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0 INTRODUCTION

Robustness is a key factor of product design under 
uncertainty from material properties, manufacturing 
operations and practical environment. Actually, from 
designer’s brain to users’ hands, the product must pass 
through many stages of its life cycle. The variability 
generated at each stage obviously has an influence 
on the performances of the product. It can  be the 
cause of the designed product not fully meeting the 
requirements of the customers and users. 

Each part of making up the product is 
manufactured from raw material in the manufacturing 
stage using processes such as forging, cutting or 
grinding. Geometrical deviations are generated and 
accumulated on each part over the successive set-
up of the manufacturing process due to inherent 
imperfections of raw material, tooling and machine. 
Then, the parts with deviations are assembled at the 
assembly stage. The deviations of the surfaces of the 
assembled parts generated at manufacturing stage 
affect the assemblability and the final geometry of 
the product. The geometry of the final product is, 
therefore, different from the nominal one at the end 
of these two production stages. On the other hand, the 
current product modelling technology is not capable 
of taking into account these deviations. Most of the 
simulations performed to predict the behaviour and 
the performance of a product (kinematics, dynamics, 
aerodynamics, etc.) are based on the nominal model 
of the product. Since this model cannot deal with 
geometrical deviations generated throughout the 
product life cycle, the variation of product behaviour 
and performance cannot be predicted. Thus, the “real” 
performance of the product, which is different from 
the designed one (nominal performance), cannot be 

verified. The risk is then that the designed product 
fails to fully meet customers’ and users’ requirements 
in which situation, the product-process design has to 
be considered as not good or at least not robust.

Many methods and tools are proposed in the 
academic research in order to manage the effects of 
geometrical variability on a product design. However, 
only mentioned manufacturing or assembly stage 
of the product life cycle is mentioned. In [1], the 
authors addressed the impact of the manufacturing 
errors on the performance of the product. They 
defined the Manufacturing Variation Pattern (MVP) 
to represent the manufacturing characteristics and 
investigated its effects on the performance of the 
product. In [2], the authors presented the theory that 
offers an analytical and geometrical description of 
the performance sensitivity distribution of a product 
in the variation space. The theory can be applied to 
find the robust design less sensitive to the dimensional 
variation due to manufacturing errors or product 
wear. The authors in [3] proposed a new Probabilistic 
Sensitivity Analysis (PSA) approach for the design 
under uncertainty based on the concept of relative 
entropy. This approach allows providing the valuable 
information about the impact of the design variables 
on the performance of the product and the whole range 
or a partial range of the performance distribution. 
In [4], the authors proposed a statistical approach in 
order to evaluate the impact of geometrical variations 
on the angular rotational velocity between two bevel 
gears. The Monte-Carlo simulation method is used 
to consider the geometrical behaviour simulation and 
tooth contact analysis. The authors in [5] proposed a 
methodology for quantifying the kinematic position 
errors due to manufacturing and assembly tolerances. 
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Based on this method, a kinematic amplitude variation 
for bodies’ position is calculated.

In [6], the authors proposed to integrate material 
and manufacturing process uncertainties in the design 
in order to consider their impacts on the performance 
of the product. They developed a procedure for 
uncertainty propagation from the material random 
field to the end product performance based on the 
product finite-element mesh. In mechanical assembly, 
there are several statistical approaches to determine the 
effect of geometrical deviation introduced in [7]. The 
authors in [8] proposed a tolerancing model, called 
Proportioned Assembly Clearance Volume (PACV), 
based on the Small Displacements Torsor (SDT) 
concept. This model aims to determine the effect of 
geometrical deviation of surfaces on an assembly. In 
[9], the authors proposed a new calculation method 
to analyse the geometrical deviations stack-up in the 
assembly line (parallel and serial assembly line) on 
the product designed. The authors in [10] introduced 
a model of geometrical product specifications 
for product life cycle. This model allows the 
communication of geometrical information which can 
come from design, manufacturing or inspection.

