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Vagueness in the scientific studies presents a challenging dimension. Intuitionistic fuzzy set theory has 
emerged as a tool for its characterization. There is need to associate measures which can measure 
vagueness and differences in the underlying characterizing IFSs. In the present paper we introduce an 
information theoretic divergence measure, called intuitionistic fuzzy Jensen-Rényi divergence. It is a 
difference measure in the setting of intuitionistic fuzzy set theory, involving parameters that provide 
flexibility and choice. The strength of the new measure lies in its properties and applications. An 
approach to multiple-attribute decision making based on intuitionistic fuzzy Jensen-Rényi divergence is 
proposed. A numerical example illustrates the application of the new measure and the role of various 
parameters therein to multipleattribute decision making problem formulated in terms of intuitionistic 
fuzzy sets. 

Povzetek: Razvita je nova verzija intuitivne mehke logike za uporabo v procesu odločanja.  

 

1 Introduction 
In probability theory and statistics, divergence measures 
are commonly used for measuring the differences 
between two probability distributions [13 and 22]. 
Kullback-Leibler [13] divergence is the well known such 
information theoretic divergence. Another important 
information theoretic divergence measure is the Jensen-
Shannon divergence (JSD) [22] which has attracted quite 
some attention. It has been shown that the square root of 
JSD turns out to be a metric [9], satisfying (i) non-
negativity (ii) (minimal) zero value only for identical 
distributions (iii) symmetric and (iv) satisfying triangular 
inequality, i.e. it is bounded from below and from above 
in terms of the norms of the distributions. However it 
may be mentioned that JSD itself is not a metric. It 
satisfies the first three axioms, and not the triangular 
inequality. These divergence measures have been applied 
in several disciplines like signal processing, pattern 
recognition, finance, economics etc. 

Some generalizations of Jensen-Shannon divergence 
measure have been studied in the last couple of years. For 
instance, He et al. [10] proposed a one parametric 
generalization of JSD based on Rényi’s entropy function 
[21], called Jensen-Rényi divergence and used it in image 
registration. 

Other than probabilistic, there are vague/fuzzy 
phenomena. These are best characterized in terms of 
‘fuzzy sets’, and their generalizations. The theory of 
fuzzy sets proposed by Zadeh [32] in 1965 addresses 
these situations and has found applications in various 
fields. In fuzzy set theory, the membership of an element 

is a single value lying between zero and one, where the 
degree of non-membership is just automatically equal to 
one minus the degree of membership.  

As a generalization of Zadeh’s fuzzy sets, Atanassov 
[1, 2], introduced intuitionistic fuzzy sets. In their general 
setting, these involve three non-negative functions 
expressing the degree of membership, the degree of non-
membership, and hesitancy, their sum being one. These 
considerations imbue IFSs with inbuilt structure to 
consider varieties of factors responsible of vagueness in 
the phenomena. IFSs have been applied in many 
practically uncertain/vague situations, such as decision 
making [3, 4, 8, 14, 16-18, 20, 25, 27-30 and 33] medical 
diagnosis [5, 24] and pattern recognition [6, 11, 12, 19 
and 24] etc. Atanassov [2] and Szmidt and Kacprzyk [26] 
suggested some methods for measuring 
distance/difference between two intuitionistic fuzzy sets. 
Their measures are generalizations of the well known 
Hamming and Euclidean distances. Dengfeng and 
Chutian [6] and Dengfeng [7] proposed some other 
similarity and dissimilarity measures for measuring 
differences between pairs of intuitionistic fuzzy sets. In 
addition, Yanhong et al. [31] undertook a comparative 
analysis of these similarity measures. Recently, Verma 
and Sharma [25] proposed a generalized intuitionistic 
fuzzy divergence and studied its applications to multi 
criteria decision making.  

