raziskava-mi v jami so iz vzdolžne smerne proge izdelovali precnike, iz njih pa izvajali strukturno in udarno vrtanje v mreži 50 × 50 m oziroma 50 × 5 m. S strukturnimi vrtinami so ugotavljali razvoj grö­denskih plasti v prostoru in znotraj njih predvsem položaj orudenih plasti. Z udarnimi vrtinami pa so dolocali rudne intervale, ki so jih povezovali med seboj v rudna telesa pri cemer pa so bili velikokrat v dilemah, katere intervale povezovati med seboj. Rudne intervale se je dolocalo le z radiometricni-mi meritvami, enako kot tudi v progah, kjer so ga našli. Menili so, da se rude na izgled ne da locevati od jalovine. Sklenili so, da bodo do boljšega pozna­vanja in povezovanja orudenja v prostoru prišli le s poskusnim odkopavanjem. Med leti 1964 in 1968 so izdelali dva poskusna odkopa na zgornjem obzorju 580, ki je bilo takrat edino razvito. Skupno so pridobili preko 10.600 t rude s povprecno vsebnostjo nekaj cez 1000 g U/t (0,1 %). Mejo ruda-jalovina so postavili pri 300 g U/t (0,03 %), kar je obveljalo za celotno obdobje delovanja rudnika. Njihova bistvena ugotovitev je bila, da orudenje naceloma sledi plastovitosti, njegova debelina pa da je zelo spremenljiva. Zara-di zapletenosti orudenja so menili, da ima oblika orudenja na prerezih vrtin le statisticno vrednost (Omaljev, 1967a, 1969). V letu 1970 je dotedanjo rudarsko in geološko ekipo Geoinstituta zamenjal Geološki zavod iz Ljubljane (GZL). Nadaljevali so s konceptom razis­kav, ki so ga razvili Beograjcani. Ker pa se je ekipa zamenjala v celoti so poskusno odkopavanje v letih 1971–1975 izvedli tudi delavci in strokovnjaki GZL. S tem, ko so z odkopavanjem sledili oruden­ju, so pridobili prakticna znanja o obliki in naravi orudenja, istocasno pa že tudi rudo za tehnološke teste njene predelave in preverjanje možnosti ra­diometricnega separiranja. Skupno je bilo v tej fazi na 5 razlicnih lokacijah na spodnjih dveh obzorjih 430 m in 480 m pridobljeno 5.900 t rude z vseb­nostjo 1400 g U/t. Tudi tu so ugotavljali, da oru­denje vecinoma sledi plastovitosti vendar so na­vajali še primere precnega poteka orudenja glede na plastovitost, kar pa je bila najveckrat posledica dejstva, da v tem casu še niso poznali strukture dvojne gube. V orudenih delih so prav tako opazili pomembno prisotnost organske snovi, hkrati pa so menili, da se ob orudenju poveca tudi delež karbo­natov (Florjancic, A.P. et al., 1973). Poskusno odkopavanje v letih 1981–1983 Z ustanovitvijo Rudnika urana Žirovski vrh v letu 1976 je ta postopoma prevzemal tudi izdela­vo rudarskih in raziskovalnih del od Geološkega zavoda. V letu 1981 se je pricelo s poskusnim od­kopavanjem v bloku 1, ki leži na skrajnem seve­rozahodnem delu rudišca. Po njegovem zakljucku leta 1983 se je nadaljevalo z rednim odkopavan­jem, katerega obseg se je kolicinsko in prostorsko postopno poveceval tako, da je prav v letu njego­vega prenehanja dosegel polno nacrtovano proi­zvodnjo. V prvem polletju leta 1990 je bilo namrec odkopano 81.000 t uranove rude, kar je bilo po­lovica nacrtovane letne proizvodnje 160.000 t. S poskusnim odkopavanjem v letih 1981–1983 se je pridobilo 36.542 t izkopane rude z vsebnostjo 827 g U3O8/t oziroma 30,218 t U3O8. Hkrati se je pridobilo še 10.427 t revne rude z vsebnostjo 220 g U3O8/t in 2,328 t U3O8. Ta izkopana ruda je bila pridobljena iz 24.202 t radiometricno izmerjene rude, ki je imela vsebnost 1280 g U3O8/t. Zaradi razredcenja radiometricno izmerjene rude z jalo-vino pri odkopavanju se je njena vsebnost v izko­pani rudi znižala, kolicina pa povecala. S koncem sedemdesetih let se je s pricetkom izracunavanja zalog za potrebe Investicijskega programa, vseb­nosti zacelo prikazovati v g U3O8/t. Takrat se je tudi rez jalovina-ruda zacel podajati v isti obliki, kar je predstavljalo delno znižanje vrednosti glede OP-1 OP-1 1 O-1/1O-1/1 1 H-261 Sl. 1. Tlorisna karta odkopnih priprav in odkopov. Fig. 1. Map-view of excavation areas. OH-580 na predhodno obliko podajanja koncentracij v g U/t (1 g U3O8= 0,848 g U). Po Rudarskem projektu (Spasojevic, 1981) sta se najprej izdelali dve odkopni pripravi OP-1 in OP-2 ter zracilni precnik OH-580. Te priprave so se navezovale na obstojece jamske proge in z njimi se je rudonosno plast odprlo po dolžini, širini in višini (sl. 1). OP-1 se je pricela iz precnika H-261 na obzorju 580 in prerezu P-32 ter se spušcala do višine 560 m v prerezu P-35a, kjer se je zakljucila v precniku P-35. Druga priprava je zacenjala v tem istem precniku le bolj jugozahodno in se dvigovala po orudeni plasti ter se med prerezoma P-33a in P-34 prikljucila na prvo. Odkopne priprave so bile locirane tako, da so v najvecji meri presekala pred­hodno raziskana orudenja. Iz teh odkopnih priprav so se potem izdelovali odkopi levo in desno do ko­der se je orudenje širilo (sl. 1). Postopki geološke in radiometricne kontrole odkopavanja Za orudenje z uranom je znacilno, da ga s pros-tim ocesom ne vidimo, ker je podobne sive barve kot prikamnina. Zato se njegovo prisotnost in kolicino ugotavlja z radiometricnimi meritvami. Tako pri izdelavi odkopnih priprav kot tudi pri poznejšem odkopavanju smo izvajali delovne op-eracije s katerimi smo ugotavljali obliko in kval­iteto orudenja na vsakokratnem celu in pozneje v fazi miniranja, nakladanja in odvoza na deponijo (Lavrencic et al., 1984). Ti postopki so vkljucevali: - geološko kartiranje cela, - radiometricno izmero cela, - karotažo minskih vrtin, - odlocitev o obliki selektivnega odstrela, - radiometricno izmero izkopnine. Z geološkim kartiranjem smo ugotavljali bar-vo in zrnavost klasticnih kamnin, prisotnost or-ganske snovi, sedimentne teksture in tektonske znacilnosti. Radiometricna izmera se je izvajala z diferencialnimi merilniki gama sevanja, ki so pokazali na površinsko obliko orudenja na celu. S tem se je lahko prilagajalo lego zalomnih vrtin in s tem obliko selektivnega odstrela. S karotažo minskih vrtin, kjer smo uporabljali merilnike z Geiger-Müllerjevo sondo, se je potem ugotavljalo obliko in kvaliteto orudenja po celotni globini od­strela (obicajno 1,4 m). Podatki o vsebnosti urana iz minskih vrtin so služili za dolocanje vsebnosti radiometricno izmerjene rude in vsebnosti rudne­ga in jalovinskega odstrela ter dolocanje razred-cenja in odkopnih izgub. Vsa izkopanina rudnega ali jalovinskega odstrela se je po izvozu iz jame na kamionih še enkrat radiometricno izmerila s pikanjem s T sondo in merjenjem v radiometric­nih vratih, pozneje pa samo še v radiometricnih vratih, kjer se je vsak kamion še stehtal. S tem je bila vzpostavljena celovita evidenca odkopavanja od cela v jami do izkopanine na deponijah. Geološke razmere pri odkopavanju Blok 1, kjer se je izvajalo zadnje poskusno od­kopavanje, leži na skrajnem severozahodnem delu rudišca. S predhodnimi raziskavami, od kartiranja raziskovalnih prog do raziskovalnih vrtin, je bilo ugotovljeno, da bo poskusno odkopavanje potekalo v zgornji gubi dvojne S strukture rudišca, ki sta jo dokazala Lukacs in Florjancic (1974). Orudenje je vezano le na najstarejši, sivi del grdenske for-macije, kar so ugotavljali tako geologi Geoinstituta kot Geološkega zavoda. Budkovic (1980) jo je poi-menoval siva formacija za razliko od višje ležecih pretežno rdece obarvanih klastitov, ki jih je uvrstil v rdeco formacijo. Novejšo razclenitev grödenskih klastitov je pozneje izdelal Mlakar, ki je celotno grödensko formacijo razdelil na 6 clenov, od ka­terih je najstarejši Brebovniški clen, ki je ekviva-lent Budkoviceve sive formacije (Mlakar & Placer, 2000). Najuporabnejšo nadaljnjo razclenitev sive formacije oziroma Brebovniškega clena za potre-be rudarjenja je podal Budkovic (1980). Na osno-vi razlicne zrnavosti in barve je sivi del gröden­ske formacije razdelil na 10 horizontov, orudenja z uranom pa nastopajo v 4., 5., 6. in 8. horizontu. Skupaj z vmesnim jalovim 7. horizontom tvorijo rudonosno cono (Budkovic, 1980). V bloku 1 se je orudenje nahajalo in odkopavalo le v 6. horizontu, v ostalih horizontih rudonosne cone orudenja tu ni bilo ali pa je bilo presiromašno za izkorišcanje. Iz raziskanih precnih prerezov v bloku 1 izhaja, da je debelina 6. horizonta v bloku 1 znašala med 20 in 30 m (sl. 2 in sl. 3). Pri izdelavi odkopnih priprav smo ugotovili, da so te skorajda v celoti potekale znotraj rudo­ nosnega pešcenjaka 6. horizonta, le OP-1 se je v spodnjem delu, kjer se je navezala na precnik P-35 pricenjala še v talninskih rdeckastih in zelenka­stih pešcenjakih in konglomeratih, ki pripadajo 5. horizontu (sl. 2). Zracilni precnik OH-580 je v zacetnem delu, kjer se je pricenjal v OP-1, pote­kal v orudenem pešcenjaku, v drugi polovici pa je nastopal najprej tanek horizont rdeckastih in ze­lenkastih pešcenjakov in meljevcev (7. horizont), sledili so jim zelenosivi srednje in debelozrnati pešcenjaki (8. horizont) in na koncu zopet zeleni in rdeci pešcenjaki in meljevci, ki pa so bili že del 9. horizonta (sl. 3). Pešcenjaki 8. horizonta v tem bloku niso vsebovali ekonomsko zanimivih vseb­nosti urana. Sl. 2. Geološki precni prerez P-35. Fig. 2. Geological cross-section P-35. Sl. 3. Geološki precni prerez P-33. Fig. 3. Geological cross-section P-33. Pri kartiranju cel smo ugotavljali sedimentne teksture, ki so znacilne za recne sisteme prepleta­joce reke (braided river) in jih je podrobno razcle-nil Miall (1978, 2014), pozneje pa jih je v svoji di­sertaciji prav za klastite z Žirovskega vrha opisal in 1 m Sl. 4. Horizontalna tekstura v pešcenih sekvencah (O-1/5-2, 14. odstrel). Fig. 4. Horizontally bedding sequences (O-1/5-2, 14th blast­ing). poimenoval Skaberne (1995). Pri kartiranju cel smo najveckrat opazovali horizontalno teksturo (sl. 4), kjer so plasti v sekvencah oziroma same sekvence med seboj približno vzporedne. Veckrat je bila prisotna še masivna tekstura (sl. 5 ), kjer 1 m Sl. 5. Temnosiv oruden pešcenjak z masivno teksturo (OP-1, 30. od­strel). Sl. 6. Koritasta navzkrižna tekstura (O-1/11-2, 111. odstrel). Fig. 5. Dark grey mineralised sandstone with massive structure Fig. 6. Trough cross-bedding (O-1/11-2, 111st blasting). (OP-1/ 30th blasting). plastovitost ni bila opazna in je nastopala le ena frakcija klastitov. Najredkeje smo srecali planarno in koritasto navzkrižno teksturo (sl. 6). Razne ob-like laminacij, ki so znacilne za bolj drobnozrnate sedimente (Skaberne, 1995), na odkopih nismo za­sledili. Orudenje se je pojavljalo znotraj 6. horizon-ta, ki ga je v posameznem odkopnem celu višine 3,5 do 4,5 m sestavljalo vec sekvenc, najveckrat 2–4 sekvence, kjer so te bile vidne. Debelina posa­meznih sekvenc je znašala od nekaj dm do vec kot 2 m. Prevladujoci litološki razlicek v njih je bil sivi debelozrnati pešcenjak. V njem so bili na zacetku sekvence cesto prisotni klasti muljevca in karbo­natnih konkrecij, redkeje drobni prodniki kremena tako, da je sekvenca lahko pricenjala z intraforma­cijskim konglomeratom oziroma konglomeratic­nim pešcenjakom. Na debelozrnatem pešcenjaku je bil pogosto odložen še srednjezrnat, redkeje pa tudi drobnozrnat pešcenjak in muljevec. Meje med temi litološkimi razlicki v isti sekvenci so bile pos­topne, med sekvencami pa navadno ostre, na njih­ovem stiku so bile pogosto razvite še medplastovne kremenovo karbonatne žile. Najlepše so bile te žile razvite v temenih gub, kjer so medplastovne spre­mljale še precne karbonatno kremenove žile (sl. 7). Oba sistema žil sta nastala postdiagenetsko, v fazi gubanja in narivanja (Dolenec, 1983). Na prehodu iz zelenega in rdecega konglome­rata (5. horizont) se je 6. horizont pricenjal z ze­lenosivim debelozrnatim pešcenjakom, ki pa je ponekod že takoj nad kontaktom postal temneje siv in oruden (sl. 8). Orudenje je bilo najpogosteje vezano na debelozrnate pešcenjake, kjer se je po­javila organska snov ali povecal njen delež (sl. 9). Odkopna priprava OP-1 se je od prereza P-35a, kjer se je pojavil pešcenjak z orudenjem proti pre­rezu P-32 dvigala in v splošnem sledila plastovi­tosti. Posamezne sekvence smo tako lahko sledili po dolžini na razdalji vec 10 do preko 100 m, ko so se izklinjale ali zavile iz odkopnega profila. Pred­vsem v prevladujocem debelozrnatem pešcenjaku je bilo pomembno pojavljanje organske snovi. Ta je nastopala v obliki drobnih delcev dimenzij do nekaj mm redkeje do vec decimetrskih lec, ki so predstavljale ostanke drevesnih debel in ki so bili v diagenezi mineralizirani ali karbonizirani. Med mineraliziranimi razlicki so bili najbolj razširjeni okremeneli rastlinski ostanki, pojavljale pa so se tudi psevdomorfoze rudnih mineralov (Omaljev, 1967; Drovenik et al., 1980; Dolenec, 1983; Ska-berne, 1995). Analiza organske snovi je pokazala, da je ta prisotna kot antracit in semiantracit s pre­hodom v grafit (Hadži-Popovic, 1962). Povprecna vsebnost organske snovi v vzorcih iz sive grden­ske formacije je znašala 0,14 %, v orudenih pešcen- Sl. 7. Medplastovna in precne kalcitno kremenove žile v pešcenjaku (O-1/11-2). Fig. 7. Interbedded and cross-bedded calcite-quartz veins in sand­stone (O-1/11-2). 1 m Sl. 8. Orudeni pešcenjak nad pisanimi klastiti (O-1/10-1, 2. odstrel). Fig. 8. Mineralised sandstone above variegated conglomerate (O­1/10-1, 2nd blasting). 1 m Sl. 9. Zacetek orudenja ob povecani prisotnosti organske snovi (OP­1 zg., 18. odstrel). Fig. 9. Beginning of higher ore concentrations coincides with higher content of organic matter (OP-1, 18th blasting). jakih pa se je njena vsebnost povecevala (Drovenik et al., 1980). Omaljev je za vzorce, ki so jih odvzeli v prvem obdobju raziskav navajal povprecno vseb­nost organske snovi 0,26 %, pri tem je še loceval topno in netopno obliko. Orudenje z uranom je bilo bolj pogosto v pešcenjakih s povecanim deležem organske snovi, še posebej tistih s topno obliko (Omaljev, 1982). 1 m 1 m Sl. 10. Meja orudenja vezana tocno na mejo temnosivega pešcenjaka (OP-1 sp., 74. odstrel). Fig. 10. Ore boundary corresponds to the boundary of dark grey sandstone (OP-1, 74th blasting). 1 m Sl. 11. Meja orudenja poteka znotraj sivega pešcenjaka (OP-1 zg., 62. odstrel). Fig. 11. Ore boundary runs within the grey sandstone (OP-1, 62nd blasting). Pri spremljavi odkopavanja smo opazili, da je razlicen delež organske snovi pomembno vplival na barvni odtenek pešcenjakov. Pešcenjaki, ki so bili brez ali skoraj brez organske snovi so imeli zelenkast odtenek, kjer se je delež organske snovi poveceval pa se je barva spreminjala od svetlosive do sive in temnosive do skoraj že crne. Pri tem pa se je s temnejšo barvo povecevala tudi verjetnost bogatejšega orudenja. Meje orudenja so bile vcasih vezane tocno na meje temnosivega pešcenjaka (sl. 10). Še veckrat pa se je orudenje koncalo pred to mejo (sl. 11) ali pa se celo podaljšalo v svetleje sive ali zelenosive pešcenjake. To si lahko razlagamo prav s pojavljanjem topne oblike organske snovi, ki se je premikala s podtalnico in ustvarjala geoke­micne pogoje za izlocanje uranovih mineralov tudi izven obmocja pojavljanja vidne netopne organ-ske snovi. V orudenih pešcenjakih je bila pogosto prisotna tudi rjavkasta obarvanost (sl. 12), ki pa je predvsem posledica prisotnosti še drugih sulfi­dov (Fe) oziroma njihove oksidacije. Med organsko snovjo in uranskim orudenjem sicer ni bilo ugoto­vljene direktne korelacije (Omaljev, 1967; Dolenec, Sl. 12. Orudeni pešcenjaki so veckrat nastopali v rjavkastih ra­ zlickih (OP-1 sp., 67. odstrel). Fig. 12. Brownish variations of sandstones are also usually mineral-ised (OP-1, 67th blasting). 0,5 m Sl. 13. Drobci organske snovi (crno) v orudenem pešcenjaku (O-1/4-5, 33. odstrel). Fig. 13. Organic detritus (black) in mineralised sandstone (O-1/4-5, 33rd blasting). 1983). Prisotnost organske snovi pa je bila pred­pogoj, da je v dolocenih delih sedimenta nastalo redukcijsko okolje, ki je povzrocilo obarjanje ura­nilnih ionov iz podtalnice v medzrnske prostore. Primerjava geološke sestave in pojavljanja oru­denja je pokazala, da se je v bloku 1 pojavljala na­slednja odvisnost: Geološka spremljava poskusnega odkopa uranove rude na Žirovskem vrhu 81 barva/zrnavost konglomeraticni pešcenjak debelozrnati pešcenjak srednjezrnati pešcenjak drobnozr. pešc. in muljevec temnosiva ruda bogata ruda ruda mineralizacija siva mineralizacija ruda mineralizacija jalovina svetlosiva jalovina mineralizacija jalovina jalovina zelenosiva jalovina jalovina jalovina jalovina Meje med posameznimi kategorijami orudenja je pojavljala najvecja debelina orudenja, ki je celo so bile naslednje: presegla 7 m (sl. 5 in sl. 14). Na tem delu se je po- - jalovina: pod 100 g/t U3O8 javljal le debelozrnat pešcenjak v katerem so bili - mineralizacija: 100–300 g/t U3O8 pogostni drobci organske snovi. Verjetno je bilo - ruda: 300–1000 g/t U3O8 tudi na teh mestih razvitih vec sekvenc, ki pa jih - bogata ruda: nad 1000 g/t U3O8 zaradi zastopanosti le debelozrnatega pešcenja­ka ni bilo mogoce locevati. Razvite medplastovno Vzdolžni profil odkopne priprave OP-1 nam je kremenovo kalcitne žile, ki smo jih kartirali in so pokazal skorajda sklenjen potek orudenja na celot-zelo pogostne na stikih posameznih sekvenc, bi ni dolžini, ki se je pojavljalo na vec mestih v dveh to lahko potrjevale. Omenili smo že, da je v tem in celo treh nivojih oziroma v dveh oz. treh sekven-delu prevladovala masivna tekstura. Na mestih s cah, ki pa navadno niso bile orudene v celotni de-povecano debelino se je navadno pojavljala tudi belini. Le na enem odseku (P-32a+5 do P-32a+20) bogatejša ruda. Bolj pogostni pa so bili primeri, da so bile sekvence orudene v celotni debelini in tu se so bili orudeni le deli sekvenc, med njimi pa so se P-32 P-32a P-33 P-33a P-34 P-34a P-35 P-35a 580 570 560 LEGENDA: ruda (> 0,03 % U3O8) siromašna ruda (0,01-0,03 % U3O8) kontura odkopa ore (> 0,03 % U3O8) poor ore (0,01-0,03% U3O8) shape of stope Sl. 14. Orudenje v vzdolžnem prerezu (OP-1). Fig. 14. Ore bodies in longitudinal section (OP-1). 1060 1050 1040 1030 1020 1010 1000 990 980 970 960 590 H-2 OP-1 580 570 Legenda na sliki 14. Legend on Figure 14. 560 Sl. 15. Orudenje v precnem prerezu P-32a+5. Fig. 15. Ore bodies in cross section P-32a+5. 1060 1050 1040 1030 1020 1010 1000 H-2 OH-580 OP-1 OP-2 OP-2 Sl. 16. Orudenje v precnem prerezu P-33+5. Fig. 16. Ore bodies in cross section P-33+5. 1060 1050 1040 1030 1020 1010 1000 990 590 H-2 580 OP-1 570 OP-2 560 Legenda na sliki 14. Legend on Figure 14. 550 1040 1030 1020 1010 1000 990 980 Legenda na sliki 14. Legend on Figure 14. 590 H-2 580 570 OP-1 OP-1 560 990 980 970 600 590 580 570 Legenda na sliki 14. Legend on Figure 14. 560 Sl. 17. Orudenje v precnem pre­ rezu P-34+15. Fig. 17. Ore bodies in cross sec­tion P-34+15. Sl. 18. Orudenje v precnem pre­ rezu P-35+20. Fig. 18. Ore bodies in cross sec­tion P-35+20. 1 01km 90 88 92 87 91 85 93 89 86 BLOK 1 LEGENDA: aluvij rdeci del grödenske formacije noriški dolomit sivi del grödenske formacijekarbonski skrilavci red part of Val-Gardena Formation alluvium Norian dolomite Carboniferous shales gray part of Val-Gardena Formation geološka meja prelom nariv lega bloka 1lega profila z vrtinamismer pritoka reke 91 geological boundary fault situation of block 1 situation of profile with boreholes direction of tributary thrust Sl. 19. Geološka karta severozahodnega podaljška (po I. Mlakarju). Fig. 19. Geological map of the NW extension of the mine area (after I. Mlakar). pojavljali jalovi deli ali je nastopala orudena le ena sekvenca. Sklenjena dolžina orudenja v bloku 1 je znašala najvec 150 m merjeno vzdolž OP-1 (sl. 14). Med profiloma P-35 in P-35a se je orudenje pri-celo postopno izklinjati in sicer se je zmanjševala njegova koncentracija kot tudi debelina. V zadn­jem delu je orudenje postalo lecasto in tudi te lece so vsebovale vse manjše vsebnosti urana. Tudi na drugem koncu se je orudenje v smeri OP-1 izklin­jalo (P-32+5) vendar pa se je v nekaterih odkopih (O-1/4-5) nadaljevalo vse do meje bloka (P-32) oziroma se je potem nadaljevalo neprekinjeno na­prej v blok 2. Širino rudnih teles smo opazovali v precnih prerezih, kjer je ta znašala od nekaj metrov do preko 40 m. Med prerezi P-32a+5 (sl. 15) in P-33 se je pojavljal najvecji obseg orudenja tako po debeli­ni kot tudi po padu. Za prerezom P-33 se orudenje stanjša in tudi dolžina orudenja v precni smeri se zacne skrajševati (sl. 16 in sl. 17). S približevanjem prerezu P-35a pa se orudenje še dodatno stanjša in zmanjšuje se tudi njegova koncentracija (sl. 18). Pri spremljavi odkopavanja smo opazili, da se je tam, kjer se je orudenje skrajševalo, prekinjalo ali izginjalo orudeni pešcenjak postajal svetlejši in ze­lenosiv, v njem je bilo v splošnem vse manj organ-ske snovi. Za prerezom P-35a se do prereza P-37, do kamor so se izvajala raziskovalna dela v jami, nikjer vec ni pojavljalo orudenje v ekonomsko za­nimivih kolicinah. Severozahodni podaljšek rudišca Pešcenjaki, ki pripadajo 6. horizontu in so bili glavni nosilci orudenja v blokih, kjer se je odko­pavalo uranovo rudo do leta 1990, se proti seve­rozahodu še nadaljujejo, vendar so po barvi veci­noma zelenosivi in le s sledovi orudenja. Prehod iz temnosivih in sivih pešcenjakov z orudenjem v zelenosive smo opazovali v bloku 1 na njegovem SZ delu med prerezoma P-35 in P-36. Sprememba barve je bila povezana tudi z zmanjšanjem deleža organske snovi, ki je imela odlocilno vlogo pri na­stanku redukcijskega okolja in obarjanju urana. V jami je bil zadnji raziskan prerez P-37, kjer so bili torej pešcenjaki 6. horizonta prevladujoce zeleno­sive barve. Pod njim pa so bili še prisotni pisani konglomerati, ki pa se navzdol (v precni smeri) hitro izklinjajo in jih nadomešcajo sivi razlicki. Severozahodno oziroma že zahodno od bloka 1 sta bila z vrtinami s površine raziskana še dva pre­reza oddaljena 1,3 in 2,8 km od zadnjega prereza v jami (sl. 19). Tudi tu so bile ugotovljene le redke in siromašne mineralizacije z uranom (Budkovic, 1986). Poleg tega se tu siva grödenska formacija mocno stanjša saj se pricenja šele s 4. ali 5. ho-rizontom, ki je zastopan le s sivim konglomera-tom, pisanega konglomerata ni vec. Pešcenjaki 6. horizonta ostajajo prevladujoce zelenosive barve, vmes pa se pojavljajo tudi še sivi in celo temnosi-vi razlicki. Iz popisa vrtin izhaja, da se med temi debelozrnatimi pešcenjaki pogosteje pojavljajo bolj drobnozrnati razlicki (drobnozrnati pešcenja­ki, meljevci, muljevci). Prisotnost organske snovi je bila zabeležena le redko. To bi kazalo na okolje prepletajoce reke z veliko poplavnih ravnic, kjer se je usedal drobnejši material. Iz geološke karte I. Mlakarja (1981) je raz­vidno, da se na mestu, kjer se zakljucuje jamska zgradba, smer grödenskih plasti obraca iz dinar-ske smeri v smer vzhod-zahod (sl. 19). O zavoju reke pri Gorenji vasi, ki je prinašala in odlagala pešceni material je pisal že Omaljev (1982). Spre­memba v slemenitvi plasti in drugacen razvoj grödenskih plasti v smeri proti zahodu (Fužine) nam potrjuje predvidevanje Omaljeva, da je bil pri Gorenji vasi mocan pritok v glavno reko. Ta pritok je moral prinašati material za pisane kon­glomerate, medtem ko je glavni tok reke iz zahoda prinašal material za sive konglomerate. V jamski zgradbi, ki se pricenja z blokom 1 in nadaljuje v dinarski smeri proti JJV je prav znacilno, da se v 5. horizontu menjavata sivi in pisani konglomerat. Debelina in obseg slednjega se proti JV in JZ sicer manjšata, proti robovom bazena celo izklinjata. Raziskave prodniških združb so kazale na razlicno izvorno obmocje enega in drugega predvsem zara­di razlicne sestave prodnikov, njihove zaobljenos-ti in sortiranosti (Skaberne, 1995). Prodniki, ki gradijo pisane konglomerate so manj zaobljeni in slabše sortirani in jim je zato Skaberne (1995) pripisal aluvialno vršajno sedimentacijo s smerjo transporta od SV proti JZ glede na prevladujoco smer transporta SZ-JV. Glede na podoben potek teles pisanega konglomerata na obzornih kartah in vzdolžnih prerezih kot jih imajo ostali sedimenti, to je v smeri SZ-JV menimo, da je material zanj prinašal pritok reke iz smeri S do SV od Gorenje vasi in so se potem odlagali v prepletajocih koritih in ravnicah glavne reke, ki je tekla proti JV. Zahvala Za kriticen pregled vsebine in podane pripombe se najlepše zahvaljujem dr. Dragomirju Skaberne­tu. Graficne priloge mi je izdelala Nika Köveš, pre­vod povzetka in podnapisov k slikam pa Erazem Dolžan, za kar se jima prav tako lepo zahvaljujem. Literatura Budkovic, T. 1978: Litološka kontrola uranovega orudenja na obzorju 530 m v rudišcu Žirovski vrh. Rudarsko-metalurški zbornik, 1: 25–34. Budkovic, T. 1980: Sedimentološka kontrola uran­ove rude na Žirovskem vrhu. Geologija, 23/2: 221–226. Budkovic, T. 1986: Raziskave severozahodne­ga podaljška rudišca Žirovski vrh med Kar­lovcem in Fužinami. Referati 2. jugoslovanske­ga posvetovanja o jedrskih surovinah, Škofja Loka. Dolenec, T. 1983: Nastanek uranovega rudišca Žirovski vrh. Doktorska disertacija. Univerza v Ljubljani, Ljubljana: 2 zv. 287 str. + 48 tabel. Drovenik, M., Plenicar, M. & Drovenik, F. 1980: Nastanek rudišc v SR Sloveniji. Geologija, 23/1: 1–159. Florjancic, A.P. s sod. 1973: Porocilo o geološko-ru­darskih raziskavah ležišca urana Žirovski vrh v letu 1972. Zgodovinski arhiv Ljubljana, enota v Škofji Loki. Hadži-Popovic, S. 1962: Organska materija v grodnu Žirovskega vrha. Tipkano porocilo, Zgodovinski arhiv Ljubljana, enota v Škofji Loki. Lavrencic, J., Florjancic, A.P., Cadež, F. & Šubelj, A. 1984: Uvajanje projektnih rešitev in posk­usnega dela za najprimernejši sistem geološke kontrole pri poskusnem odkopavanju. Arhiv Ljubljana, enota v Škofji Loki. Lukacs, E. & Florjancic, A.P. 1974: Uranium ore deposits in the Permian sediments of North­west Yugoslavia. Formation of Uranium Ore Deposits, Proceedings of a Symposium, Ath­ens, 6–10 May1974, IAEA, Wienna. Miall, A.D. 1978: Lithofacies types and vertical profile models in braided river deposits: a sum­mary. In: Miall, A. D. (ed.): Fluvial sedimentol­ogy. Can. Petrol. Geol. Mem., 5: 597–604. Miall, A. D. 2014: Fluvial Deposition-al Systems. Springer Geology. https://doi. org/10.1007/978-3-319-00666-6 Mlakar, I. 1981: Geološki faktorji kontrole Hg, Cu in U mineralizacije (Žirovski vrh), IV. faza. Arhiv Geološki zavod Slovenije, Ljubljana: 82 str., 9 pril. Mlakar, I. & Placer, L. 2000: Geološka zgradba Žirovskega vrha in okolice. In: Florjancic, A. P. (ed.): Rudnik urana Žirovski vrh, Didakta, Radovljica. Omaljev, V. 1967a: Razvoj gredenskih slojeva i uranove mineralizacije u ležištu urana Žirovski vrh. Radovi IGRI 3, Beograd. Omaljev, V. 1967b: Korelacija slojeva u ležištu Žirovski vrh. Radovi IGRI 3, Beograd. Omaljev, V. 1969: Eksploatacijsko raziskovanje v uranovem rudišcu Žirovski vrh. Geologija, 12: 107–152. Omaljev, V. 1982: Metalogenetske karakteristike uranskog rudišta Žirovski vrh. Geoinstitut, Posebna izdanja, knjiga 7, Beograd. Skaberne, D. 1995: Sedimentacijski in postsedi­mentacijski razvoj grdenske formacije med Cerknim in Žirovskim vrhom. Doktorska di­sertacija. Univerza v Ljubljani, Ljubljana: 1. del 500 str., 2. del 192 str. + 46 prilog. Spasojevic, L. 1981: Rudarski projekat za izvoden­je radova pri probnom otkopavanju u Rudniku urana Žirovski vrh. Rudarski institut Beograd. GEOLOGIJA 66/1, 87-105, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.003 Taxonomic and stratigraphic remarks on Placites urlichsi Bizzarini, Pompeckjites layeri (Hauer), Carnites floridus (Wulfen) and Sageceras haidingeri (Hauer) Taksonomija in stratigrafski razpon vrst Placites urlichsi Bizzarini, Pompeckjites layeri (Hauer), Carnites floridus (Wulfen) in Sageceras haidingeri (Hauer) Andreas SPATZENEGGER1 & Walter POLTNIG2 1A-5113 St. Georgen, Wetterkreuzstraße 16, Austria, e-mail: andreas.spatzenegger@outlook.com 2A- 8063 Eggersdorf, Feldweg 16, Austria, e-mail: walter.poltnig@gmx.at Prejeto / Received 19. 8. 2022; Sprejeto / Accepted 12. 4. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Key words: ammonoids, Triassic, Carnian, Wettersteinkalk, Bleiberger Sonderfazies, Upper San Cassian Formation Kljucne besede: amoniti, trias, karnij wettersteinski apnenec, pliberški facies, Zgornja San Cassianska formacija Abstract Investigations of an Lower Carnian Wettersteinkalk ammonoid fauna found in the Hochobir massif (Carinthia/ Austria) gave rise to problems in the taxonomic relationship within the Triassic ammonoid Family Pinacoceratidae. The morphological parameters of the ammonoid genus Pompeckjites are rather unclear. Morphological variation of at least two ammonoid species as Pompeckjites layeri Hauer on one end, Placites urlichsi Bizzarini on the other end have to be take into account. Numerous field surveys, studies and excavations on upper Wettersteinkalk sites within the Karavank Mountains and Hallstatt-facies sites in the Northern Calcareous Alps were implemented and compared with the reference sites in the Dolomites. As a consequence of our investigations, the Hochobir Wettersteinkalk ammonite assemblage is thought to be equivalent in time to the ammonoid fauna of the Upper San Cassian Formation. The frequent occurrence of the Julian (Lower Carnian) ammonoid Placites urlichsi Bizzarini may be a powerful tool in field investigations for a refined correlation of the upper Wettersteinkalk reef limestone to the coeval basinal facies of the Upper San Cassian Formation (Lower Carnian/upper Trachyceras aonoides Zone). As a result of this study Placites urlichsi was included in the genus Pompeckjites. This paper could be an attempt to recognize the differences in juvenile forms of Pompeckjites layeri and Placites urlichsi and other similar disciform ammonoid genera like Carnites floridus and Sageceras sp. based on suture lines, polished transversal-sections and morphological features. Izvlecek Rezultati raziskave amonitne favne v spodnjekarnijskem wettersteinskem apnencu, ki se pojavlja na Obirju, na avstrijskem Koroškem, odpirajo problem v taksonomskem razlikovanju triasnih amonitov družine Pinacoceratidae. Razlikovanje na podlagi morfoloških parametrov amonitov rodu Pompeckjites je precej nejasno, pri cemer je treba upoštevati morfološke variacije najmanj dveh vrst, in sicer Pompeckjites layeri Hauer na eni ter Placites urlichsi Bizzarini na drugi strani. Številni ogledi nahajališc v zgornjem wettersteinskem apnencu Karavank in hallstattskem faciesu Severno apneniških Alp, njihova izkopavanja ter raziskave, poleg tega pa tudi primerjava z referencnimi najdišci v Dolomitih kažejo, da je zbrana amonitna združba wettersteinskega apnenca najverjetneje casovni ekvivalent amonitni favni zgornje San Cassian formacije. Pogosto pojavljanje julijskega (spodnji karnij) amonita Placites urlichsi Bizzarini je na terenu lahko mocno orodje za oceno korelacije med grebenskim zgornjim wettersteiskim apnencem ter ekvivalentnim bazalnim faciesom zgornje San Cassian formacije (spodnji karnij/zgornji del Trachyceras aonoides cone). Kot rezultat te raziskave je bil Placites urlichsi vkljucen v rod Pompeckjites. Pricujoci clanek na podlagi suturnih linij, poliranih rezov in morfoloških znacilnosti, pomaga prepoznati razliko med juvenilnimi oblikami Pompeckjites layeri in Placites urlichsi ter drugimi amoniti diskoidne oblike kot sta Carnites floridus in Sageceras sp. Introduction The Julian (Lower Carnian) Trachyceras aon­oides and Austrotrachyceras austriacum ammo-noid zonation was originally established in the fossiliferous Hallstatt Limestones of the Northern Calcareous Alps (Mojsisovics 1892, 1893; Frech 1911a, 1912, subsequently better defined by Kr-ystyn 1978 and verified by Hornung et al. 2007). Later on it was compared with the biostratigraph­ic framework of the San Cassian Formation of the Southern Calcareous Alps/Dolomites (see refer­ence lists of Mietto et al. (2012) and Urlichs (2017). It was recognized that the San Cassian Formation spans more than the previously thought late Lad-inian to earliest Carnian (Trachyceras aon Zone) age (Bizzarini 1987, 2000; Mastandrea 1995; Di Bari & Baracca 1998). Consequently, attempts were made to correlate both facies on the basis of occuring Trachyceratidae (Urlichs 1994, 2017). However, other co-occurring ammonoid genera (except Lobites, see Urlichs 2012) were never part of such studies. From the Julian part of the Wet-tersteinkalk (Bleiberger Sonderfazies of Holler 1960) such comparative ammonoid studies were not carried out until today. Current biostratigraph­ic studies in the UNESCO Geopark Karawanken/ Karavanke (A/Slo) evidence a T. aonoides Zone age of these strata that is based on the occuring Tra­chyceratidae (Poltnig & Spatzenegger 2022). The co-occuring ammonoids of the Family Pinacocer­atidae show striking similarities to the Pinacocer­atidae of the Upper San Cassian Formation East of Cortina d’ Ampezzo that were revised by Bizzarini (1987). A small disciform ammonoid fauna, found in the uppermost Wettersteinkalk (Bleiberger Son-derfazies, Holler 1960) caused severe taxonomic classification problems that hampered a clear Car-nian/Julian ammonoid subzone (see Fig. 2, middle column) identification already in the field. Because of syndiagenetic dolomitization and recrystalliza­tion during lithogenesis, only very few ammonoids showed well preserved suture lines. This fact made it complicated to distinguish between the Julian contemporaneous ammonoid genera Pompeckjites, Sageceras and Carnites. To make matters worse, some juvenile growth stages of Placites urlich­si show strong homeomorphism to Sageceras sp. and Pompeckjites layeri. To facilitate the classification on poorly pre­served ammonoids of the genera above mentioned we provide our results based on polished hand specimens and morphological features. Study areas Fladung mining area on Obir massif/Austria The abandoned Fladung lead-zinc mining area is located about 8 km west of Bad Eisenkappel on the southern slope of Hochobir (see Fig. 1, A). It is easily accessible via the toll road to the Eisen­kappler Hütte. During several field excursions the majority of the ammonoids were sampled from the ravine directly east of the Fladung Berghaus (see Figs. 1, B and D with sites 1a, 1b, 1c). The western ravine wall (approximately 1200 m above sea level) crops out of a steeply dipping (55 degrees towards east-south-east) Wettersteinkalk succession that shows a slope angle parallel to the bedding. There­fore, all ammonoid locations (site 1 a-c) found in this wall originate from approximately the same stratigraphic layers. Location 2 is situated 500 m further eastwards of the Fladung Berghaus direct­ly beside the toll road near a junction with a forest road (see Fig. 1, B). It is in tectonically stressed contact (not well visible in the field) with Cardi­ta shale and Cardita limestone. Lipolt (1856:337f) mentions from the Fladung mining district light ore bearing “Hallstätter Kalk” (=Wettersteinkalk) and cited Carnian ammonoids from the locality (“Ammonites Aon, Ammonites Joannis Austriae, Ammonites Jarbas and Ammonites Gaytani”). The “Bleiberger Schichten des Ovir (=Obir)” with Car-nites floridus, also mentioned in Lipolt (1856), correspond to the first Raibl shale horizon and should not be confused with today’s Bleiberger Sonderfazies of Holler (1960). For further infor­mation we refer to Poltnig & Spatzenegger (2022). Our newly discovered fossiliferous strata corre­spond to the Bleiberger Sonderfazies (Holler 1960) of the uppermost Wettersteinkalk and mark the area between the sediment hosted lead-zinc min­eralization (Bechstaedt 1979; Mondillo et al. 2019) and the tectonically sheared off and subsequently eroded first Raibl shale horizon. Unterpetzen mining area near Podpeca/Slovenia The former mining district Unterpetzen/Pod­peca is situated roughly 6.5 km southwest of the town Mežica/Slovenia. (see Fig. 1, A) on the south eastern slope of the Petzen massif. It should not be confused with the Helena mining district in the village Podpeca itself that is situated one kilometer eastwards. Two field campaigns were carried out in this area to verify our stratigraphic results from Hochobir. Main sampling was done alongside the forest road (sites Pod. 1-3, roughly E 46.476450, N 14.808636) to the abandoned Mariahilf mine Fig. 1. Overview of the Studied Areas. A, geographic situation of the Obir/Fladung area in Austria and of the Unterpetzen/Podpeca area in Slovenia. B, enlarged overview of the Fla-dung sites with mapped lithologic strata (debris and soil are not mapped). C, Unterpetzen/Podpeca mining area with sites Pod 1–3 alongside the forest road to the Mariahilf mine gallery. D, tectonically stressed contact of Wettersteinkalk (left) to Raibl shales (right) in the Fladung area. E, view from Fladung site 1a towards 1b and 1c. F, weathered in situ Wettersteinkalk ammonoid (Joannites klipsteini), Fladung, site 1c. Fig. 2. Simplified stratigraphic log of the Fladung area. The left column shows the Lower Carnian (Julian) sub-stages. The middle column shows the ammonoid zonation modified after Krystyn (1973) and Hornung et al. (2007). The right column shows an idealized lithologic log of the Fladung area and the stratigraphic position of the found ammonoid fauna (red star). gallery (see Fig. 1, C). From Unterpetzen several ammonoid finds in Wettersteinkalk have been cit­ed in Mojsisovics (1871, 1873, 1882, 1893, 1902). Material and methods All ammonoid concentrations found at both lo­cations originate from the vicinity of algal lami­nites and do show a partial current sorting of the fossils. This suggests a deposition in the tidal to subtidal zone. Most ammonoids in this study were completely recrystallized and partially encrust­ed by a several millimeters thick dolomitic crust. Towards the surface and near mineralized layers better preservation was found. In some limestone parts the ammonoids showed calcitic shell replace­ment that was sometimes covered with a fine limo-nite crust between ammonoid shell and sediment. If this coating was missing, preparation was diffi­cult and of poor result. Another common feature of ammonoids found near the surface was the disso­lution of the ammonoid shell by humic acids. The result was an internal mold (steinkern) covered by a crumbled powder of the former ammonoid shell. The identification of ammonoids that showed steinkern preservation was also hindered by the lack of visible suture lines. Preparation was done by the authors exclusively. The best results were obtained by using coarse and fine pneumatic en­gravers. Limestone lacking preparable ammonoids was used for making polished transversal-sections (see Figs. 7, A, B, F and 9, C). Such sections gave good insights into the depositional conditions and were found to be very helpful in identification of some ammonoids. All collected fossils originate from the Blei­berger Sonderfazies (Holler, 1960) of the mining district Fladung and are stored in the administra­tion center of the UNESCO Geopark Karawanken/ Karavanke in Tichoja and in the private collection of Andreas Spatzenegger (A-5113 St. Georgen). All fossils are accessible by prior appointment. Systematics More than 300 ammonoid specimens were col­lected during fieldwork. The general preservation of the ammonoid assemblages found was moderate to poor. Sample richness in ammonoid quantity was very high and similar to the ammonoid accu­mulations within the Hallstatt limestone. For the species mentioned in the systematic part, the most important synonyms provided in the literature and the original papers describing the holotypes were carefully reviewed. The systematic paleontol­ogy below is thus based upon a careful revisitation of previous Triassic ammonoid literature (Hauer 1846, 1847; Mojsisovics 1873, 1882; Hyatt 1884; Mojsisovics 1902; Gemmellaro 1904; Arthaber 1905; Hyatt & Smith 1905; Arthaber 1911; Frech 1911a; Welter 1914; Diener 1915a, 1915b, 1916; Smith 1927, 1932; Johnston 1941; Spath 1951; Tozer 1967; Silberling & Tozer 1968; Tozer 1971; Krys­tyn 1973, 1978, 1980; Tozer 1981; Krystyn 1982; Tozer 1984; Sestini 1992; Tozer 1994; Doguzhae­va et al. 2007; Balini 2008; Konstantinov 2008; Mietto et al. 2008; Balini et al. 2010, 2012; Hy­att & Smith 2012; Konstantinov 2012; Lukeneder & Lukeneder 2014; Ritterbush et al. 2014; Jenks et al. 2015) and our own investigations based on morphology and transversal sections. For each ammonoid species, remarks are provided with re­spect to the original identifications and descrip­tions provided in the literature. The main subject of the systematic part is the Lower Carnian/Julian genus Pompeckjites of the Family Pinacoceratidae Mojsisovics, 1879. The additionally described ge­nus Carnites (Carnitidae Arthaber, 1911) is not a member of Pinacoceratidae but included with the latter in the Superfamily Pinacoceratoidea (Tozer, 1981). The genus Sageceras (Superfamily Sagecer­atoidea Hyatt, 1884) is shown here only for com­parison purposes to highlight some morphological similarities with the above mentioned genera in transversal sections. For the higher taxonomic no­menclature of ammonoids the work of Hoffmann et al. (2022) was used. In regards to the taxonomy of ammonite families and subfamilies we used the classification of Tozer (1971, 1981) and Krystyn (1982). For the detailed descriptions of Carnites floridus and Pompeckjites layeri, we refer to the original descriptions (Hauer 1847; Mojsisovics 1873, 1902). The description of Placites urlichsi Bizzarini, 1987 is more detailed because of its im­portance for this work. Superorder Ammonoida Haeckel 1866 Order Ceratitida Hyatt, 1884 Pinacoceratoidea Mojsisovics, 1879 Carnitidae Arthaber, 1911 Carnites Mojsisovics, 1879 Type species: Carnites floridus (Wulfen, 1793) 1793 Nautilus bisulcatus Wulfen, p. 103, fig. 10. 1793 Nautilus floridus Wulfen, p.113, fig. 16. 1793 Nautilus nodulosus Wulfen, p. 115, fig. 17. 1793 Nautilus redivivus Wulfen, p. 116, fig. 18. 1846 Ammonites floridus Hauer, p. 2, pl. 1, figs. 5-14. 1855 Ammonites floridus Hauer, p. 150. 1873 Pinacoceras floridum Mojsisovics, p.58, pl. 22, figs. 15, 16; pl. 25, figs. 1-6. 1882 Carnites floridus, Mojsisovics, p.228, pl. 50, figs. 5-8; pl. 51, figs. 1-8. 1911b Carnites floridus, Frech, p. 19, figs. 24 a, b, non c. 1911b Carnites floridus, Frech, p. 19, figs. 25 a, b, c. non 1911b “Carnites” falcifer, Frech, p. 21, figs. 26, 27. 2007 Carnites floridus, Hornung et al., pl. 6, figs. b1-b4. Description: For the detailed morphological de­scription we refer to (Hauer, 1846) and (Mojsiso­vics, 1873, 1882). Remarks: The juvenile development of Carnites floridus (Wulfen, 1793) was first described in de­tail in Hauer (1846) and is excellently pictured in his plate. Hauer recognized the different growth stages of Carnites floridus which were assigned by Wulfen (1793) to four different Nautilus species. Hauer (1846) established on contemporary no­menclature and the “ammonitic” suture line Am-monites floridus. Mojsisovics (1873) confirmed the growth development illustrated and described by Hauer (1846) and identified it as Pinacoceras floridum. Mojsisovics (1879a) first mentioned the genus name Carnites and formally established the genus Carnites in Mojsisovics (1879b) with C. floridus as its type species. The original type spec­imen of C. floridus was found in the first Cardita shale horizon of Bad Bleiberg. Its stratum typicum in the so called first Raibl shale horizon (= first Cardita shale horizon) was clearly named and de­scribed too. The hitherto considered large stratigraphic range of C. floridus most probably has its origin in the descriptions of Hauer (1846) and Mojsisovics (1873) where both authors refer to a great mor­phologic variability in the mature growth stages of C. floridus. Alas, some subsequent authors (Leon-ardi & Polo, 1952) didn’t focus on the juvenile de­velopment of C. floridus and mis-identified speci­mens showing divergent juvenile development and mature Carnites shape as C. floridus. Carnites floridus (see Figs. 3, E-E2 and F-F1) found in the Hallstatt Limestone of the Rappolt-stein hill (= historic „Mons Tuval“, located in Bavaria) show the same development in juvenile Fig. 3. Carnites floridus. A, B, D, different growth stages of C. floridus with added metric measurements (modified after Hauer 1846: pl. 1, figs. 5-14). C–C5, original suture drawings in Hauer (1846). The development of an adventitious saddle is focused on the black circles. E–E1, side and venter view of Carnites floridus from Carnian Hallstatt Limestone of Rappoltstein. F, C. floridus from Rappoltstein in iridescent shell preservation. F1, en­largement of the faint growth lines on ammonoid F. G–G1, Neoprotrachyceras thous, found together with Carnites floridus on Rappoltstein. E2, sutureline of C. floridus from Rappoltstein. stage as in C. floridus from the first shale horizon of Bad Bleiberg. At Rappoltstein C. floridus was found with Austrotrachyceras sp., and Neopro­trachyceras thous (see Figs. 3, G, G1) what allows a correlation with the beginning of the A. austri­ acum Zone (Hornung et al. 2007). This indicates that the first Raibl shale horizon can be correlated as well, which implies that the uppermost Wetter-steinkalk (Bleiberger Sonderfazies) occurring be­low roughly corresponds to the upper T. aonoides Zone. Frech (1911b: 19ff) established “Carnites” falcifer as a new Carnites species from presumably Tuvalian (Upper Carnian) strata. Our own investi­gations on Rappoltstein revealed that “C.” falcifer belongs to the genus Parahauerites. It is of early Tuvalian age and was found with Pleurotropites sp. and Trachysagenites sp. Therefore, we can ex­clude an occurrence of Carnites in lower Tuvalian (Tropites dilleri Zone) strata. To illuminate the juvenile morphological devel­opment and the development of the suture line of C. floridus we have pictured the modified plate of Hauer (1846: pl. 1), (see Figs. 3, A-D) with addi­tional metric measurements. The added black cir­cles in the suture line drawings (see Figs. 3, C-C5) focus on the development of an adventitious lobe/ saddle what is a diagnostic feature for C. floridus. Fully mature specimens of C. floridus show two adventitious elements that both emerged in the same way. In the largest suture (see Fig. 3, C5), the genesis of the second adventitious element is visible in the small adventitious bulgy saddle near the venter on the right side of the black circle. The juvenile specimen illustrated in Figure 3, A shows a ventral furrow with a faint keel in the middle (not visible in Hauers drawing). According to Hau-er (1846) this is not the regular development. Most juvenile cores at this size show a normal round­ed venter. The Figure 3, B in this text, shows the subsequent development of the tricarinate venter that is also an important morphological feature of C. floridus too (see Figs. 3, E1 and 9, A1). Following this stage, the shape of C. floridus diverges considerably. There can occur equal sized specimens with almost sharp (Fig. 3, D) or with rounded venter. Some specimens showed fold-like nodes at the mid flank, which were sometimes ac­companied by nodes on the ventro-lateral margin. This is in contrast with other totally smooth spec­imens of the same size. Between these extremes, many variations exist. The suture line is identical in all of these variations. All these different forms are based on an identical juvenile stage show­ ing similar measurements in ratio of diameter to thickness. This was not really taken into account in earlier classifications of similar ammonoids to Carnites floridus, which led to an enlarged strati­graphic range of true C. floridus. The ammonoid fauna of the San Cassian Forma­tion laid a base for an extended stratigraphic range of C. floridus as well. Early authors (Mojsisovics, 1869, 1882, Mojsisovics et al., 1895; Zittel, 1899) assigned the San Cassian layers as a whole into the former Cordevol (T. aon Zone). All ammonoid forms similar to Carnites, were assigned to C. flori­dus. This opinion prevailed until the 20th century and can be seen clearly in the identifications on the ammonoid plates in Leonardi and Polo (1952), where ammonoids from the upper San Cassian Formation East of Cortina d’ Ampezzo (Boa Stao­lin, Boa Tamarin, Costalares) were compared and identified with upper Ladinian to lower Carnian ammonoid species of the classic San Cassian loca­tions (Stuores Wiesen, Pralongia). For example, the genus Sirenites that begins in the upper T. aonoides Zone, was not recognized in Boa Staolin because it does not occur in San Cassian. It was identified as (Pro)trachyceras ladinum in Leonardi and Polo (1952: pl. 2, Figs. 32-35). Bizzarini (1987, 2000) took these differences into account and attempt­ed to improve the identifications by establishing Placites urlichsi (for C. floridus in Leonardi and Polo 1952) and by enlarging the stratigraphic log of the upper San Cassian Formation to include the T. aonoides and A. austriacum ammonoid Zones. For further literature regarding to the San Cassian Formation, we refer to the reference lists of Mietto et al. (2012) and Urlichs (2017). Occurrence: Carnites floridus occurs in Car-nian Hallstatt Limestone of Feuerkogel/Austria and Rappoltstein/Germany, in the first Raibl shale in Austria and Germany (Bavaria), in the Reingra­ben shales in Austria (Frech 1911b; Lukeneder & Lukeneder, 2022). Hungary (Frech 1911b), Slove­nia (Jurkovšek et al., 2002) and Italy. Pinacoceratidae Mojsisovics, 1879 The Family Pinacoceratidae probably has its origin in the late Anisian to lower Ladinian age with Praepinacoceras damesi (Mojsisovics). In the subsequent Carnian stage the Family Pinaco­ceratidae is subdivided into several genera whose phylogenetic relationships to each other are not very clear. A close relationship exists among the genera Pompeckjites and Eupinacoceras in the de­velopment of the suture line and in some morpho­logical parameters. Genus Pompeckjites Mojsisovics, 1902 Type species: Pompeckjites layeri, (Hauer, 1847) 1847 Ammonites layeri Hauer, pl. 9, figs. 1-3. 1873 Pinacoceras layeri, Mojsisovics, pl. 23, figs. 1-6. 1902 Pompeckjites layeri, Mojsisovics, pl. 19, figs. 3-5; pl. 20, fig. 1. Description: For detailed description see in (Hauer, 1847) and in (Mojsisovics, 1873, 1902) Remarks: In the Hallstatt Limestone, Pom-peckjites layeri (see Figs. 4, A-E) spans the entire Julian stage (T. aon, T. aonoides and A. austria-cum ammonoid Zones). Our own measurements on P. layeri from the T. aonoides and A. austria-cum Zones show slight differences in the develop­ment of the juvenile whorls. In the A. austriacum Zone the inner whorls are thicker and do show a somewhat persisting rounded venter stage (see white arrows in Fig. 7, C) than in the T. aonoides Zone where the early juvenile whorls are thinner and more fastigated (see Fig. 7, D) at equal size. According to Krystyn (1973: 125, see in faunal list of T. aon Zone) P. philopater is synonymous with P. layeri. In contrast to this opinion Pinacoceras philopater (Laube) was assigned to Pompeckjites by Bizzarini (1987). Occurrence: According to Krystyn (1978), P. layeri occurs in the T. aon, T. aonoides and A. austriacum Zones of the Hallstatt Limestone. San Cassian Formation/Italy. “Placites” urlichsi Bizzarini, 1987 Type species: Placites urlichsi Bizzarini, 1987, pl. 1 figs. 1, 2a,b, 3a,b, 6a,b, 7, 8. Holotype: pl. 1, fig. 1, from Boa Staolin. Paratypes: pl. 1, figs. 6-8, from Boa Staolin. Depository of types (see Bizzarini, 1987: 50). 1952 Carnites floridus, Leonardi & Polo, pl. 1 figs. 26, 44, 45, 47- 49, 55, 57; pl. 2, figs. 39, 40, 41, 42, 43. 