NEW MnZn FERRITES AND THEIR APPLICATIONS ^Andrej Žnidaršič in ^Miha Drofenik ^ISKRA FERITI, d.o.o., Ljubljana, Slovenia ^Univerza v Mariboru, Fakulteta za kemijo in kemijsko tehnologijo, Maribor, Slovenia Key words; magnetic ceramic, MnZn ferrites, magnetic properties, electrical properties, microstructures, applications Abstract: MnZn ferrites, ceramic with special magnetic properties, are widely used as core materials for inductive components in electronics. The demands of future electronic systems require solutions that improve efficiency, reduce weight and not add pollution to the environment. The requirements for component design are a smaller size, weight reduction, performance increase and durability. This paper describes the applications and properties of new designed matireals12Gi, 27G, 55G, 75G and 65G. Novi MnZn feriti in njihove aplikacije Kjučne besede: magnetna keramil^a, MnZn feriti, magnetne lastnosti, elel 510 100 °C, 10 kHz, 1200 A/m >430 120 °C, 10 kHz, 1200 A/m >400 Tc [°C] >240 55G(T221407) f=400kHz; B=SOmT \ ""f- -^—.......1 temperature ["C] Fig. 2: Power losses versus temperature Preferred applications are: High current output chokes - wherever space is at premium like a low profile converter modules, core volume can be reduced. The advantage increases with temperature. temperature Fig. 3: Initial permeability versus temperature 55G 1000- 10 100 1000 f [kHz] Fig. 4: Initial permeability versus frequency tine market for voltage converters. The operating frequency of these converters will be about 500 Hz to 1 MHz. The right material is a high frequency power grade, like our 75G, Table2 and Figures 6 to 9. The ferrite components that will be needed for various applications could use 2 planar core sets, one for transformer and one for the output choke for the core solution. Table 2: 75G Material characteristics Parameter measuring conditions value Ui n 25 °C, 10 kHz, 0.1 mT 1300 ±20% Bs [mT] 25 °C, 10 kHz, 1200 A/m >510 100 10 kHz, 1200 A/m >430 120 °C, 10 kHz, 1200 A/m >400 Tc [°C] >240 75G (T221407) f=400kHz; B=50mT k .......................■------------- l\ --------- X 1 temperature [°C] Fig. 6: Power loss versus temperature J ' 1 0,00 0,05 O.IO 0,15 0,20 0,25 B|T] 0,30 0.J5 Fig. 5: Inductance as function of Bpmax at 120°C High voltage ignition transformers - for example in electronic lighting ballast where high flux density occurs during ignition, but losses have to be low during steady state operation. Gapped toroids where high-energy storage isrequired. High frequency power ferrite 75G The increase in electrical applications for the automotive market is stressing the 12 volt system. The way to solve the insufficient electrical power is to increase the 12V standard to a 42V standard. The additional requirement to reduce weight and change to a drive by wire concept opens 75G (T221407) f=500kHz; B=100mT temperature [®C| Fig. 1: Power loss versus temperature ia 1000 frequency [kHz] Fig. 8: Initial permeability versus frequency s s - 1 1 i 1 j- ^ 1 -1 > L/ i temperature Fig. 9: Initial permeability versus temperature Some potential applications under the 42\/ system are: Lighter, smaller and more efficient air conditioning Higher efficiency, longer life, water pump Faster starter, superior charging starter/alternator Mobile office: fax, PC,.... Power material 65G - new level of power density The properties of 65G, a new high flux density power material suitable for frequency up to 400 kHz is shown in Table 3 and Figures 10 to 13. This material is primarily intended for output chokes in power supplies where a high saturation level is required to accommodate DC + AC currents at elevated temperatures. The energy storage volume of a choke is proportional to the square of peak flux density and determines the core volume required. When space is limited, this is an important consideration. Table 3: 65G Material characteristics Parameter measuring conditions value n 25 °C, 10 kHz, 0.1 mT 