In this paper, we extend the idea of Jensen-Rényi 
divergence to intuitionistic fuzzy sets and propose a new 
divergence measure, called intuitionistic fuzzy Jensen-
Rényi divergence (IFJRD) to measure the difference 
between two IFSs. After studying its properties, we give 
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an example of its applications in multiple-attribute 
decision making based on intuitionistic fuzzy information.  
The paper is organized as follows: In Section 2 some 
basic definitions related to probability theory, fuzzy set 
theory and intuitionistic fuzzy set theory are briefly 
given. In Section 3, the intuitionistic fuzzy Jensen-Rényi 
divergence (IFJRD) between two intuitionistic fuzzy sets 
is proposed. Some of its basic properties are analysed 
there, along with the limiting case. In Section 4 some 
more properties of the proposed measure are studied. In 
Section 5 application of proposed intuitionistic fuzzy 
Jensen-Rényi divergence measure to multiple-attribute 
decision making are illustrated and our conclusions are 
also presented here. 

2 Preliminaries 
 We start with probabilistic background. We denote the 
set of n-complete( )2≥n  probability distributions by 

( )
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i
iinn pppppP
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21 1,0:,...,, .      (1) 

For a probability distribution 
( ) nnpppP Γ∈= ,...,, 21 , 

the well known Shannon’s entropy [23], is defined as 
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Various generalized entropies have been introduced in 
the literature taking the Shannon entropy as basic and 
have found applications in various disciplines such as 
economics, statistics, information processing and 
computing etc. 

A generalizations of Shannon’s entropy introduced 
by Rényi’s [21], Rényi’s entropy of orderα , is given by  
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For ( )1,0∈α , it is easy to see that ( )PHα  is a concave 

function of P, and in the limiting case 1→α , it tends to 
Shannon’s entropy. It can also be easily verified that 

( )PHα  is a non-increasing function of ( )1,0∈α  and thus 

( ) ( )1,0)( ∈∀≥ αα PHPH                  (4) 

In sequel, we will restrict ( )1,0∈α , unless otherwise 

specified and will use base 2 for the logarithm. 
Next, we mention Jensen-Shannon divergence [15]. 
Let 0, 21 ≥λλ , 121 =+ λλ  be the weights of two 

probability distributions nQP Γ∈, , respectively. Then the 

Jensen-Shannon divergence, is defined as  

     ( ) ( ) ( ) ( )QHPHQPHQPJS 2121, λλλλλ −−+= .      (5) 

Since ( )PH  is a concave function, according to Jensen’s 

inequality, ( )QPJS ,λ  is nonnegative and vanishes 

when QP = . One of the major features of the Jensen-

Shannon divergence is that we can assign different 
weights to the probability distributions involved 

according to their importance. This is particularly useful 
in the study of decision problems. 

A generalization of the above concept is the Jensen-
Rényi divergence proposed by He [10], given by 
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where ( )PHα  is Rényi’s entropy, and ( )21,λλλ =  is the 

weight vector, with 0, 21 ≥λλ , 121 =+λλ ,  as before. 

Properties of Jensen-Rényi Divergence: Briefly we note 
some simple properties: 

i. ( )QPJR ,,αλ  is nonnegative and is equal to zero 

when QP = . 

ii.  For ( )1,0∈α , ( )QPJR ,,αλ  is a convex function 

of P and Q . 

iii. ( )QPJR ,,αλ , achieves its maximum value when 

P andQ  are degenerate distributions. 

The Jensen-Shannon divergence (5) is a limiting case of 
( )QPJR ,,αλ when 1→α . 

Definition 1. Fuzzy Set [32]: A fuzzy set A
~

 in a finite 
universe of discourse { }nxxxX ,...,, 21=   is defined as  

                   ( ){ },,
~

~ XxxxA
A

∈= µ                       (7) 

where ( ) [ ]1,0:~ →Xx
A

µ   is measure of belongingness or 

degree of membership of an element Xx∈  to A
~

. 

Thus, automatically the measure of non-belongingness of 

Xx∈  to A
~

 is ( )( ).1 ~ x
A

µ−   

Atanassov [1, 2] introduced following generalization of 
fuzzy sets, called intuitionistic fuzzy sets. 