2000 Placites urlichsi Bizzarini, pl. 3, figs. 3, 4. Fig. 4. Pompeckjites layeri. A-A2, Pompeckjites layeri (Mojsisovics, 1902: pl. 20, fig. 1), side and venter view. B, Pompeckjites layeri from Hallstatt Limestone (T. aon­oides Zone) of Rappoltstein. B1, enlarged detail of the preserved wrinkle layer. D, suture of P. layeri (Hauer, 1847: pl. 9, fig. 3). E, suture of P. layeri (Diener, 1915: pl. 2, figs. 14 a, b). C-C1, P. layeri (Mojsisovics, 1873: pl. 23, fig. 3) side and venter view. Description: The early juvenile stage shows an open umbilicus and a rounded venter (Figs. 5, A1, B and C). Then the wide umbilicus narrows quickly, leaving a deep narrow navel. During fur­ther growth stages the venter is at first sub to high-trapezoidal rounded and finally develops a broad tabulate venter stage (see Figs. 7, A2, B1 and F1). At this growth stage Placites urlichsi resem­bles Sageceras sp. in form and cross-section (see Fig. 9, E1) but shows a totally different suture line. The suture line of P. urlichsi shown in Bizzarini, (1987: 51) is comparable with the suture lines of equal sized specimens from Fladung, site 2 in the Hochobir massif. Well preserved flanks of bigger specimens of P. urlichsi from the same site show faint growth lines with a distinct bend towards the aperture in the middle of the flank. Remarks: Our specimens from Fladung, site 2 reach 25 mm in diameter (see Figs. 5, D and 6, D) and show a body chamber of about a half to three quarters of the coiling. Visible sutures were found on a few specimens only. In the Hochobir mas­sif, two morphotypes of Placites urlichsi can be recognized. Both variants show the same tabulate venter in sub-mature growth stages. Morphotype 1 (see Figs. 5, A1, A2 and C) is somewhat thinner and shows a sharp high-trapezoidal venter devel­opment in juvenile stage at roughly 15 mm in di­ameter. At this stage, specimens of morphotype 1 (see Fig. 5, A2; Figs. 6, E and 7, E2) are difficult to distinguish with the naked eye from Pompeckjites layeri (see Fig. 6, A). In its juvenile stage morpho-type 2 develops a thicker, more rounded sub-trap­ezoidal venter. Placites urlichsi in Bizzarini (1987: figs. 3a, b) is identical to the same sized specimens of the mor­photype 2 from Fladung, site 2. The Figures 2a, b in Bizzarini (1987) are identical to morphotype 1 from Fladung, site 1 a-c. The suture line is iden­tical in both morphotypes. The steinkern of Pom-peckjites philopater pictured in Bizzarini (2000: pl. 2, fig. 6) from Boa Tamarin is surmised to be a Placites urlichsi because on the steinkern the dis­tinct ventro-lateral margins (compare to Fig. 5, A2) of P. urlichsi morphotype 1 are visible. From a stratigraphic point of view, the ammonoid fauna of Fig. 5. Placites urlichsi from Obir. A, ammonoid fauna from Fladung site 1c. A1, enlarged juvenile internal mold/steinkern of P. urlichsi, (morphotype 1). A2, enlarged venter (steinkern) of P. urlichsi, (morphotype 1). B, early juvenile growth stages of Placites urlichsi (morphotype 2). C, Placites urlichsi (morpho-type 1) showing partial shell preservation. D, Placites urlichsi (morphotype 2) showing partial shell preservation. Boa Tamarin in Bizzarini (2000: 22), is thought to be slightly older than the ammonoid fauna of Boa Staolin whence Placites urlichsi morphotype 2 oc­curs. Similar minor age and shape (from slender to thicker specimens) differences are also recogniza­ble at the Hochobir sites. In P. layeri a similar de­velopment from slender to thicker specimens was observed from the T. aonoides Zone towards the A. austriacum Zone (see Figs. 7, C and D). Occurrence: Morphotype 2 (see in Figs. 5, B and D) from Hochobir/Fladung exclusively at site 2 but is very common there. Morphotype 1 (see in Figs. 5, A1, A2 and C) occurs at Fladung, sites 1a, b and c. Unterpetzen/Podpeca and San Cassian Formation. Arguments to replace Placites urlichsi Bizzarini to the genus Pompeckjites The genus Placites, (Superfamily Pinacocer­atoidea Mojsisovics, 1879, Family Gymnitidae Waagen, 1895) is characterized by its platycone cross-section and its rounded venter. According to (Mojsisovics, 1873) all species of Placites are dis­tinguished mainly on their whorl sections and su­ture lines. Furthermore, all species descriptions of Placites in Mojsisovics (1873) were based on sub mature and mature stages of growth. The type species Placites platyphyllus (Moj­sisovics, 1873) as the closely related species Plac­ites polydactylus, P. oxyphyllus and P. myopho­rus show all a closed umbilicus and an external saddle with one strong side branch on the ventral side. Their confirmed age is middle to late Norian. According to Diener (1915b) no real adventitious lobes/saddles occur. The same feature was noted by Spath (1951) who described in Placites platy-phyllus a simple suture line as in Gymnites with an individualized outer branch of the external saddle. Subsequently this similarity to Gymnites led to a ranking of Placites within the Family Gymnitidae. Paragymnites (Hyatt, 1900), whose generic type is Placites sakuntala (Mojsisovics, 1896) was es­tablished for those species of Placites which do not show this strong side branch on the external saddle. Placites placodes and Placites perauctus, described in Mojsisovics (1873) are, according to Krystyn and Siblik (1983), of late Carnian (Tu­valian 3) and early Norian (Lacian 1) age. They both differ from other Placites sp. and from Par-agymnites sp. by a highly individualized external saddle and additionally in P. placodes by a small open umbilicus. Based on the above mentioned differences, Placites urlichsi has to be compared to the type species Placites platyphyllus exclusively. Already Bizzarini (1987: 45), mentioned the close relationship of his newly established species Placites urlichsi to the genus Pompeckjites and stated: “The two species described here present characteristics of the external saddle and the sus­pensory lobe that seem intermediate between the genera Placites and Pompeckjites”. The above men­tioned suture line characteristics were well recog­nized by Bizzarini (1987) in his own findings from the Upper San Cassian formation of Boa Staolin (horizon B, in Bizzarini, 1987) and in the pictured and classified specimens of “Carnites floridus” in Leonardi and Polo (1952). Unfortunately, Bizza­rini (1987) recognized more analogies to the genus Placites than to Pompeckjites. The main reason for his supposed similarity to Placites was the use of exclusively juvenile specimens showing not fully developed suture lines. As mentioned above, Placites platyphyllus is restricted to the upper Norian stage. This makes a comparison of juvenile suture lines of early Car-nian Placites urlichsi with sub-mature suture lines of late Norian Placites platyphyllus not very real­istic. P. urlichsi differs from P. platyphyllus in its strongly dissolved external saddle, its persistent open umbilicus and its sub-mature tabulate ven­tral stage. Based on these differences Placites urlichsi is hereby transferred to the genus Pompeckjites. Fig 6. Comparison of Pompeckjites urlichsi from Wettersteinkalk to P. urlichsi from the upper San Cassian Formation. A, direct comparison of Pompeckjites layeri in red Hallstatt Limestone from Rappoltstein to white specimens of Pompeckjites urlichsi (mor­photype 1, from Fladung, site 1c). B, phragmocone (showing partial shell) of Pompeckjites urlichsi from the upper San Cassian Formation of Boa Staolin. B1 and B2, venter views of ammonoid B, B3 and B4, enlarged details of the trapezoidal venter development. C, backside of ammonoid B with marked suture lines. D, Pompeckjites urlichsi showing preserved shell on the body chamber and with parts of shell on the phragmocone. D1 - venter view of ammonoid D. D2 and D3, enlarged venter details (without shell) of ammonoid D. E - small specimen of P.urlichsi (morphotype 1, Fladung, site 1c) that is difficult to distinguish from same sized specimens of P. layeri. E1, enlarged trapezoidal venter detail of E. Pompeckjites urlichsi (Bizzarini, 1987) Type species: The designated holotype and the paratypes of Placites urlichsi in Bizzarini, 1987 are hereby accepted as holotype and as paratypes of Pompeckjites urlichsi (Bizzarini, 1987). 1987 Placites urlichsi Bizzarini, p. 50-52, pl. 1, figs. 1, 2a, b, 3a,b, 6a,b, 7, 8; text figs. 2b, 3; tab. p. 52. 1952 Carnites floridus (Wulfen), Leonardi & Polo, pl. 1 figs. 26, 44, 45, 47-49, 55, 57; pl. 2, figs. 39, 40, 41, 42, 43. 2000 Placites urlichsi Bizzarini, pl. 3, figs. 3, 4. We propose the following characteristics to differentiate Pompeckjites layeri (Hauer) from Pompeckjites urlichsi (Bizzarini). Note that the early juvenile stage (up to 5 mm in diameter) in both species is identical in showing a round ven­ ter and an open umbilicus. In further growth both species show an eccentric umbilical ingression to­wards to a closed or nearly closed umbilicus. After the umbilicus is closed or nearly closed an eccen­tric umbilical egression evolves in both species. Pompeckjites layeri (Hauer 1847): Persist­ing sharp acute venter up to more than 30 mm di­ameter. Mature sculpture on body chamber is very variable but never showing a tabulate venter. The deeply incised external saddle shows four stems already in juvenile specimens. Large mature size up to 15 cm. Pompeckjites urlichsi (Bizzarini 1987): A rounded sub to high-trapezoidal ventral stage that persists to roughly 15 mm diameter. In morpho-type 1 a distinct tabulate middle keel occurs at this size on steinkerns (Fig. 7, A1; Figs. 8, D, D2). Sometimes this tabulate part of the trapezoidal Fig. 7. Differences of P. urlichsi to P. layeri in transversal and cross-sections. A, polished hand specimen showing frequent transversal-sections of Pompeckjites urlichsi, (morphotype 1, Fladung, site 1c). A1, enlarged trapezoidal venter detail of the internal mold/steinkern. A2, enlarged tabulate venter detail with preserved shell, B, transversal-sections of P.urlichsi (morphotype 2) from Fladung, site 2. B1 and B2, enlarged tabulate venter details. C, cross section of Pompeckjites layeri from the A. austriacum Zone (Hallstatt Limestone of Feuerkogel). D, cross section of P. layeri from the T. aonoides Zone of Rappoltstein. E, trans-versal-section with frequent juvenile specimens of P. layeri (T. aonoides Zone) of Rappoltstein. E1, the white arrow shows the two different venter preservation modes in P. layeri. Blunt triangular without shell (preserved in white calcite on the internal side) compared to the acute venter with shell (preserved in darker calcite). E2, shows a comparable venter development on a steinkern of P. urlichsi morphotype 1. venter is very small (Fig. 7, E2). It is more rounded trapezoidal in morphotype 2 steinkerns (Fig. 7, B2) and in specimens of morphotype 1 preserved with shell. After that stage the sub-mature tabu­late venter starts to evolve (Figs. 7, A2, B1). The incised external saddle shows three stems in juve­nile morphs. The mature size of P. urlichsi remains unknown. Specimen found at Hochobir reached a size of 25-30 mm showing a body chamber length of roughly a half to three quarters of a whorl. Species differentiation of Pompeckjites urlichsi, Pompeckjites layeri, Sageceras haidingeri and Carnites floridus based on morphology and polished transversal-sections Morphological similarities between Pompeckjites urlichsi (Bizzarini, 1987), Pinacoceras philopater (Laube, 1869) and Pompeckjites layeri (Hauer, 1847) The second species treated by Bizzarini (1987), was Pinacoceras philopater (Laube, 1869). Bizza­rini (1987) tried to examine the type of P. philopa­ter (Laube, 1869), together with Mojsisovics’ (1882) samples, stored in the GBA (Geologische Bundesanstalt Austria). Unfortunately, the origi­nal specimens have not been found. Therefore, we compared our specimens of P. urlichsi morphotype 1 from Fladung/Obir exclusively with the speci­mens of P. philopater and P. urlichsi pictured in Bizzarini (1987: pl. 1) in regards to their form and suture line. Diener (1915b: 189) does not comment on Pinacoceras philopater as to whether it is syn­onymous to Pompeckjites layeri. He just stated that the small specimens are impossible to com­pare with other Pinacoceratidae at generic level. The same conclusion was reached by Mojsisovics (1882). According to Krystyn (1973: 125, see in faunal list of T. aon Zone) Pinacoceras philopater is synonymous with Pompeckjites layeri. Contra­ry to this opinion Bizzarini (1987) established Pompeckjites philopater as a separate species in Pompeckjites. Our own found specimens from Un­terpetzen are well comparable to the specimens shown in Bizzarini (1987: pl. 1, figs. 4a, 4b, 5a, 5b). They mainly differ from P. layeri in less acute venter development. Typical for both species are the similar adven­titious saddle elements that according to Diener (1915b) evolved from a broadly developed exter­nal saddle. In further growth stages these adven­titious saddle stems show a bifid ending in both species. The redrawn original suture line of Pina­coceras philopater (1869: pl. 41, fig. 10) pictured in Figure 8, C4, does not clearly show the position of the lateral saddle. It is not clear if there are three or four adventitious stems in the external saddle. The amount of suture line elements shown in Laube (1869) is similar to Pompeckjites layeri. In contrast the suture line of Pinacoceras philopater in Mojsisovics (1882: pl. 52, fig. 12a) show three stems (redrawn in Fig. 8, C2). The pictured su­ture line of P. philopater in Bizzarini (1987: p.49, Fig. 2, A) shows three stems in its external saddle also (redrawn in Fig. 8, C3). In Pompeckjites urlichsi morphotype 1 from Fladung, site 1a-c, the suture line is nearly iden­tical to the suture line of P. philopater in Bizzarini (1987: 49). Morphotype 1 of P. urlichsi shows a sub to high-trapezoidal juvenile venter and a tabulate sub-mature to mature ventral stage that isn’t de­scribed in P. philopater. In fact, some juvenile spec­imens of P. urlichsi morphotype 1 (see figs. 6, E-E1) can show a very acute venter. Such specimens can­not be distinguished from Pompeckjites layeri or Pinacoceras philopater with the naked eye. This can mislead to a classification as Pompeckjites lay-eri when the tabulate venter is not evolved, broken off or not visible in the matrix. Under enlargement the venter on the steinkern of Pompeckjites urlich­si morphotype 1 is always trapezoidal, though the tabulate part of the trapezoidal venter is sometimes very small (see Fig. 5, A2; Figs. 6, B4, E, E1 and F 7 E2). In Pompeckjites layeri the venter is juve­nile or sub-mature always acute. The most acute venter in P. layeri can be seen in specimens with well-preserved shell (see Fig. 7, E1). The Figure 8, A shows a fully chambered steink­ern of P. urlichsi from Boa Staolin, which was in­correctly classified as Carnites floridus. The clear­ly visible suture line is comparable to P. urlichsi morphotype 1 from Fladung/Obir. Figure 8, A1 show remains (white arrows) of an eccentric um­bilicus in further growth like in Pompeckjites lay-eri. Here, P. urlichsi shows a body chamber length from a half to three quarters of a whorl which is similar to P. layeri. D and D1, (with small part of shell) in figure 8, show the ventral development in Pompeckjites urlichsi, morphotype 1 that differs clearly from Pompeckjites layeri. The wavy band (distinctly visible on the steinkern, less distinctly visible in shell preservation) on both sides of the venter show reminiscence to the sculpture of large mature specimens of P. layeri from the Hallstatt Limestone where a similar, broader wavy sculp­ture occurs on the ventral flanks (see Fig. 4, A). The enlarged cross-section of P. layeri in Fig. 7, E1 shows a blunt triangular internal venter develop­ment preserved in white calcite (see white arrow). This feature can create distinct ventro-lateral mar­gins on steinkerns. Since similar ventro-lateral Fig. 8. Pompeckjites urlichsi from the San Cassian Formation. A, interal mold/steinkern of Pompeckjites urlichsi from Boa Staolin (coll. Alberto Rubini). A1, reminiscence of an eccentric umbilicus (white arrows) in further growth of P. urlichsi. B-B1, venter views of ammonoid A. C-C1, suture of “Placites” urlichsi in Bizzarini (1987: p. 51, fig. 3, D and E). C2, redrawn suture of “Pinacoceras” philopater (Laube), in Mojsisovics (1882: pl. 52, fig. 12a). C3, suture of Pompeckjites philopater (Laube) in Bizzarini (1987: p. 49, fig. 2, A). C4, redrawn suture of “Ammonites” philopater Laube, 1869: pl. 41, fig. 10. D, enlarged detail of the wavy bands beside the small tabulate keel. D1, small part of shell that indicates a more rounded trapezoidal venter in specimens preserved with shell. margins occur on steinkerns of P. urlichsi morpho-type 1 too (see Figs. 5, A2 and 7, E2) this also may point at a common ancestor of P. urlichsi and P. layeri. Morphological similarities between Pompeckjites urlichsi (Bizzarini, 1987), Carnites floridus (Wulfen, 1793) and Sageceras sp. Diener (1915b) described in Carnites floridus a development of the adventitious elements from the external lobe, precisely from the ascending part of the external lobe to the median saddle (see black circles in Figs. 3, C-C5). Pompeckjites shows, ac­cording to Diener (1915b) no real adventitious el­ements. It shows a broadly created, deeply incised external saddle instead. The fundamental differ­ences in Carnites and Pompeckjites are that the adventitious elements evolves in Carnites on the ventral side of the external lobus and in Pompeck­jites on the ventral side of the external saddle. Species differentiation of P. urlichsi from C. floridus and Sageceras sp. The bifid stem endings in the adventitious ex­ternal saddle elements of Pompeckjites urlich­si originate from a stronger growth of one side branch of former juvenile pyramidal stems. In C. floridus this bifid split of the saddle elements does not exist. In very small specimens of P. ur­lichsi, before this bifid growth feature takes place, the suture line of P. urlichsi is similar to the suture line of Carnites floridus. That may hint at a com­mon ancestor of Carnites and Pompeckjites. The trapezoidal venter development in P. urlichsi may point in this direction too. But these similarities may be just homeomorphic features too. Therefore, it is not surprising that subsequent authors (Leon-ardi & Polo, 1952,) often assigned small specimens of P. urlichsi to C. floridus. Both morphotypes of Pompeckjites urlichsi show in the sub-mature growth stage a tabulate venter which makes them look homeomorphic Fig. 9. Species differentiation of P. urlichsi from C. floridus and Sageceras sp. A, polished cross-section of Carnites floridus from Hallstatt Limestone of Rappoltstein. A1 and A2, enlarged development of the tricari­nate venter. B, C. floridus from Rappoltstein. B1, view of the tricarinate venter. B2, suture line of C. floridus in Mojsisovics (1873: pl. 25, fig. 4). C, transversal-sections of numerous Pompeckjites urlichsi (morphotype 1) from Fladung/Obir. C1 and C2, enlarged tabulate venter development of P. urlichsi. E, Sageceras haidingeri from the T. aonoides Zone of Rappoltstein. E1, venter of Sageceras sp., E2, suture line of Sageceras. D, cross-section of Sageceras sp. from Hallstatt Limestone of Rappoltstein with outlined flank angle and ratio of aperture height to the rest of the winding. D1, enlarged detail of the juvenile venter. to Sageceras sp. (see Figs. 7, A2; 9 C1, E1). In cross-sections, P. urlichsi can be distinguished from Sageceras sp. by the different developments of the juvenile whorls (see Fig. 7, A1 compared to Fig. 9, D1). The height of the shell aperture is a helpful distinguishing feature in cross-sections too. Sageceras sp. shows roughly a proportion of 1:1in the ratio of aperture height to the rest of the whorl (see Fig. 9 D). In Carnites floridus and P. urlichsi the ratio of aperture height to the rest of the whorl is closer to 1:2. Juvenile whorls of Sageceras sp. and Carnites floridus are very similar in polished transver-sal-sections. The flatter angle of the flank is in Sageceras sp. (see in Fig. 9, D,) during growth rel­atively constant at 8-10°, whereas in C. floridus (see Fig. 9, A) the angle increases up to 30°. Both in figures. 9, A-A2 and B-B1, shown C. floridus originate from Hallstatt Limestone of Rappoltstein (Hornung et. al 2007) and were found together with a sparse A. austriacum Zone ammonoid fau­na with Neoprotrachyceras thous and Austrotra­chyceras sp. If the suture lines can be checked, a confusion of Sageceras sp. with Carnites floridus or Pom-peckjites sp. can be excluded. Stratigraphic conclusions Our data suggest that Carnites floridus Hauer is restricted to the first strong pulse of the CPE (Carnian Pluvial Episode) at the border T. aonoides Zone to A. austriacum Zone (for further literature regarding to the CPE we refer to the reference lists of Dal Corso et al. 2018; Hornung et al. 2007; Mu­eller et al. 2016 and Preto et al. 2019). An early Ju­lian T. aon Zone age or an early Tuvalian Tropites dilleri Zone age of true C. floridus can be exclud­ed. Based on true Carnites floridus the first Raibl shale horizon on Hochobir can be correlated with the beginning of the A. austriacum Zone. This is evidenced in the Hallstatt Limestone of Rappolt-stein where Carnites floridus, Neoprotrachyceras thous and Austrotrachyceras sp. were found (Hor-nung et al. 2007) and in the Reingraben shales of Austria where Carnites floridus was referred to the A. austriacum Zone in Lukeneder & Lukened- er (2022). Therefore, the underlying Bleiberger Sonderfazies (Holler 1960) with Pompeckjites ur­ lichsi can indirectly be correlated with the upper T. aonoides Zone. A correct species recognition of P. urlichsi, allows a direct correlation of some parts/layers of the Upper San Cassian Formation with layers of the Bleiberger Sonderfazies (upper Wettersteinkalk). Minor morphologic differences in juvenile whorls of P. urlichsi further allow for a differentiation in a morphotype 1 and a slightly younger morphotype 2. Furthermore, the onset of the A. austriacum Zone can be fixed with true C. floridus in strata where Austrotrachyceras sp., was not found. Pom-peckjites urlichsi in contrast allows for a fixing of the upper T. aonoides Zone in strata where Trach­yceras s. str. was not found or is missing. Discussion A transitional ammonoid fauna spanning the period from the T. aonoides to the A. austriacum ammonoid Zones is not adequately described at present. From an evolutionary view such a fau­na should exist. Pompeckjites urlichsi (Bizzarini) seems to be an appropriate ammonoid species showing a close stratigraphic range that may fit as an index ammonoid to close this gap. It may be of future importance for a finer stratigraphic correlation between the basinal facies of the up­per San Cassian Formation and the coeval algal rhytmites of the upper Wettersteinkalk. Within the condensed pelagic deposits of the Hallstatt Limestone P. urlichsi has not been found so far. This might have its origin in a collecting hiatus, in a confusion with small specimens of Pompeckjites layeri or Carnites floridus or in the possibility of a habitat restriction to the reef fronts and their directly adjacent basins. The above mentioned close morphologic similarity of P. urlichsi to small Carnites floridus raises some doubts on Carnites floridus classifications from the upper T. aonoides Zone of the Rio del Lago Formation (Preto et al. 2005). Such small C. floridus are surmised to be Pompeckjites urlichsi (Bizzarini) and thus may need further revision. According to Krystyn (1978) Pompeckjites lay-eri spans the entire Julian stage and Pinacoceras philopater is thought to be synonymous (Krystyn 1973: 125, see in faunal list of T. aon Zone). Con­trary to that opinion, Bizzarini (1987) established Pompeckjites philopater as a separate Pompeck­jites species. Here we classify all Pompeckjites species that show a sub-mature tabulate venter as Pompeckjites urlichsi. The transfer from Placites to Pompeckjites in P. urlichsi is based on the simi­lar sutureline, the similar juvenile venter develop­ment and the similar eccentric umbilical egression compared with Pompeckjites layeri. Especially juvenile specimens of Pompeckjites urlichsi mor­photype 1 show a close similarity to Pompeckjites layeri. Pompeckjites philopater as pictured in Biz-zarini (1987) is intermediate in shape between P. layeri and juvenile P. urlichsi morphotype 1 before evolving the tabulate venter. Juvenile specimens of P.urlichsi morphotype 2 do show some similarity in shape and suture line to Pinacoplacites Diener, 1916. A presumed evolutionary connection of Ju­lian Pompeckjites urlichsi to upper Tuvalian Pina­coplacites sp. may exist via “Placites” placodes but it is not confirmed at present. Further research to this assumption was hindered by lacking data. Acknowledgements We sincerely thank the UNESCO Geopark Kar­awanken/Karavanke (A/Slo) for the permission to car­ry out fieldwork and research in its area, Matija Križ­nar (Slovenian Museum of Natural History, Ljubljana) and Ivan Ocepek (Mežica), for the possibility to visit the historical mining area Unterpetzen/Podpeca (Slo­venia), Peter Englmaier, ECONSULT expert consultan­cy, Vienna and University of Vienna, for the help in the fieldwork, writing and literature search, Alberto Rubini (Italy) for the pictures of the ammonoid from Boa Stao­lin on Figures. 6 B-C, 8 A-D, Roger Furze (Germany), Heidi Henderson and Karen Lund (Vancouver/Canada) for their help to improve our English. References Arthaber, G. 1905: Die alpine Trias des Mediter­ ran-Gebietes. In: Frech, F. (ed.): Lethaea geog- nostica, pt. II, Das Mesozoicum, Trias: 223– 391, 417–472. Arthaber, G. 1911: Die Trias von Albanien – Beiträge zur Paläontologie von Österreich. Mitteilungen des Geologischen und Paläontol­ ogischen Institutes der Universität Wien, 24: 169–277. Balini, M. 2008: Discovery of upper Ladinian am- monoids at the type locality of the lower Car- nian Desatoyense zone (South Canyon, New Pass range, Nevada). Journal of Paleontology, 82/1: 176–182. https://doi.org/10.1666/05-049.1 Balini, M., Lucas, S. G., Jenks, J. F. & Spielmann, J.A. 2010: Triassic ammonoid biostratigraphy: an overview. Geological Society, London, Spe­cial Publications: 334/1: 221–262. https://doi. org/10.1144/SP334.10 Balini, M., Jenks, J. & Martin, R. 2012: Taxonomy and stratigraphic significance of Trachyceras silberlingi n. sp., from the Lower Carnian of South Canyon (New Pass Range, central Neva­da, USA. Bollettino della Societŕ Paleontologi-ca Italiana, 51/2: 127–136. Bechstaedt, T. 1979: The lead-zinc deposit of Bleiberg-Kreuth (Carinthia, Austria): Palin-spastic situation, paleogeography and ore min-eralisation. Verh. Geol. B.-A., H. 3: 221–235. Bizzarini, F. 1987: Revisione delle Pinacoceratidae (Cephalopoda, Ammonoidea) della Formazione di S. Cassiano (Traissico superiore). Boll. Mus. civ. St. nat. Venezia, 38: 43–54. Bizzarini, F. 2000: Studio biostratigrafico delle tanatocenosi a cefalopodi della Formazione di S. Cassiano (Valle d’Ampezzo, Dolomiti orien-tali). Lavori della Societŕ Veneziana di Scienze Naturali, 25: 15–28. Dal Corso, J., Gianolla P., Rigo, M., Franceschi, M., Roghi, G., Mietto, P., Manfrin, S., Raucsik, B., Budai, T., Jenkyns, H.C., Reymond, C.E., Cag­giati, M., Gattolin, G., Breda, A., Merico, A. & Preto, N. 2018: Multiple negative carbon-iso­tope excursions during the Carnian Pluvial Ep­isode (Late Triassic). Earth-Science Reviews, 185: 732–750. https://doi.org/10.1016/j.ear­ scirev.2018.07.004 Di Bari, D. & Baracca, A. 1998: Late Triassic (Car­nian) Foraminifers of Northeastern Cortina d’Ampezzo (Tamarin, San Cassiano Fm., Do­lomites, Italy). Ann. Mus. civ. Rovereto, Arch., St., Sc. nat., 12 (1996): 117–146. Diener, C. 1915a: Fossilium Catalogus 1, Anima­lia, Pars 8, Cephalopoda Triadica, 369 p. Diener, C. 1915b: Über Ammoniten mit Adven­tivloben. Denkschriften der Akademie der Wissenschaften. Math. Natw. Kl., 93: 139– 199, incl. 2 Pls. Diener, C. 1916: Einige Bemerkungen zur Nomen­klatur der Triascephalopoden. Centralblatt fr Mineralogie, Geologie und Paläontologie: 97– 105. Doguzhaeva, L.A., Mapes, R.H., Summesberg-er, H. & Mutvei, H. 2007: The preservation of body tissues, shell, and mandibles in the cer­atitid ammonoid Austrotrachyceras (Late Tri­assic), Austria: 221–237. Frech, F. 1911a: Neue Cephalopoden aus den Bu-chensteiner, Wengener und Raibler Schichten des südlichen Bakony mit Studien er die Wohnkammerlänge der Ammoniten und er die Lebensweise der Nautileen. Teil 4 in: Re-sultate der wissenschaftlichen Erforschung des Balatonsees. 1, 2. Anhang: Palaeontologie der Umgebung des Balatonsees, 3. Bd: 94 p., incl. 11 pls. Frech, F. 1911b: Nachträge zu den Cephalopoden und Zweischalern der Bakonyer Trias (Werfen-er und Cassianer Estherienschichten. Teil 5 in: Resultate der wissenschaftlichen Erforschung des Balatonsees, 1, 2. Teil Anhang „Palaeon­tologie der Umgebung des Balatonsees” 3. Bd: 1–38, incl. 4 pls. Frech, F. 1912: Die Leitfossilien der Werfener Schichten und Nachträge zur Fauna des Mus-chelkalkes der Cassianer und Raibler Schicht-en sowie des Rhät und des Dachsteindolomits (Hauptdolomit). -Res. d. wissenschaftlichen Erforsch. d. Balatonsees, 1, 1. Anhang, Palä­ontologie der Umgebung des Balatonsees, 2/6: 96 p., incl. 16 pls., Budapest. Gemmellaro, G.G. 1904: I cefalopodi del Trias su­perior della regione occidentale della Sicilia. Giorn. Sc. Nat. Ec., 24: 1–319. Haeckel, E. 1866: Allgemeine Entwicklungsges­chichte der Organismen. Berlin, Reimer. Hauer, F. 1846: Über die Cephalopoden des Mus-chelmarmors von Bleiberg in Kärnten. Naturw. Abh. von W. Haidinger. 1: 10 p., incl. 1 pl. Hauer, F. 1847: Neue Cephalopoden aus dem rothen Marmor von Aussee. Naturw. Abh. von W. Haidinger. 1: 24 p., incl. 3 pls. Hauer, F. 1855: Beiträge zur Kenntnis der Ceph-alopoden-Fauna der Hallstätter Schichten. Denkschr. Akad. Wiss. Wien, 9/1: 141–166, incl. 5 pls. Hoffmann, R., Howarth, M., Fuchs, D., Klug, C. & Korn D. 2022: The higher taxonomic nomen­clature of Devonian to Cretaceous ammonoids and Jurassic to Cretaceous ammonites includ­ing their authorship and publication. N. Jb. Geol. Paläont. Abh. 305/2: 187–197. https:// doi.org/10.1127/njgpa/2022/1085 Holler, H. 1960: Zur Stratigraphie des Ladin im stlichen Drauzug und in den Nordkarawank- en. Carinthia II, 150/70: 63-75. Hornung, T., Spatzenegger, A. & Joachimski, M. 2007: Multistratigraphy of condensed am-monoid beds of the Rappoltstein (Berchtes­gaden, southern Germany): unravelling palae­oenvironmental conditions on ‘Hallstatt deep swells’ during the Reingraben Event (Late Lower Carnian). Facies, 53: 267–292. https:// doi.org/10.1007/s10347-006-0101-1 Hyatt, A. 1884: The Evolution of the Cephalopoda. I. Science, 52: 122–127. Hyatt, A. 1900: Cephalopoda in Zittel-Eastman, Textbook of Palaeontology, 502–604. Hyatt, A. & Smith, J.P. 1905: The Triassic cephalo-pod genera of America. U.S Geological Survey, Professional paper No. 40: 394 p., incl. 85 pls. Jenks, J.F., Monnet, C., Balini, M., Brayard, A. & Meier, M. 2015: Biostratigraphy of Triassic ammonoids. In Ammonoid Paleobiology: From macroevolution to paleogeography, 329–388. Johnston, F.N. 1941: Trias at New Pass, Nevada (New Lower Karnic Ammonoids). Journal of Paleontology, 50: 447–491. Jurkovšek, B., Kolar-Jurkovšek, T. & Jaecks, G.S. 2002: Macrofauna of the Carnian beds in the Mežica area. Geologija, 45/2: 413–418. https:// doi.org/10.5474/geologija.2002.041 Konstantinov, A.G. 2008: Debatable questions of Boreal Triassic stratigraphy: boundary be­tween middle and upper series. Russian Geol­ogy and Geophysics, 49/1: 64–71. https://doi. org/10.1016/j.rgg.2007.05.004 Konstantinov, A.G. 2012: A revision of the ear­ly Carnian Trachyceratidae (Ammonoidea) of northeastern Asia. Paleontological Jour­nal, 46/5: 453–460. https://doi.org/10.1134/ S0031030112050048 Krystyn, L. 1973: Zur Ammoniten- und Cono­donten-Stratigraphie der Hallstätter Obertrias (Salzkammergut, Österreich). Verh. Geol. B.-A. Wien, 1973/1: 113–153. Krystyn, L. 1978: Eine neue Zonengliederung im alpin-mediterranen Unterkarn. Schriftenrei-he der Erdwissenschaftlichen Kommissionen. Österreichische Akademie der Wissenschaften, 4: 37–75, incl. 5 pls. Krystyn, L. 1980: Stratigraphy of the Hallstatt re­gion. Abh. Geol. B.-A. Wien, 35: 69–80. Krystyn, L. 1982: Obertriassische Ammonoideen aus dem Zentralnepalesischen Himalaya. Abh. Geol. B.-A. Wien. 36: 63 p, incl. 18 pls. Krystyn, L. & Siblik, M. 1983: Austriellula robus­ta n. sp. (Brachiopoda) from the Upper Car-nian Hallstatt limestone of Timor (Indone­sia). Schriftenreihe der Erdwissenschaftlichen Kommissionen. Österreichische Akademie der Wissenschaften, 5: 259–266. Laube, G.C. 1869: Die Fauna der Schichten von St. Cassian. Ein Beitrag zur Paläontologie der Alpinen Trias. V. Abtheilung. Cephalopoden. Schlusswort. Denkschrift Math. Naturw. Kl. 30: 49–108, incl. 8 pls. Lipold, M.V. 1856: Erläuterung geologischer Durchschnitte aus dem stlichen Kärnten. Jb. Geol. R.-A. 7: 332–345. Leonardi, P. & Polo, C. 1952: La fauna Cassiana di Cortina d’Ampezzo. Parte II: Cefalopodi. Mem. Ist. Gel. min. Univ. Padova, 17: 1–28, incl. 5 pls. Lukeneder, S. & Lukeneder, A. 2014: A new am-monoid fauna from the Carnian (Upper Trias­sic) Kasimlar Formation of the Taurus Moun­tains (Anatolia, Turkey). Palaeontology, 57/2: 357–396. Lukeneder, A. & Lukeneder, P. 2022: Taphonom­ic history and trophic interactions of an am-monoid fauna from the Upper Triassic Polzberg palaeobiota. Scientific Reports, 12/1: 1–14. https://doi.org/10.1038/s41598-022-11496-y Mastandrea, A. 1995: Carnian conodonts from upper Triassic strata of Tamarin section (San Cassiano Fm., Dolomites, Italy). Riv. It. Pale-ont. Strat. 100/4: 493–510, incl. 4 pls. Mietto, P., Manfrin, S., Preto, N. & Gianolla, P: 2008: Selected ammonoid fauna from Prati di Stuores/Stuores Wiesen and related sections across the Ladinian-Carnian boundary (South­ern Alps, Italy). Rivista Italiana di Palaeonto-logic e Stratigrafia, 114/3: 377–429, incl. 8 pls. Mietto, P., Manfrin, S., Preto, N., Rigo, M., Roghi, G., Furin, S., Gianolla, P., Posenato, R., Mut­toni, G. & Nicora, A. 2012: The Global bound­ary Stratotype Section and Point (GSSP) of the Carnian Stage (Late Triassic) at Prati di Stu-ores/Stuores Wiesen Section (Southern Alps, NE Italy). Episodes, 35/3: 414–430. https:// doi.org/10.18814/epiiugs/2012/v35i3/003 Mojsisovics, E. 1869: Über die Gliederung der oberen Triasbildungen der stlichen Alpen. Jb. Geol. R.-A. 19: 91–150, incl. 4 pls. Mojsisovics, E. 1871: Über das Belemnitiden-Ges­chlecht Aulacoceras Fr. v. Hauer. Abh. Geol. R.- A., 21: 41–57, incl. 4pls. Mojsisovics, E. 1873: Die Mollusken Faunen der Zlambach und Hallstätter Schichten. Abh. Geol. R.-A., 6/1: 356 p, incl. 32 pls. Mojsisovics, E. 1879a: Die Dolomit-Riffe von Süd­tirol und Venetien: Beiträge zur Bildungsges­chichte der Alpen. 551 p. Mojsisovics, E. 1879b: Vorläufige kurze Ueber­sicht der Ammoniten-Gattungen der mediter­ranen und juvavischen Trias. Verh. k.u.k. Geol. R.-A., 7: 133–143. Mojsisovics, E. 1882: Die Cephalopoden der med-iterranen Triasprovinz. Abh. Geol. R.-A., 10, 322 p., incl. 94. pls. Mojsisovics, E. 1892: Die Hallstätter Entwicklung der Trias. Sitzungsberichte der Akademie der Wissenschaften mathematisch-naturwissen­schaftliche Klasse, 101: 769–780. Mojsisovics, E. 1893: Die Cephalopoden der Hall-stätter Kalke. Abh. Geol. R.- A. 6/2: 835 p, incl. 130 pls. Mojsisovics, E. 1896: Beiträge zur Kenntniss der Obertriadischen Cephalopoden-Faunen des Himalaya. Denkschriften der Mathema­tisch-Naturwissenschaftlichen Klasse der Kai-serlichen Akademie der Wissenschaften, 63: 575–701, incl. 22 pls. Mojsisovics, E. 1902: Die Cephalopoden der Hall-stätter Kalke. Supplement Band. Abh. Geol. R.­A., 6/3: 177–356, incl. 23 pls. Mojsisovics, E., Waagen, W. & Diener, C. 1895: Entwurf einer Gliederung der pelagischen Sediments des Trias-Systems. Sb. Akad. Wiss., math. naturw. Kl. 104: 1271–1302. Mondillo, N., Lupone, F., Boni, M., Joachimski, M., Balassone, G., De Angelis, M., Zanin, S. & Granitzio, F. 2020: From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Ber-gamo, Itay). Mineralium Deposita, 55/5: 953– 970. https://doi.org/10.1007/s00126-019-00912-5 Mueller, S., Hounslow, M.W. & Kürschner, W.M. 2016: Integrated stratigraphy and palaeocli-mate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kap Toscana Group in central Spits­bergen (Norway). Journal of the Geological So­ciety, 173/1: 186–202. Poltnig, W. & Spatzenegger, A. 2022: Carnian Ammonoids from the Wetterstein Limestone of Hochobir (North Karawanken, Carinthia). GEONAKU, 2: 41 p., incl. 6 pls. Preto, N., Roghi, G. & Gianolla, P. 2005: Carnian stratigraphy of the Dogna area (Julian Alps, northern Italy): tessera of a complex palaeo-geography. Bollettino della Societŕ Geologica Italiana, 124/1: 269–279. Preto, N., Bernardi, M., Dal Corso, J., Gianolla, P., Kustatscher, E., Roghi, G. & Rigo, M. 2019: The Carnian Pluvial Episode in Italy: history of the research and perspectives. Bollettino della Societŕ Paleontologica Italiana, 58/1: 36. Ritterbush, K.A., Hoffmann, R., Lukeneder, A. & De Baets, K. 2014: Pelagic palaeoecology: The importance of recent constraints on ammonoid palaeobiology and life history. J. Zool., 292: 229–241. Sestini, N.F. 1992: The Middle Triassic new genus Praepinacoceras (Family Pinacoceratidae). Riv. It. Paleont. Strat., 97/3–4: 269–274. Silberling, N.J. & Tozer, E.T. 1968: Biostratigraph­ic classification of the marine Triassic in North America. Geological Society of America Spe­cial Paper, 110: 1–63 Smith, J.P. 1927: Upper Triassic marine inverte­brate faunas of North America. U.S Geological Survey, Professional Paper, 141: 262 p., incl. 121 pls. Smith, J.P. 1932: Lower Triassic ammonoids of North America. U.S Geological Survey, Profes­sional Paper, 167: 199 p., incl. 81 pls. Spath, L.F. 1951: Catalogue of fossil Cephalopoda in the British Museum (Natural History), Part V: The Ammonoidea of the Trias II. 228 p. Tozer, E.T. 1967: A standard for Triassic time. Geo­logical Survey of Canada Bulletin, 156: 1–103. Tozer, E.T. 1971: Triassic time and ammonoids: problems and proposals. Canadian Journal of Earth Sciences, 8: 989–1031. https://doi. org/10.1139/e71-088 Tozer, E.T. 1981: Triassic Ammonoidea: Geograph­ic and stratigraphic distribution. Systematics Association Special Volume, 18: 397–431. Tozer, E.T. 1984: The Trias and its ammonoids: the evolution of a time scale. Geological Survey of Canada Miscellaneous, Report, 35: 1–171. https://doi.org/10.4095/119548 Tozer, E.T. 1994: Canadian Triassic ammonoid faunas. Geological Survey of Canada, Bull. 467: 663 p, incl. 148 pls. Urlichs, M. 1994: Trachyceras LAUBE 1869 (Am­monoidea) aus dem Unterkarn (Obertrias) der Dolomiten (Italien): Stuttgarter Beiträge zur Naturkunde: Reihe B (Geologie und Paläontol­ogie), 217: 55 p incl. 4 pls. Urlichs, M. 2012: Stunting in some invertebrates from the Cassian formation (Late Triassic, Car-nian) of the Dolomites (Italy). Neues Jahrbuch fr Geologie und Paläontologie-Abhandlun-gen, 265: 1–25. https://doi.org/10.1127/0077­ 7749/2012/0241 Urlichs, M. 2017: Revision of some stratigraphi­cally relevant ammonoids from the Cassian Formation (latest Ladinian-early Carnian, Triassic) of St. Cassian (Dolomites, Italy). Neues Jahrbuch fr Geologie und Paläontolo-gie-Abhandlungen, 283: 173–204. https://doi. org/10.1127/njgpa/2017/0635 Waagen, W. 1895: Fossils from the Ceratite For­mation. Memoirs Geological Survey of India, Palaeontologia Indica (ser. 13), Salt Range Fossils, 2: 1–323. Welter, O.A. 1914: Die obertriadischen Ammonit-en und Nautiliden von Timor. 258 p. Wulfen, F.X. 1793: Abhandlung vom kärnthnern-Zittel, C. 1899: Über die Entwickelung der Wen-schen pfauenschweifigen Helmintholith oder gener, St. Cassianer und Raibler Schichten auf dem sogenannten opalisierenden Muschelmar-der Seiser Alp in Tirol. Z. dt. geol. Ges., Verh., mor: 124 p., incl. 32 pls. 51: 102–114. GEOLOGIJA 66/1, 107-124, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.004 Microfossils from Middle Triassic beds near Mišji Dol, central Slovenia Mikrofosili iz srednjetriasnih plasti pri Mišjem Dolu, osrednja Slovenija Katja OSELJ1,2, Tea KOLAR-JURKOVŠEK3, Bogdan JURKOVŠEK3,4 & Luka GALE2,3 1Trboje 104, 4000 Kranj, Slovenia; e-mail: katja.oselj@gmail.com; 2Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerceva cesta 12, 1000 Ljubljana, Slovenia; e-mail: luka.gale@ntf.uni-lj.si 3Geological Survey of Slovenia, Dimiceva ulica 14, SI-1000 Ljubljana, Slovenia; e-mail: tea.kolar-jurkovsek@geo-zs.si; luka.gale@geo-zs.si; 4Kamnica 27, 1262 Dol pri Ljubljani, Slovenia; e-mail: geolog.bj@gmail.com Prejeto / Received 13. 3. 2023; Sprejeto / Accepted 29. 5. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Key words: Dinarides, Sava Folds, Middle Triassic, upper Anisian, lower Ladinian, basin, volcaniclastics, conodonts, foraminifera Kljucne besede: Dinaridi, Posavske gube, srednji trias, zgornji anizij, spodnji ladinij, bazen, vulkanoklastiti, konodonti, foraminifere Abstract Middle Triassic beds exposed along the road between Mišji Dol and Poljane pri Primskovem (Posavje Hills) comprise marlstone, tuff, volcaniclastic sandstone, and thin- to medium-bedded limestone and dolostone. The succession was logged and sampled for conodonts. A relatively rich conodont assemblage was determined, consisting of Budurovignathus gabrielae Kozur, Budurovignathus sp., Cratognathodus kochi (Huckriede), Gladigondolella malayensis Nogami, Gladigondolella tethydis Huckriede, Gladigondolella sp., Neogondolella balkanica Budurov & Stefanov, Neogondolella cf. excentrica Budurov & Stefanov, Neogondolella constricta (Mosher & Clark), Neogondolella cornuta Budurov & Stefanov, Neogondolella sp., Paragondolella excelsa Mosher, Paragondolella liebermani (Kovacs & Kozur), Paragondolella trammeri (Kozur), Paragondolella cf. alpina (Kozur & Mostler), and Paragondolella sp. The assemblage correlates with the upper Anisian and lowermost Ladinian assemblages from the Global Boundary Stratotype Section and Point (GSSP) of the Ladinian at Bagolino in the Southern Alps in northern Italy. Along with conodonts, numerous specimens of benthic foraminifera Nodobacularia? vujisici Uroševic & Gazdzicki were recovered from the lowermost part of the succession. Previous research on this taxon is critically evaluated. Izvlecek Zaporedje srednjetriasnih plasti, ki so razgaljene ob cestnem useku med Mišjim Dolom in Primskovim (Posavsko hribovje), sestavljajo laporovec, tuf, vulkanoklasticni pešcenjak in tanko do srednje plastnat apnenec in dolomit. Zaporedje je bilo popisano in vzorceno za konodontne analize. Dolocena je bila relativno bogata združba, ki sestoji iz vrst Budurovignathus gabrielae Kozur, Budurovignathus sp., Cratognathodus kochi (Huckriede), Gladigondolella ma-layensis Nogami, Gladigondolella tethydis Huckriede, Gladigondolella sp., Neogondolella balkanica Budurov & Stefanov, Neogondolella cf. excentrica Budurov & Stefanov, Neogondolella constricta (Mosher & Clark), Neogondolella cornuta Budurov & Stefanov, Neogondolella sp., Paragondolella excelsa Mosher, Paragondolella liebermani (Kovacs & Kozur), Paragondolella trammeri (Kozur), Paragondolella cf. alpina (Kozur & Mostler) in Paragondolella sp. Združbo lahko ko­reliramo z zgornjeanizijsko do spodnjeladinijsko združbo iz globalnega mejnega stratotipskega profila in tocke (GSSP) za ladinij v Bagolinu v Južnih Alpah, severna Italija. Poleg konodontov so bili v spodnjem delu zaporedja najdeni številni primerki bentoških foraminifer Nodobacularia? vujisici Uroševic & Gazdzicki. Podajamo kriticni pregled dosedanjih raz­iskav tega taksona. Introduction ta-Maliac) Ocean (Schmid et al., 2008; Kovács et The Middle Triassic tectonic and paleogeo-al., 2011). As a result, several smaller basins were graphic evolution of the present-day Southern created, mainly between late Anisian and early Alps, Dinarides, Northern Calcareous Alps, and Ladinian (Buser, 1989; Haas & Budai, 1999; Bu-Transdanubian Range was strongly affected by dai & Vörös, 2006; Berra & Carminati, 2010; Ste-crustal extension that accompanied the opening fani et al., 2010; Velledits et al., 2011; Gawlick et and spreading of the western Neotethys (Melia-al., 2012; Celarc et al., 2013; Smircic et al., 2020). Tectonic activity was accompanied by volcanism, which is reflected in the local deposition of volca­ niclastic and/or volcanic rocks, mostly within the basinal areas (Buser, 1989; Gianolla et al., 2019). Upper Anisian to Ladinian basinal successions are relatively widespread in the territory of Slovenia (see Dozet & Buser, 2009 and Kolar-Jurkovšek & Jurkovšek, 2019 for summary). Local differences among the successions evidence the existence of several basins of different depths and characters, ranging from open marine environments (Rakovec, 1950; Buser, 1986; Skaberne et al., 2003; Rožic et al., 2021), to ephemeral marshes, river systems, freshwater lakes, and shallow restricted lagoons (Car, 2013). The ruggedness of the relief is well ex­emplified in the Idrija area, where at least three Ladinian sedimentary basins separated by topo­graphic ridges were recognised (Car, 2013). Deter­mination of age is crucial for exact stratigraphic position and correlation of this plethora of differ­ ent depositional environments. Limestones from open marine and well-aerated basins often contain conodonts (Celarc et al., 2013; Kolar-Jurkovšek & Jurkovšek, 2019), radiolarians (Gorican & Buser, 1990; Ramovš & Gorican, 1995; Skaberne et al., 2003; Celarc et al., 2013), and bivalves (Jurkovšek, 1984), while ammonoids are rarely found (Car, 2010). Foraminifera are also present, but they are usually not abundant (Jurkovšek, 1984). Numer­ous Middle Triassic deposits, however, remain poorly dated (e.g., the shale- and sandstone-domi­nated Pseudozilian beds in the central and western Slovenia; Rakovec, 1950; Buser, 1986; Car et al., 2021). A Middle Triassic volcanoclastic unit between Mišji Dol and Poljane pri Primskovem in the cen­tral Posavje Hills was previously mentioned by Li-pold (1858), Germovšek (1955), and Buser (1974). Some ammonoid and bivalve taxa were determined (Lipold, 1858; Germovšek, 1955; Buser, 1974; also Jurkovšek, 1984 for localities in vicinity). A de­tailed description of a volcano-sedimentary suc­cession from Obla Gorica in the vicinity was given by Dozet (2006), who divided the succession into (from bottom/older to top/younger): bedded tuff with interbeds of limestone (1), lower platy dolo-stone with chert and tuff interbeds (2), light grey bedded dolostone with tuff interbeds (3), upper platy dolostone with cherts and tuff interbeds (4), dark marly limestone and marlstone (5); tuff with interbeds of volcaniclastic sandstone (6), and bed­ded and platy grained limestone (7). A renewed sampling of Middle Triassic beds between Mišji Dol and Poljane pri Primskovem yielded a rela­tively rich and well-preserved conodont and fora­ miniferal fauna. The aim of this paper is to present the recovered conodont and foraminiferal assem­blages for a better stratigraphic assignment of the Upper Anisian to Ladinian beds in the researched area. The conodont assemblage is compared to other assemblages from the region. Geological setting According to Placer (1998a, 2008), the stud­ied area structurally belongs to the External Di-narides and the Sava Folds (Placer, 1998b). The studied succession is a part of the Litija Anticline (Placer, 1998b), created by post-Miocene com­pression (Placer, 1998b; Tomljenovic & Csontos, 2001). The pre-folding structure of the External Dinarides was largely governed by Oligocene– early Miocene thrusting in the NE-SW direction Fig. 1. Geographic position of the studied section. a: Position of area depicted in Fig. 1b. b: Position of the section along the road from Mišji Dol to Poljane pri Primskovem. LIDAR digital model of the relief, 2015. Data source: Slovenian Environment Agency. Accessed via Geopedia portal (Sinergise d.o.o.) in November 2022. (Placer, 1998a, 1998b; Vrabec & Fodor, 2006). The logged succession of Middle Triassic beds lies along the road between Mišji Dol and Poljane pri Primskovem (Fig. 1), starting at 45°59´28.43´´N, 14°54´37.56´´E and ending at 45°59´0.71´´N, 14°54´54.15´´E. The succession is folded, dissect­ed by numerous minor faults, and partly covered. According to Buser (1968) and Dozet (2006), the investigated succession unconformably overlies massive Anisian dolostone and is succeeded up­wards by the massive Ladinian dolostone. Material and methods Due to the partial coverage of the succession, we were only able to reconstruct the succession by combining the outcropping segments. Thirty-one conodont samples were collected along the suc­cession, weighting between 1.5 and 2.5 kg. The rock was dissolved in 10–15 % acetic acid and the residue was separated into light and heavy frac­tions with the use of bromoform. Conodonts from the heavy fraction and foraminifera from the light fraction were hand-picked under a binocular mi­croscope. In some instances, the interior of fora­minifera could be viewed by immersing them in glyceryl. We also prepared some oriented thin sec­tions of foraminifera. Selected specimens of cono­donts and foraminifera were photographed with a scanning electron microscope (SEM) JEOL JSM 6490LV. The macroscopic lithological description was supplemented by micropetrographic analysis of 49 thin sections using a polarizing optical mi­croscope. Carbonate rocks were classified accord­ing to Dunham (1962), Embry and Klovan (1972), and Wright (1992). The terminology of volcani­clastics follows Di Capua et al. (2022). Similarities with other conodont assemblages from the same time interval were evaluated using the Dice simi­larity index using PAST v. 2.17c statistics software (Hammer et al., 2001). Preparatory work and SEM microscopy were performed at the Geological Sur­vey of Slovenia. The conodont samples are stored at the Geological Survey of Slovenia under repos­ itory numbers 6247–6264. The thin sections are stored in repository of the co-author L.G. at the Department of Geology, Faculty of Natural Scienc­es and Engineering in Ljubljana. Results Description of section The succession was investigated along 1100 m long road section. The contact with the massive Anisian dolostone is not exposed. The general ori­entation of bedding changes from 235/42 in the lower part of the succession, to 190/40 halfway along the roadcut, and to 200/50 near the top. Despite this relative consistency in the general orientation of the bedding, small-scale folds and faults are present, which makes the estimate of the thickness of individual sub-sections very difficult. We estimate that the entire succession is between 100 and 200 m thick. Figure 2 shows some bet­ter exposed parts of the succession, and Figure 3 the reconstructed generalized succession and po­sition of conodont samples within it. The general succession starts with a variegated succession of marlstone, tuff, and thin-bedded limestone. High­er up in the succession thin- to medium-bedded limestone and dolostone predominate, commonly interchanging with volcaniclastic sandstone. The top of the roadcut is again dominated by poorly exposed variegated succession of tuff, volcani­clastic sandstone, marlstone, and limestone. The lithological composition of each sector along the road and the actual thickness of each part of the succession is presented in Table 1. Fig. 2. Middle Triassic beds between Mišji Dol and Poljane pri Primskovem. a: Dolomitized cherty limestone with thin interbeds of volcan­iclastic sandstone; sector 13. b: Thin bedded limestone (radiolarian-filament wackestone/packstone); sector 21. Fig. 3. Reconstruction of the Middle Triassic succession along the road between Mišji Dol and Poljane pri Primskovem. The true stratigraphic thickness of each sector is shown (see thicknesses in Table 1). The right-hand side presents the position of the conodont samples and the stratigraphic distribution of the conodont species. The Anisian/Ladinian boundary is within the trammeri zone. Table 1. Lithological composition of Middle Triassic beds between Mišji Dol and Poljane pri Primskovem. Table 2. Limestone microfacies types from Middle Triassic beds between Mišji Dol and Poljane pri Primskovem. Sector Lithology Total thickness Microfacies 1 Covered by soil. Marlstone and pelitic tuff (80 %) in 1–5 cm thick beds, locally with chert and thin-shelled bivalves, concordant to bedding. -Dark limestone in up to 7 cm thick beds (18 %); locally with bands with thin-shelled bivalves, concordant to bedding. Locally silicified. -Volcaniclastic sandstone (2 %) forms up to 3.5 cm thick beds. Weath­ered pieces are light yellow in colour. 16 m (estimated) Limestone: -radiolarian-filament-peloid packstone; -bioclastic-intraclastic grainstone; -peloid-bioclastic packstone/grainstone 2 The lower part (1.2 m) is dominated by limestone, the next 4.2 m by tuff and volcaniclastic sandstone. Micritic limestone and breccia (45 cm thick) follow, then a 1.5 m thick bed of marlstone, and two more beds (20 cm and 25 cm thick) of breccia. -Limestone is dark grey to black, locally selectively silicified. Bed thickness is from 1 cm to 15 cm. Bivalve shells and radiolarians were recognised with a hand-lens. -Tuff and volcaniclastic sandstone is present in 1–15 cm thick beds. The colour is yellow, green, brownish green or greenish grey. -Marlstone is dark brown in colour and laminated. -Breccia is poorly sorted; the largest clasts from the top of the bed are 4 cm across. 8.2 m (logged in detail) Limestone: -calcimudstone; -radiolarian-filament wackestone/packstone; -bioclastic-intraclastic rudstone Clastics: -calcareous mudstone; -volcaniclastic sandstone; -mud-supported sandy breccia 3 Mostly covered. Marlstone dominates (90 %) over a few beds of volca­niclastic sandstone and black pelitic tuff. 9 m (estimated) Clastics: -calcareous mudstone; -volcaniclastic sandstone 4 Mostly covered. Marlstone. 6 m (2 m exposed, the rest estimated) / 5 Covered. ? (estimated 3 m) / 6 Black marly limestone, locally with chert. 1 m / 7 Covered. ? (estimated 3 m) / 8 Three beds of black micritic limestone. 1.5 m / 9 Mostly covered. Fragments of black micritic limestone are found over 75 % of this interval; the rest is probably grey dolostone and volcani­clastic sandstone. 18 m (estimated) / 10 Light grey dolostone, fractured and folded. Bedding is not clear. ? (estimated 5 m at most) Dolostone: -dolomitized intraclastic grainstone/rud-stone?; subhedral 11 Grey dolostone in 1.5–8 cm thick beds. ? (estimated 3 m) Dolostone: -dolomitized intraclastic grainstone/rud-stone?; subhedral 12 Covered. Fragments of volcaniclastic sandstone and dolostone. ? (estimated 2 m) / 13 Bedded dolomitized cherty limestone with cleavage. Beds are 0.5– 34.5 cm thick. They interchange with beds of volcaniclastic sandstone. 6 m Dolostone: -subhedral; locally with chert 14 Covered. Fragments of dolostone and volcaniclastic sandstone. ? (estimated 3 m) Clastics: -volcaniclastic sandstone; grains of volcanics, quartz, feldspar, microsparitic lithoclasts 15 Volcaniclastic sandstone. ? (estimated 1 m) Clastics: -sandstone with grains of poli- and monocrys­tal quartz, chloritized volcanics, feldspar; sericitic matrix and dolomitic cement 16 Covered. Fragments of dolostone and limestone. ? (estimated 2 m) Dolostone: - subhedral; 10% of terrigenous quartz, rare echinoderms are preserved 17 Dolomitized limestone in app. 5 cm thick beds. 1 m / 18 Covered. Fragments of dolostone and volcaniclastic sandstone. ? (estimated 1–3 m) / 19 Dolostone in 2–34 cm thick beds. Laterally pinching out and lateral amalgamation of beds suggest slumping. 