2300 ± 20% Bs [mT] 25 °C, 10 kHz, 1200 A/m > 510 100 °C, 10 kHz, 1200 A/m > 380 120 °C, 10 kHz, 1200 A/m >360 Tc [°C] >210°C 65G (T221407) f=100kHz; B=100mT temperature [°C1 Fig. 10: Power losses versus temperature Fig. 11: Power losses versus temperature Fig. 12: Permeability versus temperature f [kHz] Fig. 13: Permeability versus frequency Some potential applications are automotive electronics and electronic lighting ballasts. Innovative material 12Gi for (A) XDSL interface transformers The ferrite producer Iskra- Feriti has developed an improved 121 ferrite material optimized for (A) XDSL applications. In comparison with conventional 12G ferrite material, the new 12Gi, Table 4 and Figures 14 and 15, allows for increases in the data rate transfer and distance covered by (A)XDSL lines. Tlie THD, Total Harmonic Distortion, of a ferrite component should be low under operating conditions. THD is a function of flux density (B), frequency (f) and temperature (T). To evaluate the material quality with respect to THD an audio analyzer was used on toroid samples. The improved 12Gi is optimized by low impurity raw materials, the addition of additives and improved processing and sintering conditions. Table 4: 12Gi Material characteristics Parameter measuring conditions value Hi n 10 kHz, 25 °C, 0.1 mT 10000 ±20% T1b[10-VT] 10 kHz, 25 °C, 1.5-3.0 mT <0.15 tg5/|a,i [10-6] 10 kHz, 25 °C, 0.1 mT <7 100 kHz, 25 °C, 0.1 mT <40 aF [106/K] 25 - 55 °C -1 -+ 1 TC [°C] > 130 20000 - 1. jjy 18000 / / l,U(Jl) / / 14000 - i.n 11000 - ______ 10000 - n r:i i \ 8000 7000 6000 5000 ! ----- i ! I ' i i i 1 I- - - 1 1 ! 1 1 ' I 1 1 1 i 1 i i i Fig. 14: Permeabiiity versus temperature Fig. 15: THD/^a versus B for 12G and new 12Gi at 20 i 530 100 °C, 10 kHz, 1200 A/m >410 120 °C, 10 kHz, 1200 A/m > 370 To ["C] >210 1 f=100KHz; B= OOmT ✓ / // 1 j 1 temperature [°C| Fig. 16: Power loss versus temperature \ \ H=1200A/m [ [ i j temperature |®C) Fig. 17: Saturation flux density versus temperature New material 27G for splitter applications 27G material, Table 5 and Figures 16 to 18, replaces 25G material in splitter (POTS) applications. 27G material is the first MnZn-ferrite which is available in production and combines both a high permeability and high saturation,. Both SSM ^ 5000 3 «00 « g ^000 L. Ü 3S00 & 3000 7" 1 IS 25 35 45 55 65 75 85 95 105 115 temperature [°C] Fig. 18: Permeability versus temperature AH materials were successfully introduced on production and available in different core shapes. 3. Conclusion /3/ M.Drofenik, A.Žnidaršič, I.Zaje, »Highly resistive grain boundaries in doped MnZn ferrites for liigli frequency power supplies«, J. Appl. Phys., vol 82, No.1 333 - 340 (1997) /4/ A.Žnidaršič, M.Drofenil<, »Influence of oxygen partial pressure during sintering on tlie power loss of MnZn ferrites«, IEEE Trans, fvlag. 32(3), 1941 -45(1996) /5/ A.Žnidaršič, M.Drofenik, »Modern developments trends in higfi-performance soft ferrites«. Inf. MIDEM, 32(2), 95 - 99 (2002) /6/ M.Drofenik, A.Žnidaršič, D.Makovec, »Stabilization of MnZn ferrites by re-oxidation of their grain boundaries«, Z. Met. kd, vol 92, 110- 114(2001) /7/ M.Drofenik, A.Žnidaršič, D.Makovec, "Ca redistribution in MnZn ferrites grain boundaries during heat treatment in reducing atmosphere", ICF8, main conference, 286-287, Kyoto, Japan (2000) /8/ A.Žnidaršič, M.Drofenik, "AnewpowerMnZnferriteforDC -DC applications", Apec., Seventeenth Annual IEEE, Applied Power Electronics, Conference and Exposition, vol. 1, Dallas, Texas (2002) The technical demand for improved soft ferrites has been growing. The technical department at Isi^ra - Feriti, has been busy developing and improving new ferrites to meet these demands. These materials meet the demands in both quantity and applications requirements that demand improved performance. Raw materials, the improvements in manufacturing technology and the ability to measure the results, play a decisive role in improving the quality