Definition 2. Intuitionistic Fuzzy Set [1, 2]: An 
intuitionistic fuzzy set A  in a finite universe of 
discourse { }nxxxX ,...,, 21=  is defined as 

             
( ) ( ){ },,, XxxxxA AA ∈= νµ                   (8) 

where [ ]1,0: →XAµ  and [ ]1,0: →XAν  with the 

condition ( ) ( ) 10 ≤+≤ xx AA νµ . For each Xx∈ , the 

numbers ( )xAµ  and ( )xAν  denote the degree of 

membership and degree of non-membership of x  to A  
respectively. 

Further, we call ( ) ( ) ( ),1 xxx AAA νµπ −−=  the degree of 

hesitance or the intuitionistic index of Xx∈  to A .  
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Obviously, when ( ) ,0=xAπ i.e., ( ) ( )xx AA µν −= 1  for 

every Xx∈ , then the IFSA  becomes a fuzzy set. Thus, 

FSs are the special cases of IFSs.  

Definition 3: Let ( )XIFS denote the family of all IFSs 

defined in the universeX , and let ( )XIFSBA ∈,  be 

given by  
( ) ( ){ }XxxxxA AA ∈= |,, νµ , 

( ) ( ){ }XxxxxB BB ∈= |,, νµ . 

These being sets, Atanassov further defined set 
operations on ( )XIFS  as follows: 

(i) BA ⊆ iff ( ) ( )xx BA µµ ≤  

                                                            and ( ) ( ) ;Xxxx BA ∈∀≥νν  

(ii)  BA = iff BA ⊆ and AB ⊆ ; 
 

(iii)  ( ) ( ){ }XxxxxA AA

C ∈= µν ,, ; 

(iv) 
( ) ( )( )
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Extending the idea from probabilistic to intuitionistic 
phenomena, in the next section, we propose a divergence 
measure called ‘Intuitionistic Fuzzy Jensen-Rényi 
Divergence’ (IFJRD) on intuitionistic fuzzy sets to 
quantify the difference between two intuitionistic fuzzy 
sets and discuss its limiting case. 

3 Intuitionistic Fuzzy Jensen-Rényi 
Divergence (IFJRD) 

Single element universe: First, letA andB be two 
intuitionistic fuzzy sets defined on a single element 
universal set { }xX = .  

Precisely speaking, we have: 

                         ( ) ( ) ( )( )xxxA AAA πνµ ,,= , 

and                  ( ) ( ) ( )( )xxxB BBB πνµ ,,= , 

where 

( ) ( ) ( ) 1=++ xxx AAA πνµ , 

and                    ( ) ( ) ( ) ,1=++ xxx BBB πνµ  

with        

( ) ( ) ( ),,,0 xxx AAA πνµ≤ ( ) ( ) ( ) 1,, ≤xxx BBB πνµ . 

Regarding ( )AAA πνµ ,, and( )BBB πνµ ,,  as two 

probability distributions, in analogy of (6), we define the 
intuitionistic fuzzy Jensen-Rényi divergence measure 
between IFSs A  andB , as  
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where ( )•αH  is Rényi’s entropy for intuitionistic fuzzy 
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where ( )1,0∈α .                                                  

Next, in theorem below we study properties 
of ( )BAJR ,,

∗
αλ  defined in (10). 

Theorem1: For ( )XIFSBA ∈, , ( )BAJR ,,
∗

αλ  

satisfies the following properties: 

i. ( ) 0,, ≥∗ BAJR αλ , with equality if and only if BA = . 

ii.  ( ) 1,0 , ≤≤ ∗ BAJR αλ . 

iii.   For three IFSs CBA ,,  in X  and CBA ⊆⊆ , 

                     ( ) ( )CAJRBAJR ,, ,,

∗∗ ≤ αλαλ , 

and               ( ) ( )CAJRCBJR ,, ,,

∗∗ ≤ αλαλ . 