2 m Dolostone: - subhedral; dolomitized grainstone or rud-stone (remains of echinoderms and intra-clasts) and packstone with filaments 20 Folded thin-bedded (0.5–2 cm) dolostone, subordinately limestone. 2 m Dolostone: -subhedral; chert nodules Limestone: -radiolarian-filament wackestone/packstone 21 Dark grey to black limestone in 3.5–12 cm thick beds. Parallel lamina­tion and silicification are locally present. Subordinate are thin marlstone interlayers. 7 m Limestone: -radiolarian-filament wackestone/packstone Sector Lithology Total thickness Microfacies 22 Dolostone in 5.5–19 cm thick beds. One bed shows cross-lamination. Subordinate are thin marly interlayers. Cleavage is present. 7 m Dolostone: -dolomitized filament packstone/grainstone and intraclastic rudstone; subhedral 23 Covered. Fragments of limestone and volcaniclastic sandstone. ? (estimated 1.5 m) Limestone: -peloid-bioclastic packstone/grainstone 24 Partly covered. Dolomitized limestone in 2–7.5 cm thick, folded beds. Large part of the succession covered by a concrete wall. 3 m + unknown + 3 m Dolostone: -subhedral; remains of brachiopods/bivalves and echinoderms; selective silicification 25 Thin beds of dolostone (1.5–13 cm), interchanging with volcaniclastic sandstone. 6 m Dolostone: -subhedral; remains of echinoderms, fila­ments; 5 % of terrigenous quartz 26 Dolostone in 4–22 cm thick beds. Nodules of chert and laminae are locally present. 7 m Dolostone: -subhedral; selective silicification 27 Dark grey to black limestone in 4–20 cm thick beds. Cross-lamination is locally present. 1.5 m (estimated) Limestone: -peloid-bioclastic packstone/grainstone 28 Mostly covered. Fragments of volcaniclastic sandstone and limestone. Exposed beds of limestone are 2–29 cm thick. Parallel lamination is locally visible. ? (estimated 5 m) Limestone: -peloid-bioclastic packstone/grainstone; -bioclastic-intraclastic-peloid grainstone with terrigenous admixture 29 Volcaniclastic sandstone in 0.5–10 cm thick beds. 1 m Clastics: -volcaniclastic sandstone 30 Covered. Variegated succession of tuff, volcaniclastic sandstone, lime­stone, dolostone. ? (estimated 50 m) Clastics: -volcaniclastic sandstone Microfacies Description Calcimudstone Texture is homogenous. Micritic matrix strongly predominates. Only 5 % of the area is occupied by grains (radiolarians). Radiolarian-filament Texture is heterogenous, locally bioturbated. Matrix represents 50–70 % of the area, grains 30–50 %. Grains are well sort- wackestone/packstone ed, supported by matrix or in point contacts. The average grain size is 0.4 mm. Among grains, bioclasts predominate (90 % of grains). These are mostly filaments and radiolarians, while ostracods and benthic foraminifera (Frondicularia wood-wardia Howchin, Lagenida) are rare. Peloid-filament-radio- This microfacies interchanges with bioclastic-intraclastic grainstone in wide laminae. Texture is homogenous. Grains larian packstone represent 85 % of the area, whereas matrix and spar represent 15 % of the area of thin section. Sorting is moderate. Grains are in point and long contacts, and they measure 0.03–1 mm in size. Spherical forms are the most common. Peloids and pellets represent 80 % of grains. Filaments (10 %) and radiolarians (7 %) are subordinate. Less abundant are echinoderms and foraminifera (Krikoumbilica sp.). Echinoderm plates are overgrown by syntaxial calcite cement. The calcite cement in intergranular space is fine-grained, locally drusy mosaic. Bioclastic-peloid pack- Texture is homogenous. Grains form 80 % of the area, matrix and cement 20 %. Sorting is moderate. Grains are 0.11– stone/grainstone 4.9 mm large. They are in point and long contacts. Geopetal structures are present within gastropod shells. Biogenic grains represent 40–50 % of the grains. Peloids (35–40 %), aggregate grains (5–10 %), and intraclasts (5–15 %) are also common­ly present. Less abundant are bivalves, echinoderms, foraminifera (sessile agglutinated foraminifera, Glomospirella sp., Pa-laeolituonella meridionalis (Luperto), Endoteba sp., Endotriadella sp., Variostoma sp., Duostominidae), microproblematica (Plexoramea cerebriformis Mello, Tubiphytes obscurus Maslov), gastropods (locally more common), brachiopods, Terebel-la tubes, and dasycladacean algae. Radiolarians are present where the micritic matrix is present. Terrigenous component is subordinate to allochems. Monocrystal quartz with uniform extinction is present in angular grains measuring 0.5–0.6 mm in size. Lithic grains of chert are locally also present. The cement is fine-grained and drusy mosaic calcite. Echinoderms are overgrown by syntaxial calcite. Bioclastic-intraclastic This microfacies interchanges with peloid-filament-radiolarian packstone in wide laminae. Texture is homogenous. Grains grainstone represent 80 % of the area; intergranular space is filled by fine-grained, locally drusy mosaic calcite cement. Sorting is poor. Grains are mostly in point or long contacts. Grains range from 0.06 to 1.55 mm in size. Filaments and radiolarians strongly predominate (80 % of grains). Intraclasts, peloids and pellets are subordinate (10 % and 8 %, respectively). Very rare are ostracods and problematic algae. Peloid-intraclastic-bio- Texture is homogenous. Grains form 50 % of the area. Of these, terrigenous grains represent 20 % and allochems 30 %. clastic grainstone with Grains range 0.15–1 mm in size. They are moderately sorted. Small intraclasts and peloids are the most abundant among terrigenous admixture allochems. Approximately 5 % of the allochems are small bioclasts, which are partly or completely micritized. Benthic foraminifera (Palaeolituonella meridionalis (Luperto)) and echinoderms are recognisable. Terrigenous grains comprise chert, rhyolite-like volcanics, monocrystal quartz and plagioclase, and carbonate lithoclasts. Terrigenous grains are angular to very angular, between 0.15 mm and 0.55 mm in size. Plagioclase grains are partly sericitizied. Echinoderm plates are overgrown by syntaxial calcite cement. Bioclastic-intraclastic rudstone Texture is homogenous. Grains form 80 % of the area. They are very poorly sorted and measure 1 mm to 18.5 mm in size [within the thin section; several cm large clasts were observed in the field]. Subrounded clasts dominate. Grains are in stylolitic contacts. Allochems are dominated by intraclasts (oolithic packstone, wackestone with radiolarians and filaments, peloidal-bioclastic packstone, mudstone). Subordinate are echinoderm plates, ooids, peloids, benthic foraminifera and bivalve shells. Lithic grains are represented by recrystallised limestone. Other terrigenous grains are monocrystal quartz, plagioclase, and chert. These grains are angular to subangular, up to 5 mm large. The intergranular space is filled with spar. Silicification is locally present. Fig. 4. Selected microfacies types and microfossils from Middle Triassic beds between Mišji Dol and Poljane pri Primskovem. a: Interchang­ing laminae of radiolarian-filament wackestone/packstone and peloid-filament-radiolarian packstone. Thin section 1758 (sample MD1A:B). b: Radiolarian-filament wackestone-packstone. Thin section 1790 (sample MD5A:A). c: Bioclastic-peloid grainstone. Thin section 1763 (sample MD1A:C). d: Peloid-intraclastic-bioclastic grainstone with terrigenous admixture. Note foraminifer Palaeolituonella meridionalis (Luperto) in the centre. Thin section 1796 (sample MD7F:B). e: Variostoma sp. (right) and Ophthalmidium sp. (left) in bioclastic-peloid grainstone. Thin section 1763 (sample MD1A:C). f: Volcaniclastic sandstone. Thin section 1766 (sample MD1C:B). g: Endotriadella sp. in bioclastic-peloid grainstone. Thin section 1763 (sample MD1A:C). h: Endoteba sp. in bioclastic-peloid grainstone. Thin section 1763 (sample MD1A:C). i: Plexoramea cerebriformis Mello in bioclastic-peloid grainstone. Thin section 1786 (sample MD8A:A). Carbonate microfacies The textures and composition of the limestone samples are described in more detail in Table 2. Selected microfacies types and microfossils from thin sections are shown in Figure 4. Microfossil assemblage The microfossil assemblage from the residue consists of conodonts, benthic foraminifera, gas­tropods, echinoderms, brachiopods, green algae, radiolarians, microproblematica, and ostracods. A total of 16 conodont taxa were determined (Fig. 5): Fig. 5. Conodont taxa from Middle Triassic beds between Mišji Dol and Poljane pri Primskovem. SEM images. 1 – Budurovignathus sp., juvenile specimen, sample MD 6B:A (GeoZS 6260). 2 – Budurovignathus sp., sample MD 7F:A (GeoZS 6263). 3 – Paragondolella excelsa Mosher, sample MD 1J (GeoZS 6251). 4 – Paragondolella sp., juvenile specimen, sample MD 1B komp 0–0.25 (GeoZS 6247). 5 – Neogon­dolella cornuta Budurov & Stefanov, sample MD 1B komp 0–0.25 (GeoZS 6247). 6 – Paragondolella ex gr. trammeri (Kozur), sample MD 1J (GeoZS 6251). 7–9 – Paragondolella trammeri (Kozur), sample MD 5B:B (GeoZS 6258). 10 – Paragondolella trammeri (Kozur), samples MD 6C:A and MD 6D:A (GeoZS 6261). 11 – Paragondolella ex gr. trammeri (Kozur), samples MD 7E:A and MD 7E:B (GeoZS 6262). 12 – Budurovignathus gabrielae Kozur, sample MD 6B:A (GeoZS 6260). 13, 15 – Paragondolella ex gr. excelsa Mosher, sample MD 5D:A (GeoZS 6259). 14 – Paragondolella liebermani (Kovacs & Kozur), sample MD 5B:B (GeoZS 6258). 16 – Neogondolella balkanica Budurov & Stefanov, sample MD 5D:A (GeoZS 6259). Scale bar: 200 µm; a – upper, b – lateral, c – lower, d – oblique lower views. Budurovignathus gabrielae Kozur (Fig. 5.12), Bu-durovignathus sp. (Fig. 5.1–5.2), Cratognathodus kochi (Huckriede), Gladigondolella malayensis Nogami, G. tethydis Huckriede, Gladigondolella sp., Neogondolella balkanica Budurov & Stefanov (Fig. 5.16), N. cf. excentrica Budurov & Stefanov, N. constricta (Mosher & Clark), N. cornuta Bu-durov & Stefanov (Fig. 5.5), Neogondolella sp., Paragondolella excelsa Mosher and P. ex gr. excel-sa (Fig. 5.3, 5.13, 5.15), P. liebermani (Kovacs & Kozur) (Fig. 5.14), P. trammeri (Kozur) and P. ex gr. trammeri (Fig. 5.6–5.11), P. cf. alpina (Kozur & Mostler), and Paragondolella sp. (Fig. 5.4). Ju­veniles dominate, while adult specimens are most­ly fragmented. Conodont elements are black and have a Colour Alteration Index (CAI) of 5.5 (Ep­stein et al., 1977). The foraminiferal assemblage is relatively sparse, except for a high number of Nodobacular­ia? vujisici Uroševic & Gazdzicki recovered from the residue of dissolved limestone from the low­er part of the succession (sector 2; see Table 1). Ophthalmidium exiguum Koehn-Zaninetti and very rare Pseudonodosaria sp. were present in the same sample. Along with the mentioned spe­cies, foraminifera include sessile agglutinated foraminifera, Palaeolituonella meridionalis (Lu­perto), Glomospirella sp., Endoteba sp., Endotri­adella sp., Krikoumbilica sp., Variostoma sp., Duostominidae, and small Lagenida. All were determined from thin sections. A taxonomic de­scription of Nodobacularia? vujisici Uroševic & Gazdzicki, which is a rarely noted species, is given below. Fig. 6. Nodobacularia? vujisici Uroševic & Gazdzicki from Middle Triassic beds between Mišji Dol and Poljane pri Primskovem. a: The same specimen viewed in reflected light (a1), immersed in glyceryl (a2), under SEM (a3), and in thin section (a4). b–f: Different specimens showing variability in size and length of the chambers. g: Detail of the wall seen under SEM. All specimens are from sample MD1B (GeoZS 4268). Subphylum Foraminifera d’Orbigny, 1826 Class Tubothalamea Pawlowski et al., 2013 Order Miliolida (Delage & Hérouard, 1896), emend Pawlowski et al., 2013 Superfamily Cornuspiroidea Schultze, 1854 Family Nubeculariidae Jones in Griffith and Hen-frey, 1875 Subfamily Nodobaculariinae Cushman, 1927 Genus ?Nodobacularia Rhumbler, 1895 Nodobacularia? vujisici Uroševic & Gazdzicki, 1977 Fig. 6a–g 1977 Nodobacularia vujisici nov. sp., Uroševic & Gazdzicki, p. 97, pl. 1, fig. 1–6. 1980 Nodophthalmidium elenae n.sp., Gheorghi-an, p. 38, pl. 1, fig. 1–11; pl. 2, fig. 1–6; pl. 3, fig. 1–2. 1983 Nodobacularia vujisici Uroševic et Gazd­zicki, 1977 – Salaj et al., p. 113, pl. 141, fig.1–2. 1984 Nodophthalmidium vujisici (Uroševic & Gazdzicki, 1977) – Kristan-Tollmann, p. 285, fig. 8.1–8.7; pl. 11, fig. 1–29; pl. 8, fig. 9. 1987 Nodobacularia vujisici Uroševic et Gazd. – Oravecz-Scheffer, pl. 31, fig. 4. 1988 Nodophthalmidium vujisici Uroševic et Gazdzicki – Salaj et al., pl. 3, fig. 25, 26, 34. 1991 Nodobacularia vujisici Uroševic et Gazdzicki – Kolar-Jurkovšek, pl. 2, fig. 3–4. 1993 Gheorghianina vujisici (Uroševic & Gazd­zicki, 1977) – Trifonova, p. 50, pl. 8, fig. 1–2. 1996 Gheorghianina vujisici (Urosevic et Gazd­zicki, 1977) – Bérczi-Makk, p. 435, pl. 1, fig. 6–7. Material: Approximately 500 isolated spec­imens from the residue of radiolarian-filament wackestone/packstone from the bottom of sector 2 (Sample MD1B; GeoZS 4268; see Table 1). Description: The foraminiferal test is free, un­attached, and very elongated. Ovoid proloculus (diameter 0.018 mm, length 0.032 mm) is followed by two (?) elongated tubular chambers. The first of these is one-half of the whorls long, and shaped like in Ophthalmidium. The second chamber leads to a rectilinear or curvilinear part of the test, which consists of up to four elongated chambers. These are pyriform or flask-like in shape, but with the largest constriction two-thirds of the way up the chamber, so that the chamber again gains in width towards the simple circular aperture. The third chamber in the uniserial part measures ap­proximately 0.041–0.054 mm in width and 0.135– 0.230 mm in length. Although both, the length and width of the chambers increase continuously, they do so at different and inconstant rates. How­ever, since the chambers are always much longer than they are wide, the test is always very elongat­ ed and narrow. Specimens with three chambers in the linear part are between 0.39 and 0.63 mm long, whereas the specimens with four chambers in the linear part measure 0.40 to 0.695 mm in length. The largest length of the chamber is 0.31 mm. The widest (usually third or fourth) chamber in the lin­ear part is usually equal in width to the planispiral part. However, deviations are possible in both di­rections. The wall is silicified. Remarks: The first description of N. vujisi­ci was based on specimens in the thin sections, and was originally thought to have lived fixed to a substrate. It was also interpreted that the plani-spiral part, which follows the proloculus, consists of a single tubular chamber, which later straight­ens up to form the initial part of the linear series of chambers (Uroševic & Gazdzicki, 1977). The new species was placed in the genus Nodobacu­laria, which, however, is characterised by two chambers in the planispiral part, and has some agglutinated particles within its wall (Loeblich & Tappan, 1988). Gheorghian (1980) later intro­duced two new species from the Middle and Up­per Triassic of Romania, with both attributed to the genus Nodophthalmidium Macfayden, 1939; of these species, Nodophthalmidium elenae Gheo­rghian represents a junior synonym of N. vujisici, but Nodophthalmidium anae Gheorghian repre­sents a distinct species characterised by longitu­dinal costae. Gheorghian (1980, pl. 2) provided hand-drawings of the specimens, showing a tubu­lar second chamber, that completely envelops the proloculus and continues to the linear part of the test. These illustrations led Loeblich and Tappan (1986) to establish a new genus, Gheorghianina, that differs from Nodobacularia in the mentioned feature, and from Nodophthalmidium in having more elongated chambers and a simple circular aperture. Both valid species, Nodobacularia vuji­sici, and Nodophthalmidium anae were attributed to this genus. However, we believe that the micro-photograph in Gheorghian’s (1980) plate 3 shows two chambers in the planispiral part, and that the second chamber is only one-half of a whorl long. Trifonova (1993) also noted that there are two chambers in the planispiral part of Nodobacularia vujisici and Nodophthalmidium anae. Moreover, this observation can be confirmed in the speci­mens from Mišji Dol. Bérczi-Makk (1996) stat­ed that Gheorghianina possesses a long, tapered neck, which is absent in both Nodobacularia and Nodophthalmidium. Bérczi-Makk (1996) still con­sidered Gheorghianina to have a planispiral part one-chamber long, and also stated that the plani-spiral part is much smaller in Gheorghianina than in the other two genera. Whatever the generic assignment, Gheorghi­anina has been reported from the literature quite rarely. This could also be due to its small size and the brittle nature of its test. Imperfect sections could lead to confusion with Earlandia amplimu­ralis (Pantic). Salaj et al. (1983) described another species, Nodobacularia cylindriformis Salaj, Borza & Samuel, from Anisian beds, which lacks costae but is otherwise similar to N. anae. On the same plate, they figured also Nodophthalmidium cylin­driformis n. sp. (perhaps a misnomer for Nodob­acularia cylindriformis), creating some confusion, as no description is given under this name. Nodo­bacularia? vujisici is often found in facies with daonellids or some undetermined thin-shelled bi­valves (Uroševic & Gazdzicki, 1977; Gheorghian, 1980; Kristan-Tollmann, 1984; Kolar-Jurkovšek, 1991). Stratigraphic range: Illyrian to upper Carni-an of Carpathians; Ladinian of Himalayas; Lad-inian of Transdanubian Range and the Alsó Hill in Hungary; lower Ladinian to Carnian of Balkan Mountains and Dobrogea; and upper Anisian and Ladinian of Slovenia. Discussion Biostratigraphy and comparison with other conodont assemblages All of the studied conodont samples are marked by P. excelsa that is present throughout the sam­pled succession. This species is accompanied by G. tethydis, N. cornuta and N. constricta that oc­ cur in most samples, except in the three samples from the uppermost part of the succession. Para-gondolella excelsa ranges from the Illyrian to the Fassanian (Chen et al., 2015). The species N. con-stricta (sensu Kozur), ranges in the Illyrian, and possibly even in the Pelsonian; N. cornuta, with a distinct cusp fused with the posterior platform end, is also common in the Illyrian faunas (Kozur et al., 1994). The upper part of the section is marked by the first occurrence of G. malayensis. Moreover, a successive appearance of N. cf. excentrica, P. lieb­ermani, N. balkanica and P. cf. alpina is noted in this zone; all of these species range in the Illyrian and the Fassanian (Chen et al., 2015). Moreover, an introduction of budurovignathids is notewor­thy. They first appear in the sample MD6B:A, from which a single specimen of B. gabrielae is deter­mined. It reveals a slightly sigmoidal platform, bent, and a forward shifted basal cavity. This spe­cies was first described from the upper Fassanian of Karavanke, Southern Alps, and was interpreted to be the oldest Budurovignathus representative as it retained some features of Neogondolella, i.e., broadly rounded platform end and relatively sep­arated carina denticles (Kozur et al., 1994). The Budurovignathus specimens from the uppermost part of the section are more advanced, having typical high carina with fused denticles, as well as significant sigmoidal bending and thus a for-ward-shifted basal cavity. The specimens of P. trammeri predominate in the faunas of the upper part of the section. Juve­nile and intermediate forms prevail over adults. It should be noted here that some other taxa (P. eotrammeri Krystyn, P. preaetrammeri (Kozur)) were described from the P. trammeri group, where only adult specimens can be distinguished among each other. For a long time, P. trammeri was one of the most important Ladinian markers found in open pelagic and more restricted settings of the Tethys. Based on the composition of the faunas, two conodont zones can be distinguished. The older is the constricta Zone that encompasses the interval from the sample MD1B to the sample MD2A:A. The zonal marker N. constricta is accompanied by C. kochi, G. tethydis, N. cornuta, P. excelsa, P. ex gr. trammeri (juvenile), and Paragondolella sp. The range of this zone in Slovenia is lower Illyrian (Kolar-Jurkovšek & Jurkovšek, 2019). Upward follows the trammeri Zone. It is char­acterized by the index species in association with some holdover species from the previous zone, which are G. tethydis, N. cornuta, N. constricta, and P. excelsa. The lower boundary of this zone is identified by the first appearance of G. malayensis in the sample MD2E:A. Other species that are in­troduced in this zone are: B. gabrielae, N. balkan­ica, N. cf. excentrica, P. liebermani, P. cf. alpina. The trammeri zone in Slovenia ranges from the upper Illyrian to the lower Fassanian (Kolar-Jurk­ovšek & Jurkovšek, 2019). The colour of the cono­dont elements suggests that the rocks were sub­jected to temperatures between 300 °C and 550 °C (Epstein et al., 1977). The conodont assemblage from the Mišji Dol section is similar to the assemblage recorded from Bagolino in the Southern Alps of the northern Italy, the GSSP for the Ladinian (Brack & Nicora, 1998; Brack et al., 2005). The similarity is especially Table 3. Illyrian – Fassanian conodont assemblages from Slovenia (based on Kolar-Jurkovšek & Jurkovšek, 2019). Localities Slugovo and Rižnikar feature slightly younger, late Fassanian, and Fassanian Longobardian assemblages, respectively. – Mišji Dol Topla Prisojnik Kamna Gorica Idrijske Krnice Šentjošt Hrastenice Šmarna gora Jagršce Rižnikar Rob & Ortnek Bucka Sremic Loke No. Budurovignathus sp. • • • 3 Budurovignathus gabrielae Kozur • 1 B. hungaricus Kozur • • 2 B. mirautae (Kovacs) • 1 B. mungoensis (Diebel) • 1 Cratognathodus kochi (Huckriede) • • 2 Gladigondolella malayensis Nogami • • 2 G. tethydis Nogami • • • • • 5 Gondolella hanbulogi (Sudar & Budurov) • 1 Neogondolella balkanica Budurov & Stefanov • • 2 N. bifurcata (Budurov & Stefanov) • 1 N. bulgarica (Budurov & Stefanov) • • 2 N. constricta (Mosher & Clark) • • • • • 5 N. cornuta Budurov & Stefanov • • • • • 5 N. excelsa (Mosher) • • • 3 N. excentrica Budurov & Stefanov • • • 3 N. mombergensis (Tatge) • • 2 N. transita (Kozur & Mostler) • • 2 Paragondolella alpina (Kozur & Mostler) • • • 3 P. excelsa Mosher • • • • • 5 P. liebermani (Kovacs & Kozur) • 1 P. navicula (Huckriede) • • 2 P. prealpina Ramovš & Gorican • • 2 P.? pridaensis posteroacuta Kozur, Krainer & Mostler • • 2 P. trammeri (Kozur) • • • • • • 6 P. praeszaboi bystricky Kovács et al. • 1 Total no. species at locality: 13 4 4 1 6 1 5 6 2 7 4 3 5 4 evident for the elements belonging to the latest Anisian constricta zone, and in the presence of budurovignathids in the Ladinian part. Eight taxa are common to both sections: N. balkanica, N. constricta, N. cornuta, P. excelsa, P. liebermani, P. trammeri, P. ex gr. alpina, and G. malayensis. Their occurrence is similar in both sections. It should be noted here that different taxonomies have been used for the determination of some ne­ogondolellids, and in Bagolino some of them were determined at subspecies level: N. constricta cor­nuta Budurov & Stefanov, N. constricta postcor­nuta (Kovacs), N. constricta balkanica Budurov & Stefanov (Brack & Nicora, 1998). The lower part of the reitzi Zone in the Bagolino section yields N. constricta, N. cornuta and P. excelsa that can be compared to the lower part of the Mišji Dol section belonging to the constricta Zone. The upper part of the reitzi Zone and the secedensis Zone of the Bagolino section is marked by the appearance of G. malayensis and P. trammeri; this part is also characterized by the occurrence of the precursor of B. gabrielae, determined as N. sp. A, whereas ear­ly budurovignathids are represented by three taxa in the Ladinian part of the section. The difference between the composition of the faunas in the two sections is the earlier appearance of P. lieberma­ni in the Bagolino section, where P. ex gr. alpina is present in most of the Anisian part of the sec­tion and continues also in the curionii Zone; in the Mišji Dol section, P. ex gr. alpina is very rare and has been encountered only in the trammeri Zone. Based on the conodont faunas the age of the studied section thus is Illyrian-Fassanian. Exact position of the base of the trammeri zone cannot be determined based on the recovered material, but it is tentatively marked by the first occurrence of G. malayensis. The Anisian-Ladinian bound­ary could be therefore placed between samples MD2E:A and MD4A:A, most probably after the fa-cies change within the sector 18 (Fig. 3). The fau­na of the upper part of the trammeri zone reveals Ladinian character due to the presence of budu­rovignathids. In the studied Mišji Dol section they are first encountered approximately 20 m above the occurrence of G. malayensis, whereas in the Bagolino section budurovignathids (B. truempyi, B. hungaricus) occur in the layers corresponding the Ladinian level (Brack et al., 2005). Table 3 lists other localities from Slovenia with common conodont species from the Illyri-an – Fassanian interval (see Kolar-Jurkovšek and Jurkovšek, 2019 for an overview of the localities and existing references). These successions were deposited in different palaeogeographic situations Table 4. The Dice similarity index for diff erent localities with latest Anisian – earliest Ladinian conodont assemblages in Slovenia (based on Kolar-Jurkovšek & Jurkovšek, 2019). Table 5. The Dice similarity index for the correlation among the determined conodont taxa. Mišji Dol Topla Prisojnik Kamna Gorica Šentjošt Hrastenice Šmarna gora Jagršce Rižnikar Rob & Ortnek Bucka Sremic Loke Idrijske Krnice Mišji Dol 1 0.24 0.35 0.14 0 0.33 0.42 0.13 0.3 0.35 0.25 0.44 0.11 0.21 Topla 0.24 1 0 0 0 0.22 0.2 0 0 0 0 0.22 0.4 0.2 Prisojnik 0.35 0 1 0.4 0 0 0.4 0 0.18 0.25 0 0 0 0 Kamna Gorica 0.14 0 0.4 1 0 0 0.29 0 0.25 0.4 0 0 0 0 Šentjošt 0 0 0 0 1 0 0 0 0 0 0.5 0 0.29 0.29 Hrastenice 0.33 0.22 0 0 0 1 0.73 0 0.17 0 0.25 0.4 0.18 0 Šmarna gora 0.42 0.2 0.4 0.29 0 0.73 1 0 0.31 0.2 0.22 0.18 0.17 0 Jagršce 0.13 0 0 0 0 0 0 1 0.22 0 0.4 0 0 0.5 Rižnikar 0.3 0 0.18 0.25 0 0.17 0.31 0.22 1 0.36 0.2 0 0 0.15 Rob & Ortnek 0.35 0 0.25 0.4 0 0 0.2 0 0.36 1 0 0.44 0 0 Bucka 0.25 0 0 0 0.5 0.25 0.22 0.4 0.2 0 1 0 0.44 0.44 Sremic 0.44 0.22 0 0 0 0.4 0.18 0 0 0.44 0 1 0 0 Loke 0.11 0.4 0 0 0.29 0.18 0.17 0 0 0 0.44 0 1 0.17 Idrijske Krnice 0.21 0.2 0 0 0.29 0 0 0.5 0.15 0 0.44 0 0.17 1 P.praeszaboi 0 1 0 0.67 1 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0.29 1 P.trammeri 0.44 0.29 0.29 0.5 0.29 0.25 0.5 0 0.36 0.5 0 0 0.36 0.36 0 0.22 0 0 0.44 0.6 0.29 0 0.25 0.5 1 0.29 P.pridaensis 0 0 0 0 0 0 0.5 0 0 0.5 0 0 0.29 0.29 0 0 0 0 0 0.33 0 0 0.5 1 0.5 0 P.prealpina 0 0 0 0 0 0 0 0 0 0 0 0 0.57 0.57 0 0 0 0.5 0 0.67 0 0 1 0.5 0.25 0 P.navicula 0 0 0 0 0 0 0 0 0 0 0 0 0.29 0.29 0.33 0.4 1 0 0 0 0 1 0 0 0 0 P.liebermani 0.5 0 1 0 0 0.67 0.67 0 0.33 0.67 0 0 0.33 0.33 0 0.5 0 0 0.5 0.4 1 0 0 0 0.29 0 P.excelsa 0.3 0.4 0.4 0.33 0.4 0.33 0.33 0 0.44 0.33 0 0 0.67 0.67 0 0.29 0 0.33 0.29 1 0.4 0 0.67 0.33 0.6 0.4 P.alpina 1 0 0.5 0.4 0 0.8 0.4 0 0.25 0.4 0 0 0.25 0.5 0 0.33 0 0.4 1 0.29 0.5 0 0 0 0.44 0 N.transita 0.4 0 0 0 0 0.5 0 0 0 0 0 0 0.29 0.57 0 0 0 1 0.4 0.33 0 0 0.5 0 0 0 N.mombergensis 0 0 0 0 0 0 0 0 0 0 0 0 0.29 0.29 0.33 0.4 1 0 0 0 0 1 0 0 0 0 N.excentrica 0.33 0 0.5 0 0 0.4 0.4 0.5 0.5 0.4 0.5 0.4 0.25 0.5 0.29 1 0.4 0 0.33 0.29 0.5 0.4 0 0 0.22 0 N.excelsa 0 0 0 0 0 0 0 0.4 0.44 0 0.4 0.33 0.44 0 1 0.29 0.33 0 0 0 0 0.33 0 0 0 0 N.cornuta 0.5 0 0.33 0 0 0.57 0.29 0 0.2 0.29 0 0 0.6 1 0 0.5 0.29 0.57 0.5 0.67 0.33 0.29 0.57 0.29 0.36 0 N.constricta 0.25 0 0.33 0 0 0.29 0.29 0 0.4 0.29 0 0 1 0.6 0.44 0.25 0.29 0.29 0.25 0.67 0.33 0.29 0.57 0.29 0.36 0 N.bulgarica 0 0 0 0 0 0 0 0.67 0.57 0 0.67 1 0 0 0.33 0.4 0 0 0 0 0 0 0 0 0 0 N.bifurcata 0 0 0 0 0 0 0 1 0.33 0 1 0.67 0 0 0.4 0.5 0 0 0 0 0 0 0 0 0 0 N.balkanica 0.4 0 0.67 0 0 0.5 1 0 0.29 1 0 0 0.29 0.29 0 0.4 0 0 0.4 0.33 0.67 0 0 0.5 0.5 0 G.tethydis 0.25 0.33 0.33 0.29 0.33 0.29 0.29 0.33 1 0.29 0.33 0.57 0.4 0.2 0.44 0.5 0 0 0.25 0.44 0.33 0 0 0 0.36 0.33 Go.hanbulogi 0 0 0 0 0 0 0 1 0.33 0 1 0.67 0 0 0.4 0.5 0 0 0 0 0 0 0 0 0 0 G.malayensis 0.4 0 0.67 0 0 0.5 1 0 0.29 1 0 0 0.29 0.29 0 0.4 0 0 0.4 0.33 0.67 0 0 0.5 0.5 0 C.kochi 0.8 0 .67 0 0 1 0.5 0 0.29 0.5 0 0 0.29 0.57 0 0.4 0 0.5 0.8 0.33 0.67 0 0 0 0.25 0 B.mungoensis 0 1 0 0.67 1 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0.29 1 B.hungaricus 0.4 0.67 0 1 0.67 0 0 0 0.29 0 0 0 0 0 0 0 0 0 0.4 0.33 0 0 0 0 0.5 0.67 B.gabrielae 0.5 0 1 0 0 0.67 0.67 0 0.33 0.67 0 0 0.33 0.33 0 0.5 0 0 0.5 0.4 1 0 0 0 0.29 0 B.mirautae 0 1 0 0.67 1 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0.29 1 Budurovig­nathus sp. 1 0 0.5 0.4 0 0.8 0.4 0 0.25 0.4 0 0 0.25 0.5 0 0.33 0 0.4 1 0.29 0.5 0 0 0 0.44 0 Budurovig­nathus sp. B.mirautae B.gabrielae B.hungaricus B.mungoensis C.kochi G.malayensis Go.hanbulogi G.tethydis N.balkanica N.bifurcata N.bulgarica N.constricta N.cornuta N.excelsa N.excentrica N.momber­gensis N.transita P.alpina P.excelsa P.liebermani P.navicula P.prealpina P.pridaensis P.trammeri P.praeszaboi and presently belong to different structural units. The conodont assemblage from Prisojnik, Šentjošt, Hrastenice, Šmarna gora, Sremic, Idrijske Krnice, and Bucka derive from red nodular limestone de­posited within smaller grabens on top of a drowned upper Anisian carbonate platform. Successions from Kamna Gorica, Jagršce, Rižnikar, Rob and Ortnek, and Loke are lithologically more similar to the succession at Mišji Dol, namely featuring grey hemipelagic limestone in association with volcan­iclastics and marlstone. The succession from Topla comprises bedded limestone with chert. It must be reminded that samples were (at least partly) col­lected by different authors, at different times, and that the size of the exposures and the number of collected samples vary as well. In addition, assem­blages from Hrastenice, Loke and Idrijske Krnice represent only one conodont zone (constricta), section at Kamna Gorica only spans Fassanian, whereas sections at Rižnikar, Rob and Ortnek contain elements from the trammeri, as well as the succeeding hungaricus zones. The diversity of the conodont assemblages from these localities is generally low to moderate (Kolar-Jurkovšek & Ju­rkovšek, 2019). The diversity and composition of the conodont assemblages seems unrelated to the lithological composition of the sampled sites. Based on the current data and without regard for the is­ sues mentioned above, the assemblage from Mišji Dol has a notably more diverse range of conodonts (13 species) than other sampled assemblages. The beta diversity of the conodont assemblages seems rather large, since only five species are present in a significant number of sampling sites: out of 14, Paragondolella trammeri has been found at 6 localities, and Gladigondolella tethydis, Neogon­dolella constricta, N. cornuta and Paragondolella excelsa at 5 localities. Consequently, the similarity between localities is relatively low (Table 4). The largest similarity can be found between the local­ities of Šmarna gora and Hrastenice (Dice index 0.73), the first being late Anisian – early Ladini-an in age, the latter late Anisian. The assemblage from Mišji Dol is most similar to the assemblages from Sremic and Šmarna gora (Dice indices 0.44 and 0.42, respectively), both spanning the same, late Anisian – early Ladinian time interval. Table 5 shows correlation among species. Some of the species seem to associate (e.g., Paragon-dolella alpina and Budurovignathus sp., Paragon-dolella liebermani and Budurovignathus gabrielae, Neogondolella mombergensis and Paragondolella navicula; Table 5), which indicates that they had similar ecological preferences. However, said cor­relation would be more reliable if it were based on data obtained from samples of the same weight and collected in a similar density. The correlation also cannot be confirmed for the pairs of species that are listed in the Table 5 only once, for example Budurovignathus mungoensis, Budurovignathus mirautae and Paragondolella praeszaboi, Neogon­dolella balkanica and Neogondolella bifurcata. Depositional environment The investigated succession roughly consists of segments, in which there is a variable mixture of lithologies, namely the thin-bedded limestone, marlstone, tuff and volcaniclastic sandstone, and segments that are dominated by thin- to medi-um-thick beds of carbonates (limestone and/or do-lostone). The first are attributed to times of more intense volcanic activity and/or deposition in a more distal part of the basin, while the latter in­dicate periods of substantial platform production and export of the material down-slope to the more proximal parts of the basin, and/or periods of the quiescence of volcanic activity. The mudstone and radiolarian-filament wackestone-packstone pres­ent background hemipelagic/pelagic sedimenta­tion. Other microfacies types are interpreted as sediments of distal (in the case of rudstone also more proximal) turbidity currents, which brought some platform-derived material (biogenic grains with micritised margins, green algae) into the ba­sin and mixed it with components characteristic for open-marine waters (e.g., radiolarians, thin-shelled bivalves). The volcaniclastic sandstone also results from mass flow deposition, but the source of the material was volcanic rocks or tuff layers. The paleogeographic extent of the basin cannot be determined, but numerous smaller basins with a similar type of sedimentation can be envisioned for the late Anisian – early Ladinian for the Ex­ternal Dinarides (e.g., Kolar-Jurkovšek, 1983; Ju­rkovšek, 1983; Kolar-Jurkovšek, 1991; Demšar & Dozet, 2003; Car, 2010; Kocjancic et al., 2022). Conclusions A succession of marlstone, tuff, volcaniclastic sandstone, and thin-to medium-bedded limestone and dolostone between Mišji Dol and Poljane pri Primskovem contains a relatively rich assemblage of conodonts of the lower Illyrian constricta Zone and the upper Illyrian to lower Fassanian tram-meri Zone. The associated foraminifera include numerous representatives of the species Nodoba­cularia? vujisici Uroševic & Gazdzicki. The cono­dont assemblage is similar to the assemblage re­corded from Bagolino in northern Italy. On the other hand, assemblages from other localities in Slovenia have few taxa in common, which is in ac­cordance with the presence of numerous smaller basins characterised by different conditions and communities. Acknowledgements The presented paper is the result of the master thesis written by the first author (K. Oselj). The thesis was defended at the Department of Geology, Faculty of Nat­ ural Sciences and Engineering. Preparation of the ma­ terial and the field work was financed by the Slovenian Research Agency (research core funding No. P1-0011; authors T. Kolar-Jurkovšek, B. Jurkovšek and L. Gale). Thin sections were prepared and the microfossils were photographed at the Geological Survey of Slovenia. We thank the reviewers for the thorough reading of the manuscript and constructive remarks. References Bérczi-Makk, A. 1996c: Foraminifera of the Tri­assic formations of Alsó Hill (Northern Hun­gary). Part 3: Foraminifer assemblage of the basinal facies. Acta Geol. Hungarica, 39/4: 413–459. Berra, F. & Carminati, E. 2010: Subsidence history from a backstripping analysis of the Permo-Mesozoic succession of the Central Suth­ern Alps (northern Italy). Basin Res., 22/6: 952–975. https://doi.org/10.1111/j.1365­ 2117.2009.00453.x Brack, P. & Nicora, A. 1998: Conodonts from the Anisian-Ladinian succession of Bagolino, Brescian Prealps (Brescia, Lombardy, North­ern Italy). Giornale Geol., 60/3: 314–325. Brack, P., Rieber, H., Nicora, A. & Mundil, R. 2005: The Global boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28/4: 233–244. https://doi. org/10.18814/epiiugs/2005/v28i4/001 Budai, T. & Vörös, A. 2006: Middle triassic plat­form and basin evolution of the Southern Bakony mountains (Transdanubian Range, Hungary). Riv. Ital. Paleontol. Strat., 112/3: 359–371. https://doi.org/10.13130/2039­ 4942/6346 Buser, S. 1969: Osnovna geološka karta SFRJ 1: 100 000. List Ribnica. Zvezni geološki zavod, Beograd. Buser, S. 1974: Osnovna geološka karta SFRJ 1: 100 000. Tolmac lista Ribnica. Zvezni geološki zavod, Beograd: 60 p. Buser, 1986: Osnovna geološka karta SFRJ 1: 100 000. Tolmac za lista Tolmin in Videm (Udine). Zvezni geološki zavod, Beograd: 103 p. Buser, S. 1989: Development of the Dinaric and the Julian carbonate platforms and of the in­termediate Slovenian Basin (NW Yugoslavia). Boll. Soc. Geol. Ital., 40: 313–320. Celarc, B., Gorican, Š. & Kolar-Jurkovšek, T. 2013: Middle Triassic carbonate-platform break­up and formation of small-scale half-grabens (Julian and Kamnik-Savinja Alps, Slovenia). Facies, 59: 583–610. https://doi.org/10.1007/ s10347-012-0326-0 Chen, Y.L., Krystyn, L., Orchard, M.J., Ali, X.L. & Richoz, S. 2015: A review of the evolution, biostratigraphy, provincialism and diversity of Middle and early Late Triassic conodonts. Pap. Palaeontol., 2/2: 235–263. https://doi. org/10.1002/spp2.1038 Cushman, J.A. 1927: An outline of a re-classi­fication of the foraminifera. Contributions from the Cushman Laboratory for Foram. Res., 3: 1–105. https://doi.org/10.1126/sci­ ence.65.1689.473.b Car, J. 2010: Geological structure of the Idrija – Cerkno hills: Explanatory book to the Geolog­ical map of the Idrija – Cerkljansko hills be­tween Stopnik and Rovte 1: 25 000. Geological Survey of Slovenia, Ljubljana: 127 p. Car, J. 2013: Ladinian skonca beds of the Idrija Ore Deposit (W Slovenia). Geologija, 56/2: 151–174. https://doi.org/10.5474/geologi­ ja.2013.010 Car, J., Jež, J. & Milanic, B. 2021: Structural set­ting at the contact of the Southern Alps and Di-narides in western Cerkljansko region (western Slovenia). Geologija, 64/2: 189–203. https:// doi.org/10.5474/geologija.2021.011 Delage, Y. & Hérouard, E. 1896: Traité de Zool­ogie Concrčte, Volume 1, La Cellule et les Protozoaires. Schleicher Frčres, Paris: 584 p. https://doi.org/10.5962/bhl.title.11672 Demšar, M. & Dozet, S. 2003: Anisian and Lad-inian beds in the cross-section above Srednik Valley at Križna Gora, central Slovenia. Ge-ologija, 46/1: 41–48. https://doi.org/10.5474/ geologija.2003.002 Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M. & Watt, S.F.L. 2022: Volcanic-ally-derived deposits and sequences: a uni­fied terminological scheme for application in modern and ancient environments. Geol. Soc. London, Spec. Publ., 520: 11–27. https://doi. org/10.1144/SP520-2021-201 Dozet, S. 2006: Ladinian beds in the Obla Gorica area, central Slovenia. RMZ – Mater. Geoenvi­ron., 53/3: 367–383. Dozet, S. & Buser, S. 2009: Triassic. In: Plenicar, M., Ogorelec, B. & Novak, M. (eds.): Geology of Slovenia. Geological Survey of Slovenia, Lju­bljana: 161–214. Dunham, R.J. 1962: Classification of carbonate rocks according to depositional texture. In: Han, W.E. (ed.): Classification of carbonate rocks, A symposium. American Ass. Petrol. Geol. Mem., Tulsa: 108–121. Embry, A.F. & Klovan, J.E. 1972: Absolute water depth limits of late Devonian paleoecological zones. Geol. Rundschau, 61: 672–686. https:// doi.org/10.1007/BF01896340 Epstein, A.G., Epstein, J.B. & Harris, L.D. 1977: Conodont colour alteration – an index to or­ganic metamorphism. Geol. Survey Am. Prof. Paper, 995: 1–27. Gawlick, H.-J., Gorican, Š., Missoni, S. & Lein, R. 2012: Late Anisian platform drowning and radiolarite deposition as a consequence of the opening of the Neotethys ocean (High Karst nappe, Montenegro). Bull. Soc. géol. France, 183: 349–358. https://doi.org/10.2113/gssgf­ bull.183.4.349 Germovšek, C. 1955: O geoloških razmerah na prehodu Posavskih gub v Dolenjski kras med Sticno in Šentrupertom. Geologija, 3: 116–135. Gheorghian, D. 1980: Note concernant quelques espčces de Nodophthalmidium dans le Trias Moyen-Supérieur de Roumanie. Dari de Seama ale Sedintelor, Institutul de Geologie si Geofi­zica, Paleontologie, 65/3: 37–41. Gianolla, P., Caggiati, M. & Pecorari, M. 2019: Looking at the timing of Triassic magmatism in the Southern Alps. Geo.Alp, 16: 65–68. Gorican, Š. & Buser, S. 1990: Middle Triassic radi­olarians from Slovenia (Yugoslavia). Geologija, 31–32 (1988/1989): 133–197. Griffith, J.W. & Henfrey, A. 1875: The micrograph­ic dictionary: a guide to the examination and investigation of the structure and nature of mi­croscopic objects. Van Voorst, London. Haas, J. & Budai, T. 1999: Triassic sequence stra­tigraphy of the Transdanubian Range (Hunga­ry). Geol. Carpathica, 50/6: 459–475. Hammer, Ř., Harper, D.A.T. & Ryan, P.D. 2001: PAST: Paleontological statistics software pack­age for education and data analysis. Palaeon­tol. electronica, 4/1: 1–9. Jurkovšek, B. 1983: Fassanian beds with daonel-las in Slovenia. Geologija, 26/1: 29–70. Jurkovšek, B. 1984: Langobardian beds with daonellas and posidonias in Slovenia. Geologi­ja, 27/1: 41–95. Kocjancic, A., Rožic, B., Gale, L., Vodnik, P., Kolar-Jurkovšek, T. & Celarc, B. 2022: Facies analysis of Ladinian and Carnian beds in the area of Rute Plateau (External Dinarides, cen­tral Slovenia). In: Rožic, B. & Žvab Rožic, P. (eds): 15th Emile Argand Conference on Alpine Geological Studies: 12–14 September 2022, Ljubljana, Slovenia: abstract book & fieldtrip guide. Faculty of Natural Sciences and Engi­neering, Department of Geology, Ljubljana: 37. https://doi.org/10.5194/egusphere-alp­ shop2022-37 Kolar-Jurkovšek, T. 1983: Middle Triassic cono­donts from Slovenia. Rudarsko-metalurški zbornik, 30/4: 323–364. Kolar-Jurkovšek, T. 1991: Microfauna of Middle and Upper Triassic in Slovenia and its biostrati-graphic significance. Geologija, 33/1: 21–170. https://doi.org/10.5474/geologija.1990.001 Kolar-Jurkovšek, T. & Jurkovšek, B. 2019: Cono­donts of Slovenia. Geological Survey of Slove­nia, Ljubljana: 259 p. Kovács, S., Sudar, M., Gradinaru, E., Gawlick, H.­J., Karamata, S., Haas, J., Péro, C., Gaetani, M., Mello, J., Polák, J., Aljinovic, D., Ogorelec, B., Kolar-Jurkovšek, T., Jurkovšek, B. & Buser, S.2011: Triassic evolution of the tectonostrati-graphic units of the Circum-Pannonian Re­gion. Jb. Geol. B.-A., 151: 199–280. Kozur, H., Krainer, K. & Mostler, H. 1994: Mid­dle Triassic Conodonts from the Southern Karawanken Mountains (Southern Alps) and Their Stratigraphic Importance. Geol.-Paläon­tol. Mitt. Innsbruck, 19: 165–200. Kristan-Tollmann, E. 1984: Trias-Foraminiferen von Kumaun im Himalaya. Mitt. Österr. Geol. Ges., 77: 263–329. Lipold, M. 1858: Bericht über die geologische Auf­nahmen in Unter-Krain im Jahnre 1857. Jb. Geol. Reichsanst., 9/2: 257–276. Loeblich, A.R.Jr. & Tappan, H. 1986: Some new and redefined genera and families of Textular­iina, Fusulinina, Involutinina, and Miliolina (Foraminiferida). J. Foram. Res., 16/4: 334– 346. https://doi.org/10.2113/gsjfr.16.4.334 Macfayden, W.A. 1939: On Ophthalmidium, and two new names for Recent foraminifera of the family Ophthalmidiidae. J. Royal Microscop. Soc., 59: 162–169. Oravecz-Scheffer, A. 1987: Triassic foraminifers of the Transdanubian Central Range. Geol. Hun-garica, 50: 3–134. Orbigny, A. d’ 1826: Tableau méthodique de la classe des Céphalopodes. Ann. Sci. Natur., 7: 245–314. Pawlowski, J., Holzmann, M. & Tyszka, J. 2013: New supraordinal classification of Foraminif-era: Molecules meet morphology. Marine Mi-cropal., 100: 1–10. https://doi.org/10.1016/j. marmicro.2013.04.002 Placer, L. 1998a: Structural meaning of Sava Folds. Geologija, 41/1: 191–221. https://doi. org/10.5474/geologija.1998.012 Placer, L. 1998b: Contribution to the macrotec-tonic subdivision of the border region be­tween Southern Alps and External Dinar-ides. Geologija, 41/1: 223–255. https://doi. org/10.5474/geologija.1998.013 Placer, L. 2008: Principles of the tectonic subdi­vision of Slovenia. Geologija, 51/2: 205–217. https://doi.org/10.5474/geologija.2008.021 Rakovec, I. 1950: Pseudozilian strata in Slovenia (NW Yugoslavia). Geogr. Vestnik, 22: 1–24. Ramovš, A. & Gorican, Š. 1995: Late Anisian – Early Ladinian radiolarians and conodonts from Šmarna gora near Ljubljana, Slovenia. Razprave IV. razreda SAZU, 36/9: 179–221. Rhumbler, L. 1895: Entwurf eines naturlichen Systems des Thalamophoren. Nachrichten Ge-sell. Wiss. Göttingen, Math.-Physik, 1: 51–98. Rožic, B., Kocjancic, A., Gale, L., Popit, T., Žvab Rožic, P., Vodnik, P., Zupancic, N., Kolar-Ju­rkovšek, T. & Celarc, B. 2021: Arhitektura in sedimentarni razvoj ladinijskega bazena na obmocju Rutarske planote. Geol. zbornik, 26: 111–116. Salaj, J., Borza, K. & Samuel, O. 1983: Triassic foraminifers of the West Carpathians. Geol. ústav Dionýsa Štúra: 213 p. Salaj, J., Trifonova, E., Gheorghian, D. & Corone­ou, V. 1988: The Triassic foraminifera microbi­ostratigraphy of the Carpathian – Balkan and Hellenic realm. Mineralia slov., 20/5: 387–415. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Ma-tenco, L., Schefer, S., Schuster, R., Tischler, M. & Ustaszewski, K. 2008: The Alpine-Carpathi­an-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J. Geosci. (Geol. Rundsch.), 101/1: 139–183. https://doi. org/10.1007/s00015-008-1247-3 Schultze, M.S. 1854: Über den Organismus der Polythalamien (Foraminiferen), nebst Ber-merkungen über die Rhizopoden im Allgemei­nen. Wilhelm Engelmann, Leipzig: 68 p. Skaberne, D., Gorican, Š. & Car, J. 2003: Kam-nine in fosili (radiolariji) iz kamnoloma Kam­na Gorica. Vigenjc, glasilo Kovaškega muzeja v Kropi, 3: 85–96. Smircic, D., Aljinovic, D., Barudžija, U. & Kolar-Ju­rkovšek, T. 2020: Middle Triassic syntectonic sedimentation and volcanic influence in the central part of the External Dinarides, Croatia (Velebit Mts.). Geol. Quarterly, 64/1: 220–239. https://doi.org/10.7306/gq.1528 Stefani, M., Furin, S. & Gianolla, P. 2010: The changing climate framework and deposition-al dynamics of Triassic carbonate platforms from the Dolomites. Palaeogeogr., Palaeocli­matol., Palaeoecol., 290: 43–57. https://doi. org/10.1016/j.palaeo.2010.02.018 Tomljenovic, B. & Csontos, L. 2001: Neogene–Qua­ternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvat­sko zagorje and Karlovac Basins, Croatia). Int. J. Earth Sciences (Geol. Rundsch.), 90: 560– 578. https://doi.org/10.1007/s005310000176 Trifonova, E. 1993: Taxonomy of Bulgarian Tri­assic foraminifera. II. Families Endothyriidae to Ophthalmidiidae. Geol. Balcanica, 23/2: 19–66. Uroševic, D. & Gazdzicki, A. 1977: Nodobacular­ia vujisici nov. sp. ladinskog kata unutrašn­jeg-karpatskog pojasa (istocna Srbija). Bull. Mus. Hist. Natur., Ser. A, 32: 97–101. Velledits, F., Péró, C., Blau, J., Senowbari-Daryan, B., Kovács, S., Piros, O., Pocsai, T., Szügyi-Si­mon, H., Dumitrica, P. & Pálfy, J. 2011: The oldest Triassic platform margin reef from the Alpine-Carpathian region (Aggtelek, NE Hun­gary): platform evolution, reefal biota and biostratigraphic framework. Riv. Ital. Pale-ontol. Stratigr., 117/2: 221–268. https://doi. org/10.13130/2039-4942/5973 Vrabec, M. & Fodor, L. 2006: Late Cenozoic tec­tonics of Slovenia: Structural styles at the northeastern corner of the Adriatic microplate. In: Pinter, N., Grenerczy, G., Weber, J., Stein, S. & Medek, D. (eds.): The Adria microplate: GPS geodesy, tectonics and hazards. NATO Sci. Ser., IV, Earth Environ. Sci., 61: 151–168. Medak, D. & Stein, S. (eds.): The Adria Microplate: GPS geodesy, tectonics and hazards. Kluwer Academic Publ.: 151–168. Wright, V.P. 1992: A revised classification of lime­stones. Sed. Geology, 76: 177–185. https://doi. org/10.1016/0037-0738(92)90082-3 GEOLOGIJA 66/1, 125-150, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.005 Overview of the thermal properties of rocks and sediments in Slovenia Pregled toplotnih lastnosti kamnin in sedimentov v Sloveniji Dušan RAJVER & Simona ADRINEK Geological Survey of Slovenia, Dimiceva ul. 14, SI-1000 Ljubljana, Slovenia; e-mail: dusan.rajver@geo-zs.si Prejeto / Received 30. 3. 2023; Sprejeto / Accepted 10. 7. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Key words: thermal conductivity, thermal diffusivity, borehole, tunnel, surface, rock, sediment, radioactive heat generation, Slovenia Kljucne besede: toplotna prevodnost, toplotna difuzivnost, vrtina, predor, površje, kamnina, sediment, radiogena tvorba toplote, Slovenija Abstract The use of geothermal energy, which comes from both deep geothermal systems and the shallow underground, has been developing rapidly in the last few decades. The purpose of the paper is to present the results of measurements of the thermal properties of all rock samples and sediments that were available from boreholes, two tunnels and numerous surface locations in Slovenia in the period from 1982 to the end of 2022. In relation to the shallow geothermal potential, a special effort is needed to characterize the thermal properties of the rocks and sediments and to implement thermal energy transfer technology. In this sense, knowledge of the thermal conductivity of rocks and sediments is required to assess the possibility of low-enthalpy heat exchange in a given local area. The largest number of measurements was taken to determine thermal conductivity. Determinations of thermal diffusivity were carried out on a much smaller number of rock and sediment samples, as well as determinations of radiogenic heat production in rocks. The results of thermal conductivity measurements on 430 samples from 119 wells, 20 samples from two tunnels and 156 samples from surface locations are shown. The highest thermal conductivities are shown by samples of dolomite, quartz conglomerate and conglomerate, phyllonite, quartz phyllite and gneiss, while the lowest are measured in sediments such as clay, lignite with clay, peat and dry sand. The determined radioactive heat generation is the lowest for milonitized dolomite and highest for dark grey sandstone with shale clasts. Our results are comparable to those already published worldwide, and they could be the basis for the possible future Slovenian standard for the thermal properties of measured rocks and sediments. Izvlecek Raba geotermalne energije, ki izhaja iz globokih geotermalnih sistemov kot tudi iz plitvega podzemlja, se v zadnjih nekaj desetletjih hitro razvija. Namen prispevka je prikazati rezultate meritev toplotnih lastnosti vseh vzorcev kamnin in sedimentov, ki so bili na voljo iz vrtin, dveh predorov in številnih površinskih lokacij v Sloveniji v obdobju od 1982 do konca 2022. V zvezi s plitvim geotermalnim potencialom je potrebno posebno prizadevanje za karakterizacijo toplotnih lastnosti tal in plitvega podtalja ter za izvedbo tehnologije prenosa toplotne energije. V tem smislu je potrebno poznavanje toplotne prevodnosti kamnin in tal za oceno možnosti izmenjave toplote z nizko entalpijo na dolocenem lokalnem obmocju.