and lowering the costs of ferrites. The results of these developments are expected to give new impulses for electro-technical applications. Doc. Dr. Andrej Žnidaršič lsld{x^,yj. (4) Kadar ta pogoj ni izpolnjen, so rezultati simulacij neponovljivi. Za kvantitativno oceno neponovljivosti I. stopnje predlagamo naslednjo mero: J m (5) k=\ Vrednost M1 je tem večja, čim več je odstopanj med trenutnimi vrednostmi časovnih potekov in čim večja so. Če želimo primerjati neponovljivost, ki se pojavi pri različnih testnih vezij, moramo M1 ustrezno normirati. Normiranje lahko izvedemo tako, da posamezno oceno M1 normiramo z normo vektorja dopustnih razdalj: J m Av f " S EKc.) \2 (6) če izberemo zadostno majhen Ax in ne pride do neponovljivosti, potem bo tudi zagotovljena ponovljivost oblik in globalnega obnašanja. 2.2 Mera za neponovljivost oblik signalov M2 se nanaša na obliko časovnih potekov napetosti oziroma tokov. Ker so lahko rezultati simulacij A in B oblikovno podobni tudi, če so vzorci trenutnih vrednosti primerjanih časovnih potekov med seboj nekoliko zamaknjeni, smo za ocenjevanje oblikovnega odstopanja uporabili maksimalno vrednost križnokorelacijskih funkcij rxkyk(j) vseh m časovnih potekov. Časovna poteka Xk in yk sta maksimalno korelirana, ko križnokorelacijska funkcija rxkyk(i) zavzame maksimalno ekstremno vrednost. Če je ta +1 obstaja med Xk in yk popolna pozitivna koreliranost, če je ta vrednost -1, obstaja med njima popolna inverzna koreliranost, če pa je O, med Xk in Vk ni linearne povezave. Časovna poteka Xk in yk sta oblikovno tem manj podobna, čimbolj je maksimalna vrednost križnokorelacijske funkcije rxkyk(i) oddaljena od vrednosti +1. Če je maksimalna vrednost križnokorelacijske funkcije rxkyk(i)^0, sta časovna poteka Xk in Vk oblikovno nepodobna. Oblikovno nepodobnost primerjanih časovnih potekov lahko ocenimo s pomočjo naslednje mere: 1 M2 = l--J^r,^ (7) pri čemer je r^ maksimalna vrednost križnokorelacijske funkcije: n = max(y)) ; max (J))> O j za/=-(n-1),-(n-2).....0,1,2,...(n-1). (8) Neponovljivost oblik signalov je tem večja, čim večja je vrednost M2, ki je lahko iz intervala [0, + 1 ]. Primerjana časovna poteka Xk in Vk sta podobna, če je vrednost rk večja ali enaka minimalni dopustni vrednosti rmin, ki lahko zavzame vrednosti iz intervala (0,+1]. Če to velja za vse primerjane časovne poteke: (9) se oblike napetosti oziroma tokov, dobljenih s ponovno simulacijo, bistveno ne razlikujejo od referenčnih. 2.3 Mera za neponovljivost globalnega obnašanja Namen ocenjevanja neponovljivosti III. stopnje je ovrednotiti odstopanja med globalnim obnašanjem testnega vezja pri referenčni simulaciji A in ponovni simulaciji B. Globalno obnašanje testnega vezja ocenimo na osnovi njegovih značilnih lastnosti - bistvenih lastnosti, s katerimi je mogoče okarakterizirati in oceniti njegovo obnašanje. Tipične značilne lastnosti so: pasovna širina, vhodna upornost, preklopna napetost, harmonska popačenja, frekvenca os-ciliranja itd. Odstopanja med globalnim obnašanjem testnega vezja pri simulaciji A in ponovni simulaciji B bodo tem večja, čim večja bodo odstopanja med njegovimi istovrstnimi značilnimi lastnostmi. Ker imajo lahko različna vezja različne in različno število značilnih lastnosti, je mera za neponovljivosti III. stopnje odvisna od vrste vezja. Ker smo pri testiranju ponovljivosti uporabili kaotična testna vezja, smo to mero natančno definirali za tovrstna vezja. Za značilno lastnost smo izbrali mejo med kaotičnim in ne kaotičnim režimom delovanja. S pomočjo simulatorja A določimo m bifurkacijskih točk: a?, a2,...am, ki nastopijo pri bifurkacijah s podvojitvijo periode in jih odčitamo iz bifurkacijskega diagrama (slika 1). Ta predstavlja odvisnost maksimalnih vrednosti izbrane spremenljivke stanja v vezju od bifurkacijskega parametra tj. parametra, s katerim lahko vplivamo na kvalitativne spremembe v obnašanju vezja. S P 2 ---.sitnuiacija .A —— .umulaciju B r rr i TI II, Ü, l>it. parsnictei Siii