Proof: (i) The result directly follows from Jensen’s 
inequality.  
 (ii)  Since ( )BAJR ,,

∗
αλ  is convex for ( )1,0∈α , refer 

Proposition 1 of He et al. [10], therefore, for ( )1,0∈α , 

( )BAJR ,,

∗
αλ  increases as 1|||| BA− increases, 

 where    
   ( ) ( ) ( ) ( )xxxxBA BABA ννµµ −+−=− 1||||   

                                           ( ) ( )xx BA ππ −+ .        (11) 

Thus, ( ) ( )1,0,, ∈∀∗ ααλ BAJR , attains its maximum for 

following degenerate cases:  
( ) ( )0,1,0,0,0,1 == BA or  ( ) ( )0,0,1,0,1,0 == BA  

or ( ) ( )0,1,0,1,0,0 == BA . 

This gives 
( ) 1,0 , ≤≤ ∗ BAJR αλ . 
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(iii) For ( )XIFSCBA ∈,, , 

11 |||||||| CABA −≤−  

CBACACB ⊆⊆−≤− if,||||||||and 11 . 

Thus,  
     ( ) ( )CAJRBAJR ,, ,,

∗∗ ≤ αλαλ   

( ) ( ) ( )1,0,,and ,, ∈∀≤ ∗∗ ααλαλ CAJRCBJR .                 

(12) 
This proves the theorem. 

Limiting case: When 1→α  and
2

1
21 == λλ , then 

measure (10) reduces to J-divergence on intuitionistic 
fuzzy sets proposed by Hung and Yang [11] as 
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Definition 4:  ( )BAJR ,,αλ  on Finite Universe: 

Previously, we considered single element universe set. 
The idea can be extended to any finite universe set. If 

BA and are two IFSs defined in finite universe of 

discourse { }nxxxX ...,,, 21= , then, we define, the 

associated intuitionistic fuzzy Jensen-Rényi divergence 
by 

     ( ) ( ) ( )( )∑
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n

i
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n
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where        ( ) ( ) ( ) ( )( ){ }iAiAiAii xxxxxA πνµ ,,,=  , 

and            ( ) ( ) ( ) ( )( ){ }iBiBiBii xxxxxB πνµ ,,,= . 

In the next section, we study several properties 
of ( )BAJR ,,αλ . While proving these properties, we 

consider separation ofX  into two parts 1X and 2X , such 

that 

              ( ) ( ){ } ,|1 iiii xBxAXxxX ⊆∈= ,                  (15) 

      ( ) ( ){ } ,|2 iiii xBxAXxxX ⊇∈= .                  (16) 

Further it may be noted that for all ,1Xxi ∈   

( ) ( ) ( ) ( )iBiAiBiA xxxx ννµµ ≥≤ and , 

as also for ,2Xxi ∈∀   

       ( ) ( ) ( ) ( )iBiAiBiA xxxx ννµµ ≤≥ and . 

4 Properties of intuitionistic fuzzy   
Jensen- Rényi divergence measure 

The measure ( )BAJR ,,αλ  defined in (10) has the 

following properties: 

Theorem 2: For ( )XIFSBA ∈, ,  

(i)    ( ) ( )BAJRBABAJR ,, ,, αλαλ =IU , 

(ii)  ( ) ( )ABJRBABAJR ,, ,, αλαλ =UI . 

Proof: We prove (i) only, (ii) can be proved analogously. 
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( )BAJR ,,αλ= . 
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This proves the theorem.                                                             
                                                    

Theorem 3: For ( )XIFSBA ∈, , 

(i) ( ) ( ) ( )BAJRBAAJRBAAJR ,,, ,,, αλαλαλ =+ IU ,                                        

(ii)  ( ) ( ) ( )ABJRBABJRBABJR ,,, ,,, αλαλαλ =+ IU . 

Proof: In the following, we prove only (i), (ii) can be 
proved analogously. 
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Next, again from definition in (10), we have 
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Adding (17) and (18), we get the result.                          

Theorem 4: For ( )XIFSCBA ∈,, ,  

(i) ( ) ( ) ( )CBJRCAJRCBAJR ,,, ,,, αλαλαλ +≤U ; 

(ii)  ( ) ( ) ( )CBJRCAJRCBAJR ,,, ,,, αλαλαλ +≤I ; 

Proof: We prove (i) only, (ii) can be proved analogously. 
 