Številcno najvec meritev je bilo za dolocitev toplotne prevodnosti. Dolocitve toplotne difuzivnosti so bile izvedene na precej manjšem številu vzorcev kamnin in sedimentov, prav tako dolocitve produkcije radiogene toplote v kamninah. Prikazani so rezultati meritev toplotne prevodnosti na 430 vzorcih iz 119 vrtin, na 20 vzorcih iz predorov in na 156 vzorcih iz površinskih lokacij. Najvišje toplotne prevodnosti kažejo vzorci dolomita, kremenovega konglomerata in konglomerata, filonita, kremenovega filita in gnajsa, najniže pa so izmerjene v sedimentih, kot so glina, lignit z glino, šota in suh pesek. Ugotovljena radiogena tvorba toplote je najmanjša pri milonitiziranem dolomitu in najvecja pri temno sivem pešcenjaku s klasti skrilavega glinavca. Naši rezultati so primerljivi z že objavljenimi v svetu in lahko predstavljajo osnovo za morebitni bodoci slovenski standard toplotnih lastnosti merjenih kamnin in sedimentov. Introduction that thermal energy in the Earth’s crust up to a The energy potential that exists due to the large depth of 50 km amounts to 5.4·109 EJ (Dickson & temperature difference between the inner parts of Fanelli, 2004; Clauser, 2006; Rajver et al., 2012). our planet and its surface, in theory, far exceeds The exploitation of geothermal energy, in addition all existing conventional sources (Ravnik, 1991). to some technical problems, has certainly natural The total thermal energy in the Earth, calculat-limitations due to the low thermal conductivity ed above the default average surface temperature and diffusivity of rocks, but the available energy of 15 °C, is of the order of 12.6·1012 EJ, and only is still huge. The depths that are of importance for geother­mal energy utilization today are a maximum of 10 km, while geodynamics and theoretical geo­thermics investigate thermal conditions up to a few thousand kilometers depth (Ravnik & Uran, 1984; Uyeda, 1988; Pollack & Sass, 1988). The accumu­lation of heat, which is today or will be technolog­ically and economically usable in the near future, is located only at depths of less than 10 km, and in most cases less than 4 km. The exploitation of heat and geothermal fluid in low (<90 °C)-, medi­um (90-150 °C)- and high (>150 °C)- temperature fields (e.g. after Muffler & Cataldi, 1978) for dis­trict heating, thermal tourism, greenhouse heating, electricity and thermal energy production requires the knowledge of geological, hydrogeological and thermal characteristics of the area (Di Sipio et al., 2014). In such a context, low enthalpy geothermal energy with its ubiquitous potential is one of the most useful renewable energy sources for heating and cooling of buildings. The successful implemen­tation of low enthalpy geothermal systems, such as ground source heat pump (GSHP) systems (open or groundwater HP and closed-loop or ground-cou­pled HP systems), operating in the heating-cooling mode entails a better characterization of the ther­mal and petrophysical properties of subsoil (Di Si-pio et al., 2014). Since all this research refers to dif­ferent depths, we must also know these properties at different temperatures and pressures. This paper deals predominantly with the results of measurements of thermal conductivity on rocks and loose sediments from numerous boreholes, two tunnels and numerous surface locations in Slovenia, all performed at the Geological Survey of Slovenia (GeoZS) since 1982. The results of thermal diffusiv­ity measurements carried out on rock samples from eight Slovenian boreholes and many surface loca­tions since 2017 are also mentioned. In addition, the results of radiogenic heat production determination in the sampled rocks are presented. It does not go into the study of thermal properties at extremely high pressure and temperature (pT) conditions. The purpose of the paper is to show the values of the thermal conductivity of the sampled rocks in Slo­venia, which should be used on a regional scale to provide the necessary information for the dimen­sioning of closed-loop systems with heat pumps (BHEs, pipes, horizontal collectors), and to better predict the geothermal conditions for the planning of deep boreholes. Our purpose was also to test how well the thermal conductivities measured on rocks from Slovenia match the ranges of values measured on rocks from the other parts of the world, which are mentioned in standards and literature. Three aspects are required to be taken into con­sideration when a new closed-loop GSHP system is designed (Dalla Santa et al., 2020): (1) climate and location of the building, (2) building charac­teristics, such as its use, size and insulation lev­el, and (3) ground (subsoil) conditions. The first two aspects determine the heating and cooling de­mand of the building while the thermal exchange potential depends on the geological and hydroge­ological conditions (Sarbu & Sebarchievici, 2014). Therefore, the determination of ground thermal parameters is crucial in designing the total bore­hole length to be installed, the borehole heat ex­changers (BHEs) spacing and layout, the number of BHEs and mutual position, all of which affect the short-term installation costs and the long-term maintenance of adequate energy efficiency of the GSHP system (Di Sipio et al., 2014; Dalla Santa et al., 2020). The most essential thermal properties of the local underground to be considered when designing a new closed-loop geothermal system are (Dalla Santa et al., 2020): 1. thermal conductivity (.), defined as the abil­ity to transfer heat, usually expressed in W/(m·K). In addition to the temperature gradient, thermal conductivity is the most important parameter in calculating the regional heat-flow density (the basic parameter for evaluating the geothermal potential of a territory), the heat transfer between underground and engineering solutions and the potential of geothermal reservoirs. Thermal con­ductivity is usually used for geothermal model-ling and for validating data obtained by indirect control methods (geoelectrical sounding, magne­totelluric methods, etc.) applied in situ (Banks, 2008; Galson et al., 1987; Di Sipio et al., 2014). 2. heat capacity (C ), defined as the ability to store heat. It is the ratio between the amount of heat to be transferred to a certain mass or volume to achieve 1 K change in temperature, thus it is expressed in J/K. It depends on the material but also on the mass/volume and, hence, the “specific” heat capacity (c) is usually used, in J/(kg·K) or J/ (m3·K). 3. thermal diffusivity (a), that is the ratio of the thermal conductivity and specific heat capaci­ty, defined as the physical property governing the heat diffusion in transient conditions measuring the penetration of temperature changes into a ma­terial. 4. undisturbed ground temperature profile, which varies in the shallower layers due to annual variation of the ground surface temperature, while from about 10 m, is stable throughout the year and increases with depth based on the local geothermal heat flux. Regarding determination of the annu­al mean ground temperature, if this cannot be measured it can be assessed using an alternative approach presented by Rajver et al. (2019) in four ways according to the available data at a given lo­ cation. Additionally, the local groundwater flow in the aquifers can significantly affect the heat exchange capability by adding a significant contribution of heat transported by convection, which is not ac­ counted for in the thermal conductivity value, measured in the laboratory (Clauser & Huenges, 1995; Banks, 2008; Dalla Santa et al., 2020). Knowledge of the thermal properties of rocks and sediments is also increasingly important in various human activities, such as in mining, ge­otechnical, civil and underground engineering. According to Popov et al. (2016), this knowledge has a crucial role in environmentally sensitive projects such as the disposal of high-level radi­oactive waste in deep underground sites and re­positories, or various engineering projects such as the design of buried high-voltage power cables, oil and gas pipelines and ground modification techniques employing heating and freezing. Much attention in the past years was dedicated to the studies of thermal properties of geologic materials due to growing interest in underground storage. Heat transfer is namely an important considera­tion when building underground structures (tun­nels, subway stations), for underground storage of natural gas and energy and in mining engineer­ing (problem of ventilation for deep mine opera­tion). Detailed data on the thermal conductivity and volumetric heat capacity for relevant geologic formations are needed for thermo-hydrodynamic models to evaluate oil recovery from heavy oil res­ervoirs and for thermo-hydrodynamic modelling including basin and petroleum systems (Popov et al., 2016). Thermal conductivity of rocks and sediments – worldwide compilations For the large number of different rocks ther­mal conductivity data are available and classified according to rock name and origin in several ex­tensive compilations (Birch, 1942; Clark Jr., 1966; Desai et al., 1974; Kappelmeyer & Haenel, 1974; Roy et al., 1981; Cermák & Rybach, 1982; Robert­son, 1988; Sundberg, 1988; Schön, 1996, 2011). It is important to realize that these compilations comprise rocks which are heterogenous in many aspects, such as mineral composition, porosi­ty, water saturation and experimental conditions (Clauser, 2006). Consequently, the great variabili­ty of thermal conductivity exists within most rock types. Indeed, rock type as such is a rather poor descriptor for thermal and most other physical rock properties. This limits the usefulness of such tabulations, except for the rare instance when they comprise data for the exact location of particular interest. In all other cases, predictions based only on data collated according to general rock type may be in error. For all practical applications, it is therefore strongly recommended to obtain gen­uine, representative data of thermal conductivity, either by direct measurement or by inference from geophysical logs. When no measured data are available or no direct measurements can be per­formed, thermal conductivity can be inferred in­directly, either from data on mineralogical compo­sition together with data on saturating fluids (e.g. Beck, 1988; Horai, 1991; Somerton, 1992; Schön, 1996), or from correlations with other physical properties, in particular those measured in well-logs (e.g. Vacquier et al., 1988; Blackwell & Steele, 1989; Brigaud et al., 1990; Hartmann et al., 2005; Goutorbe et al., 2006). While some of these meth­ods are based on well-defined physical models, others are purely empirical (Clauser, 2006). Clauser & Huenges (1995) extended their com­plementary approach of thermal conductivity data compilation with new data. In his attempt to ade­quately collect and arrange data of the measured thermal conductivity of rocks, Clauser (2006) sup­plemented data from earlier compilations (Birch & Clark, 1940; Clark Jr., 1966; Touloukian et al., 1970; Desai et al., 1974; Kappelmeyer & Haenel, 1974; Roy et al., 1981; Cermák & Rybach, 1982; Buntebarth, 1984; Robertson, 1988) by a large amount of new data. The data have become avail­able (e.g. Kobolev et al., 1990; Popov et al., 2002, 2003; Mottaghy et al., 2005), and arranged as in the article by Clauser & Huenges (1995) according to four basic rock types: sedimentary, volcanic, plutonic and metamorphic. It is worth noting that older and more recent databases exist on the meas­ured thermal conductivities in several countries or regions, for instance, by Lyubimova & Popova (1967), Lyubimova (1968), Majorowicz & Jessop (1981), Reiter & Tovar (1982), Gable (1986), Rob­ertson (1988), Dövényi & Horváth (1988), Kobolev et al. (1990), Pandey (1991), Fuchs & Förster (2010), Pasquale et al. (2011), Di Sipio et al. (2014), Hamza et al. (2020), Gomes et al. (2021) and oth­ers. The thermal conductivity of minerals is much better constrained than that of rocks, due to the well-defined crystal structure and chemical for­mula for each mineral (Clauser, 2011). Substantial collections of mineral thermal conductivities were compiled, for instance, by Birch (1942), Clark Jr. (1966), Horai & Simmons (1969), Touloukian et al. (1970), Horai (1971), Roy et al. (1981), Cermák & Rybach (1982), Carmichael (1984), Popov et al. (1987), Diment & Pratt (1988), Somerton (1992), Clauser & Huenges (1995), Romushkevich & Popov (1998) and Clauser (2006). Thermal conductivity measurements were also carried out on rock and sediment samples from lakes and seabeds, and also as in situ sea-floor and lake-floor measurements around the world (e.g. Haenel, 1979; Fujisawa et al., 1985; Davis, 1988; Dorofeeva & Duchkov, 1995; Dorofeeva, 1998). Thermal conductivities of com­mon rocks measured at room temperature are giv­en also in suitable graphs and tables, for instance, by Kappelmeyer (1979), Zoth & Haenel (1988), Kappelmeyer & Haenel, (1974), Jessop (1990) and a comparison of published compilations of ther­mal conductivities by Beardsmore and Cull (2001). Recently, Dalla Santa et al. (2020) developed the thermal properties database by integrating and comparing data (a) provided by the most impor­tant international guidelines, (b) acquired from an extensive literature review and (c) obtained from more than 400 direct measurements, mainly of thermal conductivity of rocks and sediments. On the other hand, for closed-loop system designers, the most common thermal conductivity values are available from standard tables, such as the German standard VDI 4640 (VDI, 2001). However, they do not list values for all known types of rocks. Overview of thermal conductivity measurement methods Thermal conductivity can be measured in the laboratory on rock (cores or cuttings) and sed­iment samples. It can also be measured in situ either in boreholes or with shallow penetration needle probes (e.g. marine heat flow probes 3 to 20 m long). The available and commercial meth- Fig. 1. Thermal conductivity measurement methods classification (modified after Palacios et al., 2019). ods for measuring thermal conductivity can be classified into steady-state methods (guarded hot plate, heat-flow meter, divided-bar) and transient methods (plane source, hot wire, needle probe, la­ser flash, optical scanning, modulated DSC, ther­mocouple method, 3. method – the last three are important for thermal energy storage materials), presented in Figure 1. All of them are also suitable to determine the anisotropy of thermal conductiv­ity of rocks (Clauser, 2006, 2011). These methods are discussed and described in detail in numerous textbooks and review articles, e.g. by Parker et al. (1961), Beck (1965, 1988), Lyubimova (1968), Kappelmeyer & Haenel (1974), Roy et al. (1981), Davis (1988), Kobolev et al. (1990), Somerton (1992), Popov et al. (1999, 2012), Beardsmore & Cull (2001), Blumm & Lemarchand (2002) and Palacios et al. (2019). Among these techniques, the transient ones are also suitable for determin­ing thermal diffusivity (Drury et al., 1984; Claus-er, 2011). The laser flash method can be used for very low (down to -150 °C) and very high (above 500 °C) operating temperatures. Steady-state thermal conductivity measure­ments are usually made using a divided-bar appa­ratus – a device designed to measure the thermal conductivity of discs or cylindrical plugs of mate­rial (Beardsmore & Cull, 2001). The device, first described by Benfield (1939), is easy to construct and operate, and results are usually accurate to within 5 % (Beck, 1957; Beck, 1988; Beardsmore & Cull, 2001). A similar device, used by scientists, notably from the former Soviet Union, especially in Siberia, is called a thermal (conductivity) com­parator (Kalinin, 1981). The thermal conductivi­ty . is defined as (Carslaw & Jaeger, 1959; Kap­pelmeyer & Haenel, 1974; Haenel et al., 1988): = -........·................ ........= -........·........................................ (1) ................ where q is heat-flow density, and T is the local temperature in the sample. With the known geom­etry of the sample, which is usually plane-paral­lel, and the known constant power of the heater, the thermal conductivity . is determined from the measured temperature differences (Prelovšek et al., 1982). Steady-state methods have few disad­vantages, consequently, faster transient methods flourished in the 1970s (Prelovšek et al., 1982). Besides, steady-state techniques are unsuitable for loose sediments or in situ measurements. Yet in many cases, especially sea-floor measurements, such situations are encountered where a thermal conductivity estimate is required to convert tem­perature data into a heat flow measurement. For these cases, a technique for transient measure­ment has evolved (Beardsmore & Cull, 2001). In­itially, the transient hot wire method with radial heat flow was developed. The beginnings of this absolute method date back to 1949, when it was used to measure the thermal conductivity of liq­uids (Van der Held, 1949). Later, the use was ex­tended to solids as well (Ravnik & Uran, 1984). The most commonly used transient device is the line-source needle probe, first described by DeVries & Peck (1958), and then by Von Herzen & Maxwell (1959). Among transient methods, the line-source hot wire method has become established because it determines the thermal conductivity directly (Carslaw & Jaeger, 1959; Cull, 1974). This method is also the basis of an improved hot wire method developed by experts from the Japanese company Showa Denko K.K. (Sumikawa & Arakawa, 1976). Among the transient linear heat flow techniques also few other methods have been developed, such as the method with an instantaneous source (Han­ley et al., 1978), the “Mongelli” method with a con­stant plane heat source (Mongelli, 1968) and the .ngstrom method using a periodic heating tech­nique (Drury et al., 1984). Among the techniques using radial (2-dimensional) heat flow the one with an instantaneous line-source was used espe­cially by Lyubimova et al. (1961), while the meth­od with constant linear or cylindrical heat sources is the one with typical needle probe arrangement (Beck, 1988). One of the more recent methods is the optical scanning technology developed by prof. Yuri Popov in the 1980s (Popov, 1983; Popov et al. 1983, 2012, 2017). The studies comparing the results between the steady-state and transient line-source method of thermal conductivity measurements showed a very good agreement (Cermák et al., 1984; Sass et al., 1984; Galson et al., 1987; Popov et al., 1999). The advantages and disadvantages of both groups of methods are listed in Table 1. Popov et al. (1999) also compared the results between the transient line-source method and the optical scanning method, which showed good agreement. Many studies on the thermal properties of rocks and sediments have taken place with the main goal to increase the number of heat-flow density deter­minations worldwide (e.g. Roy et al., 1981; Clauser & Huenges, 1995). However, several difficulties exist when meas­uring the thermal conductivity of rocks and sedi­ments, since the values are extremely dependent on mineralogical composition, porosity, density, water content (degree of saturation), anisotropy of the material under investigation and pressure and temperature of the surrounding environment. Re­cent studies have also confirmed the strong influ­ence of solar radiation, soil texture and soil mois­ture on the soil (or sediment) thermal conductivity down to a depth of 3 m (Dédecek et al., 2012; Di Sipio et al., 2014; Cermák et al., 2016). At a labo­ratory scale, thermal conductivity measurements are usually performed on samples belonging to rock cores or surface outcrops. Each specimen is non-homogeneous and anisotropic on a scale of a few centimeters, according to its orientation, due to changes in the mineralogical composition, po­rosity, foliation, bedding, filling of discontinuities and weathering. A difference in thermal conduc­tivity is registered if data are collected between directions parallel (.par) and perpendicular (. perp) to the layering, where the former is usually greater than the latter (Davis et al., 2007; Clauser, 2011; Di Sipio et al., 2014). Upscaling the laboratory data from mesoscale to macroscale entails considering the various lith­ologies that make up the stratigraphic formations represented on a geological map along with their variability with depth. A geological model must be created where the thermophysical properties of the main lithologies are defined on the basis of real data, obtained from laboratory measurements and supplemented by literature and well-log data (Di Sipio et al., 2014). Short history of measurements of thermal properties and on geothermal maps in Slovenia Geothermal research in Slovenia began in the 1950s with hydrogeological studies focusing on hot springs mainly for balneological needs, and to Table 1. Advantages (A) and disadvantages (D) of thermal conductivity/thermal diffusivity measurement methods (after Palacios et al., 2019). Steady-state methods Transient methods Complex sample preparation D Simple sample preparation A Long measuring time D Short measuring time A Complex realization, thermal constant resistance D Small samples A Clear mean value & simple evaluation of thermal conducti­vity (simple theory) A Complex evaluation, solution of heat equations D Low cost A High cost D a lesser extent for recreation. They were carried out by the Geological Survey of Ljubljana - GZL (predecessor of today’s GeoZS). During their re­search on hot springs, hydrogeologists obtained a lot of data on water temperature (usually at the source or the wellhead), water yield, chemistry and pressure. However, the results of the temper­ature measurements were only described descrip­tively. Geophysical methods, especially geoelec­trical soundings and well loggings, soon began to be used in research (Ravnik, 1991). The first systematic geothermal measurements were ini­tiated in Slovenia in 1982–1984 with the manu­facture of electric thermometers and equipment for measuring the thermal conductivity of rocks. One of the first results of thermal conductivity measurements on rock samples from a geothermal borehole in Slovenia, using the MTP-1 meter, were presented by Ravnik et al. (1982). Later the results of thermal conductivity measurements on rock samples from the boreholes at four Slovenian geo­thermal locations, using both line-source meters, were presented by Rajver (1986). These geother­mal measurements were supplemented by analy­ses of the concentration of radiogenic isotopes of elements U, Th and K40 at the Jožef Stefan Institute in Ljubljana on prepared (properly ground) rock samples (Ravnik, 1991). In research already done by Ravnik et al. (1995), no clear relationship was found between near-surface heat-flow density and radiogenic heat generation, which was probably due to the predominantly Cenozoic age of the sam­ples, and the irregular vertical distribution of heat producing elements in the near-surface layers. In 1985, the GZL took over the editing of the preparation of geothermal maps of the former Yu­goslavia for the new Geothermal Atlas of Europe. These maps were completed in the first phase in 1987 (Ravnik et al., 1987) and finally in 1989-1990 (Ravnik et al., 1992) and present the results of all previous research, supplemented by new data. The Atlas was published in 1992 under the auspices of the International Association for Seismology and Physics of the Earth’s Interior (IASPEI) (Hurtig et al., 1992). The report by Ravnik & Rajver (1990) was the first transparent result of geothermal research in Slovenia up to that time. The basic research meth­odology was established and the first two basic maps were produced: 1) a map of formation tem­peratures at a depth of 1000 m and 2) a map of surface heat-flow density (HFD). Even then, it was planned to create several similar geothermal maps, containing data up to a depth of 5000 m. The aim of the research was to enable the assessment of the geothermal potential of the entire Slovenia as soon as possible, which also required appro­priate hydrogeological data. Both aforementioned maps were updated and presented by Ravnik et al. (1995). Every few years, the maps were updat­ed and corrected according to new data (Ravnik, 1991; Rajver, 2018). Methods Thermal conductivity measurement methods at GeoZS The thermal conductivity of rocks has been measured at GeoZS since 1982, when we acquired the first measuring device, based on the tran­sient hot wire method. Considering the basic idea of the Japanese Sumikawa and Arakawa (1976), this method was used also in Slovenia based on the initiative of the Department of Geophysics at GZL (Uran, 1982; Prelovšek & Uran, 1984). At the same time, in cooperation with geophysicists from GZL, the first thermal conductivity meter MTP-1 was produced for GZL at the Department of Phys­ics (Faculty of Natural Sciences at University of Ljubljana) (Prelovšek et al., 1982). It was the first meter of its kind produced in former Yugoslavia (Fig. 2). The results of thermal conductivity ob­tained with our MTP-1 meter were compared by prof. Prelovšek on the same samples measured with a similar meter at the Department of Geo­physics of the Eötvös Loránd University in Buda­pest (dr. Horváth), then with a similar Japanese QTM (Quick Thermal conductivity Meter) device in the geothermal laboratory of prof. Rybach at ETH in Zurich, and with especially detailed measure­ments by the standard divided-bar (DB) method (Kappelmeyer & Haenel, 1974; Haenel et al., 1988) at the Geophysical Institute of the Czechoslovak Fig. 2. Thermal conductivity meter MTP-1 (photo taken in 2022 during measurement on silicified brick). Academy of Sciences in Prague (dr. Cermák), de­scribed by Ravnik & Uran (1984) and Ravnik (1988). Later, controls were also made at the In­ternational Institute for Geothermal Research in Pisa (Rajver, 1990) on samples from two deep Slo­venian boreholes and during the 4th International Heat Flow meeting in Czechia in 1996, where ex­perts from the State Geological Research Academy in Moscow checked our measurement results with their optical scanning IR device (prof. Popov). According to these control measurements and according to the literature (Cermák et al., 1984; Sass et al., 1984; Galson et al., 1987), generally insignificant differences were indicated, as the difference between QTM and DB measurements does not exceed ±10 %. Two years later, in 1984 the GZL bought from the same faculty another meter MTP-4 of the same hot wire method, which was slightly improved with more time and power selection options (Fig. 3). At least ten such meters were produced by the mentioned faculty and sold all over former Yugoslavia. Fig. 3. Thermal conductivity meter MTP-4 (photo taken in 2022 during measurement on lacquered marble). The proper functioning of both line-source de­vices was constantly monitored by standard cali­bration material, like fused quartz and some ap­propriately prepared rocks, such as marble pieces, limestone and quartz diorite (tonalite). The im­precision of the conductivity data was about 3 %, whereas inaccuracy is estimated to be not more than 10 % (Ravnik et al., 1995). Measurements were performed at normal pressure and room tem­perature and, if possible, on intact rock samples, using both line-source meters in the period 1982 to 2006. Typically, 10 to 15 individual measure­ments were performed with the MTP-1 and MTP­4 devices on each rock sample, placing the meas­uring probes at different positions on the sample. Since January 2007, we use a TCS device (Fig. 4), which works with the optical scanning method. The optical scanning technology is available in the commercial device named “Thermal Conductivity Scanner” (TCS), produced by TCS - Lippmann and Rauen GbR, Germany (Popov et al., 2016, 2017, 1999). The optical scanning technology is based on scanning using a focused, mobile and continu­ously operated near-point-like heat source in com­bination with infrared temperature sensors. Infra­red sensors measure the temperature before and after focused heating. Determination of thermal properties is based on the comparison of temper­ature differences measured on standard samples (reference samples) with temperature differences measured on one or more unknown samples: ........= ................ (................ ) (2) ........ where: . = thermal conductivity (TC) of sample .R = TC of standard TR = temperature rise in the standard T = temperature rise in the sample Fig. 4. The TCS device in a TC+TD mode with a set of rock samples along the scanning line (photo taken in 2022). The TCS meter also displays the following two values after each TC measurement: G factor (G = standard deviation / mean TC) and Inhomogene­ity factor = (max TC – min TC) / mean TC. When the TCS meter is set in the TC+TD mode then also thermal diffusivity (TD) is measured (e.g. Marx, 2014; Haenel et al., 1988): ........ ........ = (3) ........ ·........ where: a = TD of sample . = TC of sample . = sample density c = specific heat capacity The density of rocks were determined by the geomechanics laboratory at GZL by determining the volumetric weight using the mercury method, where the weight of the sample W (in pounds, p) and the weight of displaced mercury WHg (p) were first measured. Knowing the specific weight of mercury .SHg (13.546 p/cm3), the sample volume V = WHg / .SHg (cm3) is calculated, and from this the volumetric weight of the rock sample .S = W / V (p/cm3). Three such consecutive analyses have been always performed on each sample. The av­erage of the three analyses (p/cm3) is taken into account, which is multiplied by 10 to get the aver­age in kN/m3. If this is divided by 9.81 we get the density (g/cm3). A map of the volumetric (specific) heat capacity (MJ/m3K) of rocks and sediments in Slovenia has also been prepared (Prestor et al., 2018), for which the input data are the basic geo­logical map of Slovenia on a scale of 1:100,000 and average measured values of the volumetric heat capacity of rocks and sediments, which are taken from two standards (SIA and VDI). For the TC measurements of the loose sed­iments, we have been using the KD2 Pro porta­ble device (Decagon Devices, 2016) (Fig. 5) since spring 2017. Depending on the physical properties of the tested sediment samples, two needle probes are used (TR-1 and SH-1). Comparison of thermal conductivity values by line-source and optical scanning methods on reference standards at GeoZS laboratory Control measurements of thermal conductivity (TC) were performed with both methods (line-source and optical scanning) on reference stand­ards in the GeoZS geothermal laboratory. The results showed comparable values of thermal con­ductivity (Figs. 6 and 7). The measurements on reference standards with the MTP-1 and MTP-4 meters were occasionally carried out over a longer time period (from 1984 to 2007). The used ref­erence standards were (in order from highest to lowest thermal conductivity): polished marble (3 samples), polished lacquered marble (marble L), limestone, tonalite, fused quartz, silicified brick and rubber. Figure 6 shows a comparison between the measured thermal conductivities with the TCS meter (either individual measurements or the av­erages of 2 to 5 individual measurements, which are different for each standard sample) and the measured TCs with the MTP-1 and MTP-4 meters (averages of a higher number of individual meas­urements, minimum 4 and maximum 234 meas­urements on each standard sample), which were performed in different time periods. One may notice a deviation in Figures 6 and 7, showing that higher TC values were obtained by the MTP-4 meter on tonalite, a little higher also on limestone and brick. Perhaps not completely suitable settings of this meter were selected for these particular measurements, or there was some other unexplained reason. Since the TC originally determined by the manufacturer on tonalite was 2.29 and on limestone 2.94 W/(m·K), probably measured with the MTP-1 meter, which were as­sumed to have declared values, the measurements with the MTP-4 were excluded in further correla­tion analysis. It turned out that the TCS measured lower TC values on the low conductivity standard (fused quartz) than the two line-source meters (Fig. 8). On the other hand, the TCS measured higher values mainly on the marble 1 standard, especially compared to the results with the older meter MTP-1 (Fig. 7). Of course, more compara­tive measurements should be made for more ap­propriate conclusions but both line-source devices don’t operate properly anymore or they do only occasionally. Yet, according to Figures 6–8, the agreement of the measured values by both meth­ods is quite satisfactory. Calculation of radiogenic heat generation An important source of the Earth’s heat is the decay of radioactive isotopes. All natural radioac­tive isotopes generate heat to a certain extent but only the contributions of the decay series of urani­um 235U and 238U, thorium 232Th and of the isotope potassium 40K are geologically significant. In this process, the kinetic energy of the alpha and beta particles and the gamma photons almost entirely convert into heat (Ravnik, 1991). Radioactive heat production H is calculated according to the equa­tion (Rybach, 1988): Fig. 8. Correlation between measured TC values (from Fig. 6) with the TCS device and the ratio of values measured with the TCS and MTP-1 meters. H = . (9.52 cU + 2.56 cTh + 3.48 cK) 10-5 (µW/m3) (4) where: c = concentration in ppm for U and Th and in % for K, . = density of the rock (kg/m3) µ = micro (10-6) Most samples were analysed at the Institute Jožef Stefan in Ljubljana where the concentration of radioactive isotopes in Slovene rock samples has been determined with a gamma-ray spectrom­eter equipped with a Ge/Li detector (Ravnik et al., 1995). The remaining 11 samples were analysed at the Geophysical Institute in Bucharest with a gamma spectrometer equipped with a NaI (Ti) detector. All mentioned analyses have been done over the period 1982 to 1995. Knowledge of heat generation is necessary to understand the rela­tionship between geological conditions and the thermal field in the crust. Results of measurements of thermal properties of rocks and sediments from Slovenia Thermal conductivity and thermal diffusivity of rocks and sediments The present paper discusses the results on a total of 606 rock and sediment samples that have been measured since 1982. Of these, 430 were cored rock samples from 119 boreholes, 20 rock samples from two tunnels (17 from the Karavanke highway tunnel and 3 from the Malence highway tunnel SE of Ljubljana) and 156 rock and sediment samples from surface locations (among the latter also four samples from a depth of 1 m in very shal­low holes). The rock samples were of different siz­es, mostly with a minimum length of 12 or 14 cm (a strict condition for both line-source devices) and minimum thickness of 2 cm, but in most cases, the samples, especially cored samples, were longer (up to 60 cm) and thicker. The first 35 surface samples and 4 samples from very shallow holes were measured by the line-source method (Appendix A), while the remaining 103 surface samples were measured by the opti­cal scanning method (TCS meter) and 14 sedi­ment samples by the needle probe method (KD2 Pro). Out of 450 samples from the boreholes and two tunnels, 61 samples (13.6 %) were measured by the optical method (TCS meter), 388 samples (86.2 %) were measured by the line-source meth­od, using both meters (MTP-1, MTP-4), and one sample (0.2 %) by the needle probe method (KD2 Pro). The vast majority, 549 measured samples (90.6 %) were sedimentary rocks and sediments, while 23 samples were metamorphic rocks (3.8 %) and 34 samples were igneous rocks (5.6 %) (Fig. 9 and Table 2). Fig. 9. Thermal conductivity (TC) of total 606 rock and sediment samples from the boreholes, two tunnels and numerous surface locations in Slovenia, with the number of samples by lithology and a total number of samples by main groups of rocks (status: March 2023); red points: mean values; the vertical lines show the range of measured TC values. Table 2. Values of arithmetic mean TC with standard deviation and median TC of total 606 rock and sediment samples from Slovenia, grouped by lithology and main groups of rocks. Lithology No. of samples Mean TC,W/(m·K) s.d. TC,W/(m·K) Me TC,W/(m·K) Igneous rocks 34 2.43 0.66 2.27 Plutonic rocks 5 2.45 0.46 2.56 Quartz diorite (tonalite) 3 2.41 0.54 2.56 Cezlakite 1 2.86 / 2.86 Peridotite 1 2.18 / 2.18 Volcanic rocks 29 2.43 0.69 2.25 Keratophyre 2 2.69 0.04 2.69 Andesite, andesite lava 4 2.80 0.62 2.87 Andesitic tuff, andesitic breccia 9 1.94 0.22 1.89 Tuff, tuffite, tuffaceous breccia 12 2.64 0.83 2.52 Dacite 1 1.72 / 1.72 Diabase 1 2.95 / 2.95 Metamorphic rocks 23 3.14 0.58 3.05 Schist (green, amphibolitic, chloritic, etc.) 6 2.67 0.30 2.74 Phyllonite 1 3.88 / 3.88 Eclogite 4 3.17 0.56 3.36 Quartz phyllite 1 3.62 / 3.62 Amphibolite 1 2.64 / 2.64 Gneiss 9 3.41 0.59 3.31 Mica schist tuff 1 2.77 / 2.77 Sedimentary rocks 549 2.57 0.49 2.53 Clay, clay with impurities 46 1.57 0.38 1.57 Lignite, lignite with clay 9 1.04 0.37 0.97 Marl, marlstone with impurities 56 1.92 0.43 1.90 Claystone & shale, with impurities 36 2.13 0.74 1.89 Mudstone 5 2.12 0.26 2.15 Sand, sand with impurities 16 1.51 0.48 1.39 Silt, silt with impurities 5 1.65 0.48 1.68 Siltstone, siltstone with impurities 65 2.39 0.50 2.27 Sandstone (calcareous, marly, silty,…) 78 2.36 0.45 2.38 Quartz sandstone 28 3.56 0.56 3.46 Conglomerate (dolomitic, quartz) 14 3.59 0.88 3.59 Breccia (dolomitic, limestone) 12 3.21 0.70 3.21 Dolomite 60 4.20 0.60 4.11 Dolomitized limestone, limestone grading into dolomite 13 3.25 0.54 3.21 Limestone 106 2.70 0.39 2.68 Localities of the boreholes, two road tunnels and numerous points on the surface where the rock samples have been taken for the thermal con­ductivity measurements are shown in Figure 10. The boreholes are distributed according to the maximum depth in which the rock sample has been cored. In the GRETA project the rocks were sampled in the Municipality of Cerkno (Casasso et al., 2017, 2018) and in the GeoPLASMA-CE pro­ject in the Municipality of Ljubljana - MOL (Janža et al., 2017). Another project focused on geother­mal potential assessment in the Municipality of Velenje (Janža et al., 2022). Other groups of rocks were sampled in two distinctive areas for the RockSense project (Jemec Auflic & Šegina, 2022; Rajver, 2022; Research project ARRS PROJEKT J1-3024) and for the heat flow research (Adrinek et al., 2019; Serianz, 2022). Many surface rocks were already sampled since 1983 for the multi-year project “Geothermal maps of Slovenia” (Ravnik & Rajver, 1990; Ravnik, 1988, 1991; Ravnik et al., 1995). It should be emphasized that many rock sam­ples and especially sediments, which were cored in boreholes, were brought to the laboratory with mostly preserved pore water content. They were properly wrapped, often even protected with par­affin. So, we took the measurements as soon as we unwrapped them from the protection. For these critical samples, especially samples of sand, sand with impurities, silt and also some sandstones, we characterized the condition of the sediment (and rock) as saturated, semi-dry or dry (Appendix A). It is worth noting that the mean TC values in Ta­ble 2 do not show all the diversity of sediments and rocks, for this it is recommended that the user looks at Appendix A and the corresponding graphs for individual rock and sediment types to get a sense that many things affected the larger range of measured TC values, for example, the state of the samples itself (saturated, semi-dry, dry) or wheth­er they were crumbled, fissured and similar. In the following graphs (Figs. 11–19), the val­ues of measured TC on rock samples, including sediments (such as sand and clay), are shown against the depths of the coring of rocks from the boreholes and depths of sampling below the surface in two tunnels. Samples from numerous surface locations are included (drawn at a depth level of 0 m). In each graph, the arithmetic mean and median of all values together with a range of measured values is presented (Fig. 9, Table 2). Details of the state of the rock samples and sedi-when the TCS meter was upgraded. Thermal dif­ments during measurements are shown in Appen-fusivity (TD) was measured on a total of 27 rock dix A. It is important to emphasize that thermal samples from eight boreholes and on 104 samples diffusivity has only been measured since 2017, from surface locations (Appendix A). A relationship between measured density and TC is shown for 126 rock and sediment samples. Of these, 18 samples are igneous and metamor­phic rocks, the rest are sedimentary rocks and sediments (Fig. 20). We found a good relationship between TC and density, with TC increasing with density. Both quartz and olivine play an important role in the relationship between TC and density. In the first case, TC usually decreases with density, and in the second case, TC increases, as already discussed by Pasquale et al. (2015). Also, there is a noticeable scatter in our results. The fact is that not all the samples (in Fig. 20) contain quartz, but only some igneous and metamorphic rocks as well as sandstones and conglomerates. Therefore, TC is not observed to decrease with density in the case of quartz-bearing rocks. At most, we observe that the trend is neutral if we exclude the chlorite car­bonaceous schist (phyllite) sample with the lowest density (1.74) and quite low TC (2.14). We can only assume that the relationship is influenced by rock compaction, which is related to mineral composi­tion, as many samples were taken from shallower or greater depths. Radiogenic heat production of rocks in Slovenia Localities of the boreholes, two road tunnels and points on the surface from where the rock samples have been taken for the radioactive heat production determinations are shown in Fig. 21. Altogether 144 rock samples were analysed for the concentrations of the mentioned radioisotopes, of them 112 samples from the 39 boreholes, 14 sam­ples from both tunnels (13 from the Karavanke tunnel and 1 from the Malence tunnel SE of Lju­bljana) and 18 samples from surface locations, nine of them from depths of 1 m in very shallow boreholes. Their density was first measured and then properly ground into small particles (appr. as small as silt). In Appendix B, we also show the results of TC measurements of some rock samples (already list­ed in Appendix A under the same database num­bers), which showed distinct layering (sandstone, siltstone, marl) and foliation (gneiss). With this, the effect of anisotropy in heat conduction was verified and, using the same equations as Jorand et al. (2013) have done for TC measured perpen­dicular and parallel to bedding or foliation, the an­isotropy values for certain rock types were found roughly similar to those presented by Kappelmey-er & Haenel (1974) and Di Sipio et al. (2014). Discussion It is known that the physical properties of the rocks, such as porosity (e.g. water content), texture and homogeneity of the material, can be signifi­cantly modified by tectonic events acting on the territory together with the climate and environ­mental conditions, for example igneous rocks may be affected by different weathering conditions. All these facts can lead to more or less different TC values from those mentioned in the literature (Di Sipio et al., 2014). Therefore, we strive to create geological and geothermal models, in which the thermo-physical properties of the main lithologies are defined based on real data obtained through laboratory or in-situ measurements and, when necessary, supplemented with data from the liter­ature and well-logging data (Norden et al., 2012). Most of the measured TC values are also accom­panied by the standard deviation data, which is a good indicator of the quality of the measurement and how heterogeneous and/or tectonically broken the rock is. Heat exchanger designers and planners in Slovenia most often use TC values from stand­ard tables in the following standards (Prestor et al., 2020): the German standard VDI 4640 (VDI, 2001), the Swiss standard SIA (Eugster et al., 2010), the British standard MIS 3005 and the American ASHRAE standard. It is assumed that the latter two are less used in Slovenia. The com­parison of the results of our measurements on rocks within the projects GRETA and GeoPLAS-MA with the TC values in four standards (UNI standard 2012 according to VDI 2001, SIA 384/6, MIS 3005 and ASHRAE) is given in the link (page 152 in Prestor et al., 2020). The range of measured TC values complies with those in the cited stand­ards and also with results published in other lit­erature (e.g. Kappelmeyer & Haenel, 1974; Zoth & Haenel, 1988; Beardsmore & Cull, 2001). Possible minor deviations between our results and other foreign values of TC are caused due to differences in mineral composition within the samples of the individual lithological types. We believe that our results could form the basis for a possible future Slovenian standard for ther­ mal properties of measured rocks and sediments, as they also cover some lithological types that are not presented in the existing foreign standards, but appear on the Slovenian territory, like dolo­ mitized limestone, dacite, phyllonite and lignite. For several rock types our results are more con­strained than the values in the mentioned stand­ards, as they fall within a narrower range of TC values than reported in other sources. The results of TC and TD measurements on 32 rock samples from the municipality of Cer­kno (project GRETA) have already been present­ed by Casasso et al. (2017) with maps of shallow geothermal potential intended for the design of closed-loop HP systems with the BHEs. The rock types sampled were claystone and shale, siltstone, sandstone, quartz sandstone, quartz conglomer­ate, dolomite, dolomitized limestone, limestone, marl and marly limestone, tuff and diabase, all with an age from Carboniferous to Upper Triassic. In the MOL area, rocks were sampled mainly in the western and eastern parts and on the Ljubljana castle hill (project GeoPLASMA). The rock types of a total of 47 representative measured samples were claystone and shale, siltstone, mudstone, sandstone, sandstone with siltstone and claystone, quartz sandstone, conglomerate, quartz conglom­erate, limestone, Dachstein limestone (with grad­ing into dolomite), marl (marly dolomite) and tuff, with ages ranging from Upper Carboniferous to Upper Cretaceous. In addition, in central and southern parts of the MOL, also in situ measure­ments were done using the needle probe method. The measured sediments of Quaternary age were clay with sand and silt, sand with gravel, gravel with sand, river sand, gravel with sand and silt, clay with silt, and peat. The results of all measure­ments on rocks and sediments from the MOL area have already been presented by Janža et al. (2017). As part of geothermal heat flow research, six rock samples were measured from the Lake Bled area (Adrinek et al., 2019; Serianz, 2022), com­prising the following rock types from Upper Per­mian to Ladinian age: limestone, massive dolo­mite, organogenic limestone, massive dolomite with oncoids and stromatolites, dolomite breccia, micritic limestone and marly limestone with mica. The collected outcrop samples were dried in an oven for 24h on 60°C before measuring. Later, the dried samples were saturated by submerging them in distilled water inside a sealed vacuum exsicca-tor. The values for thermal conductivity and dif­fusivity fall within the expected values for these rock types. For the LIFE ClimatePath2050 project, an anal­ysis of the potential of shallow geothermal energy in Slovenia until 2050 was performed. The final report (Prestor et al., 2018) shows two maps – the thermal conductivity and volumetric heat capacity of rocks and sediments on the surface of Slovenia. For the first map, however, it was necessary to upgrade data from laboratory results to litholog­ical units. The TC values of rocks and sediments on the TC map were attributed on the basis of mean TC values obtained from measurements on many different rocks and sediments, mainly from boreholes (435 samples from 118 boreholes and 2 tunnels) and less from surface locations (35 sam­ples). Thus, the mean TC values were used to cre­ate the TC map of Slovenia. For Quaternary, Ne­ogene, and Paleogene sediments, different mean values for several different types of sediments were used, from Lower Paleocene to Quaternary in age. They were assigned from different surface locations and boreholes with a proper care as re­ gard to the lithological formations. Therefore, the assigned TC values are not a mixture of different types of sediments. The TC values were assigned to the lithological units of the basic geological map of Slovenia at a scale of 1:100,000. The same basic geological map served as the basis for the second map, where the average values of the volumetric heat capacity of rocks and sediments were taken from two standards, SIA (Eugster et al., 2010) and VDI (2001). The largest number of measured samples for TC is that of sedimentary rocks and sediments, followed by volcanic rocks, metamorphic and plu-tonic rocks (Fig. 9). The range of measured TC val­ues for plutonic rocks (Fig. 11) is between 1.81 and 3.04, with a TC mean of 2.45 W/(m·K). Higher TC value is shown by plutonic rock of gabbro group (cezlakite). The range of measured TC values for volcanic rocks (Fig. 12) is between 1.32 and 4.04, with a TC mean of 2.43 W/(m·K). Some rock types show quite high range of values, with the highest TC values measured on andesite, tuff and tuffa­ceous breccia and diabase. The range of measured TC values for all metamorphic rocks (Fig. 13) is between 2.14 and 4.60, with a TC mean of 3.14 W/(m·K). The highest TC values are shown by phyllonite, some gneisses and phyllite. Among the gneiss samples is also one sampled until now in a deepest (4048 m) borehole LJUT-1/88 at its base. As expected, the highest range of measured TC values is represented by sedimentary rocks and sediments, being between 0.58 and 5.60, with a TC mean of 2.58 W/(m·K). In the lower part of this range, there are sediments, such as clay and clay with impurities (Fig. 14), with a range of 0.75 to 2.28 and a mean TC of 1.57 W/(m·K), and lignite (Fig. 14) with a range of 0.58 to 1.52 and a TC mean of 1.04 W/(m·K). The samples of sand, when dry, also show low TC values, and in total the range of TC values for all sand samples, also sand with impurities (Fig. 16) is between 0.63 and 2.96, with a mean TC of 1.51 W/(m·K). The samples of marl and marlstone (Fig. 15) were quite numer­ous (56 in number), showing the range of values between 0.92 and 3.00, with a TC mean of 1.92 W/(m·K). The samples of claystone and shale (Fig. 15) present higher range of TC values, 1.29 to 3.6 W/(m·K), with a mean TC of 2.13 W/(m·K), while the mudstone samples (Fig. 15) show the range be­tween 1.79 and 2.38, with almost the same mean TC of 2.12 W/(m·K). Only five samples of silt (Fig. 16) were measured, showing the range of 1.33 to 1.95, with a mean TC of 1.65 W/(m·K). The sam­ples of siltstone and siltstone with impurities (Fig. 17) were also numerous (65 in number), their TC range is between 1.31 and 3.83, with a mean TC of 2.39 W/(m·K). The range of measured TC val­ues on numerous sandstone samples (Fig. 17) is visibly different for calcareous, marly, clayey and silty sandstones (78 in number) on one side and for quartz sandstones (28 in number) on the oth­er side. For the first ones it is between 1.43 and 3.28 W/(m·K), with a mean TC of 2.36 W/(m·K), while for the quartz sandstone it is between 2.89 and 5.30, with a mean TC of 3.56 W/(m·K). The range of measured TC values for the samples of conglomerate and breccia (Fig. 18) is not so much different. For the conglomerate samples (14 in number) it is between 2.05 and 4.83, with a mean TC of 3.59 W/(m·K), and for the breccia samples (12 in number) it is between 2.17 and 4.26, with a mean TC of 3.21 W/(m·K). The range of measured TC values for the numerous samples of limestone (106 in number, Fig. 18) is between 1.58 and 4.44, with a mean TC value of 2.70 W/(m·K). Samples of dolomite (Fig. 19) were also numerous (60 in number) with a sample from the second greatest depth (4020 m) in the country. Their range of TC values is between 2.94 and 5.60, with a mean TC of 4.20 W/(m·K). Lastly, the range of measured TC values for the samples of dolomitized dolomite and limestone grading into dolomite (Fig. 19) is from 2.36 to 4.05, with a mean TC of 3.25 W/(m·K). The range for measured thermal diffusivity of rocks and sediments varies between 0.22 mm2/s for peat with organic clay and 0.42 mm2/s for clay­ey sediment of Quaternary (Holocene) age on low side and 2.31 mm2/s and 3.62 mm2/s for quartz sandstone of Ladinian and Upper Carboniferous age, respectively, on high side. The range for determined radiogenic heat gen­eration in the rocks varies between 0.26 µW/m3 for milonitized dolomite of Triassic age to 7.09 µW/m3 for dark grey sandstone with black shale clasts of Middle Permian age. The latter rock sample was cored in the borehole V-931/88 in the Uranium mine Žirovski vrh (database number 37 in Appen­dix A), where the production of uranium ore was closed in 1992. The density of the rock was also measured for all those rock samples on which ra­diogenic heat generation was determined (Ravnik et al., 1995). For one group of surface rock samples with determined radiogenic heat, their density was not measured but only assumed. The measured rock densities vary from as low as 1.651 g/cm3 for silty marl of Lower Badenian or Karpathian age to 3.042 g/cm3 for granat-muscovite-biotite gneiss of Precambrian age. Conclusions With the presented measurement results on rock and sediment samples from Slovenia, we have presumably covered more than 90 % of all lithological types that occur on the surface of the country. The question is, what other lithological types would be encountered at depths of up to 4 or 5 km, if such boreholes were made in certain are­as of Slovenia, especially in areas with metamor­phic and igneous rocks, not only as surface rocks but also in the subsurface. For example, thermal conductivity has not yet been measured on any of the following interesting rock types, most of which occur very locally on the surface in Slovenia: poor­ly metamorphosed slate, quartzite, calc-phyllite, calc-schist, granite gneiss, serpentinite, granite, rhyolite, rhyodacite, syenite and granodiorite. Nowadays, various users of data on the thermal parameters of rocks and sediments rely on data from the literature. However, direct measurement of thermal parameters on representative samples for a certain territory is necessary to provide real data to energy and infrastructure planners, public authorities and operators involved in the exploita­tion of geothermal energy resources in low, me­dium and high enthalpies (Di Sipio et al., 2014). Although it is known that the thermal response test (TRT) is the most reliable method for deter­mining in-situ thermal properties in the shallow underground, as it also includes local hydroge­ological conditions and physical parameters of the specific lithological units, it is expensive and time-consuming. Therefore, it is advisable to per­form it in cases where large scale closed-loop sys­tems are planned (e.g. more than 10 BHEs), and the use of literature data is sufficient when small scale closed-loop system are planned (individual houses). A good alternative to the field method are precise laboratory measurements, which could be used on a regional scale to provide necessary information for the dimensioning of closed-loop systems with the heat pumps and to better predict the geothermal conditions for the planning of deep boreholes. We are confident that the thermal proper­ty results of Slovenian rocks and sediments are within the expected range for each lithological type, which is confirmed by literature data, thus highlighting the quality of our methodology and measurements. We believe that by presenting the results of TC and TD measurements in a manner as they are in Appendix A, the requirements of the IHFC Global Heat Flow Database Renovation Group (Fuchs et al., 2021) are satisfied also for the compilation and collection of metadata. Our results could be the basis for the possible future Slovenian standard of thermal properties of meas­ured rocks and sediments. Acknowledgements The authors are grateful to dr. L. Z. Lenkey and dr. N. Rman for their very appropriate and construc­tive suggestions, and for improvements in text clarity. This research was partly funded by the Slovenian Re­search Agency through programme groups “Regional geology P1-0011” and “Groundwater and geochemistry P1-0020”. The authors are also grateful for discussions with several scientists at the Geological Survey of Slo­ venia (Kristina Ivancic, Mateja Jemec Auflic, Jernej Jež, Polona Kralj, Matevž Novak) as well as for their participation in the surface rock sampling. Appendix A and B: Supplementary data as­sociated with this article can be found in the on-line version at https://doi.org/10.5474/geologi­ ja.2023.005 References Adrinek, S., Janža, M., Rajver, D. & Brencic, M. 2019: Thermal conductivity and diffusivity of geological units around Lake Bled, NW Slove­nia. In: 10th European Geothermal PhD Day, 25–27 Feb. 2019, Potsdam: poster. Banks, D. 2008: An introduction to thermogeolo­gy. Ground source heating and cooling. 1st ed. Blackwell Publ. Ltd, Oxford: 339 p. Bavec, M., Novak, M. & Poljak, M. 2013: Geolog­ical Map of Slovenia 1:1 million. GeoZS, Lju­bljana. Beardsmore, G.R. & Cull, J.P. 2001: Crustal heat flow: A guide to measurement and modelling. Cambridge University Press, Cambridge: 324 p. Beck, A.E. 1957: A steady state method for the rap­id measurement of the thermal conductivity of rocks. J. Sci. Instr., 34: 185–189. Beck, A.E. 1965: Techniques of measuring heat flow on land. In: Lee, W.H.K. (ed.): Terrestri­al heat flow. Monograph No. 8, Am. Geophys. Union, Washington D.C.: 24–57. Beck, A.E. 1988: Thermal properties. Methods for determining thermal conductivity and thermal diffusivity. In: Haenel, R., Rybach, L. & Stege­na, L. (eds.): Handbook of terrestrial heat-flow density determination. Kluwer Academic Pub­lishers: Dordrecht: 87-124. Benfield, A.E. 1939: Terrestrial heat flow in Great Britain. Proc. Roy. Soc., A 173: 428–450. https://doi.org/10.1098/rspa.1939.0157 Birch, F. 1942: Thermal conductivity and diffu­sivity. In: Birch, F., Schairer, J.F. & Spicer, G.C. (eds.): Handbook of physical constants. Special paper 36, Geol. Soc. of America, Balti­more: 243–266. Birch, F. & Clark, H. 1940: The thermal conductiv­ity of rocks and its dependence upon tempera­ture and composition. Am. J. Sci., 238/8: 529– 558. https://doi.org/10.2475/ajs.238.8.529 Blackwell, D.D. & Steele, J.L. 1989: Thermal con­ductivity of sedimentary rocks: Measurement and significance. In: Naeser, N.D. & McCulloh, T.H. (eds.): Thermal history of sedimentary basins. Methods and case histories. Spring-er-Verlag, Berlin: 13–36. Blumm, J. & Lemarchand, S. 2002: Influence of test conditions on the accuracy of laser flash measurements. High Temp.-High Pres., 34/5: 523–528. https://doi.org/10.1068/htjr062 Brigaud, F., Chapman, D.S. & Le Douran, S. 1990: Estimating thermal conductivity in sedimen­tary basins using lithologic data and geophysi­cal well logs. AAPG Bulletin, 74/9: 1459–1477. Buntebarth, G. 1984: Geothermics. An Introduc­tion. Springer-Verlag, Berlin: 144 p. Carmichael, R.S. (ed.) 1984: CRC Handbook of physical properties of rocks III, CRC Press, Boca Raton, FL: 354 p. Carslaw, H.S. & Jaeger, J.C. 1959: Conduction of heat in solids. Clarendon Press, Oxford: 517 p. Casasso, A., Prestor, J., Zosseder, K., Capodaglio, P., Bottig, M., Maragna, C., Zambelli, P., Hug-genberger, P. et al. 2018. Local-scale maps of the NSGE potential in the case study areas. GRETA project Deliverable D4.2.1., Interreg Alpine Space: 137 p. Casasso, A., Pestotnik, S., Rajver, D., Jež, J., Prestor, J. & Sethi, R. 2017: Assessment and mapping of the closed-loop shallow geothermal potential in Cerkno (Slovenia). Energy Proce­dia, 125: 335–344. https://doi.org/10.1016/j. egypro.2017.08.210 Cermák, V. & Rybach, L. 1982: Thermal conduc­tivity and specific heat of minerals and rocks. In: Angenheister, G. (ed.): Landolt-Börnstein: Numerical data and functional relationships in science and technology. New series, V(1a), Springer, Berlin: 305–343. Cermák, V., Krešl, M., Šafanda, J., Nápoles-Pru­na, M., Tenreyro-Perez, R., Torres-Paz, L.M. & Valdés, J.J. 1984: First heat flow density assessments in Cuba. Tectonophysics, 103: 283–296, https://doi.org/10.1016/0040­ 1951(84)90090-8 Cermák, V., Bodri, L., Krešl, M., Dédecek, P. & Šafanda, J. 2016: Eleven years of ground–air temperature tracking over different land cov­er types. Int. J. Climatology, 37/2: 1084–1099. https://doi.org/10.1002/joc.4764 Clark Jr., S.P. 1966: Thermal conductivity. In: Clark Jr., S.P. (ed.): Handbook of physical con­stants. Memoir 97, Geol. Soc. of America, New York: 459–482. Clauser, C. & Huenges, E. 1995: Thermal conduc­tivity of rocks and minerals. In: Ahrens, T.J. (ed.): Rock physics and phase relations - A handbook of physical constants. AGU refer­ence shelf 3, Amer. Geophys. Union, Washing­ton D.C.: 105–126. Clauser, C. 2006: Geothermal energy. In: Hein­loth, K. (ed.): Landolt-Börnstein, Group VIII: Advanced Materials and Technology, 3: Energy Technologies, subvol. C Renewable Energies, Springer Verlag, Heidelberg-Berlin: 493–604. Clauser, C. 2011: Thermal storage and transport properties of rocks, II: Thermal conductiv­ity and diffusivity. In: Gupta, H. (ed.): Ency­clopedia of Solid Earth Geophysics, 2nd ed., Springer, Dordrecht, preprint: 31 p. https:// doi.org/10.1007/978-90-481-8702-7_67 Cull, J.P. 1974: Thermal conductivity probes for rapid measurements in rock. J. Phys. E.: Sci. In-strum., 7: 771. https://doi.org/10.1088/0022­ 3735/7/9/026 Dalla Santa, G., Galgaro, A., Sassi, R., Cultrera, M., Scotton, P., Mueller, J., Bertermann, D., Men-drinos, D., Pasquali, R., Perego, R., Pera, S., Di Sipio, E., Cassiani, G., De Carli, M. & Bernardi, A. 2020: An updated ground thermal proper­ties database for GSHP applications. Geother-mics, 85: 1–13, https://doi.org/10.1016/j.geo­ thermics.2019.101758 Davis, E.E. 1988: Oceanic heat-flow density. In: Haenel, R., Rybach, L. & Stegena, L. (eds.): Handbook of terrestrial heat-flow density de­termination. Kluwer Academic Publishers, Dordrecht, Boston, London: 223–260. Davis, M.G., Chapman, D.S., Van Wagoner, T.M. & Armstrong, P.A. 2007: Thermal conduc­tivity anisotropy of metasedimentary and ig­neous rocks. J. Geophys. Res.: Solid Earth, 112 (B05216): 1–7. https://doi.org/10.1029/ 2006JB004755 Decagon Devices, Inc. 2016: KD2 Pro Thermal Properties Analyzer. Operator’s Manual. Dec­agon Devices, Inc., Pullman WA99163: 67 p. Dédecek, P., Šafanda, J. & Rajver, D. 2012: Detec­tion and quantification of local anthropogen­ic and regional climatic transient signals in temperature logs from Czechia and Slovenia. Climatic Change, 113: 787–801. https://doi. org/10.1007/s10584-011-0373-5 Desai, P.D., Navarro, D.A., Hasan, S.E., Ho, C.Y., DeWitt, D.P. & West, T.R. 1974: Thermophys­ical properties of selected rocks. CINDAS re­port 23, Center for Information and Numerical Data Analysis and Synthesis (CINDAS), Pur­due Univ., West Lafayette, IN. DeVries, D.A. & Peck, A.J. 1958: On the cy­lindrical probe method of measuring ther­mal conductivity with special reference to soils. 1. Extension of theory and discussion of probe characteristics. Australian Journal of Physics, 11: 255–271. http://hdl.handle. net/102.100.100/334002?index=1 Dickson, M.H. & Fanelli, M. 2004: What is geo­thermal energy? International Geothermal As­sociation, Bochum: 47 p. http://iga.igg.cnr.it/ geo/geoenergy.php Diment, W.H. & Pratt, H.R. 1988: Thermal con­ductivity of some rocks-forming minerals: A tabulation. Open file report 88–690, U.S. Geol. Survey, Denver, CO. Di Sipio, E., Galgaro, A., Destro, E., Teza, G., Chie­sa, S., Giaretta, A. & Manzella, A. 2014: Sub­surface thermal conductivity assessment in Calabria (southern Italy): a regional case study. Environ. Earth Sci., 72: 1383-1401. https:// doi.org/10.1007/s12665-014-3277-7 Dorofeeva, R.P. 1998: Thermal conductivity of bottom sediments measured in deep water boreholes in Lake Baikal. In: Popov, Y.A. & Pi-menov, V. (eds.): Proc. Intl. Conference “The Earth’s thermal field and related research methods”, May 19-21, 1998, Moscow, Russia. Dorofeeva, R.P. & Duchkov, A.D. 1995: A new ge­othermal study in underwater boreholes on Lake Baikal (Continental Rift Zone). In: Bar-bier, E., Frye, G., Iglesias, E. & Palmason, G. (eds.): Proc. World Geothermal Congress 1995, Florence, Italy. Dövényi, P. & Horváth, F. 1988: A review of tem­perature, thermal conductivity and heat flow data for the Pannonian basin. In: Royden, L.H. & Horváth, F.: The Pannonian basin. AAPG Memoir 45, 195–210, Tulsa. Drury, M.J., Allen, V.S. & Jessop, A.M. 1984: The measurement of thermal diffusivity of rock cores. Tectonophysics, 103: 321–333. https:// doi.org/10.1016/0040-1951(84)90094-5 Eugster, W., Pahud, D., Rohner, E. & Signorelli, S. 2010: Sondes géothermiques. SIA 384/6:2010 Bâtiment, génie civil. Norme suisse SN 546 384/6. Valable dčs 2010-01-01. Société suisse des ingénieurs et des architectes, CH-8027 Zu­rich: 76 p. Fuchs, S. & Förster, A. 2010: Rock thermal con­ductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chem. Erde Ge-ochem., 70: 13–22, https://doi.org/10.1016/j. chemer.2010.05.010 Fuchs, S., Beardsmore, G., Chiozzi, P., Espino­za-Ojeda, O.M., Gola, G., Gosnold, W., Harris, R., Jennings, S., Liu, S., Negrete-Aranda, R., Neumann, F., Norden, B., Poort, J., Rajver, D., Ray, L., Richards, M., Smith, J., Tanaka, A. & Verdoya, M. 2021: A new database structure for the IHFC Global Heat Flow Database. Int. J. Terr. Heat Flow Appl. Geotherm. (IJTHFA), 4/1: 1–14. https://doi.org/10.31214/ijthfa.v4i1.62 Fujisawa, H., Nagao, T., Uyeda, S., Honda, S. & Tsunoda, T. 1985: Heat flow measurements in Lake Biwa, Central Japan. A preliminary study. Proc. Japan Academy, V.61, Ser.B, N 4, 145-148. Gable, R. 1986: Température, gradient et flux de chaleur terrestre. Mesures. Interprétation. Thčse présentée ŕ l’Université Pierre et Marie Curie. Documents du B.R.G.M. No. 104: 187 p. Galson, D.A., Wilson, N.P., Schaerli, U. & Rybach, L. 1987: A comparison of the divided-bar and QTM methods of measuring thermal conduc­tivity. Geothermics, 16/3: 215–226. https:// doi.org/10.1016/0375-6505(87)90001-0 Gomes, J.L.S., Vieira, F.P. & Hamza, V.M. 2021: Reappraisal of heat flow variations in main­land Africa. Int. J. Terr. Heat Flow Appl. Ge-otherm. (IJTHFA), 4/1: 26-78. https://doi. org/10.31214/ijthfa.v4i1.64 Goutorbe, B., Lucazeau, F. & Bonneville, A. 2006. Using neural networks to predict thermal conductivity from geophysical well logs. Geo-phys. J. Int., 166(1): 115–125. https://doi. org/10.1111/j.1365-246X.2006.02924.x Haenel, R. 1979: A critical review of heat flow measurements in sea and lake bottom sedi­ments. In: Cermák, V. & Rybach, L. (eds.): Ter­restrial heat flow in Europe, Berlin: 49–73. Haenel, R., Rybach, L. & Stegena, L. 1988: Fun­ damentals of geothermics. In: Haenel, R., Rybach, L. & Stegena, L. (eds.): Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht: 9–57. Hamza, V., Vieira, F., Gomes, J., Guimaraes, S., Alexandrino, C. & Gomes, A. 2020: Update of Brazilian heat flow data, within the framework of a multiprong referencing system. Int. J. Terr. Heat Flow Appl. Geotherm. (IJTHFA), 3/1: 45–72. https://doi.org/10.31214/ijthfa.v3i1.42 Hanley, E.J., DeWitt, D.P. & Roy, R.F. 1978: The thermal diffusivity of eight well-characterized rocks for the temperature range 300–1000 K. Engineering Geol., 12: 31–47. https://doi. org/10.1016/0013-7952(78)90003-0 Hartmann, A., Rath, V. & Clauser, C. 2005: Ther­mal conductivity from core and well log data. Int. J. Rock Mech. Min. Sci., 42: 1042–1055. https://doi.org/10.1016/j.ijrmms.2005.05.015 Horai, K. 1971: Thermal conductivity of rock-forming minerals. J. Geophys. Res., 76/5: 1278–1308. https://doi.org/10.1029/ JB076i005p01278 Horai, K. 1991: Thermal conductivity of Hawai­ian basalt: A new interpretation of Robertson and Peck’s data. J. Geophys. Res.: Solid Earth, 96 (B3): 4125–4132. https://doi.org/10.1029/ 90JB02452 Horai, K. & Simmons, G. 1969. Thermal con­ductivity of rock-forming minerals, Earth Planet. Sci. Lett., 6/5: 359–368. https://doi. org/10.1016/0012-821X(69)90186-1 Hurtig, E., Cermák, V., Haenel, R. & Zui, V. (eds.) 1992: Geothermal Atlas of Europe. GeoForschungsZentrum Potsdam, Publ. No 1: 156 p., 25 maps. Janža, M., Lapanje, A., Šram, D., Rajver, D. & No­vak, M. 2017: Research of the geological and geothermal conditions for the assessment of the shallow geothermal potential in the area of Ljubljana, Slovenia. Geologija, 60/2: 309–327. https://doi.org/10.5474/geologija.2017.022 Janža, M., Jež, J., Rajver, D., Milanic, B., Markic, M., Atanackov, J., Mencin Gale, E., Ivancic, K., Uršic Arko, A., Lapanje, A., Adrinek, S. & Pe­ternel Rikanovic, R. 2022: Ocena geotermalne­ga potenciala na obmocju Mestne obcine Ve­lenje = Assessment of the geothermal potential in the area of the Municipality of Velenje. Final report for the Municipality of Velenje. Geologi­cal Survey of Slovenia, Ljubljana: 28 p. (in Slo­vene). Jemec Auflic, M. & Šegina, E. 2022: Study of rock­fall activity in the Alpine and Pre-Alpine en­vironment outside permafrost areas. In: MGM 22 & AK Permafrost 22, Nov. 24.-27. 2022, Kaprun, Austria. Kaprun: [Org. Comm.], 51– 52. Jessop, A.M. 1990: Thermal geophysics. Develop­ments in Solid Earth Geophysics 17, Elsevier, Amsterdam: 306 p. Jorand, R., Vogt, C., Marquart, G. & Clauser, C. 2013: Effective thermal conductivity of heter­ogeneous rocks from laboratory experiments and numerical modelling. J. Geophys. Res.: Solid Earth, 118/10: 5225–5235. https://doi. org/10.1002/jgrb.50373 Kalinin, A.N. 1981: An instrument for direct measurements of thermal conductivity on sol­id samples of arbitrary shape. Promyshlennaya Teplotekhnika, 3/1: 48–53 (in Russian). Kappelmeyer, O. 1979: Implications of heat flow studies for geothermal energy prospects. In: Cermák, V. & Rybach, L. (eds.): Terrestrial heat flow in Europe. Springer-Verlag, Berlin etc.: 126–135. https://doi.org/10.1007/978-3-642­ 95357-6_11 Kappelmeyer, O. & Haenel, R. 1974: Geothermics with special reference to application. Gebrüder Borntraeger, Berlin, Stuttgart: 238 p. Kobolev, V.P., Kutas, R.I. & Popov, Y.A. 1990: Meth­od and results of research of thermal proper­ties of Ural region rocks with laser scanning. Geophysical J., 12/4: 29–37 (in Ukrainian). Lyubimova, E.A. 1968: Termika Zemli i Luny (Thermal conditions of the Earth and Moon). Nauka Press, Moscow: 278 p. https://doi. org/10.1594/pangaea.809800 Lyubimova, E.A. & Popova, A.K. 1967: Measure­ment of thermal conductivity of Lake Baikal sediments by a ball probe method. Izv. Earth Sci., 5: 71–74; English transl., Am. Geophys. Union 5: 309–311. Lyubimova, E.A., Lusova, L.M., Firsov, F.V., Starikova, G.N. & Shushpanov, A.P. 1961: De­termination of surface heat flow in Mazesta (USSR), Ann. Geophys., 14: 157–167. Majorowicz, J.A. & Jessop, A.M. 1981: Region­al heat flow patterns in the Western Cana­dian sedimentary basin. Tectonophysics, 74: 109–238. https://doi.org/10.1016/0040­ 1951(81)90191-8 Marx, H.-W., 2014: Thermal diffusivity and con­ductivity – an introduction to theory and practice. Thermal Analysis & Thermophys­ical Properties. Linseis Messgeräte GmbH WoTS_2-10-2014. Utrecht: 29 p. Mongelli, F. 1968: Un metodo per la determinazi-one in laboratorio della conducibilitŕ termica delle rocce. Boll. Geof. Teor. Appl. X: 51–58. Mottaghy, D.C., Schellschmidt, R., Popov, Y.A., Clauser, C., Kukkonen, I.T., Nover, G., Milano­vsky, S. & Romushkevich, R.A. 2005: New heat flow data from the immediate vicinity of the Kola superdeep borehole: vertical variation in heat flow density confirmed and attributed to advection. Tectonophysics, 401/1–2: 112–142. https://doi.org/10.1016/j.tecto.2005.03.005 Muffler, L.J.P. & Cataldi, R. 1978: Methods for regional assessment of geothermal resourc­es. Geothermics, 7/2–4: 53–89. https://doi. org/10.1016/0375-6505(78)90002-0 Norden, B., Förster, A., Behrends, K., Krause, K., Stecken, L., Meyer, R. 2012: Geological 3-D model of the larger Altensalzwedel area, Ger­many, for temperature prognosis and reservoir simulation. Environ. Earth Sci., 67/2: 511–526. https://doi.org/10.1007/s12665-012-1709-9 Palacios, A., Cong, L., Navarro, M.E., Ding, Y. & Barreneche, C. 2019: Thermal conduc­tivity measurement techniques for charac­terizing thermal energy storage materials –A review. Renewable Sustainable Energy Re­views, 108: 32–52. https://doi.org/10.1016/j. rser.2019.03.020 Pandey, O.P. 1991: Terrestrial heat flow and litho­spheric geothermal structure in New Zealand. In: Cermák, V. & Rybach, L. (eds.): Terres­trial heat flow and the lithosphere structure. Springer-Verlag, Berlin etc.: 338–380. Parker, W.J., Jenkins, R.J., Butler, C.P. & Abbott, G.I. 1961: Flash method of determining ther­mal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys., 32/9: 1679–1684. https://doi.org/10.1063/1.1728417 Pasquale, V., Gola, G., Chiozzi, P. & Verdoya, M. 2011: Thermophysical properties of the Po Ba­sin rocks. Geophys. J. Int., 186/1: 69–8. https:// doi.org/10.1111/j.1365-246X.2011.05040.x Pasquale, V., Verdoya, M. & Chiozzi, P. 2015: Measurements of rock thermal conductivity with a Transient Divided Bar. Geothermics, 53: 183–189. https://doi.org/10.1016/j.geo­ thermics.2014.05.008 Pollack, H.N. & Sass, J.H. 1988: 8. Crust and mantle geothermics 8.1. Thermal regime of the lithosphere. In: Haenel, R., Rybach, L. & Stege­na, L. (eds.): Handbook of terrestrial heat-flow density determination. Kluwer Academic Pub­lishers, Dordrecht: 301–308. Popov, Y. 1983: Theoretical models of the meth­od of determination of the thermal properties of rocks on the basis of moveable sources. Ge-ologiya i Razvedka (Geology and Prospecting), p(I): 97-103. Popov, Y. A., Semionov, V. G., Korosteliov, V.M. & Berezin, V. V. 1983: Non-contact evaluation of thermal conductivity of rocks with the aid of a mobile heat source. Izvestiya, Physics of the Solid Earth, 19: 563–567. Popov Y.A., Berezin, V.V., Soloviov, G.A., Romush­kevich, R.A., Korosteliov, V.M., Kostiurin, A.A. & Kulikov, A.V. 1987: Thermal conductivity of minerals, Izvestiya, Physics of the Solid Earth, 3: 83–92. Popov, Y.A., Pribnow D.F.C., Sass, J.H., Williams, C.F.& Burkhardt, H. 1999: Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics, 28/2: 253–276. https://doi.org/10.1016/S0375-6505(99)00007-3 Popov, Y.A. & Romushkevich, R.A. 2002: The Earth’s thermal field and related research methods. In: Popov, Y.A., Khutorskoy, M. & Korobkov, D.: Proc. Intl. Conference, June 13­17. Popov, Y.A., Tertychnyi, V., Romushkevich, R.A., Korobkov, D. & Pohl, J. 2003: Interrelations between thermal conductivity and other phys­ical properties of rocks: Experimental data. Pure Appl. Geophys., 160: 1137–1161. https:// doi.org/10.1007/PL00012565 Popov, Y.A., Bayuk, I., Parshin, A., Miklashevskiy, D., Novikov, S. & Chekhonin, E. 2012: New methods and instruments for determination of reservoir thermal properties. Proc., 37th work­shop on Geothermal Reservoir Engineering, Stanford Univ., Stanford, CA, SGP-TR-194. Popov, Y., Beardsmore, G., Clauser & C., Roy, S. 2016: ISRM Suggested methods for determin­ing thermal properties of rocks from laborato­ry tests at atmospheric pressure. Rock. Mech. Rock. Eng., 49/10: 4179-4207. https://doi. org/10.1007/s00603-016-1070-5 Popov, Y.A., Lippmann, E. & Rauen, A. 2017: TCS – Manual. Thermal conductivity (TC) and ther­mal diffusivity (TD) scanner, ver. 31.01.2017. TCS Lippmann and Rauen GbR, Schaufling: 53 p. Prelovšek, P., Babic, M. & Uran, B. 1982: Meritve toplotne prevodnosti kamenin z izboljšano metodo grelne žice = Thermal conductivity measurements on rocks by improved hot wire method. Geologija, 25/2: 335–339 (in Slo­vene). Prelovšek, P. & Uran, B. 1984: Generalised hot wire method for thermal conductivity meas­urements. J. Phys. E.: Sci. Instrum., G. Britain 17: 674–677. https://doi.org/10.1088/0022­ 3735/17/8/012 Prestor, J., Pestotnik, S., Rajver, D., Jež, J., Gercar, D., Klancic, K. & Svetina, J. 2018: Analize po­tenciala plitve geotermalne energije v Sloveniji do leta 2050, za projekt LIFE ClimatePath2050 (Analyzes of the potential of shallow geother­mal energy in Slovenia until 2050, for the LIFE ClimatePath2050 project) (LIFE 16 GIC/ SI/000043), GeoZS, Ljubljana: 59 p. (in Slo­vene). Prestor, J., Rajver, D., Svetina, J., Janža, M., Šram, D., Rman, N. & Lapanje, A. 2020: Raba geoter­malne energije v Sloveniji (Geothermal ener­gy use in Slovenia). In: A. Senegacnik (ed.), Mineralne surovine v letu 2019, Bulletin, Ge-oZS, Ljubljana: 141–157 (in Slovene). https:// www.geo-zs.si/PDF/PeriodicnePublikacije/ Bilten_2019.pdf. Rajver, D. 1986: Merjenje toplotne prevodnosti kamnin iz nekaterih slovenskih geotermalnih nahajališc = Measurement of thermal conduc­tivity of rocks from some Slovenian geother­mal locations. Diploma work. FNT, University of Ljubljana, Ljubljana: 73 p. (in Slovene). Rajver, D. 1990: New heat flow data in Slovenia, Yugoslavia. Final report of the 20th Interna­tional Course in Geothermics, International school of geothermics, NRC IIRG, Pisa: 73 p. Rajver, D. 2018: Geothermal maps. Surface heat-flow density. In: Novak, M. & Rman, N. (eds.): Geological Atlas of Slovenia. Second, revised and supplemented edition, GeoZS, Ljubljana. Rajver, D., 2022: Porocilo o meritvah toplotne pre­vodnosti in toplotne difuzivnosti na 10 vzorcih kamnin iz lokacij Smrekovec, Renke in Pasjek, Slovenija = Report on thermal conductivity and thermal diffusivity measurements on 10 rock samples from Smrekovec, Renke and Pas-jek locations, Slovenia. Geological Survey of Slovenia, Ljubljana: 23 p. (in Slovene). Rajver, D., Lapanje, A. & Rman, N. 2012: Možnosti proizvodnje elektrike iz geotermalne energije v Sloveniji v naslednjem desetletju = Possibili­ties for electricity production from geothermal energy in Slovenia in the next decade. Geologi­ja, 55/1: 117–140. https://doi.org/10.5474/ge­ ologija.2012.009 Rajver, D., Pestotnik, S. & Prestor, J. 2019: Prim-eri ocene temperature na površini trdnih tal pri projektiranju zajetij plitve geotermalne energije = Examples of the assessment of tem­peratures on the surface of solid ground in the design of the shallow geothermal energy ex­tractions. Geologija, 62/1: 101–120. https:// doi.org/10.5474/geologija.2019.005 Ravnik, D. 1988: Osnovne kolicine toplotnega toka v geotermiji = Basic parameters of heat flow in geothermics. Doctoral thesis. FNT, Univer­sity of Ljubljana, Ljubljana: 253 p. (in Slovene, with English summary). Ravnik, D., Verbovšek, R. & Premru, U. 1982: Gostota Zemljinega toplotnega toka v konjiški udorini = Heat flow density in the fault basin of Slovenske Konjice. Geologija, 25/2: 327–334 (in Slovene, with English abstract). Ravnik, D. & Uran, B. 1984: Geotermicne mer-itve II. Metodologija in interpretacija meritev toplotne prevodnosti in gostote Zemljinega toplotnega toka (Raziskovalna naloga za l. 1983) = Geothermal measurements II. Meth­odology and interpretation of measurements of thermal conductivity and Earth’s heat-flow density (Research paper for y. 1983). Geološki zavod Ljubljana TOZD-I. Archive of Geological Survey of Slovenia: 119 p. (in Slovene). Ravnik, D., Kolbah, S., Jelic, K., Milivojevic, M., Miošic, N., Tonic, S. & Rajver, D. 1987: Geoter­malne karte Jugoslavije. In: Ravnik, D. (ed.): Geothermal Atlas of Europe. Yugoslavia. Geo­thermal regime in Yugoslavia. Geološki zavod Ljubljana, TOZD GGG, Archive of Geological Survey of Slovenia: 17 p. and 7 maps. Ravnik, D. & Rajver, D. 1990: Geotermalne karte Slovenije. 1. Baza podatkov geotermicnih ko-licin, 2. Geotermalne karte = Geothermal maps of Slovenia. 1. Database of geothermal quan­tities, 2. Geothermal maps. Unpubl. Report of GZL: 70 p. and 77 fig. (in Slovene). Ravnik, D. 1991: Geotermicne raziskave v Sloveni­ji = Geothermal investigations in Slovenia. Geologija, 34/1: 265–303 (in Slovene, with English summary). https://doi.org/10.5474/ geologija.1991.006 Ravnik, D. (National Editor), Kolbah, S., Jelic, K., Milivojevic, M., Miošic, N., Tonic, S. & Rajver, D. 1992: Yugoslavia. In: Hurtig, E., Cermak, V., Haenel, R. & Zui, V. (eds.): Geothermal At­las of Europe. Geoforschungszentrum Potsdam Publ.,1: 102–104: 152–153. Ravnik, D., Rajver, D., Poljak, M. & Živcic, M. 1995: Overview of the geothermal field between the Alps, the Dinarides and the Pannonian basin. Tectonophysics, 250/1–3: 135–149. https:// doi.org/10.1016/0040-1951(95)00031-X Reiter, M.A. & Tovar, R.J.C. 1982: Estimates of terrestrial heat flow in Northern Chihuahua, Mexico. Canadian Journal of Earth Sciences, 22: 1503-1517. Research project ARRS PROJECT J1-3024: Deci­phering the sensitivity of rock walls to climate change and freeze-thaw cycles in non-per­ mafrost areas = Raziskovalni projekt ARRS PROJEKT J1-3024: Dešifriranje obcutljivosti skalnih sten na podnebne spremembe in cikle zmrzovanja in odtaljevanja na obmocjih brez permafrosta. Robertson, E.C. 1988: Thermal properties of rocks. U.S.G.S. Open-file report 88-441, U.S. Geol. Survey, Reston, VA.: 106 p. Romushkevich, R.A. & Popov, Y.A. 1998: Study of thermal conductivity of ore samples. In: Pop-ov, Y.A. & Pimenov, V. (eds.): Proc. Intl. Con­ference “The Earth’s thermal field and related research methods”, May 19–21, Moscow, Rus­sia. Roy, R.F., Beck, A.E. & Touloukian, Y.S. 1981: Thermophysical properties of rocks. In: Tou­loukian, Y.S., Judd, W.R. & Roy, R.F. (eds.): Physical properties of rocks and minerals. McGraw-Hill, New York: 409–502. Rybach, L. 1988: Determination of heat produc­tion rate. In: Haenel, R., Rybach, L. & Stege­na, L. (eds.): Handbook of terrestrial heat-flow density determination. Kluwer Academic Pub­lishers: Dordrecht, Boston, London: 125–142. Sarbu, I. & Sebarchievici, C. 2014: General review of ground-source heat pump systems for heat­ing and cooling of buildings. Energy and Build­ings, 70: 441–454. https://doi.org/10.1016/j. enbuild.2013.11.068 Sass, J.H., Lachenbruch, A.H. & Munroe, R.J. 1971: Thermal conductivities of rocks from measurements on fragments and its applica­tion to heat flow determinations. J. Geophys. Res., 76: 3391–3401. https://doi.org/10.1029/ JB076i014p03391 Sass, J.H., Stone, C. & Munroe, R.J. 1984: Ther­mal conductivity determinations on solid rock – A comparison between a steady-state di-vide-bar apparatus and a commercial transient line-source device. J. Volcan. Geotherm. Res., 20: 145–153. Schön, J.H. 1996: Physical properties of rocks. Fundamentals and principles of petrophysics. Pergamon, Oxford: 583 p. Schön, J.H. 2011: Physical properties of rocks: a workbook. Handbook of petroleum exploration and production. Volume 8, 1st edition, Elsevier, Amsterdam, Boston: 494 p. Serianz, L. 2022: Hidrogeološka analiza izto­ka termalne vode iz karbonatnega vodonos­nika vzhodnega dela Julijskih Alp = Hydro-geological analysis of thermal water outflow from a carbonate aquifer in the eastern part of the Julian Alps. Doctoral dissertation. University of Ljubljana. Ljubljana: 138 p. https://repozitorij.uni-lj.si/IzpisGradiva. php?lang=slv&id=137195 Somerton, W.H. 1992: Thermal properties and temperature-related behavior of rock/fluid systems. Developments in Petroleum Science 37, Elsevier, Amsterdam etc.: 257 p. Sumikawa, S. & Arakawa, Y. 1976: Quick thermal conductivity meter. Instr. Autom. 4/4: 60–66. Sundberg, J. 1988: Thermal properties of soils and rocks. SGI report 35, Swedish geotechnical in­stitute (SGI), Linköping: 47 p. Touloukian, Y.S., Powell, R.W., Ho, C.Y. & Klemens, P.G. 1970: Thermal properties of matter, vol. 2, Thermal conductivity, Non-Metallic Solids. New York and Washington: IFI/Plenum. Uran, B. 1982: Merilnik toplotne prevodnosti na grelno žico = Thermal conductivity meter on the heating wire. Dipl. Thesis. VTO Fizika, University of Ljubljana: 72 p. (in Slovene). Uyeda, S. 1988: 9. Implications 9.1. Geodynamics. In: Haenel, R., Rybach, L. & Stegena, L. (eds.): Handbook of terrestrial heat-flow density de­termination. Kluwer Academic Publishers, Dordrecht: 317–351. Vacquier, V., Mathieu, Y., Legendre, E. & Blondin, E. 1988: Experiments on estimating thermal conductivity of sedimentary rocks from oil well logging. Am. Ass. Petrol. Geol. Bull., 72/6: 758–764. Van der Held, E.F.M., Herdebol, J. & Kalshoven, J. 1949: On the measurement of the thermal con­ductivity of liquids by a non-stationary meth­od. Physica, 208–216. VDI 2001: VDI 4640, Part 1 – Thermal use of the underground. Fundamentals, approvals, envi­ronmental aspects. Düsseldorf: 32 p. Von Herzen, R. & Maxwell, A. 1959: The meas­urement of thermal conductivity of deep-sea sediments by a needle-probe method. J. Geo-phys. Res., 64/10: 1557–1563. https://doi. org/10.1029/JZ064I010P01557 Zoth, G. & Haenel, R. 1988: Appendix. 10.1. Ther­mal conductivity. In: Haenel, R., Rybach, L. & Stegena, L. (eds.): Handbook of terrestrial heat-flow density determination. Kluwer Aca­demic Publishers: Dordrecht, Boston, London: 449–466. GEOLOGIJA 66/1, 151-166, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.006 Hydrogeological characterization of karst springs of the white (Proteus anguinus anguinus) and black olm (Proteus anguinus parkelj) habitat in Bela krajina (SE Slovenia) Hidrogeološka karakterizacija kraških izvirov na obmocju habitata belega (Proteus anguinus anguinus) in crnega mocerila (Proteus anguinus parkelj) v Beli krajini (JV Slovenija) Katja KOREN1 & Rok BRAJKOVIC1 Manca BAJUK2, Špela VRANICAR2 & Vesna FABJAN2 1Geological Survey of Slovenia, Dimiceva ulica 14, SI-1000, Ljubljana, Slovenia; e-mail: katja.koren@geo-zs.si, rok.brajkovic@geo-zs.si 2High school Crnomelj, Gimnazija Crnomelj, Kidriceva ulica 18a, SI-8340, Crnomelj, Slovenia Prejeto / Received 19. 5. 2022; Sprejeto / Accepted 10. 7. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Key words: hydrogeology, olm, ecology, nitrate, monitoring Kljucne besede: hidrogeologija, moceril, ekologija, nitrat, monitoring Abstract The springs west of Crnomelj, in SE Slovenia, are the habitat of the black (Proteus anguinus parkelj) and the white olm (Proteus anguinus anguinus). Some of these springs are also the only known habitat in the world of endemic species of black olm. A steady decline in olm populations has been observed in this area over the past decades. Owing to the rapid runoff and groundwater flow high-resolution monitoring is essential in providing better insight into the hydrogeological characterization of the catchment area of springs. Specific factors and critical parameters of water behind said olm degradation have not yet been defined. Because the olm’s environment is largely aquatic, one potential critical parameter could be the higher water temperatures (>12 °C) or higher nitrate concentration (>9.2 mg/l). The six-month observation of the springs (July – December 2021) point to water temperature as a potential critical parameter since the water temperature of the springs exceeded 12 °C in months July and August. Nitrate concentrations could also be a second critical parameter in the degradation of the olm’s habitat. Maximum nitrate concentrations above 9.2 mg/l throughout much of the observation period (except for Doblicica spring). Due to less agricultural activity in December in the spring catchment area and a higher dilution rate due to reduced evapotranspiration and increased effective precipitation during this time of the year, the nitrate concentrations are decreased. The results of the measured parameters of groundwatercould show the hydrogeological connection between the Otovski and Packi breg springs and between Šotor, Jamnice and Doblicica. The Obršec spring has an independent catchment area. A detailed estimation of the springs catchment area is possible due to a detailed geologic map. It is necessary to determine the origin of the nitrate (nitrate isotope analysis), to quantify the threshold values of the critical parameters, to define precisely all the causes of the olm deterioration, and to make proposals for appropriate measures to limit or even stop the decline of the olm population. Izvlecek Izviri zahodno od Crnomlja, v JV Sloveniji so habitat crnega (Proteus anguinus parkelj) in belega mocerila (Proteus anguinus anguinus). Nekateri od teh izvirov so tudi edini znan habitat te endemicne vrste crnega mocerila. V zadnjih desetletjih je opazen upad populacije mocerilov. Za boljši vpogled in ocenitev hidrogeoloških znacilnosti prispevnega obmocja izvirov, je zaradi hitrega odtoka in toka podzemne vode pomembno pogosto spremljanje stanja. Potencialni vplivni dejavniki in parametri podzemne vode, ki bi lahko vplivali na slabšanje stanja ohranjenosti mocerila še niso opredeljeni. Ker moceril vecino casa živi v vodi, bi lahko potencialni kriticni dejavnik bila višja temperatura vode (>12 °C) ali višja vsebnost nitrata v vodi (>9.2 mg/l). Izsledki šestmesecnega spremljanja kažejo, da bi potencialni kriticni parameter za slabšanje stanja ohranjenosti mocerila bila temperature vode nad 12 °C v mesecih julij in avgust v opazovanem obdobju. Vsebnost nitrata bi prav tako lahko bil kriticni parameter oz. razlog za upad števila mocerilov in slabšanje stanja tega habitata. Najvišje vsebnosti nitrata so mejno vrednost za mocerila presegale skoraj cez celotno opazovalno obdobje (z izjemo izvira Doblicice), razen v mesecu decembru. Vzrok za to je zelo verjetno zmanjšana kmetijska dejavnost oz. višja stopnja razredcenja v tem delu leta zaradi zmanjšane evapotranspiracije in višjih kolicin efektivnih padavin. Rezultati izmerjenih parametrov podzemne vode kažejo, na verjetno hidrogeološko povezavo med izviri Otovski in Packi breg termed izviri Šotor, Jamnice in Doblicica. Izvir Obršec ima samostojno prispevno obmocje. V prihodnje bo podrobnejša opredelitev prispevnega obmocja izvirov mogoca z detajlnim geološkim kartiranjem. Potrebno je ugotoviti izvor nitrata (izotopske analize nitrata), kvantificirati mejne vrednosti kriticnih parametrov, dolociti vse možne vzroke za slabšanje stanja ohranjenosti populacije mocerila in opredeliti predloge ukrepov za preprecevanje oz. ustavitev upada populacije mocerilov. Introduction Some springs and caves in the Bela krajina re­gion (SE Slovenia), in the area west of Crnomelj, are especially important and should be kept in good hydrogeological and geochemical condition (or work towards improvement), since they are the habitat of the black (Proteus anguinus parkelj) and white olm (Proteus anguinus anguinus). The black olm is an endangered endemic subspecies known only from a few springs over less than 3 km2 in the W part of Bela krajina. Based on Annex 6 (Red List of Amphibians) of the Habitats Directive (Council Directive 92/43/EEC), the white and black olm are classified as rare and vulnerable species. The clas­sification of the white and black olm as rare and vulnerable species was made based on a long-term scientific research of the distribution and decline in the olm population in the Bela krajina area. The problem of deterioration of the olm’s habitat has also been noted by locals, among them the stu­dents of the Crnomelj secondary school, who work to raise awareness among the wider local commu­nity and draw attention to the problem. Cave pol­lution and the consequent polluted groundwater affects these groundwater-dependant ecosystems (Mezga et al., 2016). In the long term, this could cause the decline of one of the most important symbols of subterranean biodiversity, the white olm, as well as the black olm in Bela krajina (Sket, 1997; Aljancic et al., 2014; Ribeiro & Ticar, 2017). Olm lives in aquatic environments, in still and oxygen-rich waters with stable temperatures of 8 to 11 °C. Occasionally, enters the phreatic and epi­phreatic zones at high water levels (Aljancic et al., 2014; Mezga et al., 2015). Based on the conditions under which olm lives, water temperature above 12 °C could also be a potentially critical parameter for its degradation. Potential factors and related critical parameters affecting the preservation status of the olm’s hab­itat have not yet been properly defined. Past re­search (NLZOH, 2017) has determined the nitrate threshold value for olms, which consists of the pre­dicted no-effect concentration (PNEC), the nat­ural background concentration, and the expected variation of the natural background concentration. The main toxic effect of nitrate on aquatic animals appears to be the conversion of oxygen-carrying pigments (hemoglobin, hemocyanin) into forms incapable of transporting oxygen (methemoglobin, methemocyanin) (Jensen, 1996; Scott & Crunkil-ton, 2000). If the assessed critical parameters are found to have a significant influence, the next step is to find the causes behind certain excessive critical pa­rameter in groundwater and to limit or lower them using appropriate measures. The aims of this study are (I) to assess the ba­sic hydrogeological characteristics (water level, water temperature and electrical conductivity) of the observed springs as a response to water lev­els and water temperatures to precipitation (II) to determine whether water temperatures and ni­trate concentrations are in a range suitable for the olm, (III) to determine whether long-term national monitoring would provide a realistic assessment of the quality of spring water, and (IV) to determine whether there is a possible geological or hydrogeo-logical connection between the studied springs. The study area Geographical settings The study area lies in SE Slovenia, in Bela kra­jina, west of the town of Crnomelj (Fig. 1), with a focus on six springs that are the habitat of white and black olm. The black olms were detected in the springs of Obršec, Šotor, Jamnice (also known as Jelševnik spring) and Doblicica, while only the white olm is known from Otovski breg and Packi breg springs (Goricki, 2017). In the catchment area of these six springs are village settlements, which have regulated water supplies but no sew­age system. On the slopes west of the springs (Do­blicka gora, Stražni vrh, Rodine) there are homes with vineyards and permanently inhabited houses spread over a wider area of the catchment area of the studied springs. The potential sources of an­thropogenic impacts in this part of the karst area mainly consist of illegal landfills, the use of septic tanks in households, and the use of manure. Fur­thermore, in the immediate vicinity of the Obršec spring an illegal settlement with uncontrolled sewage disposal. Geological settings Bela krajina can be geotectonically divided into its NE part, which belongs to the transition area between the Internal and External Dinarides, and the remaining part, which belongs to the External Dinarides (Placer, 2008), where our study area is located. The lithostratigraphic succession of the study area is largely characterized by shallow ma­rine limestones and dolomites of Jurassic and Cre­taceous age (Fig. 2) (Bukovac et al., 1984a, 1984b; Vlahovic et al., 2005). The studied area is char-acterised by outcrops of Jurassic and Cretaceous carbonates. The Upper Jurassic bedded limestones and bedded to massive dolomites are tectonically fractured and exhibit strong secondary porosity. Fig. 1. Geographical location with observation springs, inhabited area (GURS, 2016) and land use (GERK, 2023) in the study area. Fig. 2. The geological settings of the study area (modified after Bukovac et al., 1984a, 1984b). Lower Cretaceous limestones (Bukovac et al., 1984a, 1984b) in some parts also contain lens­es of dolomite and a breccia horizon. The entire Cretaceous succession exhibits strong and deep karstification, which is reflected in a large num­ber of karst dolines, vertical shafts, and caves. To the east, the study area is bounded by the tectonic contact with the Kanižarica coal basement, which formed in the Pliocene and was filled with fine-grained lake sediments and organic matter (coal) (Šinigoj et al., 2012). The Jurassic, Cretaceous and Neogene rocks and their contacts in the lower parts of the shallow karst are covered by clays of the Plio-Quaternary age, a thick (2–6 m) cover of residual and resedimented terra rossa and Quater­nary sediments of the Doblicica and Jelševnišcica floodplains. Structurally, the wider area of Bela krajina is characterized by NW–SE trending Di-naric longitudinal structures (folds and faults). The fault planes are mostly characterized as re­verse faults with their dip towards the SW (Bu­kovac et al., 1984a, 1984b). The springs of the study area lie on the potential continuation of the reverse fault, defined on the basic geological map as the “Bosiljevo-Crnomelj” thrust (Bukovac et al., 1984a, 1984b; Habic et al., 1991b; Novak, 1996; Šinigoj et al., 2012). From the Doblicica spring towards the Šotor, Obršec, and Jamnice springs, this zone is covered by the Quaternary flood plain of the Doblicica River. N–S orientated fault zone outcrops only in some locations E of the village of Doblice and W of village Otovec. Different struc­tural trends can be observed NW of the village Doblice (Šinigoj et al., 2012). There the fault sys­tem shows NW–SE orientation. The structural relations between these two fault systems are not clear, as the possible fault intersection is covered by Quaternary sediments. These fault zones could be an important factor for groundwater conduc­tion (Car, 2018). The springs studied are classified as karst springs. Doblicica and Otovski breg flow from Lower Cretaceous limestone and could not be directly connected to any of the known fault systems, while Obršec, Šotor, Jamnice and Packi breg springs flow from the Upper Jurassic lime­stone and dolomite and are probably located in a tectonic zone running in the NNE–SSW direction (Bukovac et al., 1984b; Habic et al., 1991b; Šinigoj et al., 2012). Observation springs Otovski breg is a spring in an unroofed cave from which the water flows to the surface through two syphons. Close by, another monitored spring is located (approximately 1 km SW from Otovski breg) called Packi breg. The white olm is present in these two (Packi breg & Otovski breg) observed springs. Both springs are located in the northern part of the studied area near the villages of Otovec and Tušev dol (Fig. 1). In Packi breg there are three smaller springs that are a mere one meter apart and never run dry. The water flows to the surface in two horizontal syphon springs. In the third, the water springs vertically, which is obvi­ ous when observed at high water level. The habitat of the black olm consists in the four observed springs located in the southern part of the studied area (Fig. 1) near the villages of Jelševnik and Doblice. Šotor is a spring located on the Zupancic farm in Jelševnik, only 50 m away from the Jamnice spring. It is about 4.5 m wide, and the water comes to the surface in several sy­phons. The Šotor spring is covered with a tent to simulate a dark environment and a camera is in­stalled to observe the olms. The Jamnice spring is a funnel-shaped spring some about 2 m wide from where water outflows to the lake at the Zupancic farm. The Obršec spring is located 500 m south of the village of Jelševnik with two larger syphons 5 m apart. The southernmost and observably larg­est is the Doblicica spring. The spring Doblicica is located 2.4 km SE from the village Jelševnik (springs Šotor and Jamnice) and is a spring with a depth of more than 100 m (Novak, 1996). The spring is protected by a groundwater protection zone and is part of the public drinking water sup­ ply system. Material and Methods Effective precipitation (Pef), evapotranspiration (ETR) Data on hourly measurements of precipitation and daily potential evapotranspiration were ob­ tained from the meteorological station Crnomelj­Doblice (SEA 2022a, 2022b). The effective pre­cipitation (Pef) is the amount of total precipitation without runoff and evapotranspiration. Based on hourly measurements of precipitation and dai­ly evapotranspiration we calculated the highest amount of precipitation (Ptot) in one day, in a one-hour event, and the monthly volume. We also cal­culated the daily evapotranspiration (ETR) and effective precipitation. Based on the daily total precipitation (Ptot) and the daily potential evapo-transpiration (ETR) in the meteorological station Crnomelj – Doblice, we simplified and assessed the amount of daily effective precipitation (Eq. 1). ........................ = ................................ -........................[................] [Eq. 1] Table 1. Characteristics of sensors for water level, temperature and electrical conductivity measurements (Eltratec GSR 130NTG). Obršec July – December 2021 1 h 0 – 9.99 m 0 – 50 °C ± 0.3 °C 10 – 2000 µS/cm ±50 µS/cm (< 2 %) Šotor July – December 2021 1 h 0 – 9.99 m 0 – 50 °C ± 0.3 °C 10 – 2000 µS/cm ±50 µS/cm (< 2 %) Packi breg August – December 2021 1 h 0 – 99.99 m 0 – 50 °C ± 0.4 °C 0.1 – 10 mS/cm ± 400 µS/cm Field measurements Field measurements of water levels, tempera­ture, and electrical conductivity were carried out using the water level measurement logger Eltratec GSR 130NTG with sensors for water level, tem­perature, and electrical conductivity (Table 1). The loggers were installed at the Obršec and Šotor springs from July to December 2021 and at the Packi breg spring from August to December 2021. The loggers recorded measurements at one-hour intervals. The water level, electrical conductivity and water temperature in Jamnice and Otovski breg were not monitored, we only measured ni­trate content. Data on water levels and temperature is record­ed every five minutes at the Doblicica spring and was provided by Komunala Crnomelj, a public util­ity company. Due to the wide measurement range and high measurement uncertainty of the elec­trical conductivity probe installed at Packi breg (± 400 µS/cm), the data obtained during the study for this spring was omitted. In this case, we mon­itored only the relative fluctuations in electrical conductivity. Response of water level (WLR) on rainfall event We defined the rain event as a maximum daily amount of precipitation (Ptot) of more than 25 mm. This rainfall amount (25 mm/day) was determined based on a significant simultaneous rise in water level in the observed springs, which occurred as a peak just a few hours after the rain event began. All rain events began with a rainfall rate greater than 0.2 mm/hour. The time of the beginning of the rainfall event (t) is the so-called beginning start of the rainfall event. During this time, the water level does not change (WL). After some time start during the rain event (tmax), the peak or maximum spring water level (WLmax) is measured. Based on the rainfall events and the water level rise in re­sponse to the rainfall event, we calculated the re­ sponse rates or water level rise rate (WLR), which is a very simplified tool to roughly evaluate the re­sponse of the karst spring to rainfall events (Eq. 2). ........................................ -........................................................ [Eq. 2] ........................ =[......../h] ................................ -................................................ Water sampling Sampling for nitrate concentrations was car­ried out at weekly intervals between July and De­cember 2021 at the Obršec, Šotor, Jamnice, Otovs­ki breg, Packi breg and Doblicica springs (Fig. 1). Sampling was performed in collaboration with students from Crnomelj High school (Gymnasi­um Crnomelj), that were included into research as citizen science members. For sampling, we used 100 ml plastic bottles or two 50 ml plastic tubes for each sampling location and stored at 2–5 °C. Before collecting the water samples, the bot­tles were washed with water from the individual spring. Then the samples were taken to the Geo­logical Survey of Slovenia laboratory to a dark and cool place. Nitrate measurements Measurements of nitrate concentrations in wa­ter were carried out in the hydrogeological labo­ratory of the Geological Survey of Slovenia using a UV-VIS Spectro:IyserTM spectrometer. Based on the reflection of laser beams, the spectrum and nitrogen content of nitrate (NO3-N) are de­termined. Measurements were performed no later than 72 hours after sampling. The spectrometer is calibrated to the primary standards using known values. For a quality control check prior to sample measurement, the in-house standard (ultrapure water) was measured first, and the second in-house standard (tap water) was measured at the end of the measurement process. The same sam­ple from one bottle was measured three times. All measured values are corrected with the correction equation obtained using primary standards with known values and checked with in-house stan­dards. Results Effective precipitation (Pef) and evapotranspiration (ETR) and rain events In the observation period July – December 2021, the highest monthly amount of precipita­tion (Ptot) came in July (141.99 mm) and the low­est in September (79.17 mm). The highest evapo-transpiration (ETR) coincided with higher air Table 2. Precipitation, evapotranspiration and effective precipitation in Crnomelj – Doblice meteorological station (July – December 2021) (SEA 2022a, 2022b). 7/21 50.9 141.99 6.8 137.2 4.79 8/21 23.5 108.25 5.3 106.0 2.25 9/21 34.4 79.17 3.5 73.7 5.47 10/21 27.0 105.83 2.6 31.2 74.63 11/21 23.6 131.77 1.4 14.4 117.37 12/21 33.9 97.57 1.2 9.4 88.17 Fig. 3. Total daily precipitation and effective precipitation in Crnomelj-Doblice meteorological station (July – December 2021) (SEA 2022a, 2022b). temperatures and higher plant transpiration, in July (137.2 mm), with the lowest volumes in December (9.4 mm). The lowest monthly amount of effective precipitation (Pef ) was in August (2.25 mm), and the highest in November (117.37 mm) (Table 2). In the period July – December 2021 we defined five rain events: at July 16 (72.3 mm/day), August 17 (29 mm/day), September 17 (42.1 mm/day), October 6 (27.1 mm/day) and December 2 (33.6 mm/day). Water level, temperature, and electrical conductivity in the observed springs In the period July – December 2021 we ob­served the hourly change in water level (WL), tem­perature (T), and electrical conductivity (EC) in three springs – Packi breg, Obršec, and Šotor. The measured values are presented in Figure 4, 5, 6, and 7. The highest and lowest water level values, temperatures, and electrical conductivity of these four springs are presented in Table 3. Table 3. Highest and lowest water level, electrical conductivity water temperature in observed springs (July – December 2021). Month/ Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Year 07/21 /// /// 1.91 0.76 452 424 13.9 11.5 1.47 0.48 535 357 17.3 10.5 1.43 0.37 25.6 10.7 08/21 0.53 0.33 930* 620* 11.8 11.5 1.44 0.56 451 420 14.7 11.5 0.71 0.40 442 403 11.3 10.5 0.42 0.37 14.1 11 09/21 0.59 0.25 970* 920* 12.0 11.7 1.63 0.29 474 431 14.1 11.4 1.03 0.41 435 418 10.7 10.5 0.83 0.43 13 10.9 10/21 0.76 0.27 990* 890* 11.9 11.4 1.63 0.3 507 430 12.8 11.2 1.9 0.54 549 418 11 10.4 1.82 0.39 12.4 9.7 11/21 0.85 0.41 970* 900* 11.7 10.9 1.82 1.19 489 452 11.6 11.3 2.09 0.81 625 435 11.8 10.2 1.96 0.49 10.7 9.0 12/21 0.86 0.42 960* 900* 11.5 10.9 1.8 1.36 461 450 11.5 11.4 2.08 0.91 695 442 11.9 10.1 1.91 0.49 10.7 8.3 *wide measuring range – deviations of ± 400 µS/cm Fig. 4. Water level, temperature and electrical conductivity in Packi breg in comparison with effective precipitation. Fig. 5. Water level, temperature and electrical conductivity in Obršec in comparison with effective precipitation. The highest water level in Packi breg spring were recorded. The highest water level in Obršec (Fig. 4) was recorded in December (0.86 m) with (1.91 m) (Fig. 5) was measured in July, when the minimum evapotranspiration, and the lowest evapotranspiration and effective precipitation also water level (0.25 m) in September, when the lowest reached their maximum. The lowest water level total precipitation and highest water temperature in Obršec (0.29 m) was recorded in September, Fig. 6. Water level, temperature and electrical conductivity in Šotor in comparison with effective precipitation. Fig. 7. Water level and temperature in Doblicica in comparison with effective precipitation. like in Packi breg, when the lowest total precipi-The maximum water temperature of the Šotor tation was measured. The highest water level in (Fig. 6) and Doblicica springs (Fig. 7) was re­Šotor (Fig. 6) was recorded in November (2.09 m) corded in July, and the minimum in December, as well as in Doblicica spring (1.96 m) (Fig. 7), along with the highest and lowest evapotrans-when maximum effective precipitation was also piration rates. The highest water temperature in recorded. The lowest water level in Šotor (0.4 m) Packi breg (Fig. 4) was recorded in September and Doblicica (0.37 m) was observed in August, (12.0 °C) in Šotor (Fig. 6) (17.3 °C) and Doblici-coinciding with the lowest effective precipitation. ca (Fig. 7) (25.6 °C - logger likely dry; other maximum 12.4 °C) in July, and in Obršec in Au­gust (14.7 °C). The maximum water temperature exceeded the limit of 12 °C in Šotor spring in July (17.3 °C), several times in Obršec between July and October (14.7–12.8 °C) and in Doblicica also between July and October. Highest water tem­peratures were measured simultaneously with the highest evapotranspiration (Table 3). The highest electrical conductivity in Packi breg was recorded in October (990 µS/cm). The lowest electrical conductivity in Packi breg (620 µS/cm) was in July, during the period of highest evapo-transpiration. The highest electrical conductivi­ty in Obršec (507 µS/cm) was, as in Packi breg, also recorded in October. In this spring the low­est electrical conductivity was detected in August (420 µS/cm), during the period of lowest effective precipitation. The highest electrical conductivity in Šotor was recorded in December (695 µS/cm), when minimum water temperatures and evapo-transpiration were recorded. The lowest electrical conductivity in Šotor (357 µS/cm) was recorded in July, during the period of maximum evapotrans­piration. Response of water level to rainfall events Based on the rainfall events determined in the period July – December 2021 and water level rise in a spring after a short time at the beginning of the rain event we calculated the water level rise rate (WLR) (Table 4). In average, among other springs in Obršec water level rise is the fastest (0.1 m/h) and in Packi breg the slowest (0.04). Concentration of nitrates in springs Nitrate concentrations measured weekly in collected water samples from the six monitored springs over a six-month period (July-December 2021) are shown in Figure 8. The basic statisti­cal analysis and the highest and lowest maximum concentrations in the springs are shown in Table 5. The highest concentration of nitrates in Packi breg (25.3 mg/l) and Otovski breg (29.2 mg/l) was recorded in September, when the lowest amount of total precipitation was recorded. The highest ni­trate concentration in Packi breg (20.8 mg/l) was in October. In Šotor the highest concentration of nitrates was recorded in July (15.1 mg/l), as in Jamnice (29.2 mg/l), during the period of maxi­mum evapotranspiration. Since spring 2010, Jamnice (also named Jelševnik), Otovski breg, Packi breg, and Doblicica are included in the national monitoring of the qual­itative status of groundwater. At the beginning, the national monitoring included sampling twice Table 4. Water level rise rate (WLR) in Packi breg, Obršec, Šotor and Doblicica spring (July – December 2021) as a response to a rainfall event. 