(i) Let us consider the expression 
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0≥  

This proves the theorem.                                                  
 

 Theorem 5: For ( )XIFSCBA ∈,, ,  

( ) ( )
( ) ( )CBJRCAJR

CBAJRCBAJR

,,

,,

,,

,,

αλαλ

αλαλ

+=
+ IU

. 

Proof: Using definition in (10), we first have: 
 

( )CBAJR ,, Uαλ  
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Next, again using definition in (10), we have 

( )CBAJR ,, Iαλ  
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Adding (20) and (21), we get the result.                          

Theorem 6: For ( )XIFSBA ∈, ,  

(a) ( ) ( )CC BAJRBAJR ,, ,, αλαλ =  

(b) ( ) ( )BAJRBAJR CC ,, ,, αλαλ = ; 

(c) ( ) ( )BAJRBAJR C ,, ,, αλαλ +  

                         ( ) ( )CCC BAJRBAJR ,, ,, αλαλ += . 

where CA and CB represents the complement of 
intuitionistic fuzzy setsA andB  respectively. 

Proof: (a) The proof simply follows from the relation of 
membership and non-membership functions of an 
element in a set and its complement.                                                                                                          

(b) Let us consider the expression 

    ( ) ( )BAJRBAJR CC ,, ,, αλαλ −                                       (22) 
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= 0. 
       

(c) It immediately follows (a) and (b).   

This completes proof the theorem.                                    
           
In the next section, we suggest an application of the 

measure proposed to multiple-attribute decision making 
problem and give an illustrative example.  

5 Applications of intuitionistic fuzzy 
Jensen-Rényi divergence to 
multiple-attribute decision making 

Vagueness is a fact of life and needs attention in matters 
of management. It can have several forms, for example, 
imperfectly defined facts, indirect data, or imprecise 
knowledge. For mathematical study, vague phenomena 
have got to be first suitably represented. IFSs are found 
to be suitable tools for this purpose. In this section, we 
present a method based on our proposed intuitionistic 
fuzzy Jensen-Rényi divergence defined over IFSs, to 
solve multiple-attribute decision making problems. It 
may be remarked that for a deterministic or probabilistic 
phenomenon where patterns show stability of the form, 
parameters have perhaps limited rule, but in vague 
phenomena, parameters provide a class of measures and 
choice for making appropriate selection by testing 
further. Intuitionistic fuzzy Jensen-Rényi divergence 
defined has parameters of two categories- the averaging 
parameters, s'λ , and an extraneous parameterα , each 
serving a different purpose. In the example below, we 
bring out their role in multiple-attribute decision making.  

Multiple-attribute decision making problems are 
defined on a set of alternatives, from which the decision 
maker has to select the best alternative according to some 
attributes. Suppose that there exists an alternative 
set { }mAAAA ...,,, 21=  which consists of malternatives, 

the decision maker will choose the best alternative from 
the set A  according to a set of n  
attributes { }nGGGG ...,,, 21= . Further let ( )

mnijdD
×

= be 

the intuitionistic fuzzy decision matrix, 
where ( )ijijijijd πνµ ,,=  is an attribute value provided by 

the decision maker, such thatijµ indicates the degree with 

which the alternative jA satisfies the attributeiG , ijν  

indicates the degree with which the alternativejA does 

not satisfies the attributeiG , and ijπ  indicates the 

indeterminacy degree of alternativejA to the attribute iG , 

such that: 
[ ]1,0∈ijµ ,   [ ]1,0∈ijν ,    1=≤+ ijijij πνµ , 

ijijij νµπ −−=1  mjni ...,,2,1and...,,2,1 == . 