16/7, 17/7, 16/7, 17/7, 16/7, 17/7, 07/21 / /// / 17 0.99 0.06 17 0.96 0.06 23 1.04 0.05 18:00 11:00 17:00 10:00 18:15 14:15 17/8, 17/8, 17/8, 17/8, 17/8, 17/8, 08/21 6 0.16 0.03 8 0.88 0.11 8 0.26 0.03 / // / 04:00 10:00 02:00 10:00 00:00 08:00 17/9, 17/9, 17/9, 17/9, 17/9, 17/9, 17/9, 17/9, 09/21 3 0.29 0.10 5 1.12 0.22 13 0.45 0.03 6 0.12 0.02 15:00 18:00 14:00 19:00 07:00 20:00 15:00 21:00 6/10, 8/10, 6/10, 7/10, 6/10, 7/10, 6/10, 8/10, 10/21 28 0.47 0.02 22 1.24 0.06 27 1.31 0.05 29 1.33 0.05 20:00 00:00 19:00 17:00 18:00 21:00 21:00 01:00 2/12, 3/12, 2/12, 2/122, 2/12, 2/12, 2/12, 3/12, 12/21 10 0.26 0.03 11 0.35 0.03 6 0.99 0.17 12 1.22 0.10 14:00 00:00 12:00 23:00 14:00 20:00 14:00 02:00 Average 0.04 0.1 0.07 0.05 WLR .t = t-t [h] max start .WL=WL-WL [m] max start Fig. 8. Nitrate concentration in all observed springs with PNEC for olm. Table 5. Highest and lowest monthly nitrate concentration in Packi breg, Otovški breg, Obršec, Šotor, Jamnice and Doblicica in the period of July – December 2021. 07/21 21.4 13.3 18.9 17.6 16.4 11.5 15.1 5.6 29.2 9.1 4.5 3.9 08/21 17 14.5 19.5 18.9 14.5 12.1 6.2 5.6 7.3 3.3 5.1 4.5 09/21 25.3 17 29.2 22.7 18.2 15.1 8.5 5.6 17.6 3.3 5.1 4.5 10/21 18.9 15.1 27.9 19.5 20.8 15.8 8.5 5.1 6.2 3.3 6.8 4.5 11/21 15.8 13.3 27.9 13.3 15.8 9.1 6.8 4.5 5.6 4.5 6.2 2.2 12/21 10.3 8.5 12.1 11.5 9.1 7.4 11.5 9.1 4.5 3.3 4.5 3.3 Table 6. Basic statistical analysis and comparison of nitrate concentration of short-term observations (July – December 2021) and nitrate concentrations of national monitoring (2010–2018). Higher nitrate concentrations are marked in bold). Jamnice 4.76 3.20 (Jelševnik) 6.76 3.27 (Jelševnik) 29.22 4.25 (Jelševnik) Otovški breg 19.18 16.50 19.36 16.55 29.22 19.90 Packi breg 15.14 15.20 15.71 14.75 25.27 17.70 Doblicica 4.76 3.19 4.79 3.31 6.78 5.55 in a year. In the last few years sampling was per­formed just one time in a year. We compared, where possible, long-term national monitoring ni­trate concentrations (2010–2018) in these springs, with the results of our weekly observations and performed a basic statistical analysis of the data (Table 6). We calculated the median, mean, and maximum value of nitrate concentrations for all data obtained for the long-term (2010–2018) and the short-term (July – December 2021). The high­er values of nitrate concentration are represented in bold. Discussion Evapotranspiration, the sum of bare soil evap­oration, plant transpiration, and evaporation from precipitation intercepted by the canopy (Pollard & Thompson, 1995) and rainfall determine the spatial and temporal distribution of groundwater recharge (Jukic & Jukic, 2015). Land cover, like vegetation, changes the evapotranspiration and consequently has an influence on groundwater recharge (Kovacic et al., 2020). Due to vegetation cover, evapotranspiration in that area has a higher impact on groundwater recharge. Anthropogenic impact in this part of the karst area consists of some illegal landfill, the use of septic tanks in households and pouring manure on agricultural land. Decomposition under anaerobic conditions produces leachate saturated with or­ganic matter, which is characterized by a relatively high temperature, different from the temperature of the surrounding surface (Breg Valjavec & Zega, 2017). Additionally, in complex karst aquifers, significant temperature changes under a variety of hydrological conditions are a consequence of the inflow of water from different parts of the re­charge area (Petric & Kogovšek, 2010). So water temperature can be considered as a natural tracer of groundwater flow (Saar, 2010). The electrical conductivity of water could also be used as a groundwater tracing tool. Electrical conductivity is determined by the dilution by pre­cipitation during rain events and can also be re­flected in higher concentrations of pollutants. The peaks in the electrical conductivity of monitored springs are likely controlled by the washing of pol­lutants from unsaturated zone during rain event (Kogovšek, 2011; Chang et al., 2021). Intensive transfer of contaminants occurred when the more permeable fissures were flushed out, while some of the pollutants were retained in the less permeable part of the thick vadose zone (Kogovšek, 2011). The rough estimation of water level response (WLR) in Šotor and Doblicica springs shows us the fast response in water level rise during a rain event in December, when the minimum evapo-transpiration was recorded, which was considered as an indicator of the high impact of evapotranspi-ration on the Šotor and Doblicica spring recharge dynamics. The highest (November) and lowest (July) effective monthly precipitation and water levels in Šotor and Doblicica spring were recorded in the same month. This basic assessment again demonstrates the important role of land cover in the Šotor and Doblicica recharge area. The high­est (July) and lowest (September) amounts of to­tal precipitation and the highest and lowest water levels in the Obršec spring further indicate less impact from evapotranspiration and more direct infiltration, as well as the existence of a small in­dependent catchment area of the Obršec spring, as previously proposed by Habic (1991a) and Novak (1996). The nitrate ion (NO3–), and consequently, ni­trate toxicity for aquatic animals, is due to nitrate ions (Camargo & Alonso, 2006). Based on these facts nitrate could be one of the potential critical parameters affecting the proposed threshold con­ – centration (PNEC), estimated at 9.2 mg/l NO3 (NLZOH, 2017). The nitrate ion occurs naturally in the nitrogen cycle and during nitrification but is also present in fertilizers in various forms. The most common anthropogenic sources of nitrate in groundwater are livestock and other agricultural production, wastewater, old landfills and illegal dumps, and fertilization with artificial fertilizers or digestate (NLZOH, 2017). The nitrate concen­tration above PNEC could be a major problem in Otovski breg, Packi breg, and Obršec, as con­centrations throughout most of the entire mon­itoring period (July – November) was exceeded, and occasionally also in Šotor and Jamnice (July 2021). There are no problems with high nitrate concentrations in Doblicica, as its catchment area is protected by the decree on water protection, wherein certain environmental interventions are not allowed (e.g. agriculture). The highest con­centration of nitrates was recorded in October in Doblicica, which did not exceed a concentration level of 7 mg/l (6.8 mg/l). Based on the geological and hydrogeological characteristics of Doblicica, low nitrate concentrations could be the result of the higher dilution rate seeing as it has the larg­ est catchment area of all studied springs (Habic et al., 1991; Šinigoj et al., 2012). The main factor behind the high nitrate concentrations in the July –November period in Otovski breg and Packi breg could be agriculture, as in the case of Obršec, which includes an unregulated communal system (Habic et al., 1991a) in the catchment area. In most of the springs, the lowest maximum nitrate concentra­tions were recorded in December, which could be the result of little or no agricultural activity at that time of the year. A potential measure that could serve to ease nitrate concentrations would be to protect the springs with a decree limiting activi­ties that contribute to high nitrate concentrations in the catchment area of such springs. One of the proposed measures should be the regulation of wastewater drainage or the arrangement of a pub­lic sewage system. Also working with farmers on developing new fertilization techniques could con­tribute to a solution. We also compared the median, mean, and max­imum nitrate concentrations of long-term nation­al monitoring of the qualitative status of ground­water with low frequency of water sampling and short-term high-resolution sampling and mea­surements of nitrate concentrations. The compar­ison shows higher nitrate concentrations in the case of high-resolution sampling. In three of the compared springs – Jelševnik, Obršec and Otovs­ki breg – nitrate concentrations are higher in the case of high-resolution sampling, whereas the me­dian nitrate concentration in Packi breg is the ex­ception. Owing to their high solubility and mobil­ity, nitrates respond far more quickly and strongly to changes in hydrologic conditions and land use (Hem, 19985). So, in karst aquifers, low-resolu­tion monitoring of nitrates is unlikely to adequate­ly characterize the system, especially during rain­fall events (Pu et al., 2011). To assess the possible hydrogeological connec­tion between the studied springs, preliminary re­sults of detailed geological mapping at a scale of 1:5000 were used (Mušic et al., 2023). These data show some inconsistencies with previous geo­logical maps of the area (Bukovac et al., 1984a, 1984b; Šinigoj et al., 2012) in terms of stratig­raphy and structural relationships between fault zones. Therefore, only field verified (Mušic et al., 2023) fault zones were included in our interpre­tation. Thus, the majority of the connections cur­rently evaluated are based primarily on the hydro-geologic data collected. The basic hydrogeological characteristics of the Otovski breg are similar with that of Packi breg, as variations in nitrate concen­trations in these two springs are similar over the entire observation period. The connection between Otovski breg and Packi breg has already been con­firmed by previous tracer tests (Habic, 1991b). Al­though in Otovski breg and Jamnice only nitrate concentrations were monitored, a hydrogeological connection is also likely between the springs of Jamnice and Šotor. Nitrate concentrations fluctu­ate similarly in both springs and are low compared to the rest of the monitored springs. Comparisons of water levels, WLR, as well as nitrate concen­trations in Šotor and Doblicica springs also show similar spring dynamics. The Obršec spring has its own smaller catchment area and reacts quickly to precipitation, which drains in the NNE–SSW oriented fault zone (Bukovac et al., 1984a, 1984b; Šinigoj et al., 2012; Mušic et al., 2023). Conclusion The results of this study support the estab­lished knowledge of the dynamics that character­ize the karst springs in Bela Krajina, habitat of the black and white olm, and help to reveal the main problems that affect its conservation status. In or­der to try and solve the problem of the decline of the olm, it was first necessary to assess the basic hydrogeological characteristics of the six observed springs west of Crnomelj in Bela krajina – the hab­itat of the black and white olm – and to determine whether there were any possible geological or hy­drogeological connections between the observed springs. Due to their different hydrogeological charac­teristics, the springs react to weather phenomena differently, but some, like Packi and Otovski breg, have very similar dynamics, as do the Šotor and Doblicica springs. In the next step we evaluated the potential critical factors and water-related pa­rameters (nitrate concentration and temperature). The next step would require finding and specifi­cally defining the causes or critical water parame­ters using quantified threshold values and to take appropriate measures to slow or even halt entire­ly the decline of the olm. Nitrate concentrations throughout most of the entire monitoring period exceed the maximum threshold in Otovski breg, Packi breg and Obršec, and occasionally also in Šotor and Jamnice. During July – August (2021), the water temperature of the springs exceeded 12 °C in all four of the monitored springs. The comparison of high and low-resolution sampling indicates the importance of the high-res­olution monitoring in karst areas, where the runoff and groundwater flow are much faster compared to the flow in the intergranular aquifer. Further research is needed to constrain the hy­drogeological parameters over longer periods and to supplement our data using additional springs in the area. Said detailed hydrogeological data should also be further supplemented with a new detailed geological map of the area. It is necessary to de­fine the origin of nitrate (nitrate isotope analysis), quantify threshold values of the critical parame­ters, specifically define all the causes of olm dete­rioration, and make proposals for the appropriate measures to limit or even stop the olm population decrease. Authors contributions The authors' contribution is as follows: Katja Koren and Rok Brajkovic contributed to the con­ceptualization, analysis of data, writing, and re­view of the article. Authors Manca Bajuk, Špela Vranicar, and Vesna Fabjan, who participated in the present research as a Citizen Science Team, contributed through field observations, measure­ments, sampling, and participated in the discus­sion of the measurements. All authors read and agreed to the published version of the manuscript. Acknowledgments This study was financially supported by the Slove­nian Research Agency (research core funding Ground­waters and Geochemistry (P1-0020), Mineral Re­sources (P1-0025) and by the Slovenian Water Agency with the project Development of a support system for decision-making on the use of groundwater (2555-20­470115) regarding groundwater-dependent ecosystems, including olms. For access to the sampling sites, we extend special thanks to the Zupancic farm and tour­ism Jelševnik and Komunala Crnomelj (Public Utility Company). Additionally, we would like to thank the Re­viewers for their valuable comments, which significant­ly contributed towards the improvement of the manu­script. References Aljancic, G., Goricki, Š., Naparus, M., Jeffery, W., R., Kuntner, M. & Lokovšek, T. 2014: A survey of distribution of Proteus Anguinus by envi­ ronmental DNA sampling. Društvo za jamsko biologijo/ Society for Cave Biology. 10 p. Inter­ net: https://www.cepf.net/sites/default/files/ edna_prezentacijacitluk.pdf (1. 2. 2022). Breg Valjavec, M. & Zega, M. 2017: Zasute vrtace – Potencialna nevarnost za vodne vire. In: Globevnik, L. & Širca, A. (eds.): Voda povezu­je, Drugi slovenski kongres o vodah, Podcetrek 19.–20. 4. 2017. Bukovac, J., Poljak, M., Šušnjar, M. & Cakalo, M. 1984a: Osnovna geološka karta SFRJ 1:100 000. Tolmac lista Crnomelj. Zvezni geološki zavod, Beograd: 63 p. Bukovac, J., Poljak, M., Šušnjar, M. & Caka-lo, M. 1984b: Osnovna geološka karta SFRJ 1:100.000. List Crnomelj. Zvezni geološki za­vod, Beograd. Camargo, J.A. & Alonso, A. 2006: Ecological and toxicological effects of inorganic nitro­gen pollution in aquatic ecosystems: A glob­al assessment. Environment International, 32: 831–849. https://doi.org/10.1016/j.en­ vint.2006.05.002 Chang, Y., Hartmann, A., Liu, L., Jiang, G. H. & Wu, J. C. 2021: Identifying More Realistic Model Structures by Electrical Conductivity Obser­vations of the Karst Spring. Water Resources Research, 57. https://doi.org/10.31219/osf.io/ gw876 Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (Habitats directive). Car, J. 2018: Geostructural mapping of karstified limestones. Geologija, 61/2: 133–162. https:// doi.org/10.5474/geologija.2018.010 Goricki, Š., Stankovic, D., Snoj, A., Kuntner, M., Jeffery, W.R., Trontelj, P., Pavicevic, M., Gri­zelj, Z., Naparus-Aljancic, M. & Aljancic, G. 2017: Environmental DNA in subterranean biology: range extension and taxonomic impli­cations for Proteus. Sci. Rep. 7, 4505. https:// doi.org/10.1038/srep45054 GERK 2023: Javni pregledovalnik graficnih podatkov MKGP. https://rkg.gov.si/GERK/ WebViewer/ (February 2023). GURS 2016: Inhabited area. Kataster stavb. https://eprostor.gov.si/imps/srv/slv/catalog. search#/metadata/5aa2b97b-2ea3-427f-a9fb­d7827c61c115 (February 2023). Habic, P., Kogovšek, J., Bricelj, M. & Zupan, M. 1991a: Izviri Doblicice in njihovo širše kraško zaledje. Acta carsologica, 17/19: 5–100. Habic, P., Kranjc, A., Kogovšek, J., Bricelj, M., Zupan, N., Drole, F., Drame, L. & Zadel, M. 1991b: Raziskovanje Doblicice in Krupe, 5. del, porocilo za leto 1990. Znanstvenoraziskovalni center SAZU, Postojna: 82 p. Hem, J.D. 1985: Study and interpretation of the chemical characteristics of natural water. US Geological Survey, Water Supply Paper, 2254: 1–263. Jensen, F.B. 1996: Uptake, elimination and ef­fects of nitrite and nitrate in freshwater cray­fish (Astacus astacus). Aquatic Toxicology, 34, 95–104. Juberthie, C., Durand, J. & Dupuy, M. 1996: Re­production of Proteus anguinus: results of 35 years of rearing in laboratory-caves of Moulis and aulignac (France). Mémoires de biospéolo­gie, 23: 53–56. Jukic, D. & Denic-Jukic, V. 2015: Investigating re­lationships between rainfall and karst-spring discharge by higher-order partial correlation functions. Journal of Hydrology, 530: 24–36. https://doi.org/10.1016/j.jhydrol.2015.09.045 Kogovšek, J. 2000: Ugotavljanje nacina pretakanja in prenosa snovi s sledilnim poskusom v nara­vnih razmerah. Annales, 10/19: 133–142. Kogovšek, J. 2011: The role of the vadose zone in the transfer of pollution through karst aquifers to karst springs. In: Gabrovšek, F. (eds.): Kar­stology and development challenges on karst - Water, Karst Research Institute ZRC SAZU, Postojna: 21–37. Kovacic, G., Petric, M. & Ravbar, N. 2020: Evalu­ation and Quantification of the Effects of Cli­mate and Vegetation Cover Change on Karst Water Sources: Case Studies of Two Springs in South-Western Slovenia. Water, 12/11: 3087. https://doi.org/10.3390/w12113087 Mezga, K., Janža, M., Prestor, J., Koren, K. & Šram, D. 2016: Groundwater dependent ecosystems – groundwater status indicators. Natura Sloveni­ae, 18: 35–42. Mezga, K., Janža, M., Šram, D. & Koren, K. 2015: Pregled ekosistemov odvisnih od stanja podzemnih vod. Priprava strokovnih podlag in strokovna podpora pri izvajanju vodne direk­tive za podrocje podzemnih voda (Direktiva 2000/60/EC); 2. UKREP DDU26: Analiza raz­položljivih zalog podzemne vode in površinske vode ter obstojece in predvidene rabe vode za obdobje do 2021. Ljubljana: Geološki zavod Slovenije. Mušic, M., Dvoršcak, L., Fariselli, S., Rome, T., Štern, M., Grum Verdinek, L., Brajkovic, R., Rožic, B. & Žvab Rožic, P. 2023: Student ge­ological mapping of the Black olm habitat and its catchment area in Bela krajina. In: Švara, A., Zupan Hajna, N. & Gabrovšek, F. (eds.): 30th International Karstological School "Clas­sical Karst", ZRC SAZU: 135-136. NLZOH, 2017: Ocena tveganja, ki ga predstav­lja nitrat za ekosisteme podzemne vode in za cloveško ribico na projektnem obmocju LIFE Kocevsko. 25. Nacionalni laboratorij za zdrav­je, okolje in hrano, Center za okolje in zdravje Maribor: 20 p. Novak, D. 1996: Padavinsko zaledje izvira Jelševnišcice. Naše jame, 38: 105–110. Petric, M. & Kogovšek, T. 2010: Water tempera­ture as a natural tracer – a case study of the Malenšcica karst spring (SW Slovenia). Ge-ologia Croatica, 63/2: 171–177. https://doi. org/10.4154/gc.2010.14 Petric, M., Ravbar, N. & Kogovšek, T. 2011: Char­acteristics of karst aquifers, their vulnerability and endangerment. In: Gabrovšek, F. (eds.): Karstology and development challenges on karst - Water, Karst Research Institute ZRC SAZU, Postojna. 8–19. Placer, L. 2008: Principles of the tectonic subdi­vision of Slovenia. Geologija, 51/2: 205–217. https://doi.org/10.5474/geologija.2008.021 Pollard, D. & Thompson, S.L. 1995: Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stoma­tal resistance. Global and Planetary Change, 10:129–161. https://doi.org/10.1016/0921­ 8181(94)00023-7 Pu, J., Yuan, D., He, Q., Wang, Z., Hu, Z. & Gou, P. 2011: Highresolution monitoring of nitrate var­iations in a typical subterranean karst stream, Chongqing, China. Environtal Earth Science, 64: 1985–1993. https://doi.org/doi:10.1007/ s12665-011-1019-7 Ribeiro, D. & Ticar, J. 2017: The problematics of cave pollution in Bela krajina / »SOS Proteus« – Field Note. Natura Sloveniae, 19/1: 43–45. Saar, M.O. 2010: Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields. Hy-drogeology Journal, 19: 31–52. https://doi. org/10.1007/s10040-010-0657-2 Scott, G. & Crunkilton, R.L. 2000: Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas), ceriodaphnia dubia, and Daphnia magna. Environmental Toxicolo­gy and Chemistry, 19: 2918–2922. https://doi. org/10.1002/etc.5620191211 SEA 2022a: Crnomelj – Doblice. Referencna evapotranspiracija in padavine samodejnih postaj (dnevni podatki od leta 2017). Internet: https://meteo.arso.gov.si/met/sl/agromet/ data/arhiv_etp/ (10. 2. 2022). SEA 2022b: Meteorološki parametri Crnomelj – Doblice. ARHIV – opazovani in merjeni me-teorološki podatki po Sloveniji. Internet: htt­ ps://meteo.arso.gov.si/met/sl/archive/ (10. 2. 2022). SEA 2022c: Kakovost podzemnih voda. Inter­net: https://gis.arso.gov.si/portal/apps/ webappviewer/index.html?id=a16308bd­ 37344559b1c5d5e515468f49 (10. 2. 2022). Sket, B. 1997: Distribution of Proteus (Amphib­ia: Urodela: Proteidae) and its possible ex­planation. Journal of Biogeography, 24/3: 263–280. https://doi.org/10.1046/j.1365­ 2699.1997.00103.x Šinigoj, J., Lapanje, A. & Poljak, M. 2012: Geologija obmocja zaledja Doblicice. Dolenjski kras, 6: 46–52. Vlahovic, I., Tišljar, J., Velic, I. & Maticec, D. 2005: Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and deposi­tional dynamics. Palaeogeography, Palaeocli­matology, Palaeoecology, 220/3–4: 333–360. https://doi.org/10.1016/j.palaeo.2005.01.011 Voituron, Y., de Fraipont, M., Issartel, J., Guil­laume, O. & Clobert, J. 2011: Extreme lifespan of the human fish (Proteus anguinus): a chal­lenge for ageing mechanisms. Biology let­ters, 7/1: 105-107. https://doi.org/10.1098/ rsbl.2010.0539 GEOLOGIJA 66/1, 167-183, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.007 Geological-genetic structure of Irpin city, the role of lithological factors during engineering-geological zoning and construction assessment Geološko-genetska zgradba mesta Irpin, vloga litoloških dejavnikov pri inženirsko-geološkem dolocanju con in oceni gradnje Pavlo ZHYRNOV1 & Iryna SOLOMAKHA2 1Design Institute of Security Service of Ukraine, str. Zolotovorytska, 5, 01030 Kyiv, Ukraine; e-mail: sbu-misto@ukr.net 2Ukrainian State Scientific Research Institute of Cities’ Design “DIPROMISTO” named after Y.M. Bilokonya, blvd.LesiUkrainky, 26, 01133 Kyiv, Ukraine; e-mail: gis@dipromisto.gov.ua Prejeto / Received 21. 9. 2022; Sprejeto / Accepted 4. 4. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Key words: engineering-geological zoning, engineering-geological units, geological-genetic structure, engineering- geological map, construction assessment Kljucne besede: inženirsko-geološka rajonizacija, inženirsko-geološke enote, geološko-genetska zgradba, inženirsko­ litološka karta, gradbena ocena Abstract The scheme of engineering-construction assessment created based on engineering-geological zoning of the city’s territory is desirable among additional graphic materials in the design of master plans projects as determined by building regulations. Engineering-geological zoning provides for different ranks’ selection of engineering-geological units (EG units), which have a particular range of common engineering-geological conditions that ultimately determine the construction sites’ affiliation to a specific suitability category. Geological-genetic structure of Irpin city of Kyiv region (Ukraine) is explored in this article. A variant of the creation of a large-scale engineering-geological map and corresponding geological-lithological sections by supporting boreholes in the borders of the city based on the engineering-geological survey conducted is presented. The obtained result allowed the selection of engineering geological zoning units – engineering geological districts by general conditions of geological development and subdistricts by engineering-geological complexes of Quaternary rocks’ thickness. The analysis of soils’ geomechanical properties (engineering-geological elements) lays the foundations for the selection of engineering-geological sites based on the comparison of this information with geomorphological, hydrogeological and geodynamic data. Accounting of geological-lithological factors in the preparation of the construction assessment scheme in the project of Irpin city’s master plan has become the ultimate result. Izvlecek Shema inženirsko-gradbene presoje, ki je ustvarjena na podlagi inženirsko-geološkega razvršcanja mestnega ozemlja, je zaželena informacija, ki bi bila na voljo projektantom pri izdelavi gradbenega projekta. Inženirsko geološko razvršcanje predvideva razlicno rangiranje inženirsko geoloških enot (EGE), ki imajo skupne nekatere osnovne inženirsko-geološke lastnosti, ki vplivajo na gradnjo objektov. V tem clanku je raziskana inženirsko-geološka sestava tal mesta Irpin v Kijevski regiji (Ukrajina). Predstavljena je varianta izdelave obsežne geološko-litološke karte in ustreznih geoloških litoloških prerezov z vkljucenimi podatki iz raziskovalnih vrtin, izvedenimi za inženirsko-geološke raziskave razlicnih predelov mesta. Dobljeni rezultat je omogocil rangiranje tal glede na inženirsko-geološke zahteve glede temeljenja objektov. V naslednjem koraku se tla rangirajo še na debelino kvartarnih plasti. Analiza geotehnicnih lastnosti zemljin (inženirsko­geoloških elementov) postavlja osnovo za izbiro primernih lokacij za gradnjo na osnovi inženirsko-geoloških podatkov pridobljenih z geomorfološkimi, hidrogeološkimi in geosezmicnimi podatki. Koncni rezultat raziskave je ocena tal glede na primernost gradnje v mestu Irpin. Introduction In the design of projects’ master plans building regulations determine that among some addition­al town-planning documentation the engineer­ing construction assessment scheme is desirable and that scheme takes into account natural and anthropogenic factors that define construction sites’ suitability for urban development (Build­ing regulations B.1.1-15:2012, 2012). Estimated natural and technogenic factors (geological pro­cesses triggered by civil engineering activity that harm building structures: technogenic waterlog­ging, eutrophication, technogenic landslides, wa­ter erosion, ground subsidence, etc. (Shnyukov et al., 1993) of engineering-construction assessment should include geomorphological characteristics, geologic-lithological structure, geomechanical properties of rocks, hydrogeological circumstanc­es, microseismic circumstances, etc. (Zhyrnov et al., 2019). Engineering-geological maps are a generalized image on a topographic base of a complex of geo­logical parameters, the interaction of which deter­mines the engineering-geological conditions, the specifics of surveys, construction and operation of engineering structures. The most important of engineering-geological conditions in the maps are the basis for the engineering construction scheme’s elaboration, namely the geological struc­ture of the territory, lithological composition, hy­drogeological conditions and current natural and technogenic geological processes. Engineering-ge­ological zoning maps have particular importance among engineering-geological maps for engineer­ing construction assessment. They are drawn up as a result of identification in the space based on theoretical positions’ combination and methodo­logical procedures of objectively existing territo­rial elements that have common engineering-geo­logical features of their delineation from territories that haven’t such features, their mapping and de­scription. Different-order engineering-geological units are allocated during the regional type of en-gineering-geological zoning and each next unit is allocated from the previous (larger) by dividing it into separate parts based on specific classification features (Trofimov & Krasilova, 2008). A significant role belongs to EG units that are allocated by geological-genetic and lithological features during engineering-geological zoning. Geological-genetic and lithological structure of the territory plays the main and crucial role in the engineering-geological substantiation of con­struction projects, determination of the type of buildings’ foundations, planning the features of building operation and their reverse impact on the ecological state of the geological environment (Bell, 2007). Therefore, there is an urgent need to characterize the geological-genetic and lithologi- cal structure of the deposits used for construction. Identification of engineering-geological dis­tricts and subdistricts, as well as preconditions for the selection of engineering-geological sites based on detailed geomorphological, geological-genet­ic and lithological characteristics using the ex­ample of Irpin city, Kyiv region (Ukraine) is the purpose of this article. Determination of the place of lithological factors in the structure of engineer-ing-geological zoning and complexity categories of geologic-lithological conditions for construction assessment are also the objectives of this article. Attempts of engineering-geological zoning detailing with geologic-lithological features’ ac­counting have been implemented in Tunis city, (El May et al., 2010) Split city (Šestanovic et al., 2012) Moscow city, (Osipov et al., 2012) Velopolja region, (Muceku, 2010) Fortaleza region, (Zuquette et al., 2004). We took into account the scientific experi­ence of the predecessors and offer our opinion on the consideration of geologic-lithological factors in the engineering-geological zoning for urban plan­ning. One of the previous articles (Zhyrnov & Solo-makha, 2022) provides an example of a complet­ed engineering-geological zoning of the Irpin city. However, in this study, there is not enough information about the geomechanical properties of engineering-geological elements, there are no recommendations for choosing the types of foun­dations for buildings and structures, and protec­tive measures for buildings located in areas with a high level of groundwater are not introduced. In previous work is no accounting for the category of complexity of geological-lithological conditions for engineering-construction assessment. In addition, here we will dwell in more detail on the principles for selection such important engineering-geologi­cal units as districts and subdistricts. The current article aims to fill these important gaps. Study area Irpin city administratively is situated in the central part of the Kyiv region at a distance of 7 km northwest of Kyiv, which is Ukraine’s capital (Fig. 1). Irpin city is situated in the southwest part of the East European Plain in the limits of Kyiv Pole-sia as a part of the Polesian Lowland. According Fig. 1. Irpin city in the central part of Kyiv region, Ukraine. Sl. 1. Mesto Irpin v osrednjem delu Kijevske regije, Ukrajina. to the geomorphological map (scale 1: 55 000) of Ukraine, the investigated territory corresponds to Makariv moraine fluvioglacial wavy slightly dis­sected plain between Irpin’s, Buchanka’s, Teteriv’s and Zdvyzh’s River valleys. Knowing the physi­cal-geographical and administrative location of the city, it is easy to identify that according to prin­ciples of engineering and geological classification, Irpin is situated in the limits of East-European Craton, the north-east slope of Ukrainian Shield province, Kyiv Polesia subprovince, engineering geological region of Makariv moraine fluvioglacial wavy slightly dissected plain (Paton et al., 2007). There are such engineering geological districts in the limits of Irpin according to engineering geo­morphological zoning of Kyiv city district’s map: erodible and depositional alluvial plain and denu­dation-depositional watershed moraine and flu-vioglacial plain (Barshchevsky et al., 1989). Upper- and Holocene Quaternary Q-Qerod- IIIIV ible and depositional alluvial plain with absolute altitudes of 107–118 m. Middle Quaternary QII denudation-depositional watershed moraine flu-vioglacial plain with absolute altitudes of 120– 160 m. In the borders of the erodible and depo­sitional alluvial plain are allocated: 1) Alluvial floodplain flat inundated terrace of Buchanka and Irpin Rivers of Holocene age with swamped areas and peat depressions of Holocene age; 2) Alluvi­al upper Holocene, slightly dissected first above-flood terrace of Buchanka and Irpin Rivers. In the borders of the denudation-depositional watershed moraine, fluvioglacial plain is allocated: 1) Plateau and highland of moraine fluvioglacial wavy and slightly dissected plain of Dnipro age with cor­ responding absolute altitudes of 135–160 m; 2) Lowland part of moraine fluvioglacial wavy and slightly dissected plain of Dnipro age with abso­ lute altitudes of 120–135 m; 3) Arroyos’ bottoms and detrital cones of Holocene age; 4) Sites with artificially modified relief (Tsybko, 2020). Flooding in the Buchanka and Irpin Rivers’ floodplains, waterlogging in the borders of the floodplain and the first terrace of the Buchanka and Irpin Rivers are part of the dangerous haz­ ards in the Irpin. Waterlogging is connected with a naturally high level of groundwater, floodplain flooding during spring and also the unloading of aquifers in permanent and temporary watercours­es. Eutrophication occurs in the Buchanka and Irpin Rivers’ floodplain and is connected with spring floods and unloading of aquifer related to Middle-Quaternary fluvioglacial deposits of divid­ ing range. River erosion is generally weak along the Irpin and Buchanka Rivers and occurs at local sites during spring. Eolian sand deflation is ob­served on some sites of the floodplain and first ter­races of the Irpin and Buchanka Rivers (northeast and northwest city outskirts) (Tsybko, 2020). Significant hydration of Quaternary depos­its and high groundwater level, which provokes flooding, waterlogging and eutrophication are the main obstacles to urban development (Rudenko et al., 1971). Comparison of data on the territory’s mor­phogenetic structure and areas of development of natural hazards made it possible to build a geo­morphological map of Irpin city (Zhyrnov & Solo-makha, 2022) (Fig. 2). The morphogenetic and morphological struc­ture of the relief lays the foundations for the se­lection of engineering-geological districts and subdistricts, but it is necessary to distinguish corresponding geological-genetic complexes of Quaternary sediments within the erosion-accu­mulative alluvial plain and the denudation-accu­mulative watershed moraine water-glacial plain and determine the lithological composition of the mentioned Quaternary deposits for the relief’s morphological elements. Fig. 2. Geomorphological map of Irpin city (Zhyrnov & Solomakha, 2022). Sl. 2. Geomorfološka karta mesta Irpin (Zhyrnov & Solomakha, 2022). Materials and methods There are such initial data for engineering-geo­logical mapping: a topographic survey of Irpin city on a scale of 1: 5000, a geological map on a scale of 1: 50 000 on sheets of Kyiv region, (Solovytsky & Vozgryn, 1990) project of the master plan of Irpin city (Gubenko et al., 2017), state geological map of Ukraine – 200 (Ivanenko, 2020), a geological map of Ukraine (Panchenko, 2019), materials of engi-neering-geological investigations between 1990 and 2020 years under construction for residential and public buildings that have been made by different design organization and companies. 154 geotech­nical reports were analyzed, and those materials were collected and systematized at SE “Ukrainian Institute of Engineering Technical Exploration for Construction” (UKRIINTR) (Tsybko, 2020). The principles of engineering-geological zon­ing were most fully developed by Ivan Popov, who proposed to distinguish engineering-geological re­gions, oblasts, districts and subdistricts of various orders as independent taxonomic units. Engineering-geological regions are distin­guished by structural-tectonic features. The engi-neering-geological region of the first order is the largest taxonomic unit. The second-order region, namely the engineering-geological province, is distinguished by its morphostructure and hydro-geological structure. The region of the third order (subprovince) is distinguished based on the mor­phogenetic type of the territory of the first order (Popov, 1951). Popov proposed to distinguish engineering-geological areas within one region based on geo­morphological features. With this approach, the geomorphological features of the territory are a consequence of the history of its geological devel­opment, mainly in recent times. We can say that engineering-geological regions are territories that are distinguished by geostructural features as a result of the analysis of the history of the geologi­cal development of this territory for the entire time available to us, and engineering-geological oblasts are parts of regions that have had different devel­opment in recent times, which was reflected in their geomorphological features (Popov, 1951). So, engineering-geological oblasts are distinguished based on the IInd order morphogenetic type. Engineering-geological districts in the engi-neering-geological oblasts are distinguished on the territory of which the uniformity of the geological structure is noted, which is expressed in the same sequence of rocks’ occurrence, their thickness and petrographic composition. Such relatively small territories can be formed under the conditions that they experienced tectonic movements of the same sign and intensity over their entire area and were in the same paleoclimatic conditions throughout their development history, which goes beyond the latest stage of the Earth’s geological development (Popov, 1951). Therefore, engineering-geological districts are distinguished based on the common conditions of geological development. Engineering-geological subdistricts can be al­located within one engineering-geological district according to a different state of rocks, and the manifestation of modern and ancient geological processes, if necessary (Popov, 1951). For exam­ple, within one engineering-geological area, there may be different strata of rocks located in a strati­graphic sequence and characterized by similarity or natural variability of engineering-geological characteristics. So, engineering-geological subdis­tricts are distinguished based on engineering-geo­logical complexes of rocks of a certain age geolog­ical layer. Engineering-geological sites are allocated within subdistricts during a large-scale engineer-ing-geological study of the territory, within which engineering-geological subsites can be allocated as well. As a rule, engineering-geological sites are distinguished according to the conditions of con­struction, that is, according to the assessment of a complex of natural and technogenic factors (Pop­ov, 1951) (Fig. 3). Fig. 3. Procedure of engineering-geological zoning (adapted after Zhyrnov & Solomakha, 2022). Sl. 3. Postopek inženirsko-geološkega razvršcanja (prirejeno po Zhyrnov & Solomakha, 2022). The following methods were used in the current research: field engineering-geological researches (geomorphological, geological and hydrogeological survey, identification of natural hazards) methods of interpretation of remote sensing data (analysis of satellite images Sentinel-2 (scale 1: 40 000, pe­riod - 2017–2020 years) of the study area in or­der to fix natural hazards) methods of mining and drilling operations: 72 wells were drilled by per-cussion-rope method with a depth of 1.6 to 94 m, 9 points of cone penetration test were made (study­ing the geological structure, indication of tecton­ic processes and rock fracturing, conducting field experimental work, sampling rocks with an undis­turbed structure and water samples, organization of observations of the regime of groundwater and exogenous geological processes) hydrogeologi-cal research (research of state of rocks, depth of groundwater level and the level of soils’ permea­bility) methods of engineering-geomorphological (engineering-geomorphological maps are nar­row-purpose maps that serve engineering pur­poses in construction, reflect the structural and geomorphological characteristics, dynamics and stability of the relief, its qualitative and quantita­tive features and development forecast elements (Palienko, 1978) and engineering-geological map­ping (creation of engineering-geomorphological (scale 1: 55 000) and engineering-geological maps (scale 1: 55 000) for the purposes of urban plan­ning) laboratory methods for obtaining data on the geomechanical properties of soils (selection of engineering-geological elements, research of gran-ulometric composition, description of strength, deformation properties, compressibility indi­cators, etc.) as well as the method of conjugated cartographic analysis (complex comparison of car­tographic data into a single multicomponent syn­thetic map) (Fig. 4). Results As noted earlier borders of genetic types and relief morphology were delineated during the en-gineering-geological survey using GPS equipment, made relief’s morphologic description, research of natural hazards and made a detailed description Fig. 4. Data and methodology of current research (adapted after Zhyrnov & Solomakha, 2022). Sl. 4. Podatki in metodologija trenutne raziskave (prirejeno po Zhyrnov & Solomakha, 2022). of sediments, that are involved in construction, selected soil samples for determination of their geomechanical properties in the geotechnical lab­oratory. All this information was exported from GPS equipment and referenced to the existing topographic survey. Geotechnical reports’ analysis allowed to specify Quaternary deposits’ lithologi-cal composition and correct the areas of hydrolog­ical and hydrogeological hazards’ manifestation in particular flooding, waterlogging and eutrophica­ tion (Tsybko, 2020). Irpin is situated on the borders of the Ukrainian Shield’s northern-east slope in geostructural terms, which gradually dips in a north-easterly direction to the side of the Dnieper-Donets Rift. The sediments of the Cretaceous, Paleogene and Quaternary systems lie on the eroded surface of the Precambrian basement. Deposits of the Ceno­manian layer, represented by sands and sandstones on siliceous cement are the oldest sedimentary formations exposed in the territory of Irpin. The sand is greenish-gray, fine- and medium-grained, quartz-glauconite. Deposits of the Upper Creta­ceous are on the rocks of the Cenomanian layer represented by white, light gray chalk with an av­erage thickness of 9.0 m. The Kaniv, Bucha, Kyiv and Kharkiv suites are established as part of the Paleogene sediments. Rocks of the Kaniv Forma­tion (P2kn) lie on chalk rocks and are represented by shallow marine formations: dark gray fine- and fine-grained glauconite-quartz, micaceous sand with underlying layers of aleurites and clays, and sometimes sandstones. The thickness of the Kaniv suite varies from 20.4 to 30.5 m with an average thickness of 25 m. The sediments of the Bucha suite (P2bc) lie on the Kaniv sediments and are overlain by clays and marls of the Kyiv suite, they are represented by shallow marine formations: greenish-gray, fine-and fine-grained sands of quartz-glauconite com­position and dark green and greenish-gray clays with thickness from 8.0 to 20.0 m. Deposits of the Kyiv suite (P2kv) are repre­sented by a layer of greenish-gray clayey marls, which pass into marly clays with a thickness of 4.0-30.0 m. A significant change in the capacities of the Kyiv suite is due to its erosion in the Irpin and Buchanka Rivers’ riverine zones for which the Kyiv suite’s deposits are a water-resistant layer. Deposits of the Kharkiv suites (P3ch) are limitedly distributed on the territory of the city’s south-western part, where they are confined to the most mountainous part of the watershed between the Irpin and Buchanka Rivers, they are blurred in the rest of the area in Quaternary time. The sedi­ments of the Kharkiv suite are gray, greenish-gray, shallow- and fine-grained sands of quartz-glauc­onite composition with a thickness of 4.5-5.0 m. Quaternary sediments completely cover pre-Quaternary formations. They are represented by the following genetic types: water-glacial, gla­cial, alluvial, marsh and technogenic. Quaternary deposits in terms of age are represented by Middle Quaternary, Upper Quaternary and modern sedi­ments. Mid-Quaternary water-glacial submarine sed­iments (fIIdn1) lie on formations of the Kharkiv and Kyiv suites. They are widely distributed on the city’s territory and consist of the highlands between the Irpin and Buchanka Rivers. They are represented by yellow-gray, gray, ochreous, fine-and medium-grained, quartz sands with admix­tures of feldspars with layers and lenses of clays. They overlap with moraine and water-glacial mo­raine sands with a capacity of 12 m. Mid-Quaternary glacial (moraine) deposits (gIIdn2) are represented by glacial deposits with red-brown loams and clays, sometimes green-ish-gray with ochre spots of ferrugination with inclusions of gravel and pebbles of crystalline rocks. Coarse-grained material is represented by granites, gneisses, limestones and sandstones. Moraine sediments were not widely distributed, they were preserved only in upland watershed ar­eas and remnant mounds. The moraine deposits are covered everywhere by fluvioglacial deposits, their thickness ranges from 3.0 to 11.5 m. Mid-Quaternary water-glacial over-moraine deposits (fIIdn3) are the most widely distributed on the city’s territory, they are the basis for the foun­dations of most buildings and structures. They are represented by light-gray, brown-yellow and yel-low-gray quartz sands. Sands are multi-grained, medium-grained prevail. Sandstone layers and lenses are often found in gravel-pebble material with a thickness of 0.2–2.7 m, including boulders of crystalline rocks. The total thickness of flu-vioglacial deposits varies from 5 to 20 m with an average thickness of 10 m. Alluvial Upper Quaternary aIII deposits are rep­resented by alluvial formations of the Irpin and Buchanka Rivers’ floodplain terraces – quartz, fine-grained, light-gray and yellow-gray sands with a thickness of 8–12 m with interlayers and lenses of sands with a thickness of 0.2–0.5 m. Al­luvial deposits lie on the washed-out surface of Kyiv suite’s marls. Modern Quaternary alluvial aIV and biogenic deposits bIV consist of the floodplain of the Irpin and Buchanka Rivers. They are represented by fine-grained light-yellow and gray-yellow quartz a thickness of 0.13–0.9 m. Biogenic deposits are sands with a thickness of 10–16 m with lens-represented by peat with a thickness of 0.3-5.0 m, es and interlayers of sandy loams and silts with which covers alluvial deposits in most of the flood- Fig. 5. Geological-lithological map of Irpin city (Zhyrnov & Solomakha, 2022). Sl. 5. Geološko-litološka karta mesta Irpin (Zhyrnov & Solomakha, 2022). plain. Peat is mainly poorly decomposed, brown and brownish-brown in colour. The composition of peat is dominated by reed material. Peat is of­ten sandy, which is the result of washing out the organic component from its mass (Tsybko, 2020; Veklych, 1958; Zhyrnov & Solomakha, 2022). Therefore, the analysis of the territory’s geo­morphological features and geological structure made it possible to distinguish four geological-geneti crock complexes on the territories of Irpin’s city. 1. A complex of modern alluvial sandy-clay de­posits (aIV) with a thickness of 10–16 m rep­resented by fine-grained quartz sands of light yellow and gray-yellow colour with lenses and interlayers of sandy loams and loams with a thickness of 0.3–0.9 m; 2. A complex of Upper Quaternary alluvi­al sandy-clay deposits (aIII) with a thick­ness of 8–12 m, represented by quartz Fig. 6. Geological-lithological columns by boreholes on lines of geological sections and by individual boreholes (Zhyrnov & Solomakha, 2022). Sl. 6. Geološko-litološki popisi vrtin na linijah geoloških pre­rezov in po posameznih vrti­nah (Zhyrnov & Solomakha, 2022). medium-grained sands of light gray and yel-low-gray colour with lenses and layers of sand with a thickness of 0.2–0.5 m; 3. A complex of Upper Quaternary water-glacial sand-clay deposits (fIIdn) with a thickness of 5–20 m represented by granular quartz sands of a light gray colour with lenses and interlay­ ers of sands, loams and clays with a thickness of 0.2–2.7 m with the inclusion of gravel and weakly rolled pebbles of crystalline rocks; 4. A complex of Upper Quaternary moraine de­posits (gIIdn) with a thickness of 8–13 m, rep­resented by boulder loams and clays, in places with layers of sand (Figs. 5, 6). The analysis of the geomechanical properties of the soils according to SSU B V.2.1-2-96 made it possible to divide the selected complexes into 12 engineering-geological elements (EGE) which are presented in the geological-lithological sections (Fig. 7). Fig. 7. Geological-lithological sections I-V on Irpin city’s territory along conditional lines (Zhyrnov & Solomakha, 2022). Sl. 7. Geološko-litološki profili I-V na obmocju mesta Irpin (Zhyrnov & Solomakha, 2022). Table 1. Engineering-geological elements (EGE) are presented in the geological-lithological sections. Tabela 1. Inženirsko-geološki elementi (IGE), ki so predstavljeni na geološko-litoloških profilih. . EGE Description 1 Peat, mainly finely decomposed, brown and brownish-brown in colour. Reed material is present in the composition of peat, and sedge material plays a secondary role. Peat is often sandy, which is the result of the washing-out of or­ganic components from its mass. The peat is medium ashy, strongly moist, plasticity and very compressible. Peat is characterised by poor geomechanical properties and cannot be the basis for buildings and structures. 2 Quartz sand with the inclusion of weakly rounded quartz grains. Lenses and layers of sandy loam, loam and silt are found at various depths. The sand is heterogeneous, of poor density, fine and fine-grained, horizontally layered, low water perme­ability, medium deformability, compressibility and strength. 3 Medium-grained quartz sand of light gray and yellow-gray colour, with lenses and layers of sand 0.2–0.5 m thick. Sand is heterogeneous, poorly compacted, medium permeable, medium deformability, compressibility and strength. 4 Light-gray multi-grained quartz sands with brown and red-brown layers and spots of ferruginization. The sand is layered with the inclusion of weakly rounded quartz grains with separate inclusions of gravel and pebbles, as well as with layers of gravel-pebble material with a thickness of 5 to 25 cm. The sand is homogeneous, with a low degree of compactibility, high permeable, medium deformability, compressibility and strength. 5 Light-yellow and brown-yellow sandy loam. The soil is thin-layered, sometimes with layers of sand, loam and clay. Statis­tical processing of the granulometric composition gave the following content of fractions: sand – 64 %, dust – 28 %, clay – 8 %. Sandy loam is solid, dense, weakly compressible and medium deformability. 6 Moraine loam of light composition. Loam is dense, stiff, low water permeability, weakly compressible and medium deform-ability. 7 Moraine clay of dark brown colour with inclusions of pebbles and boulders. Clay is dense, stiff, impermeable, weakly com­pressible and medium deformability. 8 Moraine loam. Loam is dense, stiff, low water permeability, weakly compressible and slightly deformable. 9 Quartz sand. The sand is homogeneous, with a high permeable, medium deformability, compressibility and strength. 10 Quartz sand. Sand is heterogeneous, poorly compacted, medium permeable, medium deformability, compressibility and strength. 11 Sandy aleurite, thinly laminated, of low strength, medium-deformable. 12 Marl. Table 2. Geomechanical properties of biogenic soils. Tabela 2. Geomechanske lastnosti biogenih tal. . Indicators of geomechanical properties EGE-1 1 Degree of soil decomposition, R (%) > 20 2 Soil ash content, % 24 3 Weighted soil moisture, w (%) 390 4 Plasticity index 143 5 Density of wet peat . (g/cm3) o 1.01 6 Density of dry peat, .(g/cm3) d 0.22 7 Solid particles density, . (g/cm3) s 1.57 8 Porosity, e 19 9 Volume shrinkage, eshV 34 10 Specific adhesion, C (KPa) 0.33 11 Modulus of deformation, E(MPa) o 2.6 Table. 3. Geomechanical properties of sandy soils. Tabela. 3. Geomechanske lastnosti pešcenih tal. Table. 4. Geomechanical properties of clayey soils. Tabela. 4. Geomehanske lastnosti glinenih tal. . Indicators of geomechanical properties EGE-2 EGE-3 EGE-4 EGE-9 EGE-10 1 Coefficient of non-uniformity, Cu 1.7 2.1 3.4 4.0 1.9 2 Compaction coefficient, Cc (%) 7–15 8–12 8–12 - 7–10 3 Density, . (g/cm3) o 2.02 2.00 2.00 1.99 1.97 4 Bulk density, .(g/cmł) c 1.70 1.70 1.72 1.66 1.68 5 Natural slope’s angle dry (°) 33 32 33 - 29 6 Natural slope’s angle underwater (°) 25 25 29 - 23 7 Internal friction’s angle, f (°) 34 37 27 33 33 8 Specific adhesion, C (KPa) 2.94 0.98 1.96 2.94 0.98 9 Modulus of deformation, E(MPa) o 23.5 27.5 31.4 22.6 23.5 . Indicators of geomechanical properties EGE-5 EGE-6 EGE-7 EGE-8 EGE-11 EGE-12 1 Moisture content, W (%) 16 13 22 14 29 31 2 The upper limit of plasticity, W(%) l 22 26 44 35 50 34 3 Plasticity index, PI 4 10 22 14 18 25 4 Density, . (g/cmł) o 1.92 2.14 1.99 2.08 1.91 1.89 5 Bulk density, .(g/cmł) c 1.69 1.89 1.63 1.80 1.48 1.44 6 Porosity, e 0.58 0.43 0.67 0.51 0.84 0.90 7 Internal friction’s angle, f (°) 27 23 18 22 20 18 8 Specific adhesion, C (KPa) 15.7 25.9 49.0 32.4 42.2 72.6 9 Modulus of deformation, E(MPa) o 29.4 45.1 34.3 53.9 23.5 25.5 Engineering-geological districts and sub-districts can be distinguished based on the geo­morphological and engineering-geological maps’ comparison (Figs. 2, 5) by the procedure of engi-neering-geological zoning. Geomechanical prop­erties of engineering-geological elements are the basis for the selection of engineering-geological sites, however, hydrogeological data are needed for this, so the selection of engineering-geological sites is not possible yet. However, the soils’ geo-mechanical characteristics determine the litholog­ical component of Irpin city’s construction assess­ment, which will be discussed later. So, the I district is represented by Upper- and Holocene Quaternary Q-Qerodible and dep- IIIIV ositional alluvial plain with absolute altitudes of 107–118 m. Alluvial deposits with a thickness of 8–16 m lie on the Kyiv suite’s marls, which are a water-resistant layer for this area. Two engi-neering-geological subdistricts are allocated in the first district: 1) Alluvial floodplain inundat­ed flat terrace with swamped areas and peaty depressions of Holocene age that composed mod­ern alluvial deposits aIV with a capacity of 10– 16 m, that covered by modern organogenic forma­tions (silt, peat) bIV with a capacity of 0.3–5.0 m. Alluvial deposits are represented by quarts of fine-grained sands of light yellow and grey-yellow colours with a layer of sandy loams and loam with a capacity of 0.3–0.9 m. The alluvial complex lies on the washed-out surface of the Kyiv suite’s marls P2kv; 2) Alluvial Upper Holocene slightly dissect­ed first above-flood terrace that composed by al­luvial sandy and clayey deposits aIII with a capac­ ity of 8–12 m, that represented by alluvial quarts fine-grained sands of light grey and yellow-grey colours with lens and layers of sandy loams with a capacity of 0.2–0.5 m. The alluvial complex lies on the washed-out surface of the Kyiv suite’s marls P2kv. The II district is represented by the Middle Quaternary QII denudation-depositional watershed moraine fluvioglacial plain with absolute altitudes of 120–160 m. Fluvioglacial and glacial deposits with a thickness of 5 to 23 m lie on the marls of the Kyiv suite, which is a regional water-resis­tance layer for this area. Two engineering-geolog­ical subdistricts are allocated in the II district: 1) Lowland part of moraine fluvioglacial wavy and slightly dissected plain of Dnipro age with abso­ lute altitudes of 120–135 m. Subdistrict composed of complex of Middle Quaternary fluvioglacial sandy-clayey deposits (fIIdn3) with a capacity of 5–20 m at 10 m medium capacity. The complex is represented by middle-grained quarts of sands of light grey colour with lens and layers of san­ dy loams, loams and clays with a capacity of 0.5– 2.7 m with the inclusion of crystal rocks’ gravel Fig. 8. Engineering-geological districts and subdistricts of Irpin city. Sl. 8. Inženirsko-geološka okrožja in podokrožja mesta Irpin. and pebble. Sometimes the gravel-pebble material is collected in the form of lenses and layers; 2) Pla­teau and elevated portion of moraine fluvioglacial wavy and slightly dissected plain of Dnipro age with absolute altitudes of 135–160 m. Subdistrict consists of moraine complexes (gIIdn2) with a ca­pacity of 8–13 m, which cover and underlie with fluvioglacial sandy-clayey deposits of advance and retreat of Dnipro glacier (fdnand f dn). Moraine II1 II3 deposits are represented by loams and clays with the inclusion of pebbles and boulders, fluviogla­cial deposits are represented by average-grained quarts sands with layers of sandy loams and loams including gravel and pebbles. (Fig. 8) (Tsybko, 2020; Zhyrnov & Solomakha, 2022). Sites with artificially modified relief and ar­royo’s bottoms and detrital cones of the Holocene age will relate to engineering-geological sites due to the small size and local spread. Discussion The conducted research on the geological-ge­netic structure map of Irpin city allows us to de­termine two topics for discussion: • Disadvantages of studying soil properties (engineering-geological elements) within Irpin city; • Geological-lithological factors’ accounting for drawing up schemes of construction as­sessment in the project of the master plan of Irpin city. 1. Disadvantages of studying soil properties (engineering-geological elements) within Irpin city; The main disadvantages in the determination of soils’ geomechanical properties (engineer-ing-geological elements) within Irpin city are the absence of the following studies: a) determination of chemical soils’ properties, in particular, miss­ing data on solubility, acid-base properties and soils’ chemical aggressiveness; b) determination of soils’ physical properties, in particular, missing information on thermophysical (thermal capaci­ty, soils’ frost resistance) and electrical properties (electrical conductivity, soils’ corrosive activity); c) determination of soils’ biotic properties (biolog­ical activity, bioaggressiveness and biocorrosion in soils);d) determination of certain geomechan­ical properties of soils (rheological properties: creep, relaxation of stresses in soils, soils’ long­term strength; dynamic properties: soils’ behavior under vibration and impulsive effects, soils’ liq-uefaction)(Trofimov et al., 2005). The categories of soils according to seismic properties according to the construction sites’ normative seismicity are not defined (Building regulations B.1.1-12:2014, 2014). It is worth noting that the construction of geological-lithological sections and the determina­tion of soils’ geomechanical properties took place only in the high-density area and most developed northern, north-eastern and north-western city’s parts, while the rest of Irpin’s territory has not been explored, which is a significant disadvantage for the urban development in the distant future. 2. Geological-lithological factors’ accounting for drawing up schemes of construction assessment in the project of the master plan of Irpin city. The compiled geological-lithological map and sections can be used to determine the territory with dif­ferent degrees of geological conditions’ complexity for the city’s construction assessment at this stage. (tab. 5; Building regulations A.2.1-1-2008, 2008). The study of the geological-lithological struc­ture of Irpin city allows us to conclude that the engineering-geological conditions for the develop­ment of the city’s territory are simple and the soils that consist of the Quaternary and Paleogene rock strata suitable for their use by their geomechanical properties as a natural base for laying foundations, except the peat layer, which must be removed or which must be excluded during construction de­velopment (Amaryan, 1990). Table 5. Category of geological-lithological conditions’ complexity for construction assessment. Tabela 5. Kategorija zahtevnosti inženirsko-litoloških razmer za oceno gradnje. Factors I (easy) II (average) III (difficult) Geological-lithological No more than four different geological-lithologicalunitsof rocks with horizontal laying lithological layers. Soil characteristics by plan or by depth with natural changes. Absence of soils with poor geome­chanical properties. No more than six different geo­logical-lithological units of rocks with sloping laying lithological layers. Soil characteristics as per plan or according to depth with natural changes. Absence of soils with poor geomechanical properties. More than six different geolog­ical-lithological units of rocks. Capacity suddenly changed, lens’ soil laying. There are a high diversity index’s soil characteris­tic, which vary with out-of-spec­ification changes. Presence of soils with poor geomechanical properties (peak, silt). Conclusion 1. Qualitative engineering-construction as­sessment as part of the project of the urban master plan should be based on the engineer-ing-geological zoning of the territory with the determination of engineering-geological units. Consideration of geological-lithological es­timated factors in engineering construction assessment is the basis for the selection of engineering-geological units (districts and sub-districts) and also sets the preconditions for the selection of engineering-geological sites based on the geomechanical properties of engineer-ing-geological elements (EGE). 2. The morphogenetic and morphological structure of the relief forms a basis for engi-neering-geological districts and subdistricts selection. It is necessary to distinguish the geological-genetic complexes of Quaternary de­posits, that constitute them, while relief’s mor­phological elements determine the lithological composition of the mentioned Quaternary de­posits. 3. The analysis of the territory’s geomorpho­logical features and their geological structure made it possible to distinguish four geologi-cal-genetic rocks’ complexes on the territories of Irpin’s city: 1) complex of modern alluvial sandy-clayey deposits (aIV) with a thickness of 10–16 m (sands with lenses and layers of sandy loams, loams); 2) complex of Upper Quaternary alluvial sandy-clay deposits (aIII) with a thick­ness of 8–12 m (sands with lenses and layers of sandy loams); 3) complex of Upper Quater­nary water-glacial sand-clay deposits (fIIdn1) with a thickness of 5–20 m (sands with lens­es and layers of sandy loams, loams and clays with inclusion of gravel, boulders, pebbles); 4) complex of Upper Quaternary moraine depos­its (gIIdn2) with a thickness of 8–13 m (boulder loams, clays and clays with layers of sand). 4. The analysis of the soils’ geomechanical properties made it possible to divide the select­ed complexes into 12 engineering-geological el­ements (EGE) with appropriate geomechanical properties, of which only EGE-1 (peat) is un­satisfactory as a natural basis for laying foun­ dations. The peat layer must be removed during construction. 5. There are engineering-geological districts according to morphogenetic features and com­mon conditions of geological development and engineering-geological subdistricts according to morphological features and engineering-ge­ological complexes of Quaternary rocks based on the conjugate cartographic analysis’ method of geomorphological and engineering-geologi­cal maps. So, the first district is represented by an erodible-depositional alluvial plain with two engineering-geological subdistricts: floodplain terraces of the Irpin and Buchanka rivers with swamped areas and peat depressions with al­luvial (sands, sandy loams, loam) and biogenic (peat) deposits and first above-flood terraces of mentioned rivers with alluvial deposits (sands, sandy loam. The second district is represented by a denudation-depositional watershed mo­raine water-glacial plain with two engineer-ing-geological subdistricts: lowland part, high­ land part and plateau of moraine fluvioglacial plain with fluvioglacial and glacial deposits, (sands, sandy loams, loam with inclusion of gravel, pebbles and boulders). 6. Geological-lithological estimated factors of Irpin city are simple in complexity and soils, in general, are suitable for use as a natural basis for laying foundations. Engineering-geological elements (EGE) 3, 4, 7, 8, 9, 11, 12 can serve as a natural basis for laying foundations. The development of the floodplains of the Buchanka and Irpin Rivers is not recommended for en­vironmental reasons, therefore EGE-2 is ex­cluded from use. A deep strip foundation is rec­ommended for low-rise buildings, taking into account the geomechanical properties of soils. The best type of foundation is the pile type for multi-storey buildings. It is necessary to use waterproofing materials, when arranging foundations. It is necessary to equip horizon­tal drainage and rainwater drainage for areas with a high level of groundwater, for aggressive waters appropriate grades of concrete and an­ ti-corrosion protection for underground metal reinforcement should be used. (Building regu­lations B.2.1-10:2018, 2018). Acknowledgments The authors express their gratitude to the lead­ership of the Ukrainian Institute of Engineering Scientific and Technical Exploration (UKRIINTR) and Ukrainian State Scientific Research Institute of Cities’ Design “DIPROMISTO for the provided geotechnical reports, a master plan of Irpin city and corresponding graphic materials. References Amaryan, L.S. 1990: Poor soils’ properties and methods for their studying. Moscow, Nedra: 220 p. Barshchevsky, M.E., Kuprash, R.P. & Shvidky, Y.M. 1989: Geomorphology and relief-forming deposits of Kyiv’s district. Kyiv, Naukova dum­ka: 196 p. Bell, F.G. 2007: Engineering Geology, Second Edi­tion. Oxford, Elsevier: 593 p. Building regulations A.2.1-1-2008, 2008: Engi­neering exploration for construction. Kyiv, Minregion: 72 p. Building regulations B.1.1-12:2014, 2014: Con­struction in the seismic regions of Ukraine. Kyiv, Minregion: 110 p. Building regulations B.1.1-15:2012, 2012: Struc­ture and contents of master plan’s settlement. Kyiv, Minregion: 33 p. Building regulations B.2.1-10:2018, 2018: Bases and foundations of buildings and structures. Kyiv, Minregion: 36 p. El May M., Diala M. & Chenini I. 2010: Urban geo­logical mapping: geotechnical data analysis for rational development planning. Engineer­ing Geology, 116/1-2: 129–138. https://doi. org/10.1016/j.enggeo.2010.08.002 Šestanovic, S., Toševski, A., Mihalic, S., Decman, A. & Feric, P. 2012: Preliminary data for the development of the engineering geological map of the city of Split (Croatia). Environmental Earth Sciences, 66: 1547–1556. https://doi. org/10.1007/s12665-011-1394-0 Gubenko, T.V., Mukha, V.G. & Kozyna N.P. 2017: Master plan of Irpin city. Kyiv, DIPROMISTO: 180 p. Ivanenko, P.I. 2020: State geological map of Ukraine– 200. Kyiv, Ukrgeoinform: 67 p. Muceku, Y. 2010: Land evaluation and site as-sessment-engineering geological mapping for Regional planning and urban development in Velipoja area. Journal of Albanian Sciences Academy, 27, 1: 101–114. Osipov, V. I., Burova, V.N., Zaikanov, V.G., Molo­dykh, I.I., Pyrchenko, V.A. & Savisko I.S. 2012: A map of large-scale (detail) engineering geo­logical zoning of Moscow territory. Water Re­sources, 39: 737–746. https://doi.org/10.1134/ S0097807812070093 Palienko, E.T. 1978: Exploration and engineering geomorphology. Kyiv, Vyshcha shkola: 200 p. Panchenko, T.S. 2019: Geological map of Ukraine. Kyiv, Ukrgeoinform: 75 p. Paton, B.E., Shpak, A.P., Rudenko, L.G. & Boch­kovska, A.I. 2007: National atlas of Ukraine. Kyiv, Kartografiya: 440 p. Popov, I.V. 1951: Engineering geology. Moscow, State Publishing House of Geological Litera­ture: 444 p. Rudenko, F.A., Solyakov, I.P. & Mesyats I.A. 1971: Hydrogeology of USSR. Moscow, Nedra: 614 p. Shnyukov, E.F., Shestopalov, V.M. & Yakovlev, E.A.1993: Ecological geology of Ukraine. Kyiv, Naukova dumka:407 p. Solovytsky, V.N. & Vozgryn, B.D. 1990: Geological map on the scale 1:50 000 by sheets of Kyiv region. Kyiv, Ukrgeolstrom: 10 p. State standard of Ukraine B V.2.1-2-96, 1997: Soils. Classification. Kyiv, State Committee of Ukraine for urban planning and architecture: 47 p. Trofimov, V.T., Korolev, V.A., Voznesensky, E.A., Golodkovskaya, G.A., Vasylchuk, Y.K. & Zian­girov R.S. 2005: Soil science. Moscow, Moscow State University: 1024 p. Trofimov, V.T. & Krasilova, N.S. 2008: Engineer­ing geological maps. Moscow State University, Moscow: 383 p. Tsybko, V.A. 2020: Engineering-geological atlas of Irpin city on the scale 1:5000. Kyiv, UKRIIN­TR: 97 p. Veklych, M.F. 1958: Quaternary deposits of the right bank of the Middle Dnieper. Kyiv, Acade­my of Science of USSR: 200 p. Zhyrnov, P.V., Sadoviy, Y.V. & Tomchenko, O.V. 2019: Methodology for the territories’ engi­neering construction assessment with diffi­cult geological conditions. Proceedings of 10th International Academic Conference “Geodesy, Architecture & Construction”: 71–77. https:// doi.org/10.23939/lea Zhyrnov, P. & Solomakha, I. 2022: Engineering-geo­logical zoning as a scientific-methodical basis for scheme’s development of engineering-con­struction assessment (on the example of Irpin town Kyiv region). Geodynamics, 2/33: 115– 132. https://doi.org/10.23939/jgd2022.02.115 Zuquette, L.V., Osni Pejon, O.J. & Santos Collares, J.Q. 2004: Engineering geological mapping de­veloped in the Fortaleza Metropolitan Region, State of Ceara, Brazil. Engineering Geolo­gy, 71/3–4: 227–253. https://doi.org/10.1016/ S0013-7952(03)00136-4 GEOLOGIJA 66/1, 185-198, Ljubljana 2023 © Author(s) 2023. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2023.008 Borers and epizoans on oyster shells from the upper Tortonian, Lower Chelif Basin, NW Algeria Vrtalci in epizoji na zgornjetortonijskih ostreidnih lupinah iz Spodnjega Chelif bazena, SZ Alžirija Rachid KHALILI, Linda SATOUR & Saci MENNAD University of Oran 2 - Mohamed Ben Ahmed, Algeria, Laboratory of Palaeontology, Stratigraphy and Palaeoenvironments, El M’Naouer, BP 1015, ex IAP, Es Senia 31000 Oran, Algeria; e-mail: rachido1990@gmail.com, satourlind@gmail.com, sassiy2@gmail.com Prejeto / Received 18. 4. 2022; Sprejeto / Accepted 27. 3. 2023; Objavljeno na spletu / Published online 4. 8. 2023 Key words: Miocene, borings, encrustation, Entobia, Gastrochaenolites, Caulostrepsis, Trypanites, Maeandropolydora, foreshore, shoreface Kljucne besede: miocen, vrtanje, inkrustacija pas bibavice, Entobia, Gastrochaenolites, Caulostrepsis, Trypanites, Maeandropolydora, plitvi podplimski pas Abstract The three oyster lenses of the upper Tortonian of Djebel Touaka site which are described herein contain three species, Crassostrea gryphoides (Schlotheim), Ostrea lamellosa (Brocchi) and Hyotissa squarrosa (De Serre). The density of shell packing between the lenses is dissimilar. Most of the specimens are disarticulated and poorly fragmented; they exhibit a random distribution and orientation, without any distinct sorting. Bioerosion and encrustation are featured on both surfaces of left and right valves. The identified ichnogenera are Entobia (Bronn), Gastrochaenolites (Leymarie, 1842), Caulostrepsis (Clarke, 1908), Trypanites (Mägdefrau, 1932) and Maeandropolydora (Voigt, 1965). Encrusters are scared, represented by juvenile oysters/other bivalves, bryozoans and barnacles. The coexistence of borings on both sides of valves means that they probably occur not only while alive, but they keep happening after death. The oyster beds were deposited in a foreshore to shoreface environment, from the combined action of wave currents and sedimentation rate. Izvlecek Opisane so tri ostreidne akumulacije iz zgornjega tortonija Djebel Touka v Alžiriji. Ostreidne plasti vsebujejo vrste Crassostrea gryphoides (Schlotheim), Ostrea lamellosa (Brocchi) in Hyotissa squarrosa (De Serre). Gostota ostreidnih lupin variira. Vecina primerkov je disartikuliranih in nekoliko fragmentiranih. Razporejeni so nakljucno in brez preferencne orientacije. Prav tako niso sortirane. Sledovi bioerozije in prerašcanja so prisotni na obeh straneh levih in desnih loput. Prepoznani so bili Entobia (Bronn), Gastrochaenolites (Leymarie), Caulostrepsis (Clarke), Trypanites (Mägdefrau) in Maeandropolydora (Voigt). Prerašcanja se stojijo iz juvenilnih primerkov ostrig in drugih školjk, mahovnjakov in ciripednih rakov. Hkratna prisotnost izvrtin na obeh straneh lupin pomeni, da je do prerašcanj prišlo tudi po smrti ostreidnih školjk. Ostreidne akumulacije so nastale v širšem obmocju plimovanja in v plitvem podplimskem pasu pod skupnim vplivom valovanja in hitrostjo odlaganja sedimenta. Introduction Many papers have debated the fossil oyster’s paleoecological and biostratinomic properties (e.g., El-Hedeny, 2005, 2007; El-Sabbagh, 2008; Lopes, 2011; Domčnech et al., 2014; El-Sabbagh et al., 2015; El-Sabbagh & El-Hedeny, 2016; Breton et al., 2017). The stratigraphic studies of Miocene deposits of the Lower Chelif Basin had been the purpose of several anterior authors (Mansour, B, 2004; Belekebir et al., 2008; Belhadji et al., 2008; Atif et al., 2008; Saint-Martin, 2008; Satour et al., 2011, 2013, 2020). According to Neurdin-Tres­cartes, (1995), the paleogeography of Lower Che-lif Basin during the Miocene changed through the time and the space, dependant on different sup­plies of sediment, coming into the basin either from the north (uplifted coastal block) from the east (shore currents bringing detrital materials from the Krouminie), and from the south from the area of Medea and Bou Hanifa. The upper Tortonian outcrop of Sig Valley re­veals three main oyster lenses with different repar­tition and orientation. The oyster shells are among the most favourable substrates for attachment and settlement of organisms. The effect of this latter may be simulated as encrustation or boring trac­es, which are very common in all the geological time epochs, and they are considered as the result of trace makers behavior, engraved on organic or rocky substrates (Gibert et al., 2004). The purpose of this paper is to bring out and re­cord the main traces produced by endoskeletozoa and episkeletozoa, in hopes of better understand­ ing the environmental conditions during life and after death of oysters. Geographic and geologic context The stratigraphic studies of Miocene deposits of the Lower Chelif Basin had been the purpose of several earlier authors (Neurdin-Trescarte, 1992; Mansour, 2004; Belekebir et al.,2008; Belhadji et al., 2008; Atif et al., 2008; Saint-Martin, 2008; Satour et al., 2011, 2013, 2020; Satour,2021). The upper Miocene deposits are more distinguished in the center of the basin and contain many discon­tinuities, allowing a large variety of facies (Perro-don, 1957). The studied outcrop belongs to the anticline of Djebel Touaka. It is located at approximately 1.5 km, south of the Sig City (Fig. 1). It is exposed Fig. 1. Geographic and geolog­ic localization of the studied area. on the eastern side of the Sig Valley and belongs to the Beni Chougrane mounts. The upper Tortonian section is unconformly overlies the red sandstones of the second post-nappe cycle (Saint Martin, 1990). From bottom to top, it comprises numerous sandstones layers at the base showing horizontal, oblique and cross bedding, sandy yellowish marls contain three larger oyster’s beds, blue marl, and alternation of fossiliferous limestone and marls, followed by the Messinian diatomites and El Bor­dj sands (Bessedik et al., 1997; Mansour, 2004) (Fig. 2). Methodology After washing and cleaning, 186 specimens were identified and analysed from the three oyster beds: 30 specimens were recovered from the first bed, 127 from the second bed, and 29 specimens from the third bed. The oyster shell beds were collected directly from the surface or by digging about 30 cm in sediments. The shells have differ­ent sizes (less than 70 mm for small shells and more than 70 mm for medium and large shells). They were described in the field by measuring the lateral extension, thickness; packing density and Fig. 2. Lithostratigraphic sec­tion of the upper Tortonian beds of Djebel Touaka (Sig). shell orientation, taphonomic properties (disartic­ulation, borings and encrustation) were analysed in the laboratory. The oyster specimens are stored at the Labora­tory of paleontology, stratigraphy and paleoenvi­ronments of the University of Oran 2. Results Description of oyster’s beds The collected oysters are almost disarticulated. However, two specimens from the third lens are preserved with valves still connected and showing vertical aggregates in the first and second beds (in french: Crassat d’huitres). They are adult forms, belonging to two families, Ostreidae and Gry­phaeidae (Fig. 3). The first lens takes place at the base of the marls, sometimes yellowish and sandy, with a lat­eral extension of about 40 m and variable thick­ness (30 to 70 cm), represented essentially by Os-trea lamellosa (16 left valves; LV), C. gryphoides (6 left valves, 3 right valves; RV) and H. squarrosa (5 LV). The distribution of the specimens shows a strong concentration in the center (more than 60 percent) and becomes less dense (rarely seen) when we move toward the northeast and the south­west directions (less than 15 percent). They have a random distribution and slightly slanted with a predominance of concave-down valves compared to convex-up ones. The second lens appears toward the middle of the detrital complex, in the yellowish sandy marls with a metric extension (about 70 m). The assem­blage of oysters belongs to O. lamellosa (112 LV) and H. squarrosa (15 LV), characterized by small size and homogenous repartition (without any de­fined orientation of shells). The third lens sets down at the surface of the last indurated sandstones bar (hard ground), ap­pears like a tabular bed, with a lateral extension of 30 m. The collected shells were assigned to O. lamellose (24 LV, 3 RV), H. squarrosa (2 articu­lated shells) and Spondylus crassicosta (one ar­ticulated shell). The specimens distributed at the surface of the sandstone bar (the last sandstone layer), show significant dominance of convex-up valves and without any observed direction. Fig. 3. The three beds identified from the upper Tortonian of Djebel Touaka (Sig). Fig. 4. Relative proportion of determined ichnogenus. A: All ichnogenera present in the three beds. B: All ichnogenera present in the three beds depending on valves (RV: right valves, LV: left valves). Bioerosion Both, the left and right valves are generally bi-oeroded (Fig. 4). Most of the bioerosion occurs on the external side, with fewer occurrences on the interior of the shells. The traces produced by en-doskeletozoans are present on 60 % of the analyz­ed valves, recorded often on C. gryphoides and O. lamellosa; this may be due to the limited occur­rence of H. squarrosa. The most prominent trace marks produced by predators in the different valves from the three lenses are Entobia (90 %), Gastrochaenolites (23.33 %), Caulostrepsis (13.33 %), Trypanites (10 %) and Maeandropolydora (6.66 %). Systematic ichnology Ichnogenus Entobia (Bronn, 1837-38) Ichnospecies type: Entobia retiformis (Stephen­son, 1952) Entobia cretacea (Portlock, 1843) Material: Left and right valves of C. gryph­oides, O. lamellosa and H. squarrosa. Localities: Djebel Touaka at Sig, on the South-West border of the Lower Chelif Basin (Mascara province, North-West Algeria). Description: According to Bromley and D’Alessandro (1984), these traces correspond to round apertures connected between each other with cylindrical galleries on subsurface drilled by the siliceous sponges (oftenly Cliona). The diame­ter of these apertures measures between 0.1 and 1.5 mm, and sometimes with different diameters on the same shell (Lopes, 2011). Two ichnospecies had been identified. Entobia retiformis (Stephenson, 1952): This ichnospecies corresponds to perforations with millimetric diameter, organized following a right, oblique or sinuous lines (Fig. 5d). Entobia cf. cretacea (Portlock, 1843): It differs from the precedent by apertures and chambers less wide and extension without wall, also by one canal interconnecting the chambers. This ichno-species forms a network of long and right tunnels, connected with the surface by several aligned ap­ertures (Figs. 6g, 6i). Remarks: The ichnogenus Entobia is the most frequent in the recorded material. The opening chambers are distributed over both the right and the left valves of C. gryphoides, O. lamellosa and H. squarrosa, in about 90 % of specimens from the three beds, but are significantly more distinct at the external surface of the left valves (71.43 %) of all the determined species compared with the right valves (66.66 %). The intense exposure to Entobia contributes to the destruction of most of the right valves, due to their smaller thickness. Fig. 5. Ichnofossils: a - C. taeniola on the internal surface of left valve of C. gryphoides; b, d - Gastrochaenolithes cf. dijugus on the external side and E. retiformis on the internal side of right valve of C. gryphoides; c, e – Entobia ichnosp. and Gastrochaenolithes cf. dijugus on the external face of left valve of C. gryphoides; f - M. sulcans on the inner side of left valve of C. gryphoides: g - Gastrochaenolithes cf. dijugus and cluster of G. torpedo on the outer side of C. gryphoides; h - C. taeniola over encrusted bivalve on the of left valve of C. gryphoides; i – Caulostrepsis ichnosp. on the outer surface of left valve of H. squarrosa, and encrustation by juvenile / adult oysters and balanids (eroded). Ichnogenus Gastrochaenolites (Leymerie, 1842) Ichnospecie type: Gastrochaenolites torpedo (Kelly & Bromley, 1984) Gastrochaenolites cf. dijigus (Kelly & Bromley, 1984) Material: Left and right valves of C. gryph­oides, O. lamellosa and H. squarrosa. Localities: Djebel Touaka at Sig, on the South-West border of the Lower Chelif basin (Mascara province, North-West Algeria). Description: This ichnogenus is typically pro­duced by bivalves and attributed to multiple tax-ons, Lithophaga (Rios, 1994; Mauna et al., 2005), Hiatella and mytilids (Kelly & Bromley,1984), also suspensivorous gastrochenids and pholadids (Tapanila & Hutchings, 2012). The openings are large and elongated, tilted toward the host sub­strate. They are simple and not aligned, solitary or in cluster, rarely with a striped parabolic base. The diameter is between 7 and 43 mm with 19 mm in average (Santos et al., 2011). In the case where these apertures are round and the neck unobserv­able, these characters are typical for the species. Remarks: This ichnogenus was found fre­quently on the outer side of the left valves, except for some specimens of C. gryphoides, where it was produced on the right valves (Fig. 5.b). It is pres­ent on 23.33 % of the specimens, with 2.12 % on the right valves and 3.25 % on the left valves. The ichnospecies that were determined are: Gastro­chaenolites cf. dijugus (Figs. 5b, 5e, 5h, 6.f) and G. torpedo (Figs. 5h, 6c, 6h). Ichnogenus Caulostrepsis (Clarke, 1908). Ichnospecies type: Caulostrepsis taeniola (Clarke, 1908). Caulostrepsis taeniola (Clarke, 1908) (Figs. 5a, 5g, 6f) Material: Left and right valves of C. gryph­oides, O. lamellosa and H. squarrosa. Localities: Djebel Touaka at Sig, on the South-West border of the Lower Chelif basin (Mascara province, North-West Algeria). Description: Caulostrepsis is the product of different families of marine polychaets (Bromley, 1978, 1994) or spionids (Barrier & D’Alessandro, 1985). It can be elongated, U-shaped, sinuous or straight. Occasionally, it appears in a figure 8-form. Remarks: This ichnogenus appears only in the inner face of thicker left valves, in 13.33 % of the specimens, frequently parallel to the growth lamellae of oyster valves. It is represented here by one species: C. taeniola (Clarke, 1908). It is absent from the second bed. Ichnogenus Trypanites (Mägdefrau, 1932) Material: Left and right valves of C. gryph­oides, O. lamellosa and H. squarrosa. Localities: Djebel Touaka at Sig, on the South-West border of the Lower Chelif basin (Mascara province, North-West Algeria). Description: Generated by polychaetes and si­punculids (Bromley, 1994; Wilson, 2007). It has a shape of a complicated network of thin shallow tubes with a cylindrical to sub-cylindrical form, straight or sinuous, characterized by a single en­try. Remarks: The ichnogenus featured here occurs on the outer side of left valve of 10 % of the speci­mens from the first and the second bed (Fig. 6d). Ichnogenus Maeandropolydora (Voigt, 1965) Ichnospecies type: Maeandropolydora sulcans (Voigt, 1965) Maeandropolydora sulcans (Voigt, 1965) Material: Left and right valves of C. gryph­oides, O. lamellosa and H. squarrosa. Localities: Djebel Touaka at Sig, on the South-West border of the Lower Chelif basin (Mascara province, North-West Algeria). Description: Generally long and meandering tubes excavated by several forms of polychaetes, mostly Spionidae (Bromley & D’Allessandro,1983). It was also interpreted as traces of suspensivorous annelids from different families (Bromley, 1994). These tubes have a diameter between 0.5 and 3 mm. They are frequently found parallel to the structure of growth layers of oyster valves. Remarks: It is the less prominent ichnogenus, occurring on the inner face of left valve from the first and the second bed, present in 6.66 % of the specimens. One ichnospecies has been named and has the morphology of M. sulcans (Voigt, 1965) (Figs. 5f, 6b, 6d). Encrustation The total of encrusters in the three beds is very scarce: 5.95 % by barnacles, 6.48 % by bry­ozoans and 21.62 % by juvenile oysters and other bivalves (Fig. 7). Most of the analyzed specimens were found encrusted on the outer side of the left valves, and few of them exhibit encrusters on the inner side. Fig. 6. Ichnofossils: O. lamellosa: a - Entobia ichnosp., Caulostrepsis ichnosp.; b - M. sulcans, on the internal surface of left valve; c - G. torpedo on the external side of O. lamllosa left valve, O. lamellose; d – Trypanites ichnosp., M. sulcans; e - Gastrochaenolithes ichnosp., on the external face of left valve; O. lamellosa: f - C. taeniola, Gastrochaenolithes. cf. dijugus and Entobia ichnosp.; g - Entobia cretacea, on the inner side of left valve of O. lamellosa; O. lamellosa: h - Cluster of different sizes of G. torpedo, Entobia ichnosp.; i - E. cretacea on the outer face of right valve. The packed and dense bryozoans colonizing the internal surface of left valve; belong to the chei­lostoma type (Figs. 8d–h). These thin carbonate network colonies were found only on oysters from the first and the third bed. Barnacles are recorded in several individuals of O. lamellosa from the sec­ond bed and one specimen of C. gryphoides from the first bed (Fig. 8e). They grow on the outer face of left valves, frequently forming clusters with few solitary specimens. Encrustation by juvenile oys­ters and other bivalves was observed from the first bed and more clearly from the second bed (Fig. 5i). Discussion The immense quantity of marls series inter­rupted by sands is the result of the upper Torto­nian transgression (Belhadji et al., 2008). The intense ratio of disarticulation on oyster shells, combined with moderate fragmentation, signifies an extended time-averaging during deposit (Kid-well & Bosence, 1991; Brett & Baird, 1993). How­ever, in the opinion of Allen (1992), disarticulated valves may serve as a sign of rapid burial episodes. These conditions may indicate that oyster shells were remobilized at a limited distance. The scarcity of right valves suggests that they suffered from multiple sorting and reworking, be­cause of their thinner nature, small size and low resistance to fragmentation (Lescinsky et al., 2002; El-Sabbagh et al., 2015) which led to easy decomposition after death. However, the abun­dance of left valves reflects the mode of life among oysters, by attaching themselves to hard substrate by means of left valves (Stenzel, 1971), which ren­ders their remobilizing by wave currents more dif­ficult. The second bed is distinguished by oysters hav­ing smaller size and thinner left valves, in com­parison with the two other beds. The specimen’s assemblage shows a mixture of adult and young­er individuals, with predominance of adults. This might indicate that they deposited during a period of deepening in a lower energy environment, af­fecting the shell growth. In this area, borings were generated by pred­ators such as sponges, polychaetes, bivalves and gastropods, they are assigned to Domichnia and Fodinichnia ethological groups, while that encrus­tation belongs to juvenile oysters (and other bi­valves), bryozoans and balanids (cirripedes). The abundant occurrence of Entobia in oyster shells from the different beds, especially on the second bed, could indicate lower energy condi­tions within the subtidal environment, such as low sedimentation rate and limited duration exposure on the seafloor; preferred by clinoid sponges, pro­ducer of this ichnogenus (Calcinai et al., 2005). Al­ternatively, it could be due to the relative absence of other organisms remains or to the occurrence of large submarine assemblage of shells (Lopes, 2011); which represent the favorable substrate available for settlement. The rare occurrence of Gastrochaenolites may be due to the fact that mytilids and lithophages, which are responsible for this kind of boring, pre­fer to colonize lithified, hard rocky structure and large size shells (Lopes, 2011). Their record is more observable on the outer surface of left and right valves compared to the inner surface, signi­fying that they were produced probably during the lifetime and after the death of oysters. On the other hand, the ichnogenera Caulos­trepsis, Trypanites, and Maeandropolydora are found on the left valves from the first and the third beds, both on external and internal sides of large size shells. This may indicate that the larger size polychaetes created these borings and they favor large oyster shells for their settlement. As stated by Lopes and Buchmann (2008), the ichnogenus Caulostrepsis is infrequent amid small size bi­valves. The activity of encrusters was generally rare. Bryozoans were found only in the first bed, but barnacles are present in all beds mostly. This is probably due to the unstable environmental con­ditions causing sea level variations, which ranged from high to low wave currents. Oyster shells buildings forming vertical aggregates (in French, “Crassat d’huîtres”) are numerous, especially on C.gryphoides, of the first bed, which was reported Fig. 8. Encrustation: Oysters aggregate: a - C. gryphoides, b, c - H. squarrosa; d - Bryozoans colonies on the internal side of right valve of C.gryphoides; e -the external surface of left valve of O. lamellosa, encrusted by solitary barnacle and other oyster bivalve; f, g, h - Bryozoans colonies distributed over the inner face of right valve of O. lamellosa. previously on oyster shells by Hocquet (1995 in Videt, 2004), El-Hedeny, 2005) and El-Sabbagh & El-Hedeny (2016). They are also observed on the species O. lamellosa, H. squarrosa of the sec­ ond bed. Their occurrence is limited to the first bed, probably due to sediment input that obstructs their forming. However, they are quite recurring on the second bed, possibly in reference to the lightweight and the small size of oyster’s spe­cies, which may prevent their shells from sinking rapidly after death into the substrate. These build­ings are absent on the third bed. According to Hocquet (1995) the size and surface occupied by this construction are controlled by three main fac­tors: environment hydrodynamics (must be calm and low energy), sea level (low marine level peri­ods) and sedimentation supply (low sedimentation rate). The features of the upper Tortonian deposits re­flect paleoecological conditions coincides an envi­ronment which range from foreshore to shoreface, emphasized by turbulent, high energy and quiet periods (Fig. 9). Conclusion Three species of oysters were determined in the studied area, distributed over three beds, Ostrea lamellosa, Hyotissa squarrosa, and Crassostrea gryphoides. The first two are present in all beds, whereas the last species is limited to the lowest one. Shells show varied orientations and distribu­tion in the space. The shells are mostly disarticu­lated and affected by moderate fragmentation and abrasion. The epizoans activities are numerous, but their frequency ranges from weak to moderate. The most dominant activity is bioerosion traces, re­flecting multiple shapes, round, sub-round elon­gated and meandering. Five ichnogenera were de­fined: Entobia, Gastrochaenolites, Caulostrepsis, Trypanites and Maeandropolydora. These boring processes are registered commonly on the exter­nal side of valves, with fewer occurrences on the internal side. This later may confirm that they are produced while oysters were alive and after death and disarticulation. The higher percentage of Entobia among iden­tified ichnogenera is perhaps due to the abundance of oyster specimens, which represent the available favored substrate for installation. The existence and the diversity of encrusters are proportionally limited; they include juvenile oysters/other bivalves, bryozoans and barnacles, recorded on both outer and inner surfaces of left and right valves. The complicated modality of borings and bioin­crusations indicate that oysters underwent many phases of burial and uncovering resulted from the fluctuation of sea level, causing probably shells dis­placement at a short distance. From a paleoecological point of view, a foreshore to a shoreface environment reigned during the upper Tortonian of Djebel Touaka at Sig and it was characterized by low energy cur­rents, interrupted by agitated and high energy inter­vals. This latter maybe confirmed by the recurring installments of sands layers showing sedimentary structures and the presence of the species Spondylus crassicosta, which indicates a nearest reef activity. Acknowledgment This work is done under the framework of the doc­toral training of 3rd cycle, entitled: Geology of Marine and Continental Environments, Integrated Stratigra­phy, Chronology and Dynamics of Paleoenvironments. This study is carried out with the support of the DGRS­DT (Ministry of Higher Education and Scientific Re­search). We also thank the observers for their construc­tive criticism. References Allen, J.R.I. 1992: Transport hydrodynamics. In: Briggs, D.E.G. & P.R. Crowther (eds.): Palaeo-biology: A synthesis. Backwell Scientific Publi­cations, 237–230. Atif, K., Bessedik, M., Belkebir, L. & Mansour, B. 2008: Le passage Mio-Pliocčne dans le bas-sin du bas Chélif (Algérie). Biostratigraphie et Paléoenvironnement. Geodiversitas, 30/1: 97–116. Belkebir, L., Labdi, A., Bessedik, M., Mansour, B. & Saint Martin, J.P. 2008: Biostratigraphie et lithologie des séries serravallo-tortoniennes du massif du Dahra et du bassin du Chélif (Al­gérie). Implication sur la position de la limite serravallo-tortonienne. Geodiversitas, 30/1: 9–19. Belhadji, A., Belkebir, L., Saint Martin, J.P., Man-sour, B., Bessedik, M. & Conesa, G. 2008: Apports des foraminifčres planctoniques ŕ la biostratigraphie du Miocčne supérieur et du Pliocčne de Djebel Diss (bassin du Chélif, Al-gérie). Geodiversitas, 30/1: 79–96. Bessedik, M., Benammi, M., Jaeger, J.J., Ameur-Chehbeur, R., Belkebir, L. & Mansour, B. 1997: Gisement ŕ rongeurs d’âge tortonien dans des dépôts lagunaires etmarins de tran­sition en oranie: corrélation marin continental. Actes du congrčs BiochroM’97, Aguilar J P, Legendre S, Michaux J (eds.): Mém Trav E P H E, Inst. Montpellier, 21: 293–300. Breton, G., Wisshak, M., Néraudeau, D. & Morel, N. 2017: Parasitic gastropod bioerosion trace fossil on Cenomanian oysters from Le Mans, France and its ichnologic and taphonomic con­text. Acta Palaeontologica Polonica, 62/1: 45– 57. https://doi.org/10.4202/app.00304.2016 Brett, C.E. & Baird, G.C. 1993: Taphonomic ap­proaches to temporal resolution in stratigra­phy. In: Kidwell, S.M. & Behrensmeyer, A.K. (eds.): Taphonomic approaches to time resolu­tion in fossil assemblages. Paleontological So­ciety, Short Course, 6: 250–274. Brocchi, G. 1814: Conchiologia fossili subapenni­na con osservazioni geologiche sugli Apennini e sul adiacente. Stamp. Reale, Milano, 1–2: 712 p. Bromley, R.G. & D’Alessandro, A. 1983: Bioerosion in the Pleistocene of southern Italy: ichnogen-era Caulostrepsis and Maeandropolydora. Rivista Italiana di Paleontologia e Stratigrafia, 89: 283–309. Bromley, R.G. & D’Alessandro, A. 1984: The ichno-genus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 90/2: 227–296. Bromley, R.G. 1994: The palaeoecology of bio-erosion. In: Donovan, S.K. (ed.): The Palaeo-biology of trace fossils. John Wiley and Sons, Chichester: 134–154. Bronn, H. G. 1837–1838: Lethaia Geognosticaod-er Abbildungenund Beschreibungen der für die Gebirgs-Formationen bezeichnendsten-Versteinerungen. Schweizerbart, Stuttgart: 1350 p. Calcinai, B., Bavestrello, G. & Cerrano, C. 2005: Excavating sponge species from the Indo-Pa­cific Ocean. Zool. Stud., 44/1: 5–18. Clarke, J.M. 1908: The beginnings of dependent life. New York State Museum, Bulletin, 121: 146–196. De Serres M. 1843: Observations sur les grandes huîtres fossiles des terrains tertiaires des bords de la Méditerranée. Annls Sci. Nat. Zool., 2e sér., 19: 143–168, pl. 2–3. Domčnech, R., Farinati, E.A. & Martinell, J. 2014: Crassostrea patagonica (d’Orbigny, 1842) shell concentrations from the late Miocene of Río Negro province, NE Patagonia, Argentina. Span. J. Palaeontol., 29/2: 165–182. El-Hedeny, M. 2005: Taphonomy and paleoecolo­gy of the Middle Miocene oysters from Wadi Sudr, Gulf of Suez, Egypt. Revue de Paléobiol­ogie, 24: 719–733. El-Hedeny, M. 2007: Encrustation and bioerosion on Middle Miocene bivalve shells and echinoid skeletons: Paleoenvironmental implications. El-Hedeny, M. & El-Sabbagh, A.M. 2007: Mac-ro-borings on late Cretaceous oysters of Egypt. N. Jb. Geol. Paleontol. Abh., 244/3: 273–286. El-Sabbagh, A.M., Mansour, H. & El-Hedeny, M. 2015: Taphonomy and paleoecology of Ceno­manian oysters from the Musabaa Salama area, southwestern Sinai, Egypt. Geosciences Jour­nal, 19/4: 655–679. https://doi.org/10.1007/ s12303-015-0014-5 El-Sabbagh, A.M. & El-Hedeny, M. 2016: A shell concentration of the Middle Miocene Crassos­trea gryphoides (Schlotheim, 1813) from Siwa Oasis, Western Desert, Egypt. Journal of Af­rican Earth Sciences, 120: 1–11. https://doi. org/10.1016/j.jafrearsci.2016.04.007 El-Sabbagh, A.M., El Hedeny, M., Rashwan, M.A. & Aal, A. 2016: The bivalve Placuna (Indoplacu­na) miocenica from the Middle Mioceneof Siwa Oasis, Western Desert of Egypt: Systematic paleontology, paleoecology, and taphonomic implications. Journal of African Earth Scienc­es, 116: 68–80. https://doi.org/10.1016/j.ja­ frearsci.2015.12.022 Gibert, J.M., Domčnech, R. & Martinell, J. 2004: An ethological framework for animal bioerosion trace fossils upon mineral sub­strates with proposal of a new class, Fix-ichnia. Lethaia, 37: 429–437. http://dx.doi. org/10.1080/00241160410002144 Hocquet, S. 1995: Enregistrement morphologique et chimique des paramčtres du milieu dans la coquille de Crassostrea gigas Thunberg. Modčle actuel en milieu naturel et expérimen­tal. DEA «Paleontologie, Dynamique Sédimen­taire et Chronologie», Université de Dijon. 50 p. (inédit). Kelly, S.R.A. & Bromley, R.G. 1984: Ichnological nomenclature of clavate borings. Palaeontolo­gy, 27/4: 793–807. Kidwell, S.M. 1986: Models for fossil concentra­tions: paleobiologic implications. Paleobiology, 12/1: 6–24. Kidwell, S. M. & Bosence, D.W.J. 1991: Taphono-my and time-averaging of marine shelly fau­nas. In: Allison, P.A. & Briggs, D.E.G. (eds.): Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology, 9: 115-209. Lescinsky, H.L., Ledesma-Vazquez, J. & John­son, M.E. 1991: Dynamics of Late Cretaceous Rocky Shores (Rosario Formation) from Baja California, Mexico. Palaios, 6: 126–41. https:// doi.org/10.2307/3514878 Lescinsky, H.L., Edinger, E. & Risk, M.J. 2002: Mollusc shell encrustation and bioerosion rates in a modern peiric sea: taphonomy ex­periments in the Java Sea, Indonesia. Palaios, 17/2: 171–191. https://doi.org/10.1669/0883 -1351%282002%29017%3C0171%3AMSEA­ BR%3E2.0.CO%3B2 Leymarie, A. 1842: Suite du mémoire sur le terrain Crétacé du Département de l’Aube. Mémoires de la Société Géologique de France, 5: 1–34. Lopes, R.P. 2011: Ichnology of fossil oysters (Bi­valvia, Ostreidae) from the southern Bra­zilian coast. Gaea, 7/2: 94–103. https://doi. org/10.4013/gaea.2011.72.02 Lopes, R.P. & Buchmann, F.S.C. 2008: Com-paraçăo tafonômica entre duas concentraçőes fossilíferas (shell beds) da Planície Costeira do Rio Grande do Sul, Brasil. Gaea, 4/2: 65–77. https://doi.org/10.4013/gaea.20082.03 Mansour, B. 2004: Les diatomées messiniennes du bassin du Bas Chélif (Algérie nord occidentale). Thčse de doctorat d’Etat. Université d’Oran., 286 p. 106 fig., 2 tabl., pl. IX. Neurdin-Trescartes, J. 1995: Paléogéographie du Bassin du Chélif (Algérie) au Miocčne. Causes et conséquences. Géologie Méditerranéenne, 22/2: 61–71. https://doi.org/10.3406/ge­ olm.1995.1569 Portlock, J.E. 1843: Report on the geology of the county of Londonderry and of parts of Tyrone and Fermanagh. Dublin & London (Milliken): 784 p. Saint Martin, J.P. 1990: Les formations récifales coralliennes du Miocčne supérieur d’Algérie et du Maroc. Mémoires du Muséum Nation­al d’Histoire Naturelle, Sér. C, Sciences de la Terre, 56: 351 p. Saint Martin, J.