To harmonize the data, first step is to look at the 
attributes. These, in general, can be of different types. If 
all the attributes { }nGGGG ...,,, 21=  are of the same type, 

then the attribute values do not need harmonization. 
However if these involve different scales and/or units, 
there is need to convert them all to the same scale and/or 
unit. Just to make this point clear, let us consider two 
types of attributes, namely, (i) cost type and the (ii) 
benefit type. Considering their natures, a benefit attribute 
(the bigger the values better is it) and cost attribute (the 
smaller the values the better) are of rather opposite type. 
In such cases, we need to first transform the attribute 
values of cost type into the attribute values of benefit 
type. So, we transform the intuitionistic fuzzy decision 
matrix ( )

mnijdD
×

=  into the normalized intuitionistic 

fuzzy decision matrix ( )
nmijrR

×
= by the method given by 

Xu and Hu [30], where 

  ( ) ( ) ,
 attributecost for ,

 attributebenefit for ,
,,







==
i

C

ij

iij

ijijijij
Gd

Gd
r πνµ   (23) 

                       
mjni ...,,2,1;...,,2,1 ==      

where ( )C

ijd  is the complement of ijd , such that 

( ) ( )ijijij

C

ijd πµν ,,= . 

With attributes harmonized, using the measure 
defined in (10), we now stipulate following steps to solve 
our multiple-attribute intuitionistic fuzzy decision 
making problem: 

Step 1: Based on the matrix ( )
nmijrR

×
= , specify the 

options jA ( )mj ...,,2,1=  by the characteristic sets: 

{ }
nimj

GGGA iijijijij

...,,2,1and...,,2,1

,|,,,

==

∈= πνµ
. 

Step 2: Find the ideal solution ∗A , given by: 

            ,
,,...,

,,,,,, 222111













=
∗∗∗

∗∗∗∗∗∗∗

nnn

A
πνµ

πνµπνµ
       (24) 

where, for each ni ...,,2,1= , 

       ( )














−−
=∗∗∗

ijjijj

ijjij
j

iii νµ

νµ
πνµ

minmax1

,min,max
,, .        (25) 

Step 3: Calculate ( )∗AAJR jj ,
,αλ  using the following 

expression for it: 
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where [ ]1,0, 21 ∈jj λλ , and 121 =+ jj λλ  mj ...,,2,1=∀ .                                                       

Step 4: Rank the alternativesjA , mj ...,,2,1= , in 

accordance with the values ( )∗AAJR jj ,
,αλ , mj ...,,2,1= , 

and select the best one alternative, denoted by kA  with 

smallest ( )∗AAJR jj ,
,αλ . Then kA is the best choice.  

In order to demonstrate the application of the above 
proposed method to a real multiple attribute decision 
making, we consider below a numerical example. 

Example: Consider a customer who wants to buy a car. 
Let five types of cars (alternatives) )5,4,3,2,1( =jAj be 

available. The customer takes into account six attributes 
to decide which car to buy: (1)1G : fuel economy, (2) 2G : 

aerodynamic degree, (3) 3G : price, (4) 4G : comfort,  (5) 

5G : design and (6) 6G : safety. We note that 3G  is a cost 

attribute while other five are benefit attributes. Next let 
us assume that the characteristics of the 
alternatives )5,4,3,2,1( =jAj are represented by the 

intuitionistic fuzzy decision matrix ( )
56×

= ijdD  shown in 

the following table: 

Table I: Intuitionistic fuzzy decision matrix D  
 

1A  2A  3A  4A  5A  

1G  (0.5,0.4, 
0.1) 

(0.4,0.3, 
0.3) 

(0.5,0.2, 
0.3) 

(0.4,0.2, 
0.4) 

(0.6,0.4, 
0.0) 

2G  (0.7,0.2, 
0.1) 

(0.8,0.2, 
0.0) 

(0.9,0.1, 
0.0) 

(0.8,0.0, 
0.2) 

(0.5,0.2, 
0.3) 

3G  (0.4,0.3, 
0.3) 

(0.5,0.2, 
0.3) 

(0.6,0.1, 
0.3) 

(0.7,0.3, 
0.0) 

(0.8,0.1, 
0.1) 

4G  (0.6,0.2, 
0.2) 

(0.6,0.3, 
0.1) 

(0.8,0.1, 
0.1) 

(0.9,0.1, 
0.0) 

(0.4,0.2, 
0.4) 

5G  (0.4,0.5, 
0.1) 

(0.6,0.4, 
0.0) 

(0.3,0.5, 
0.2) 

(0.5,0.3, 
0.2) 

(0.9,0.0, 
0.1) 