-P. 2008: Biodiversité dans les calcaires micritiques blancs des plates-formes messiniennes d’Algérie. Geodiversitas, 30/1: 165–179. Satour, L., Lauriat Rage, A., Belkebir, L., Mansour, B., Saint Martin, JP. & Bessedik, M. 2011: Les bivalves ptériomorphes du Tortoniensupérieur du Dahra: systématique et paléoécologie. Bul­letin duservice géologique national, Algérie, 22: 119–139. Satour, L., Lauriat-Rage, A., Belkebir, L. & Bes-sedik, M. 2013: Biodiversity and taphono-my of bivalves assemblages ofthe Pliocene of Algeria (Bas Chelif basin). Arabian journal of Geosciences, 7: 5295–5308. https://doi. org/10.1007/s12517-013-1154-4 Satour, L., Saint Martin, J.P., Belkebir, L. & Bes-sedik, M. 2020: Evolution de la diversité des bivalves messiniens de la bordure méridionale du bassin du Bas Chélif (Algérie nord occiden-tale). Schlotheim, E.F. 1813: Beitrage zur Naturg­eschichte der Versteinerungen in geognos­tischer Hinsicht. Leonhard’s Jahrbuch für Mineralogie, t. 7. Stenzel, H.B. 1971: Oysters. In: Moore R.C. (ed.): Treatise on Invertebrate Paleontology. Part N., Mollusca 6, Bivalvia. Geological Society of America & University of Kansas Press, 3: i-iv, N953-N1224. Stephenson, L.W. 1952: Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. United States Geological Survey, Pro­fessional Papers, 242: iv + 226 pp. Videt, B. 2004: Dynamique des paléoenviron­nements ŕ huîtres du Crétacé Supérieur nord aquitain (SO France) et du Mio-Pliocčne andalou (SE Espagne): biodiversité, ana­lyse séquentielle, biogéochimie. Mémoire Géosciences, Rennes, 108: 1–261 Voigt, E. 1965: Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Mus-chelschalen bohrende Würmer. Paläontologis­che Zeitschrift, 39: 193–211. Appendix A. The mean TC and TD values of the rock and sediment samples from the boreholes, two tunnels and many surface locations, together with determined heat generation on several samples. TC: Thermal conductivity, .; TD: Thermal diffusivity, a; Heat generation (heat production rate), H; s.d.: stand­ard deviation TVD: true vertical depth of the cored rock samples from the boreholes: measured from the surface. - In the boreholes inside the mines: TVD from the surface above the mine. - In the tunnels: TVD from the surface above the tunnel. - *Karavanke highway tunnel: 1143 m is the altitude of the surface above the middle point of the Slovenian section of the tunnel; the underlined numbers indicate distance from the south entrance to the west tube of this tunnel. - TVD: 0 m: surface sample. - Rock state: Saturated: as recovered, with natural humidity kept inside the rock (such rocks have been preserved and meas­ured in close to their natural saturation state). – Semi-dry (partly wet): some wetness on the surface of the sample and a little bit moist inside the sample. – Dry: mostly naturally dry. – Sat-t: technically almost completely water saturated before the measurement. DataBase No. Borehole name Locality Lat.WGS84 Lon.WGS84 Altit.z TVD Rock or sedimenttype Chrono-stratigraphy TC. TCs.d. Rock state TC year ofmeas. TC meas. device TDa Rock density. RadiogHeatProd.H Hyearofdet. m m W/(m·K) W/m·K mm2 /s g/cm3 µW/m3 1 SG-1/54 Hrastje Mota 46,6021 16,0735 212 120 marly clay & sand Upper Pontian 1,60 0,09 Semi-dry 1984 MTP-1 220 clay & sand 1,40 0,07 Semi-dry 4 BS-2/76 Benedikt 46,6101 15,8801 243 155 marlstone Sarmatian 3,00 0,25 Dry 1983 MTP-1 230 sandy, silty marl Badenian 1,59 0,1 Dry 405 sandy, silty marl Lower Badenian 1,90 0,39 Dry 1985 MTP-4 420 sandy marl 1,59 0,10 Dry 465 sandstone 2,77 0,15 Dry 772 amphibolitic greenschist Ordovician-Silurian 2,56 0,11 Semi-dry 1986 MTP-1,MTP-4 2,834 0,75 1985 781 mica schist tuff 2,77 0,03 Semi-dry 2,824 0,91 5 Pg-6/81 Petišovci 46,5316 16,4572 159 2983 sandstone Badenian 2,34 0,51 Dry 1987 MTP-4 3144 siltstone-sandstonewith mica Lower Badenian 3,01 0,17 Dry 2020 TCS 1,16 6 B-1/81 Zrece 46,3726 15,3813 387 45 silty sandstone Miocene 2,01 0,17 Saturated 1982 MTP-1 112 siltstone 3,13 0,07 Saturated 151 clayey siltstone 1,93 0,14 Saturated 202 calcitic, clayeysiltstone 2,14 0,17 Saturated 239 calcitic marl Upper Cretaceous 2,44 0,02 Saturated 299 dolomite Middle Triassic 4,09 0,59 Saturated 344 dolomite 3,47 0,21 Saturated 401 dolomite 4,41 0,54 Saturated 502 phyllite-chloriticschist Silurian-Devonian 2,14 0,16 Semi-dry 1,74 0,28 1982 7 R-1/82 Motel Rižana 45,5286 13,8840 69 87 marl Middle Eocene 2,10 0,18 Sat./fi ssur. 1986 MTP-1,MTP-4 205 limestone Paleocene 2,56 0,08 Saturated 8 Mt-6/83 MoravskeToplice 46,6828 16,2221 187 806 clay Pontian 1,90 0,09 Semi-dry 1983 MTP-1 848 sand, sandy marl Pontian 1,64 0,38 Saturated 874 clayey silt 1,86 0,27 Semi-dry 879 sand 2,96 0,15 Saturated 893 sand 1,5 0,06 Semi-dry 900 sandy marl, marlyclay 2,07 0,21 Saturated 981 sandy clay 2,25 0,21 Saturated 10 V-38/84 Kanižarica 45,5495 15,1739 172 111 marl Pliocene 2,15 0,56 1987 124 marl 2,15 0,44 149 clay, carbonateparticles 1,42 0,08 Saturated 1986 MTP-4,MTP-1 152 silty marl 1,50 0,04 Saturated 155 clay & some coal 1,64 0,04 Saturated 160 silty marl 1,29 0,09 Saturated 325 limestone Lower Cretaceous 3,01 0,08 Semi-dry 325 limestone 3,17 0,08 Semi-dry 12 B-2/85 Zrece 46,3650 15,3983 374 101 sandstone Miocene 1,99 0,25 Semi-dry 1985 MTP-1 2,161 0,80 1985 201 sandstone withconglomerate 2,22 0,26 Dry 2,752 1,50 302 dolomitic breccia 4,14 0,17 Dry 2,599 0,95 400 dolomitic brecciawith claystone 3,35 0,28 Dry 2,620 0,99 500 polimicriticconglomerate 3,37 0,29 Dry 2,762 0,72 500 sandstone withbreccia 3,56 0,37 Dry 2,721 1,74 556 dolomite, milonitized Triassic 4,70 0,06 Dry 2,833 0,26 800 dolomite, milonitized 4,57 0,03 Dry 2,885 0,73 13 ŠT-1/85 Štatenberg 46,3232 15,6746 250 5 marl Upper Miocene 1,79 0,04 Semi-dry 1985­1986 MTP-1,MTP-4 2,10 1,53 1985 98 siltstone (aleurolite) Middle Miocene 2,01 0,08 Semi-dry 2,30 1,72 14 V-7/85 Toplicniknear Kostanjevica 45,8549 15,4130 152 52 marl or clayey marl Upper Miocene 1,55 0,13 Semi-dry 1985­1986 MTP-4,MTP-1 100 marl or clayey marl 1,23 0,05 Semi-dry 15 L-1/86 Mostec nearCatež 45,8990 15,6268 143 102 marl or clayey marl Upper Miocene 1,43 0,29 Saturated 1986 MTP-4 200 marl 1,73 0,30 Saturated 262 sandy marl 1,82 0,34 Semi-dry 462 dolomite Upper Triassic 4,77 0,93 Semi-dry 599 dolomite 4,27 1,34 Semi-dry 700 dolomite 4,24 0,90 Semi-dry 16 SI-1/86 Sajevce nearKostanjevica 45,8660 15,4277 153 101 marly clay (soft) Miocene 1,68 0,13 Saturated 1986 MTP-1,MTP-4 205 clayey marl (soft) 1,45 0,10 Saturated 305 clayey marl 1,34 0,05 Semi-dry 406 marl (clayey?) 1,50 0,08 Semi-dry 501 carbonatic sandstone 1,77 0,14 Semi-dry 592 carbonatic sandstone 2,30 0,09 Semi-dry 2,732 0,82 1987 636 limestone Jurassic 2,78 0,07 Dry 688 limestone 2,95 0,12 Semi-dry 799 limestone Jurassic or Triassic? 2,99 0,18 Semi-dry 17 CE-1/86 Levec nearCelje 46,2417 15,2231 243 99 clay, some sand &pebbles Oligocene 1,31 0,07 Saturated 1986 MTP-1,MTP-4 18 V-8/86 Malence nearKostanjevica 45,8667 15,3992 152 1 clay with some sand Quaternary 1,70 0,10 Saturated 2003 TCS 99 clayey marl Miocene 1,50 0,04 Semi-dry 1986 MTP-4 19 BR-1/86 Brdo nearKranj 46,2902 14,4003 464 60 clay Oligocene 1,43 0,16 Saturated 1986 MTP-4 20 K-2A/86 SpodnjaKostrivnica 46,2482 15,5898 247 502 tuff with sandy marl Oligocene 2,28 0,10 Semi-dry 1987 MTP-4,MTP-1 2,610 n.d. 534 andesitic tuff 1,88 0,22 Semi-dry 2,406 0,90 1987 24 BZ-2/87 Brezovica 46,0276 14,4322 308 0 quartz sandstone Permo-Carboniferous 3,84 0,25 Dry 1987 MTP-1,MTP-4 26 PR-2/87 Prelesje nearSoca river 46,0279 13,5956 79 133 limestone Upper Cretaceous 2,75 0,32 Dry/fi ssured 1987 MTP-4 32 GT-1/88 Šentjakobnear Ljubljana 46,0874 14,5869 275 56 quartz sandstone UpperCarboniferous 4,11 0,15 Semi-dry 1988 MTP-1,MTP-4 2,732 1,47 1988 127 sandstone, marly orcarbonatic? Middle-UpperCarboniferous 2,742 1,64 201 quartz sandstone 3,92 0,10 Semi-dry 2,742 1,46 267 sandstone MiddleCarboniferous 2,793 1,89 488 quartz micasandstone 3,82 0,23 Semi-dry 2,762 1,7 33 SOB-1/87 MurskaSobota 46,6597 16,1612 190 550 marly clay Upper Pontian 2,08 0,04 Saturated 1987 MTP-1,MTP-4 2,181 1,65 1988 701 sandy clay 2,13 0,04 Saturated 2,141 1,37 752 sandy clay Pannonian-Pontian 2,14 0,22 Saturated 2,100 1,41 34 GB-1/87 Gabrnik 46,4798 15,9476 220 888 sandy marl Lower Pannonian 2,05 0,10 Semi-dry 1988 MTP-1,MTP-4 2,385 1,62 1988 1796 sandstone Middle Badenian 2,33 0,03 Semi-dry 2,458 1,03 2006 clayey siltstone Badenian 1,94 0,04 Semi-dry 2,548 1,75 2011 dolomiticconglomerate 2,05 0,49 Semi-dry /fi ssured 35 ŠL-1/88 Škofja Loka 46,1745 14,2803 370 0 dolomitic limestone Upper Triassic 4,03 0,33 Semi-dry 1988 MTP-1,MTP-4 2,813 1,62 1990 37 V-931/88 Žirovski vrhUraniummine 46,0755 14,1486 706 266 red quartz sandstone Middle Permian 3,12 0,25 Dry 1988 MTP-4 292 red quartz sandstone& siltstone 2,96 0,22 Dry 2,824 2,96 1990 352 dark grey sandstonewith black shaleclasts 2,12 0,16 Dry 2,824 7,09 38 V-934/88 Žirovski vrhUraniummine 46,0758 14,1493 700 306 colorful conglomera­te w. black siltstone Middle Permian 3,27 0,38 Dry 1988 MTP-4 425 quartz conglomerate 4,05 0,12 Dry 2,691 1,97 1988 447 grey-greenconglomerate 3,81 0,21 Dry 2,691 1,00 39 T-4/87 Radenci 46,6406 16,0509 198 542 sandstone with mica Badenian-Sarmatian 2,39 0,23 Semi-dry 1988 MTP-1,MTP-4 2,334 0,97 1988 624 conglomerate Middle Badenian 3,24 0,49 Semi-dry 668 sandy claystone Lower Badenian 1,89 0,04 Semi-dry 2,436 1,57 797 phyllonite Paleozoic 3,88 0,48 Dry 2,773 1,57 40 PDG-1/87 Podgorjenear Cmurek 46,7049 15,8330 228 57 sandy claystone Sarmatian 1,44 0,33 Semi-dry 1988 MTP-1,MTP-4 2,192 1,51 1988 142 sandy siltstone Upper Badenian 1,87 0,07 Semi-dry 2,253 1,13 217 sandy marl orclaystone Badenian 2,29 0,15 Semi-dry 2,273 1,5 250 conglomerate 2,20 0,04 Semi-dry 2,355 1,02 276 sandstone, siltstone,some marl 2,90 0,18 Semi-dry 2,548 0,64 296 siltstone or lamina­ted sandstone 1,31 0,21 Dry 2,039 1,15 315 sandstone & pebblesor conglomerate 2,01 0,02 Dry 2,355 1,37 327 sandstone with marl 1,48 0,10 Dry 2,263 1,32 41 LJUT-1/88 Ljutomer 46,5142 16,1897 250 1235 carbonaceousmudstone Upper Pontian 1,79 0,08 Semi-dry 1988 MTP-1,MTP-4 2,192 1,01 1988 1772 sandstone,fi ne-grained Upper Pannonian-Lower Pontian 1,49 0,04 Semi-dry 2,304 1,46 2386 calcareous siltstonewith sandstone Upper Pannonian 2,66 0,10 Dry 2,508 1,91 2386 calcareous siltstonewith sandstone 3,73 0,19 Saturated 2386 siltstone & sandstone 2,34 0,10 Semi-dry 2647 calcareous siltstone,sandstone 2,72 0,13 Semi-dry 2,752 1,91 2651 calcareous siltstonewith sandstone 2,66 0,09 Semi-dry 2825 sandstone,fi ne-grained Lower Pannonian 2,62 0,08 Dry 2,528 1,16 2825 sandstone,fi ne-grained 3,39 0,17 Saturated 2827 sandstone 2,75 0,13 Semi-dry 2830 sandstone, siltstone 2,69 0,07 Semi-dry 2,742 2,17 3087 siltstone, sandstone Sarmatian? 2,72 0,24 Semi-dry 3293 calcareous siltstone 2,52 0,10 Semi-dry 2,773 1,82 3639 calcareous mudstone Lower Badenian 2,34 0,22 Semi-dry 2,742 1,68 3935 calcareous siltstone Karpatian? orLower Badenian 3,15 0,25 Semi-dry 4020 silicifi ed brecciateddolomite, dolosparite Upper Triassic 4,01 0,47 Dry 2,773 0,66 4048 gneiss(biotite-sillimanite) PreOrdovician 2,60 0,41 Dry 2,630 1,92 42 SOB-2/88 MurskaSobota 46,6591 16,1654 190 733 sand Pontian 1,48 0,07 Saturated 1988 MTP-1,MTP-4 802 marly sandstone 2,07 0,03 Semi-dry 854 sandstone 2,49 0,04 Semi-dry 2,243 2,07 1990 43 P-29/88 Praproce 45,5315 13,9153 422 297 limestone Middle Eocene 2,32 0,15 Dry 1988 MTP-1,MTP-4 315 limestone 2,67 0,11 Dry 2,936 3,33 1990 338 limestone Lower Eocene 2,67 0,10 Dry 388 limestone 2,56 0,14 Dry 500 limestone 2,47 0,10 Dry 45 ŠD-2/88 Špitalska Draga nearMetlika 45,6611 15,3108 183 60 limestone Upper Jurassic 2,9 0,17 Dry 2003 MTP-1 85 limestone Lower Jurassic 2,62 0,04 Dry 90 dolomitic limestone,limestone, breccia 3,5 0,18 Dry 46 V-14/83 Vaseno 46,2180 14,6996 437 202 dolomite Middle Triassic 3,94 0,15 Dry 1983 MTP-1 300 dolomite 2,94 0,08 Dry/fi ssured 349 dolomite 3,82 0,31 Dry/fi ssured 496 dolomite 4,11 0,20 Dry/sligh­tly fi ssured 550 dolomite 4,10 0,25 Dry/fi ssured 610 dolomite 3,79 0,73 Dry 47 V-2/79 Avber nearSežana 45,7764 13,8616 232 0 limestone Upper Cretaceous 2,85 0,12 Dry 1986 MTP-1,MTP-4 48 CV-1/86 Crna vas near Ljubljana 46,0142 14,5136 288 5 clay Quaternary 1,15 0,16 Saturated 1986 MTP-1,MTP-4 9 clay 1,12 0,45 Saturated 12 clay 1,45 0,55 Saturated 51 Pg-7/88 Petišovci 46,5375 16,4849 158 1360 sandstone(laminated) Lower Pontian 2,24 0,17 Dry 1988­1989 MTP-1,MTP-4 1365 sandstone Upper Pannonian or Lower Pontian 2,03 0,10 Dry 2,406 1,99 1990 1628 sandstone & siltstone Upper or LowerPannonian 2,61 0,15 Dry 1628 sandstone & siltstone 3,05 0,04 Saturated 1642 marly siltstone 2,19 0,28 Dry 2,610 1,63 1704 sandstone & siltstone 2,01 0,10 Dry 1704 sandstone & siltstone 2,74 0,08 Saturated 1710 sandstone 2,21 0,13 Dry 1710 sandstone 3,27 0,20 Saturated 2136 sandstone & siltstone Sarmatian 2,97 0,20 Dry 2136 sandstone & siltstone 3,7 0,16 Saturated 2144 sandstone, marl andsiltstone Sarmatian orBadenian 2,6 0,18 Semi-dry 2,762 4,06 2412 sandstone with mica Badenian 3,77 0,50 Semi-dry 2418 siltstone & sandstone 3,29 0,38 Semi-dry 2779 sandstone & siltstone Lower Badenian 4,03 0,43 Semi-dry 2973 sandstone & siltstone Badenian orKarpatian 3,36 0,19 Semi-dry 52 DOK-1/88 Dokležovje 46,5984 16,1826 182 1348 sandstone with marl Middle Badenian 2,21 0,04 Dry 1988 MTP-1,MTP-4 1539 sandstone 2,56 0,14 Semi-dry 1667 sandstone 2,57 0,24 Semi-dry 1670 silty marl withsandstone 2,31 0,19 Dry 2,559 1,38 1988 1731 greenschist(sericite-chlorite) Paleozoic 2,97 0,21 Dry 2,732 2,95 1933 eclogite 2,35 0,11 Dry 2,814 0,75 53 Mg-6/85 Murski gozd 46,4985 16,5216 155 2063 sandstone Badenian 2,41 0,05 Semi-dry 1985­1986 MTP-4,MTP-1 2,600 1,15 1985 2595 silty marl &sandstone 2,52 0,10 Semi-dry 2,600 2,11 2730 sandstone & siltstone Lower Badenian 2,79 0,14 Semi-dry 2,600 2,14 3266 silty marl 2,44 0,07 Semi-dry 2,600 1,29 3358 silty marl Karpatian or LowerBadenian 2,53 0,07 Semi-dry 2,600 1,48 3448 calcitic silty marl 2,02 0,23 Semi-dry 54 LK-1/89 Nadgoricanear Ljubljana 46,0889 14,5630 279 203 sandstone, fi negrained Carboniferous 3,14 0,28 Dry 1989 MTP-4,MTP-1 351 silty shale withquartz 2,41 0,27 Dry 2,841 2,41 1990 651 sandstone,fi ne-grained 2,72 0,35 Dry 717 shale with quartzveins 2,35 0,31 Dry 2,793 1,82 943 siltstone or sandsto­ne, quartz veins 2,93 0,10 Dry 2,803 2,39 1038 silty claystone 3,48 0,24 Dry 1194 silty claystone orsiltstone 3,29 0,65 Dry 2,707 2,29 1363 silty claystone orsiltstone 3,60 0,26 Dry 2,789 2,41 1471 silty claystone orclayey siltstone 3,37 0,22 Dry 1649 silty claystone 3,30 0,28 Dry 2007 TCS 2,724 1,47 55 SGT-1/90 Šmartnonear SlovenjGradec 46,4945 15,0794 445 319 graphitic schist Paleozoic 2,87 0,08 Dry 1990 MTP-1,MTP-4 320 graphitic schist 2,559 1,57 1990 591 amphibolitic schistwith marble 2,65 0,36 Dry 2,836 1,33 998 chloritic biotite schist(diopside) 2,84 0,54 Dry 2,756 2,12 56 P-27/87 Podpec nearRižana 45,5189 13,9084 305 306 limestone Paleocene 2,70 0,18 Dry 1987 MTP-1,MTP-4 355 limestone 2,62 0,08 Dry 2,671 0,78 1988 450 limestone 3,33 0,40 Dry 58 V-4/84 Podcetrtek 46,1652 15,6054 196 101 marl Oligocene 2,53 0,04 Saturated/fi ssured 1984 MTP-1 2,480 2,18 1984 198 spilitic diabase tuff(metamorphosedporphyr. breccia) Middle Triassic 2,06 0,08 Dry/fi ssured 2,740 0,58 61 Holesin thewestern tunnel tube wall KaravankeHighwayTunnel 46,4678 13,9967 1143*390 90 dolomitic limestone Lower Triassic 3,62 0,48 Semi-dry 1987­1988 MTP-1,MTP-4 2,793 0,66 1988­1990 426 115 limestone & dolomite 3,02 0,11 Dry/fi ssured 508 160 limestone 2,65 0,19 Semi-dry 2,742 0,68 660 270 dolomite Anisian 4,00 0,17 Semi-dry 2,844 0,62 700 285 red silty dolomite Lower Triassic 3,87 0,21 Semi-dry 700 285 grey dolomite 3,26 0,19 Semi-dry 869 340 dolomite and siltsto­ne with gypsum 2,40 0,08 Semi-dry 2,814 1,85 911 350 black dolomite Upper Permian? 3,85 0,36 Semi-dry 2,854 1,47 952 354 calcitic breccia Middle Permian? 2,25 0,50 Semi-dry 1043 378 dolomite with calcite MiddlePermian-Triassic 4,88 0,48 Semi-dry 2,854 0,69 1210 430 dolomitic breccia &conglomerate Middle Permian 3,44 0,54 Semi-dry 2,691 0,72 1690 496 dolomitic conglome­rate with sandstone UpperCarboniferous-Lower Permian 4,13 0,60 Dry/partlycrumbled 2,620 0,42 1755 502 black claystone withcalcite Carboniferous– Permian 1,71 0,10 Dry/partlycrumbled 2,09 1,75 1855 525 sandstone, siltstone Upper Carbon.-Lower Permian 2,18 0,11 Semi-dry 2,773 2,27 1970 544 siltstone, sandstone,limestone UpperCarboniferous 2,691 2,22 2100 575 calcarenite 2,84 0,16 Semi-dry 2145 590 siltstone, claystone,clay 1,60 0,24 Semi-dry 2,732 2,53 2261 688 silty (?) limestone 3,29 0,19 Semi-dry 2,732 2,11 63 P-8r/86 Družmirje near Velenje 46,3846 15,0697 380 356 carbonate pebblesandstone Pliocene 2,46 0,94 Saturated 1986 MTP-4 357 gravel silty sand 1,01 0,06 Sat./partlycrumbled 366 claystone with sand& pebbles 1,46 0,36 Saturated 367 silt with sand, clay &pebbles 1,33 0,37 Saturated 368 claystone 1,34 0,27 Saturated 369 silty and sideriteclaystone 1,37 0,31 Saturated 375 silty claystone 1,34 0,42 Saturated 64 B-105/89 Uraniummine Žirovski vrh 46,0627 14,1563 703 72 pinky red sandstoneor siltstone Middle Permian 2,89 0,24 Semi-dry 1989 MTP-4,MTP-1 2,882 2,57 1990 153 grey sandstone 3,28 0,22 Semi-dry 355 grey sandstone 3,31 0,92 Semi-dry 2,726 3,60 66 ŠOM-1/88 Šomat nearPlodršnica 46,6431 15,7589 270 357 marly sandstone Lower Badenian 2,31 0,17 Saturated 1988 MTP-1,MTP-4 2,447 1,89 1990 627 silty marl or marlysiltstone Lower Badenian orKarpatian 0,92 0,13 Dry 1,651 0,37 628 silty marl 2,44 0,19 Semi-dry 805 tectonic breccia ofsandstone silt matrix Karpatian 3,07 0,26 Semi-dry 2,854 2,55 67 TB-1/89 Ljubljana, Regional waste center 46,0192 14,4789 288 152 dolomite Triassic 3,99 0,49 Semi-dry 1989 MTP-4 68 TB-2/89 Ljubljana, Spodnji Log 46,0258 14,4664 293 100 dolomite with lotof clay, tectonic.fi ssured Upper Triassic 1,63 0,25 Semi-dry /fi ssured 1989 MTP-4 70 MT-1/89 Mokrice 45,8619 15,6801 152 96 dolomite Triassic 3,64 0,95 Dry/partlycrumbled 1989 MTP-1,MTP-4 72 TB-3/89 Ljubljana marsh, Curnoveccreek 46,0196 14,4612 293 51 clay with sand &pebbles Pleistocene 1,54 0,04 Saturated 1989 MTP-1,MTP-4 102 silt with sandy clay 1,95 0,09 Saturated 152 silty clay 2,04 0,28 Semi-dry 175 dolomite Upper Triassic 5,17 0,52 Semi-dry 267 dolomite 5,30 0,27 Semi-dry 346 clayey sandstonewith pebbles Middle Triassic orCarnian? 1,60 0,11 Saturated 77 SG-1/89 SlovenjGradec 46,4942 15,0836 436 85 clay & sand Pliocene 2,28 0,10 Saturated 1989 MTP-1,MTP-4 78 DRN-1/89 Drnovo 45,9139 15,5056 150 195 carbonaceous silt &grey-brown clay Lower Pliocene 1,68 0,45 Saturated 1989­1990 MTP-1,MTP-4 297 silty marl with mica 1,85 0,14 Semi-dry 435 silty marl Pannonian 1,74 0,09 Semi-dry 437 clayey marl 1,75 0,31 Dry 490 silty (clayey) marl 1,72 0,03 Semi-dry 544 silty marl 1,63 0,07 Semi-dry 2,110 1,08 1990 661 marly limestone Badenian 1,89 0,06 Semi-dry 2,189 1,04 754 sandstone, silty claywith sand & pebbles(5%) Ottnangian 2,23 0,07 Saturated 2,262 1,27 806 silty clay, silt Ottnangian 2,13 0,07 Saturated 1250 silty claystone (80%),limestone & chert(20%) Upper Cretaceous 2,00 0,22 Saturated 79 O-1/91 Osp 45,5730 13,8533 27 306 marl Middle Eocene 2,29 0,15 Semi-dry 1990­1991 MTP-1,MTP-4 405 marly limestone 2,58 0,47 Semi-dry 533 marly limestone 2,09 0,13 Semi-dry 549 marly limestone 2,41 0,22 Semi-dry 583 limestone Paleocene 2,699 0,58 1995 584 limestone 2,47 0,03 Semi-dry 606 limestone 2,53 0,18 Semi-dry 632 limestone, marlylimestone 2,08 0,18 Semi-dry 80 S-1/89 Polom nearKocevje 45,7437 14,8537 373 180 limestone Lower Cretaceous 2,86 0,14 Semi-dry 1990 MTP-1,MTP-4 220 limestone 2,96 0,15 Semi-dry 2,723 n.d. 82 MB-1/90 Maribor 46,5357 15,6836 256 19 sandy marl Miocene 2,14 0,44 Saturated 1990 MTP-4 2,280 n.d. 86 Holes inthe tunneltube wall Debeli hribTunnel,Ljubljana 46,0091 14,5659 337*170 47 siltstone withsandstone Permo-Carboniferous 2,12 0,17 Semi-dry 1990 MTP-1,MTP-4 2,776 2,76 1990 180 49 siltstone withsandstone 2,22 0,26 Sat. / perp.to bedding 181 49,3 siltstone withsandstone 3,01 0,16 Sat. /paral. tobedding 87 MB-1/91 Maribor 46,5356 15,6855 256 154 sandy marl Badenian 2,05 0,12 Saturated 1990­1991 MTP-1,MTP-4 353 marl Badenian orKarpatian 2,05 0,20 Semi-dry 2,475 1,05 1992 624 siltstone withsandstone Karpatian? 2,51 0,31 Semi-dry 2,578 0,82 801 granat-muscovitegneiss, tectonized PreCambrian 4,60 0,52 Dry 2,951 2,17 945 muscovite gneisswith granats 3,88 0,34 Dry 2,950 2,29 1331 granat-muscovite-bi­otite gneiss 3,05 0,31 Dry 3,042 2,37 88 PB-5/90 Ljubljana marsh, Curnoveccreek 46,0201 14,4633 292 65 clay (light brown) Pleistocene 1,21 0,30 Saturated 1990 MTP-1,MTP-4 71 peat (black organicclay) 0,79 0,03 Saturated 127 silty sandy clay 1,70 0,28 Saturated 155 clay (dark grey) 1,60 0,06 Saturated 163 clay (red) 1,42 0,03 Saturated 90 ŽT-1/91 Žalec 46,2561 15,1584 259 361 tuff aceous brecciaand sandstone Oligocene 1,32 0,16 Semi-dry 1990­1991 MTP-1,MTP-4 1,800 n.d. 1992 654 silty marl (orsandstone) 1,69 0,26 Semi-dry 2,332 1,24 1100 calcarenite=limytuff ac. sandstone Middle Triassic:Ladinian 3,03 0,22 Semi-dry 2,943 0,47 1499 keratophyre (alkali­-albit trachyte) Middle Triassic:Anisian 2,66 0,21 Semi-dry 2,922 2,97 91 Tr-3/90 Rogaška Slatina 46,2235 15,6429 216 0 sandstone Ottnangian-Karpatian 2,46 0,60 Dry 1990 MTP-1,MTP-4 228 sandstone with tuff 2,3 0,85 Dry 92 PB-4/89 Ljubljana, Kolezija 46,0421 14,4926 292 88 quartz sandstone Permo-Carboniferous 2,94 0,52 Semi-dry 1991 MTP-4,MTP-1 98 PEC-1/91 Pecarovci 46,7402 16,1361 234 1086 marly siltstone Sarmatian 2,35 0,19 Semi-dry 1193 marly siltstone Sarmatian orBadenian 2,06 0,17 Saturated 1211 sandstone withsiltstone Badenian 2,68 0,35 Sat./paral.to bedding 1212 sandstone, slightlymarly 1,92 0,17 Dry 2,380 1,81 1992 1920 dolomite Mesozoic 3,66 0,13 Dry 3,028 1,00 2001 dolomite brecciawith pyrites 3,40 0,51 Dry 2,752 2,27 99 VG-1/90 Grcarevec 45,8749 14,2105 490 120 dolomite with calciteveins Lower Jurassic 4,66 0,54 Dry 1991 MTP-4,MTP-1 102 D-2/90 Dragonja 45,4474 13,6812 24 81 limestone Eocene 2,16 0,12 Semi-dry 1991 MTP-4,MTP-1 150 marly limestone Paleocene 2,43 0,24 Semi-dry 106 MB-2/91 Maribor 46,5411 15,6703 256 486 gneiss PreCambrian 3,29 0,36 Dry 1992 MTP-1,MTP-4 2,910 1,50 1992 487 gneiss 3,75 0,64 Dry 113 DAN-3/90 Dankovci - Mošcanci 46,7543 16,1782 308 946 clayey-marly sandstone Lower Pontian orUpper Pannonian 1,85 0,06 Saturated 1991 MTP-4,MTP-1 1237 sandstone Sarmatian 2,52 0,40 Saturated 1314 sandstone 4,44 0,23 Saturated 114 SGT-2/92 MislinjskaDobrava 46,4668 15,1221 505 99 clay with quartzpebbles Pliocene 1,57 0,16 Saturated 1992 MTP-1,MTP-4 121 GM-1/93 Gozd Martuljek 46,4858 13,8373 742 0 quartz shalesandstone UpperCarboniferous 2,90 0,07 Dry 1995 MTP-1 122 RT-1/92 Rogaška Slatina 46,2286 15,6372 221 610 marly clay Oligocene – UpperEgerian 1,57 0,08 Saturated 1992­1993 MTP-4,MTP-1 2,452 n.d. 1035 arkose sandstone Oligocene – LowerEgerian 2,19 0,23 Semi-dry 2,470 1,28 1995 1206 marl 1,52 0,06 Sat./fi ssur. 2,696 1,28 1412 tecton. sandstone,black mudstone Middle Triassic 2,32 0,56 Semi-dry 2,713 1,72 1700 shale with quartzpebbles, pyrites Permo-Carboniferous 2,09 0,25 Dry/partlycrumbled 2,750 1,98 123 KA-1/92 Dragonja 45,4445 13,6796 25 80 limestone Paleocene-Eocene 2,56 0,10 Dry 1993 MTP-4 86 limestone Paleocene 2,56 0,07 Dry 89 limestone 2,57 0,10 Dry 97 limestone withclaystone 2,35 0,14 Dry 100 claystone with limes­tone pebbles 1,86 0,22 Dry 109 limestone withclaystone 2,34 0,47 Dry 111 limestone, karstifi ed 3,01 0,07 Dry 120 limestone 2,74 0,21 Dry 123 limestone 2,74 0,07 Dry 129 limestone 2,95 0,17 Dry 133 limestone Upper Cretaceous 2,57 0,24 Dry 141 limestone 2,78 0,31 Dry 402 limestone(Hyppurites) 2,28 0,11 Dry 403 limestone 2,20 0,38 Dry 124 P-12o/92 Družmirje near Velenje 46,3800 15,0672 373 758 mica sandstone andsiltstone Eggenburgian 1,67 0,25 Semi-dry 1992­1993 MTP-1,MTP-4 772 silty sandstone 2,12 0,22 Saturated 881 mica siltstone,sandstone 2,02 0,22 Saturated 966 sandy siltstone Eggenburgian? 1,74 0,15 Semi-dry 2,552 1,10 1995 1168 marly siltstone Oligocene-Miocene:Egerian 2,27 0,32 Semi-dry 1375 mica siltstone, siltymarlstone Egerian 2,23 0,19 Saturated 1422 andesitic tuff aceous breccia 1,89 0,13 Dry 1425 andesitic tuff aceous breccia 2,693 0,77 1426 andesitic tuff aceous breccia 2,17 0,06 Dry 1528 black siltstone 2,17 0,10 Dry 1529 siltstone 1,84 0,06 Dry 2,749 1,57 1600 andesitic tuff (breccia) 2,656 1,17 1602 andesitic tuff (breccia) 2,25 0,18 Dry 125 CV-1/91 Catež atBrežice 45,8916 15,5958 193 221 limy marlstone andclaystone Upper Cretaceous 2,70 0,14 Semi-dry 1992 MTP-4,MTP-1 2,931 1,50 1992 128 Mt-7/93 MoravskeToplice 46,6804 16,2229 186 824 sand Pontian 2,34 0,21 Saturated 1993 MTP-4 825 sand 2,19 0,14 Saturated 141 MK-1/93 Mark aboveŠempeternear Gorica 45,9287 13,6535 226 181 sandstone Lower Eocene 2,96 0,37 Semi-dry 1993 MTP-4,MTP-1 183 sandstone with siltymarl 3,21 0,19 Semi-dry 148 Mrt-1/93 Sveti Martin,Kobilje breg 46,6606 16,3834 173 1931 marly siltstone Lower Pontian? 1,71 0,14 Semi-dry / par. tobedding 1993 MTP-4 2092 marly siltstone, micasandstone 3,35 0,49 Semi-dry 2096 marly siltstone 2,34 0,25 Semi-dry / perp. tobedding 2098 marly siltstone 2,52 0,14 Semi-dry 155 Sre-1/91 Središce 46,7674 16,3240 229 2431 sandstone w. mica Badenian 2,56 0,50 Semi-dry 1993 MTP-1,MTP-4 2434 sandstone w. mica 1,88 0,67 Semi-dry 2438 silty marlstone,mudstone? 2,58 0,10 Semi-dry 2439 sandstone w. mica 1,73 0,32 Semi-dry 162 R-14/93 Podracje nearHrastovlje 45,5183 13,9005 115 290 limestone Paleocene-Eocene 2,29 0,21 Dry 1994 MTP-4 291 limestone 2,31 0,23 Dry 163 LU-1/94 Lucija 45,5065 13,5988 2 204 silty carbonatesandstone Middle Eocene 1,54 0,13 Dry/fi ssured 1994 MTP-4 205 silty carbonatesandstone 1,43 0,07 Dry/fi ssured 609 limestone Upper Cretaceous 2,46 0,23 Semi-dry 611 limestone (fl uidalsedimentation) 2,61 0,18 Semi-dry 611 limestone (shell) 2,65 0,19 Semi-dry 798 limestone (shell) 2,31 0,10 Semi-dry 800 limestone(bituminosed?) 2,57 0,14 Semi-dry 2,642 0,48 1995 169 ŠE-1/94 Šempeternear Gorica 45,9216 13,6326 68 524 marl, calcareousmarl (claystone?) Middle Eocene 1,98 0,28 Dry/fi ssured 1995 MTP-1 525 silty (calcareous)marl or shale 2,26 0,21 Dry/fi ssured 526 marl (marly shale) 1,91 0,19 Dry/fi ssur. 938 silty (calcareous)marl 1,98 0,14 Dry/fi ssured 2,622 0,51 1995 940 silty (calcareous)marl 2,53 0,07 Dry/paral.to bedding 179 To-1/94 Okonina 46,3270 14,8669 393 160 breccia (dolo-limes­tone, marly) Upper Oligocene: Chattian 2,17 0,14 Dry 1994 MTP-4 189 Ce-2/95 Cerkno 46,1277 13,9881 318 693 dolomitizedlimestone Upper Triassic:Norian & Rhaetian 2,36 0,20 Dry/fi ssured 1995 MTP-1 694 dolom. limestone 2,64 0,24 Dry/fi ssur. 695 dolom. limestone 2,63 0,11 Dry/fi ssur. 1948 limestone Upper Jurassic 2,63 0,06 Dry 209 G-10/95 ZgornjiGabrnik 46,2718 15,5744 290 425 dolomitized tuff Oligocene 1,97 0,06 Dry/fi ssur. 1996 MTP-1 602 calcareous siltstone 2,35 0,07 Dry 233 PC-3/84 Topolšica 46,3939 15,0240 378 195 claystone Pliocene 1,29 0,45 Saturated 1986 MTP-4 247 PI-3/84 Šoštanj­Metlece 46,3847 15,0378 359 303 claystone Pliocene 1,31 0,17 Saturated 1986 MTP-4 252 Ng-1/18 SpodnjeNegonje 46,2450 15,6172 268 300 mica siltstone andsandstone Lower Oligocene 2,84 0,06 Semi-dry 2019 TCS 0,94 301 mica siltstone andsandstone 2,85 0,15 Semi-dry 0,60 508 siltstone with ande­sitic tuff 3,06 0,09 Semi-dry 0,94 509 siltstone with ande­sitic tuff 2,99 0,09 Semi-dry 1,11 275 S-1j/83 Leženj 46,3880 15,0838 460 386 sandy clay Pliocene 2,01 0,25 Saturated 1986 MTP-4 276 P-2n/86 Gaberke 46,3883 15,0791 404 302 lignite Pliocene 0,58 0,15 Semi-dry 1986 MTP-1,MTP-4 320 lignite 0,97 0,60 Semi-dry 325 lignite 0,59 0,16 Semi-dry 345 lignite 1,34 0,22 Semi-dry 348 lignite 0,78 0,20 Semi-dry 277 P-2ut/87 Gaberke 46,3909 15,0743 377 290 dolomite Middle Triassic 4,06 0,42 Dry 1987 MTP-1,MTP-4 278 S-6s/83 Gaberke 46,3864 15,0717 382 337 claystone Pliocene 1,30 0,37 Saturated 1986 MTP-1,MTP-4 279 P-6t/84 Gaberke 46,3868 15,0709 384 401 lignite with clay Pliocene 1,52 0,27 Saturated 1986 MTP-4,MTP-1 280 P-5t/84 Gaberke 46,3877 15,0719 384 404 hydrothermally metam. dolomite(millonite) Middle Triassic 3,46 0,24 Saturated/fi ssured 1986 MTP-4 281 S-60/86 Deberca near Velenje 46,3752 15,1172 406 48 lignite with clay Pliocene 1,43 0,19 Saturated 1987 MTP-1,MTP-4 49 lignite with clay 1,29 0,20 Saturated 52 clay 1,46 0,17 Saturated 53 lignite, lignite withclay 0,82 0,14 Saturated 54 clay, lignite with clay 1,51 0,13 Saturated 57 clay 1,58 0,14 Saturated 59 clay with sand 1,91 0,19 Saturated 282 J-1g/05 Velenje lake,RestaurantJezero 46,3689 15,0929 370 2142 siltstone or mudstone Lower Oligocene 2,34 0,18 Dry 2007 TCS 2143 siltst. or mudstone 2,39 0,15 Dry 2144 siltst. or mudstone 2,14 0,20 Dry 2144 siltst. or mudstone 2,27 0,06 Dry 2145 siltst. or mudstone 2,16 0,07 Dry 2145 siltst. or mudstone 2,25 0,05 Dry 2145 siltst. or mudstone 2,27 0,12 Dry 2146 siltst. or mudstone 2,21 0,11 Dry 283 PJ-4/83 Šoštanj- Metlece 46,3855 15,0422 375 335 claystone Pliocene 1,58 0,21 Saturated 1986 MTP-1,MTP-4 284 PL-6/84 Šoštanj 46,3852 15,0514 360 397 claystone Pliocene 1,35 0,24 Saturated 1986 MTP-4 285 P-12u/85 Šoštanj- Družmirje 46,3824 15,0633 373 418 claystone, sandysiltstone Pliocene 1,42 0,20 Saturated 1986 MTP-4,MTP-1 407 BKV-1/98 Krmacina near Drašici 45,6664 15,3897 180 145 fl ysch marlstone Upper Cretaceous 2,37 0,16 Dry 2003 MTP-1 408 Rd-1/93 Radovica 45,6908 15,3387 330 225 limestone Upper Jurassic 2,9 0,04 Dry 2003 MTP-1 430 Jan-1/04 Janežovci 46,4666 15,8761 244 363 marly siltstone withbioturbations Pontian 1,98 0,26 Semi-dry 2004 MTP-1,MTP-4 364 sand or very looselysandstone 1,79 0,14 Saturated 365 sandstone,fi ne-grained 1,90 0,10 Semi-dry 626 sandstone, fi ne-gra­ined (bioturb.) 2,01 0,15 Semi-dry 628 sandstone,fi ne-grained 2,06 0,18 Saturated 629 marly siltstone 1,84 0,15 Semi-dry 822 marly siltstone 2,06 0,13 Semi-dry 823 sandstone,fi ne-grained 1,73 0,14 Saturated 823 clayey siltstone w.calcite clasts 1,97 0,10 Semi-dry 824 sandstone, calciticmarly clasts 1,70 0,14 Saturated 432 To-2/04 Mala Lahinjanear Nerajec 45,5061 15,1982 155 50 dolomite, tectonic.crumbled Upper Jurassic 3,34 0,19 Dry 2004 MTP-1 442 Pg-8/89 Petišovci 46,5415 16,4782 159 2816 sandstone, with mica Lower Badenian 3,103,47 0,110,19 DrySaturated 2020 TCS 1,39 443 Pg-5/87 Petišovci 46,5365 16,4746 158 2563 sandstone, with mica Middle Badenian 3,003,29 0,110,13 DrySaturated 2020 TCS 1,34 2722 siltstone or sandsto­ne, mica Lower Badenian 2,90 0,26 Dry 1,30 2871 siltstone or sandsto­ne, mica 2,81 0,18 Dry 1,38 3247 siltstone with mica Karpathian 2,25 0,15 Dry 1,15 3323 siltstone or sandsto­ne, mica 2,19 0,30 Dry 1,09 444 Pg-9/89 Petišovci 46,5422 16,4955 160 1819 sandstone Sarmatian 3,07 0,32 Semi-dry 1991 MTP-4,MTP-1 2053 sandstone andsiltstone Sarmatian 2,81 0,31 Saturated 2443 sandstone Badenian 3,9 0,47 Semi-dry 3008 marly siltstone Badenian orKarpathian 3,21 0,33 Saturated 482 TVPG-1/07 Pusti Gradec 45,5187 15,1944 152 75 limestone Lower Cretaceous 2,82 0,10 Dry 2019 TCS 1,02 697 dolomitic breccia Upper Jurassic 3,74 0,37 Semi-dry 2007 TCS 698 dolomitic breccia 3,85 0,23 Semi-dry 698 dolomitic breccia 4,31 0,18 Semi-dry 699 dolomitic breccia 4,34 0,22 Semi-dry 699 dolomitic breccia 4,60 0,20 Semi-dry 699 dolomitic breccia 3,52 0,42 Semi-dry 700 dolomitic breccia 4,24 0,42 Semi-dry 700 dolomitic breccia 4,06 0,33 Semi-dry 486 TVM-2/08 Medvode 46,1415 14,4045 316 350 silt (siltstone) Oligocene 3,83 0,14 Saturated 2009 TCS 803 silt 1,42 0,10 Dry/crumbled 515 Re-1g/11 Renkovci 46,6308 16,2952 174 1484 poorly quartzsandstone Pontian 2,40 0,11 Saturated 2012 TCS 1485 poorly quartzsandstone 2,48 0,12 Saturated 516 SOB-3g/12 MurskaSobota 46,6669 16,1454 191 718 calcareous clayeysiltstone Pontian 2,4 0,10 Saturated 2012 TCS 719 calcareous clayeysiltstone 2,54 0,17 Saturated 1108 gneiss, w. quartz ­calcite veins Paleozoic 3,32 0,70 Dry 1109 gneiss, w. quartz ­calcite veins 3,34 0,29 Dry 1484 gneiss, with quartz Paleozoic orPreCambrian 2,90 0,32 Dry 517 SOB-4g/13 MurskaSobota 46,6657 16,1604 191 814 poorly quartz san­dstone w. mica Pontian 2,1 0,08 Semi-dry 2014 TCS 815 poorly quartz san­dstone w. mica 1,96 0,11 Semi-dry 1197 mudstone (sandysiltstone) Lower Pannonian 2,15 0,09 Semi-dry 1198 mudstone (sandysiltstone) 1,92 0,13 Semi-dry 530 Niko-1/08 Nuskova 46,8133 16,0276 237 45 lithotamnianlimestone Badenian orSarmatian 1,61 0,07 Saturated 2008 TCS 48 lithotamnianlimestone Badenian orSarmatian 1,58 0,06 Saturated 535 D-1/71 Drevenik 46,2714 15,5855 415 17,5 breccia limestone Permian 2,73 0,08 Dry 2008 TCS 24,8 breccia limestone 2,89 0,08 Dry MTP-4 544 D-2/05 Mirna naDolenjskem 45,9527 15,0673 245 148 dolomite Middle Triassic:Ladinian 4,42 0,62 Semi-dry 2005 MTP-4,MTP-1 550 CZ-5/20 Ljubljana, Trnovo 46,0429 14,4985 292 15 clay Quaternary 1,42 0,10 Saturated 2020 TCS 0,45 17 peat with clay 0,87 0,08 Semi-dry 0,22 18 peat with clay 1,25 0,09 Saturated 0,33 551 VSG-803­V3p Podgorjenear SlovenjGradec 46,4336 15,0888 689 16 conglomerate Badenian 3,70 0,45 Dry 2020 TCS 1,65 17 conglomerate 3,77 0,32 Dry 1,67 41 claystone 2,21 0,10 Dry 1,03 87 sandstone 2,56 0,23 Dry 1,03 116 siltstone w. pyrite 2,34 0,14 Dry 0,99 129 siltstone 2,20 0,18 Dry 0,78 139 sandstone 2,25 0,13 Dry 1,07 145 siltstone 2,11 0,11 Dry 0,80 556 ZDD­RV-3/21 Domžale 46,1431 14,5911 299 26 clay with gravel Q: Pleistocene 1,71 0,00 Semi-dry 2021 KD2Pro 27 clay with gravel 1,91 0,12 Semi-dry TCS 0,48 29 black micritic limes­tone, black claystone Upper Triassic 2,27 0,18 Semi-dry 0,68 32 black micriticlimestone 2,56 0,26 Dry 0,97 39 dark grey limestonewith black claystone 2,64 0,12 Semi-dry 1,05 557 PŠ-3/91 Ljubljana, Šentvid­Pržan 46,0946 14,4611 401 81 silty shale withquartz Permo-Carboniferous 2,81 0,21 Dry 1991 MTP-1,MTP-4 88 silty shale andsandstone 3,14 0,36 Dry 90 quartz siltysandstone 3,60 0,29 Dry 2,834 n.d. 95 silty shale, black 2,86 0,19 Dry 558 PŠ-4/91 Ljubljana, Šentvid­Pržan 46,0924 14,4601 387 60 silty shale Permo-Carboniferous 2,71 0,30 Dry 1991 MTP-4 2,758 n.d. 559 V-46/87 Kanižarica,Eastern coal­mine fi eld 45,5517 15,1913 178 108 sandy clay with somepebbles Pliocene 1,32 0,09 Saturated 1987 MTP-4,MTP-1 163 limestone Lower Cretaceous 2,61 0,14 Semi-dry MTP-4 560 C-2/82 Cezlak, Pohorje 46,4231 15,4350 649 111 cizlakite (intrusive ofgabbro group) Miocene orOligocene 2,86 0,16 Dry 1990 MTP-4,MTP-1 561 C-8/83 Cezlak, Pohorje 46,4226 15,4337 634 23,4 tonalite Oligocene 2,56 0,12 Dry 1990 MTP-4 2,701 n.d. 562 V-6/67 Rogaška Slatina 46,2405 15,6399 231 217 andesite Oligocene? 2,54 0,16 Dry 1990 MTP-4 563 RGS-2/90 Rogaška Slatina 46,2406 15,6399 231 223 andesite with pyrite& tuff Upper Oligocene 3,21 0,28 Dry 1990­1991 MTP-1,MTP-4 256 andesite with pyrite 3,39 0,55 Dry 258 andesitic tuff 2,16 0,30 Dry 564 R-10/86 Rižana­Podracje 45,5193 13,8972 98 26 limestone, marly Paleocene-Eocene 2,42 0,12 Dry 1987 MTP-4 27 limestone, marly 2,60 0,08 Dry 2,711 0,55 1987 565 P-41/90 Valleybetween Kubed andHrastovlje 45,5107 13,8880 165 229 limestone Upper Cretaceousor Eocene? 2,34 0,46 Dry/crumbled 1990 MTP-1,MTP-4 273 limestone 2,24 0,40 Dry Surf. No. Sample label Surface rock samples – Multi-year project: Geothermal maps of Slovenia 1 Turiška vas,NW of Slov.Bistrica 46,4140 15,5159 636 0 eclogite, second.metamorphosed PreCambrian orCambrian 3,25 Dry 1983 MTP-1 2 Turiška vas,NW of Slov.Bistrica 46,4142 15,5158 632 0 eclogite, second.metamorphosed 3,58 Dry 3 Nova Gora,N of Slov.Bistrica 46,4082 15,5451 413 0 eclogite 3,48 Dry 4 Fošt, NW ofSlov. Bistrica 46,4093 15,4927 599 0 harzburgite,serpentinized 2,18 Dry 5 Tomaj 45,7582 13,8583 346 0 limestone Upper Cretaceous 2,66 Dry 1986 MTP-4,MTP-1 6 Podpec nearLjubljana 45,9688 14,4229 473 0 limestone Lower, MiddleJurassic 2,78 Dry 7 Šentilj 46,6864 15,6516 308 0 marl Badenian 1,59 Dry 1986 MTP-1,MTP-4 2,400 1,22 1987 8 Maribor,Meljski hrib 46,5151 15,7263 280 0 sandy marl Badenian- Sarmatian 1,43 Dry 2,400 0,57 9 46,5324 15,7278 306 0 sandy marl 2,18 Dry 2,400 1,15 10 46,5429 15,7462 398 0 sandy marl Ottnangian- Karpathian 2,26 Dry 11 46,5641 15,6669 300 0 sandy marl &claystone 1,50 Dry 12 46,5694 15,6748 349 0 sandy marl &claystone 2,15 Dry 13 Zgor.Kungota,Sveti Jurij 46,6428 15,5638 303 0 sandstone 2,84 Dry 2,600 0,49 14 Morski jarek,Rošpoh creek 46,6157 15,6116 336 0 quartz phyllite Lower Paleozoic: Ordovician-Silurian 3,62 Dry 2,700 0,46 15 Sveta Ana, Krivi Vrh 46,6421 15,8445 347 0 sandstone Sarmatian 3,09 Dry 2,600 0,53 16 Spod.Kungota 46,6077 15,6526 306 0 silty sandy marl Ottnangian- Karpathian 1,59 Dry 2,400 1,15 17 Zgor.Kungota,Sveti Jurij 46,6421 15,5681 358 0 sandstone 2,69 Dry 18 Šumik onPohorje Mt. 46,5203 15,4580 470 0 amphibolite Ordovician-Silurian? 2,64 Dry 2,700 0,15 19 NP Bistranear Crna/Koroškem 46,4439 14,8205 842 0 tonalite (diorite) Paleogene 2,86 Dry 2,630 1,12 20 Harina Zlaka nearPodcetrtek 46,1599 15,6054 203 0 limy dolomite Middle Triassic:Ladinian 3,21 Dry 1991 MTP-1,MTP-4 21 Gabrnik below Boc,quarry 46,2756 15,5784 389 0 dolomitic breccia Upper Triassic:Carnian 4,10 1,04 Dry 22 Gabrnik below Boc,quarry 46,2771 15,5807 493 0 dolomite 4,70 0,43 Dry 23 Quarry, S ofŠentjur atCelje 46,1931 15,3940 291 0 keratophyre Middle Triassic:Ladinian? 2,72 Dry MTP-4 24 along theroad Drašici­Krmacina 45,6688 15,3759 181 0 carbonate sandstone,calcarenite, calclutite Upper Cretaceous 2,58 Dry 2003 MTP-1 25 Krmacina, near borehole 45,6667 15,3883 197 0 breccia, of limestonewith calcarenite 2,75 0,04 Dry / partly crumbled 26 Metlikacenter, schoolparking 45,6556 15,3136 180 0 dolomite Upper Triassic 4,67 Dry 27 Radovici atKolpa, nearRosalnice 45,6520 15,3410 156 0 shell limestone Upper Jurassic 2,90 0,05 Dry 28 Vipava valley 45,8629 13,9647 158 0 micrite limestone Upper Cretaceous 2,72 Dry 1987 MTP-1,MTP-4 29 45,8216 13,8354 309 0 micrite limestone,with rare rudists 2,92 Dry 30 45,8461 13,7773 349 0 sparite limestone 3,15 Dry 31 45,8616 13,6652 412 0 micrite limestone 2,94 Dry 32 Mala Lahinja 45,5054 15,1953 164 0 (bio)spariticlimestone Lower Cretaceous 2,69 Dry 1987 MTP-1 33 Zapudje, nearDragatuš 45,5021 15,1698 234 0 micritic limestone 2,81 Dry 34 Goricane-Sora, nearMedvode 46,1389 14,3866 381 0 dolomiticconglomerate Middle Oligocene 2,81 Dry 2005 MTP-4 35 Kropa, alongthe road toCešnjica 46,2888 14,2073 638 0 claystone Lower Cretaceous 2,95 0,12 Dry 1986 MTP-4,MTP-1 Surf. No. Sample label Surface rock samples - The “GRETA project” - INTERREG Alpine Space Programme The town of Cerkno and the surrounding area 36 Ko-1_ab Košechomestead 46,1292 13,9810 374 0 dolomite Lower Triassic 3,76 0,19 Dry 2016­2017 TCS 1,36 37 Lab-2 Magajnafarm 46,1341 13,9958 420 0 dolomite 5,60 0,20 Dry 1,34 38 Hom-1 W of theHomec hill 46,1375 13,9947 573 0 dolomite Middle Triassic:Anisian 5,33 0,08 Dry - 39 Hot-1_ab Hotel Cerkno 46,1277 13,9885 317 0 limestone, slightlydolomitized Lower Triassic 3,03 0,10 Dry 1,02 40 Ra-1 Race, alongthe creek 46,1284 13,9784 353 0 limestone 2,65 0,10 Dry 1,18 41 Ra-2_a 46,1274 13,9800 334 0 limestone 2,63 0,22 Dry 1,15 42 Ra-2_b 46,1274 13,9800 334 0 marlstone to limesto­ne, tecton. 1,97 0,30 Dry 1,00 43 SvJ-1_a Sv. Jernej,Pot v Celo 46,1266 13,9811 325 0 limestone Upper Permian 2,36 0,25 Dry 0,97 44 SvJ-1_b 46,1266 13,9811 325 0 black marly limesto­ne, almost passinginto coal 2,01 0,22 Dry 0,85 45 Lab-1 along theroad toLabinje 46,1321 13,9946 364 0 limestone, tectonized Lower Triassic 2,51 0,11 Dry 0,96 46 Lab-3 to the Mill,Labinje 46,1366 13,9939 531 0 marly limestone 2,82 0,12 Dry 0,90 47 Hom-2 Homec hill 46,1391 13,9970 637 0 black limestone Middle Triassic:Ladinian 2,96 0,07 Dry - 48 Mak-1 Maketonhomestead 46,1416 13,9776 437 0 sericitized lithoc­rystalline tuff 3,18 0,19 Dry 1,36 49 Mak-2_ab Maketonhomestead 46,1332 13,9780 464 0 hydrothermally alte­red keratophyric andporphyritic tuff 4,04 0,13 Dry 1,60 50 St-1_ab Strana 46,1252 13,9913 343 0 sandstone (ValGardena) and fi ne--grained siltstone Middle Permian 1,95 0,11 Semi-dry 1,56 51 B-1_bc Brdca, at NOB monument 46,1302 13,9891 344 0 siltstone to mudstone Upper Triassic:Carnian (Amphicl.) 1,95 0,15 Semi-dry 1,23 52 B-1_a 46,1302 13,9891 344 0 sandstone 2,75 0,24 Semi-dry 1,09 53 Kc-1_def Kacan homestead 46,1278 13,9845 349 0 clay shale (muddyshale) Carboniferous 1,84 0,10 Semi-dry 1,59 54 Mlin-2_abcde Mlin, Pot podBregom 46,1255 13,9846 326 0 quartz conglomerate 4,83 0,25 Semi-dry 1,87 55 Mlin-1_abcd 46,1253 13,9839 316 0 quartz sandstone w.conglomerate 3,91 0,14 Semi-dry 1,88 Surf. No. Sample label The wider area of the municipality of Cerkno 56 Je-1_ab Jesenica,Zakriž 46,1438 13,9538 688 0 clay shale Upper Triassic:Carnian (Amphicl.) 1,89 0,18 Dry - 57 Je-2 46,1435 13,9547 693 0 limestone 2,76 0,10 Dry - 58 CV-1_a Crni Vrh 46,1620 14,0582 1262 0 siltstone and clayshale (Pseudozil.) Middle Triassic:Ladinian 1,78 0,20 Semi-dry 0,99 59 Ot_ab Otalež 46,0947 13,9660 307 0 siltstone, light brown Lower Triassic 3,43 0,17 Semi-dry - 60 CV-1_bc Crni Vrh 46,1618 14,0579 1254 0 tuff aceous sandstone(Pseudozilian) Middle Triassic:Ladinian 2,45 0,13 Dry 1,35 61 CV-2_ab Crni Vrh 46,1620 14,0582 1263 0 quartz sandstone(Pseudozilian) 5,30 0,19 Dry 2,31 62 Nov_ab GorenjiNovaki 46,1554 14,0522 951 0 tuff (Pseudozilian) 3,00 0,13 Semi-dry - 63 Rav Ravne, Zakriž 46,1305 13,9571 712 0 tuff 2,32 0,10 Dry - 64 Zk_ab Zakriž 46,1356 13,9741 579 0 diabase 2,95 0,14 Semi-dry - 65 Koj_ab Kojca 46,1445 13,9375 639 0 dolomite (Baca),thin-bedded Upper Triassic:Norian & Rhaetian 4,12 0,29 Dry 1,20 66 Ža Žabce 46,1404 13,9178 535 0 massive crystallinedolomite Upper Triassic:Carnian (Cordevol) 5,59 0,12 Dry 1,52 67 Žel Želin 46,1075 13,9541 263 0 layered dolomite Middle Triassic:Anisian 4,84 0,07 Dry 1,44 Surf. No. Sample label Surface rock samples - The “GeoPLASMA-CE project” – INTERREG Central Europeprogramme 68 25a Rašica hill,NW slope 46,1434 14,4931 495 0 red calcareous san­dstone grading intosiltstone Lower and UpperCretaceous 3,13 0,06 Semi-dry 2017 TCS 1,25 69 25bc 46,1434 14,4931 495 0 red to pink limestone 3,24 0,07 Semi-dry 1,26 70 24abcd 46,1436 14,4961 507 0 conglomerate 3,11 0,09 Semi-dry 1,24 71 18ab Podutik, qu­arry Podutik 46,0761 14,4432 345 0 limestone & limesto­ne breccia Lower Jurassic(Lias) 2,79 0,09 Semi-dry 1,23 72 26ab Rašica hill,NW slope 46,1413 14,4913 476 0 Dachstein limestone(thick-bedded) gra­ding into dolomite Upper Triassic:Norian & Rhaetian 2,98 0,07 Semi-dry 1,21 73 14ab Podutik, Dolnice,along theroad toKamna Gorica 46,0804 14,4500 326 0 3,66 0,12 Semi-dry 1,40 74 13abc Podutik, Bike park 46,0758 14,4366 349 0 Main dolomite(thick-bedded) 5,18 0,13 Semi-dry 2,10 75 29ab N of Repce,near quarryalong theroad 45,9931 14,6233 408 0 4,21 0,11 Dry 1,43 76 35ab ESE of Mali Vrh atPrežganje,S of VelikoTrebeljevo 46,0032 14,7423 631 0 limestone & marlylimestone Upper Triassic:Carnian 2,84 0,10 Semi-dry 1,17 77 40a S of MaliLipoglav,between Mali Lipoglav and ZgornjaSlivnica 45,9893 14,6403 484 0 limestone (a bittuff aceous) 2,73 0,05 Semi-dry 0,98 78 40bc 45,9893 14,6403 484 0 tuffi te 1,73 0,07 Semi-dry 0,56 79 40d 45,9893 14,6403 484 0 limestone(tuff aceous?) 2,92 0,10 Semi-dry 1,05 80 5a Podutik, Toško Celo,E of Požganedoline 46,0850 14,4128 542 0 non beddedlimestone Middle &Upper Triassic:Ladinian-Carnian 3,01 0,10 Semi-dry 1,49 81 10a Podutik, Prevalnik,Toško Celo 46,0825 14,4240 503 0 marly limestone withchert Upper Triassic:Carnian 3,46 0,15 Semi-dry 1,53 82 34ab between Selonear Pance and Pance 45,9986 14,6599 400 0 Schlern dolomite Middle &Upper Triassic:Ladinian-Carnian 4,79 0,16 Semi-dry 1,74 83 7abc Podutik, S of Bike park 46,0751 14,4374 348 0 tuff (pieces & we­athered matrix) Middle Triassic:Ladinian 2,72 0,16 Semi-dry 1,21 84 8b 46,0743 14,4371 390 0 tuff 3,50 0,15 Semi-dry 1,45 85 11ab Toško celo 46,0791 14,4288 366 0 limestone withcherts & marlylimestone 3,14 0,13 Semi-dry 1,37 86 31abc Malo Trebeljevo,on openmeadow 46,0208 14,7410 569 0 dolomitic marlstone& marly dolomite 3,19 0,13 Semi-dry 1,42 87 36a Malo Trebeljevo (Npart) 46,0201 14,7410 569 0 dolomite 4,44 0,13 Semi-dry 1,25 88 12a W of Podutik,SE of ToškoCelo 46,0815 14,4245 485 0 dolomite Middle Triassic:Anisian 4,44 0,15 Semi-dry 1,83 89 6a Toško Celo, Sof restaurant“Pri Bitencu” 46,0819 14,4183 544 0 oolite limestone(marlstone?) Lower Triassic(Werfen fm) 2,39 0,13 Semi-dry 0,82 90 15abc road to ToškoCelo 46,0839 14,4215 540 0 dolomite 3,74 0,15 Semi-dry 1,83 91 16a road to topof the hill onToško Celo 46,0823 14,4182 551 0 oolite limestone 2,92 0,05 Dry 1,03 92 17abc 46,0846 14,4194 576 0 sandstone & siltstone 2,81 0,18 Semi-dry 1,02 93 19abcd 46,0831 14,4227 525 0 dolomitic marlstone& marly dolomite 3,48 0,14 Semi-dry 1,37 94 32ab along theroad Repce- Pleše 45,9953 14,6167 472 0 marlstone, marlylimestone Lower Triassic 1,64 0,08 Semi-dry 1,02 95 32c 45,9953 14,6167 472 0 limestone 2,80 0,05 Semi-dry 1,01 96 32d 45,9953 14,6167 472 0 dolomite 4,05 0,11 Semi-dry 1,50 97 21a Rašica hill,SW slopeto SrednjeGameljne 46,1377 14,5014 420 0 red sandstone &shale Middle Permian(Val Gardena fm) 3,14 0,20 Semi-dry 1,76 98 22a W of Repce,along theroad Repce- Pleše 45,9921 14,6210 467 0 siltstone (aleurolith) 2,19 0,17 Semi-dry 0,80 99 22b 45,9921 14,6210 467 0 tuffi te, light brown Middle Triassic 3,60 0,15 Semi-dry 1,88 100 23ab Rašica hill,SW slopeto SrednjeGameljne 46,1377 14,5014 420 0 quartz sandstone Middle Permian(Val Gardena fm) 3,18 0,14 Semi-dry 1,44 101 33ab SE of Šentpavel 46,0091 14,6207 315 0 quartz-dolomiticsandstone Middle Permian 3,24 0,12 Semi-dry 1,38 102 33c 46,0091 14,6207 315 0 mudstone Middle Permian 2,38 0,09 Semi-dry 0,90 103 30b SE of Šentpavel,along theroad to theSouth 46,0081 14,6197 320 0 red siltstone Middle Permian 2,40 0,11 Semi-dry 0,72 104 30cd 46,0081 14,6197 320 0 red quartz sandstone Middle Permian 3,63 0,36 Semi-dry 0,96 105 27abd Brezje nearPodlipoglav 46,0049 14,6196 322 0 shale Middle Permian 1,86 0,22 Semi-dry 0,84 106 28ab NW ofCešnjica, SEof Sostro 46,0317 14,6165 375 0 shale UpperCarboniferous 1,44 0,10 Semi-dry 1,09 107 41ab Javor aboveBesnica, NWof Javor 46,0247 14,6718 584 0 sandstone 2,55 0,10 Semi-dry 0,99 108 37ab NE of MaloTrebeljevo 46,0233 14,7437 542 0 quartz conglomerate 4,84 0,68 Semi-dry 3,62 109 38ab NE of VelikiLipoglav, Wof Selo nearPance 46,0037 14,6532 370 0 quartz conglomerate 4,51 0,22 Semi-dry 2,32 110 39ab WNW of theRadio-amateurs'Mt. hut 46,0334 14,6442 535 0 quartz conglomerate 4,01 0,11 Semi-dry 2,19 111 1a Ljubljana Castle, Wpart of thecircular route 46,0488 14,5077 363 0 shale, partly siltstone(aleurolith) 2,49 0,14 Semi-dry 0,93 112 2ab Ljubljana Castle, SEpart of thecircular routeat the bridge 46,0483 14,5089 368 0 shale 2,10 0,05 Semi-dry 0,76 113 3ab 46,0483 14,5089 368 0 shale 1,70 0,05 Semi-dry 0,61 114 4ab Ljubljana Castle, NEcorner ofthe castlevineyard 46,0440 14,5143 327 0 siltstone (claystone?) 1,68 0,06 Semi-dry 0,80 Surf. No. Sample label Surface soil samples – The “GeoPLASMA-CE project” – INTERREG Central Europeprogramme 115 4 Ljubljana, Zalog, at theGLS building 46,0739 14,6109 283 0 clay, sand & silt Holocene 1,81 Semi-dry 2017 KD2Pro 116 5 Ljubljana, SpodnjiKašelj, S ofSv. Andrejchurch 46,0542 14,6167 269 0 gravel & sand (youn­ger backfi llings) Holocene &Pleistocene 0,76 Semi-dry 117 6 Ljubljana, Tabor, S ofthe HealthCenter 46,0559 14,5156 296 0 gravel, sand, silt &soil Holocene 1,38 Saturated 0,46 0,999 118 7a Ljubljana, Jarški prod,S of Crnuceindustr. zone 46,0840 14,5447 278 0 sand & plant residues 1,18 Semi-dry 0,53 119 7b 46,0840 14,5447 277 0 river sand 1,41 Saturated 0,42 1,001 120 8 Ljubljana, Šmartno,300 m E ofthe footballfi eld 46,0812 14,5619 278 0 gravel, sand & silt 1,21 Semi-dry 0,38 0,999 121 16 Ljubljana Moor, IškaLoka, Ložcacreek 45,9745 14,5165 290 0 peat 1,01 Saturated 0,26 1,000 122 17 Ljubljana Moor,Podkraj- Strahomer 45,9768 14,4700 289 0 peat 0,75 Semi-dry 123 29 Šentvid,Dvor­Stanežicesand pit &separation 46,1121 14,4441 311 0 gravel & sand (youn­ger backfi llings) Pleistocene 1,34 Semi-dry 124 30 Ljubljana, Klece, UrškeZatlerjevestreet 46,0935 14,4969 307 0 Silty clay (youngergravel backfi llings) Pleistocene 1,79 Semi-dry 0,60 1,000 125 32 Ljubljana, Torkarjevastreet 46,0642 14,5318 296 0 gravel & sand(younger gravelbackfi llings) Pleistocene 0,63 Dry 126 33 Ljubljana, Jarše,Orehov Gaj 46,0802 14,5497 283 0 gravel & sand (youn­ger backfi llings) Holocene &Pleistocene 1,28 Semi-dry 0,46 1,000 Surf. No. Sample label Surface rock samples – The project “ROCKSENSE” 127 S1 between Mtsof Bezovecand Komen(Smrekoveclocality) 46,4116 14,8398 1314 0 andesitic hyaloclasticbreccia Middle-UpperOligocene: Chattian 1,60 0,06 Dry 2022 TCS 0,63 128 S2 46,4107 14,8411 1324 0 pyroclastic fi ne-gra­ined andesitic tuff 1,81 0,19 Dry 0,77 129 S3 46,4124 14,8398 1354 0 autobrecciated ande­sitic lava 2,05 0,24 Dry 0,83 130 S4 46,4123 14,8412 1415 0 andesitic hyaloclasticbreccia 1,96 0,12 Dry 0,78 131 S5 46,4106 14,8423 1371 0 andesite tuff with fi ne lapilli 1,71 0,04 Dry 0,68 132 R1 NE fromRenke, Eof the mainroad 46,1052 14,9658 304 0 limestone Triassic-Jurassic 2,91 0,24 Dry 1,08 133 R2 46,1058 14,9682 324 0 limestone, dolom.limestone? 3,08 0,07 Dry 1,16 134 R3 46,1076 14,9705 285 0 limestone 2,98 0,09 Dry 1,16 135 R4 46,1092 14,9739 314 0 limestone 2,95 0,11 Dry 1,17 136 P5 Pasjek, ESE from SpodnjiLog - Tepecrossroad 46,0917 14,9276 288 0 dolomite Middle Triassic:Ladinian 5,04 0,18 Dry 1,92 Surf. No. Sample label Surface rock samples – The project “Geothermal potential of the Municipality of Velenje” 137 T1 Pirešica 18dnear Velenje 46,3434 15,1603 395 0 quartz sandstone,fi ne-grained Oligocene 3,73 0,26 Dry 2022 TCS 1,26 138 T2 Ravne 123near Velenje 46,4164 15,0813 579 0 tonalite Paleogene 1,81 0,26 Dry 0,50 139 T3 Gaberke 244near Velenje 46,4058 15,0868 429 0 dolomite, (fi ne)grained Lower Triassic 3,74 0,15 Dry 1,25 140 T4 Hrastovec 51near Velenje 46,3888 15,1131 456 0 limestone, partlybrecciated, dolomiti-zed, tectonized 3,54 0,32 Dry 1,12 141 T5 Hrastovec 43near Velenje 46,3905 15,1177 502 0 chert Middle Triassic:Anisian 4,44 0,25 Dry 1,65 142 T5 46,3905 15,1177 502 0 massive (plate?)dolomite 4,13 0,16 Dry 1,35 143 T6 Škalske Cirkovce near Velenje 46,3933 15,1228 656 0 crystalline limesto­ne, dolomitized Middle Triassic:Ladinian 4,05 0,26 Dry 1,25 144 T7 CemeteryPodkraj nearVelenje 46,3620 15,0848 386 0 dacite Oligocene 1,72 0,11 Dry 0,69 145 T8 Vinska Gora20 east ofVelenje 46,3395 15,1739 344 0 clayey soil Alluvium 1,13 Saturated 2022 KD2Pro 0,42 146 T9 N of ŠkaleLake near Velenje 46,3775 15,1067 392 0,4 clay Plio-Quaternary 1,55 Saturated 0,53 Surf. No. Shallowholename Rock samples from very shallow boreholes – Multi-year project: Geothermal maps ofSlovenia 147 PG1 Josipdol onPohorje Mt. 46,5177 15,2892 771 5 tonalite Paleogene 2,930 3,2 1982 148 K-1 Stranice,Quarry, Slov.Konjice 46,3696 15,3582 638 1 limestone Upper Cretaceous 2,97 Dry 1987 MTP-1,MTP-4 149 K-2 Pecevje,Štrkla creek,Slov. Konjice 46,3834 15,3468 522 1 limestone Cretaceous 2,90 Dry 150 K-3 BrinjevaGora, SlovenskeKonjice 46,3767 15,4065 621 1 limestone,hydrometamorph. 2,48 Dry/fi ssured 151 K-4 46,3769 15,4058 620 1 limestone 2,49 Dry 152 J-1 Petelinovka,Ribnica onPohorje Mt. 46,5133 15,2782 958 1 tonalite Paleogene 2,697 2,74 1982? 153 J-2 46,5132 15,2797 948 1 tonalite 2,677 2,13 154 T-1 Javoric 46,5038 15,2897 1140 1 tonalite 2,697 2,29 155 T-2 Globaški graben 46,5171 15,2898 795 1 tonalite 2,700 3,26 156 K-41/1 Lepšnik 46,5042 15,2597 1218 1 tonalite 2,674 2,94 157 K-41/2 46,5114 15,2676 1145 1 tonalite 2,673 2,46 158 K-41/3 46,5044 15,2597 1211 1 tonalite 2,668 2,14 159 K-42/2 Pesnik 46,5182 15,2551 964 1 tonalite 2,621 2,39 Surf. No. surface rock samples - Research for Heat-Flow modelling of the Lake Bled area 160 Bled, W ofthe Lake Bled 46,3650 14,0830 547 0 massive dolomite,with oncoids &stromatolites Middle Triassic:Anisian 3,27 0,13 Dry 2019 TCS 1,38 3,71 0,10 Sat-t 1,38 161 BohinjskaBela, 100m N of theChurch 46,3508 14,0700 476 0 organogeniclimestone Upper Permian 2,92 0,14 Dry 1,16 3,12 0,07 Sat-t 1,26 162 Krnica,between RadovnaValley andPokljukagorge 46,3800 14,0420 686 0 limestone, micritic Triassic 3,44 0,16 Dry 1,29 3,81 0,10 Sat-t 1,23 163 Poljšica priGorjah, Wof Apartm.Franc 46,3720 14,0760 610 0 massive dolomite Triassic 3,71 0,23 Dry 1,40 4,48 0,19 Sat-t 1,50 164 Krnica 63, SW ofApartmentNatur 46,3720 14,0550 676 0 dolomitic breccia Middle Triassic:Ladinian 3,97 0,21 Dry 1,65 4,55 0,16 Sat-t 1,48 165 Poljšica priGorjah, 1.7km W ofVelika Zaka 46,3600 14,0600 730 0 marly limestone,with mica and peloi­dic limestone Lower Triassic 3,18 0,15 Dry 1,29 3,60 0,12 Sat-t 1,27 Appendix B. The mean TC values of some rock samples from Appendix A (from the boreholes and one tunnel) with determined anisotropy of TC. DataBase No. Borehole name Locality Lat.WGS84 Lon.WGS84 Altit.m TVDm Rock or sedimenttype Chrono-stratigraphy Rock state TC measured TC meanW/m·K ANISOTROPY:TCpar/TCperp 54 LK-1/89 Nadgoricanear Ljubljana 46,0889 14,5630 279 651 sandstone, fi negrained Carboniferous Dry parallel tobedding 3,05 1,28 651 Dry perp. to bedding 2,39 86 Holes in thetunnel tube wall Debeli hribTunnel,Ljubljana 46,0091 14,5659 337 49,3 siltstone withsandstone Permo-Carboniferous Semi-dry parallel tobedding 3,01 1,36 49 Semi-dry perp. to bedding 2,22 87 MB-1/91 Maribor 46,5356 15,6855 256 1331 granat-muscovite­-biotite gneiss PreCambrian Dry parallel tofoliation 3,48 1,33 1331 Dry perp. to foliation 2,62 124 P-12o/92 Družmirje near Velenje 46,3800 15,0672 373 758 mica sandstone andsiltstone Eggenburgian Saturated parallel tobedding 2,11 1,72 758 Dry perp. to bedding 1,23 772 silty sandstone Eggenburgian Saturated parallel tobedding 2,17 1,05 772 Saturated perp. to bedding 2,07 881 mica siltstone,sandstone Eggenburgian Saturated parallel tobedding 1,99 0,97 881 Saturated perp. to bedding 2,05 966 sandy siltstone Eggenburgian? Saturated parallel tobedding 2,15 1,62 966 Dry perp. to bedding 1,33 148 Mrt-1/93 Sveti Martin, Kobilje breg 46,6606 16,3834 173 1931 marly siltstone Lower Pontian? Semi-dry parallel tobedding 1,71 2,14 1931 Semi-dry perp. to bedding 0,80 2096 marly siltstone Lower Pontian? Semi-dry parallel tobedding 2,42 1,03 2096 Semi-dry perp. to bedding 2,34 169 ŠE-1/94 Šempeternear Gorica 45,9216 13,6326 68 524 marl, calcareousmarl (claystone?) Middle Eocene Dry / fi ssured parallel tobedding 2,31 1,41 524 Dry / fi ssured perp. to bedding 1,64 525 silty (calcareous)marl or shale Middle Eocene Dry / fi ssured parallel tobedding 2,39 1,13 525 Dry / fi ssured perp. to bedding 2,12 444 Pg-9/89 Petišovci 46,5422 16,4955 160 2053 sandstone andsiltstone Sarmatian Saturated parallel tobedding 3,05 1,19 2053 Saturated perp. to bedding 2,56 GEOLOGIJA št.: 66/1, 2023 www.geologija-revija.si Gosar, M. 5 Uvodnik - 70 let revije Geologija Placer, L., Rižnar, I. & Novak, A. 9 Transverse Dinaric zone of increased compression between the Kraški rob and Hrušica Regions, NE Microadria Cadež, F. 73 Geološka spremljava poskusnega odkopa uranove rude na Žirovskem vrhu Spatzenegger, A. & Poltnig, W. 87 Taxonomic and stratigraphic remarks on Placites urlichsi Bizzarini, Pompeckjites layeri (Hauer), Carnites floridus (Wulfen) and Sageceras haidingeri (Hauer) Oselj, K., Kolar-Jurkovšek, T., Jurkovšek, B. & Gale, L. 107 Microfossils from Middle Triassic beds near Mišji Dol, central Slovenia Rajver, D. & Adrinek, S. 125 Overview of the thermal properties of rocks and sediments in Slovenia Koren, K., Brajkovic, R., Bajuk, M., Vranicar, Š. & Fabjan, V. 151 Hydrogeological characterization of karst springs of the white (Proteus anguinus anguinus) and black olm (Proteus anguinus parkelj) habitat in Bela krajina (SE Slovenia) Zhyrnov, P. & Solomakha, I. 167 Geological-genetic structure of Irpin city, the role of lithological factors during engineering-geological zoning and construction assessmenta Khalili, R., Satour, L. & Mennad, S. 185 Borers and epizoans on oyster shells from the upper Tortonian, Lower Chelif Basin, NW Algeria 70 LET ISSN 0016-7789