6G  (0.3,0.1, 
0.6) 

(0.7,0.1, 
0.2) 

(0.6,0.2, 
0.2) 

(0.6,0.1, 
0.3) 

(0.4,0.3, 
0.3) 

 
First, we transform the attribute values of cost type 

( )3G into the attribute values of benefit type( )3G′  by 

using Eq. (23): 

( ) ( ) ( ) ( )
( ) ( ) 








==′
1.0,8.0,1.0,0.0,7.0,3.0

,3.0,6.0,1.0,3.0,5.0,2.0,3.0,4.0,3.0
33

CGG , 

and then ( )
56×

= ijdD  is transformed into ( )
56×

= ijrR , we 

get the following table: 
Table II:  Normalized intuitionistic fuzzy decision 
matrix R  

 
1A  2A  3A  4A  5A  

1G  (0.5,0.4, 
0.1) 

(0.4,0.3, 
0.3) 

(0.5,0.2, 
0.3) 

(0.4,0.2, 
0.4) 

(0.6,0.4, 
0.0) 

2G  (0.7,0.2, 
0.1) 

(0.8,0.2, 
0.0) 

(0.9,0.1, 
0.0) 

(0.8,0.0, 
0.2) 

(0.5,0.2, 
0.3) 

3G′  (0.3,0.4, 
0.3) 

(0.2,0.5, 
0.3) 

(0.1,0.6, 
0.3) 

(0.3,0.7, 
0.0) 

(0.1,0.8, 
0.1) 

4G  (0.6,0.2, 
0.2) 

(0.6,0.3, 
0.1) 

(0.8,0.1, 
0.1) 

(0.9,0.1, 
0.0) 

(0.4,0.2, 
0.4) 

5G  (0.4,0.5, 
0.1) 

(0.6,0.4, 
0.0) 

(0.3,0.5, 
0.2) 

(0.5,0.3, 
0.2) 

(0.9,0.0, 
0.1) 

6G  (0.3,0.1, 
0.6) 

(0.7,0.1, 
0.2) 

(0.6,0.2, 
0.2) 

(0.6,0.1, 
0.3) 

(0.4,0.3, 
0.3) 

 
The step-wise procedure now goes as follows. 

Step 1: Based on ( )
56×

= ijrR , we have characteristic sets 

of the alternatives jA ( )5...,,2,1=j  by 

( ) ( ) ( )
( ) ( ) ( ) 







=
6.0,1.0,3.0,1.0,5.0,4.0,2.0,2.0,6.0

,3.0,4.0,3.0,1.0,2.0,7.0,1.0,4.0,5.0
1A , 

( ) ( ) ( )
( ) ( ) ( ) 







=
2.0,1.0,7.0,0.0,4.0,6.0,1.0,3.0,6.0

,3.0,5.0,2.0,0.0,2.0,8.0,3.0,3.0,4.0
2A , 

( ) ( ) ( )
( ) ( ) ( ) 







=
2.0,2.0,6.0,2.0,5.0,3.0,1.0,1.0,8.0

,3.0,6.0,1.0,0.0,1.0,9.0,3.0,2.0,5.0
3A , 

( ) ( ) ( )
( ) ( ) ( ) 







=
3.0,1.0,6.0,2.0,3.0,5.0,0.0,1.0,9.0

,0.0,7.0,3.0,2.0,0.0,8.0,4.0,2.0,4.0
4A , 

( ) ( ) ( )
( ) ( ) ( )







=
3.0,3.0,4.0,1.0,0.0,9.0,4.0,2.0,4.0

,1.0,8.0,1.0,3.0,2.0,5.0,0.0,4.0,6.0
5A . 

Step 2: Using (24) and (25), we obtain∗A : 
( ) ( ) ( )
( ) ( ) ( ) 







=∗

2.0,1.0,7.0,1.0,0.0,9.0,0.0,1.0,9.0

,3.0,4.0,3.0,1.0,0.0,9.0,2.0,2.0,6.0
A . 

Step3: We use formula (26) to measure ( )∗AAJR jj ,
,αλ , 

choosing the various values of parameter. First we 
take 5...,,2,15.0

21
=∀== jjj λλ ; and 3.0=α , 5.0=α  

and 7.0=α  respectively, we get the following table: 

Table III:  Values of ( )∗AAJR jj ,
,αλ  for 7.0,5.0,3.0=α  

 3.0=α  5.0=α  7.0=α  

( )∗AAJR j ,1,αλ  0.1453 0.1409 0.1345 

( )∗AAJR j ,2,αλ  0.1908 0.1584 0.1299 

( )∗AAJR j ,3,αλ  0.1617 0.1400 0.1214 

( )∗AAJR j ,4,αλ  0.0946 0.0905 0.0849 

( )∗AAJR j ,5,αλ  0.1483 0.1467 0.1424 

Based on the calculated values of ( )∗AAJR jj ,
,αλ  in table 

III, we get the following orderings of ranks of the 
alternatives )5,4,3,2,1( =jAj : 

For 3.0=α ,       23514 AAAAA ffff . 
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For 5.0=α ,       25134 AAAAA ffff . 

For 7.0=α ,       51234 AAAAA ffff . 

Since ( )∗AAJR j ,4,αλ  is smallest among the values of 

( )∗AAJR jj ,
,αλ  { }5...,,2,1=j  for 3.0=α , 5.0=α  

and 7.0=α , so 4A  is the most preferable alternative.  

Thus here we find that variation in values of α  brings 
about change in ranking, but leaves the best choice 
unchanged.  
Change in Consideration: In the above consideration, 
same values of j

iλ  were taken. But in a realistic situation 

these can also be different for different alternatives. The 
value of j

iλ  may then depend on an un-explicit (like past 

experience or pressures) on the decision maker. 
Let us next consider intuitionistic fuzzy Jensen-Rényi 
divergence measures ( )∗AAJR jj ,

,αλ , taking different 

values of j

iλ : 

We take 5.0,5.0 11

21
== λλ ; 6.0,4.0 22

21
== λλ ; ,8.03

1
=λ  

2.03

2
=λ ; 5.0,5.0 44

21
== λλ ; ,3.05

1
=λ  7.05

2
=λ  and 

5.0=α . 

Calculating ( )∗AAJR jj ,
,αλ , we get the following table: 

Table IV:  Values of ( )∗AAJR jj ,
,αλ  for 5.0=α  

( )∗AAJR ,1,1 αλ  0.0965 

( )∗AAJR ,2,2 αλ  0.1644 

( )∗AAJR ,3,3 αλ  0.0856 

( )∗AAJR ,4,4 αλ  0.1178 

( )∗AAJR ,5,5 αλ  0.1479 

 
The resulting order of rankings then is 

25413 AAAAA ffff . 

Thus 3A  is the most preferable alternative. 

If we take  
5.0,5.0 11

21
== λλ ; 3.0,7.0 22

21
== λλ ; ,3.03

1
=λ 7.03

2
=λ ;

6.0,4.0 44

21
== λλ ; ,8.05

1
=λ 2.05

2
=λ  and 5.0=α , 

calculating ( )∗AAJR jj ,
,αλ , we get the following table: 

Table V: Values of ( )∗AAJR jj ,
,αλ  for 5.0=α  

( )∗AAJR ,1,1 αλ  0.1409 

( )∗AAJR ,2,2 αλ  0.1296 

( )∗AAJR ,3,3 αλ  0.1493 

( )∗AAJR ,4,4 αλ  0.1268 

( )∗AAJR ,5,5 αλ  0.0965 

 

The resulting order of rankings then is 

31245 AAAAA ffff . 

Resulting in 5A as the most preferable option. Thus for a 

given value of parameterα , averaging parameters s'λ  
can effect the choice.  

The numerical example shows that change in order 
of the rankings results by change in parametersλ  & α  
establishing the significance of these parameters in multi-
attribute sensitive decision making problems. 

6 Conclusions 
The paper provides a measure and application in 
multiple-attribute decision making problem under 
intuitionistic fuzzy environment. This study can lead to 
symmetric measure and resulting other insight into 
studying IFSs.  
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