These studies examine the impact of geometrical 
variations in manufacturing or assembly stage on 
the designed product. However, the effects of the 
variation sources during the product life cycle on 
the performance of the product are not mentioned. 
Especially, the mathematical relationship between 
the performance of the product and the parameters 
of variation sources is unknown. In many cases, 
this relationship is not established and numerical 
resolutions using tools such as finite elements used 
to determine the performance for one specific set of 
values of the product parameters. One numerical 
solution thus determines one point on the response 
surface of the relationship between the performance 
of the product and the product parameters. In order to 
establish an approximation of the required relationship, 
this paper proposes to use a set of numerical solution 
combined with a design of experiment.

In order to study the effect of geometrical 
variability on product performance, there are 
important issues that have to be considered:
•	 How to establish the relationship between the 

performance and the geometrical deviations of 
the product?

•	 How to manage the causes and consequences of 
these deviations at design stage?
This paper proposes, as an answer to the first 

question, a method that allows establishing the 
relationship between performance and geometrical 

deviations. The geometrical deviations generated 
and accumulated are modelled by the geometrical 
deviation model presented in [11] and reminded at the 
beginning of Section 3. A partial answer to the second 
question has been proposed in [12] for identification 
and classification of the influence of the deviation 
parameters.

1 INCLUDING GEOMETRICAL DEVIATIONS IN PRODUCT 
PERFORMANCE SIMULATION

There are many kinds of disturbances, during the 
product lifecycle, which may influence product 
quality and functionality [13]. In order to investigate 
their effect on the product performance, a method 
that allows taking them into account in the product 
performance simulation is proposed in this section. 
The overview of the proposed method is shown in Fig. 
1.

Fig. 1.  Performance simulation of the product with geometrical 
deviations

In the manufacturing and assembly stages, the 
geometrical deviations of each surface of the final 
product are caused by the effects of variation sources, 
such as tooling deformation, thermal deformation, 
material property of the part, etc. These deviations are 
modelled by the geometrical deviation model (GDM) 
that will be detailed in the next section. Monte-Carlo 
simulation method is then used to create an image 
of the “real” product population with geometrical 
deviations. The integration of these deviations into 
the product performance simulation is based on a 
design of the experiment (DOE) method. This DOE 
establishes the mathematical relationship between the 
product performance and the parameters of deviation. 
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This relationship is used to generate an image of 
the product population performance from the “real” 
product population with geometrical deviations.

1.1 Geometrical Deviation Model

As presented above, the nominal model of a product 
created in CAD/CAM systems can only represent 
nominal product information and cannot handle 
geometrical deviations generated and accumulated 
during the product life cycle and especially at 
manufacturing and assembly stage. The GDM, as 
presented in [11], can model them based on small 
displacement torsor. A small displacement torsor T at 
a point O in the Cartesian coordinate system (O, X, Y, 
Z) is described by rotational vector R and translational 
vector D as shown in equation as follows:

	 T R D
O X Y Z

= { }{ }, .
, , ,

	

A surface deviation torsor is a small displacement 
torsor describing the deviation between an associated 
surface and a nominal surface. The associated surface 
is an ideal surface associated with the real surface 
using a minimum distance criterion such as the least 
square. For example, the deviation torsor of the 
associated plane relative to its nominal position is 
described by the SDT TSurface at a point O in the local 
coordinate system (O, X, Y, Z), as shown in equation 
as follows:
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where rx, ry are rotational and tz translational 
components regarding X, Y, Z axis, respectively. The 
plan, in this case, has three degrees of freedom, so 
three positioning deviations of the plan are invariant 
(i.e. cannot be measured due to the surface class) 
relative to their nominal position and their values are 
arbitrarily fixed. Thus, the 0 value is chosen in order 
to hide the notion of invariance. 

The GDM model, for the manufacturing stage, is 
based on the model of the manufactured part (MMP) 
proposed by [14]. The geometrical deviations 
generated by a manufacturing process are considered 
to be the result of two independent phenomena: 
positioning and machining, and are accumulated over 
the successive set-ups. The manufactured deviations 
of the part surfaces are expressed relative to their 
nominal position by a SDT T

P Pi
j
i,
.

	 T T T
P P Sj P Sj Pi

j
i i

j
i, , ,
,= − + 	 (1)

where TSj Pi,
 models the positioning deviation of 

workpiece in set-up Sj. This deviation is a function of 
the MMP surfaces deviation generated by the previous 
set-ups, the part-holder surfaces deviations and the 
links part-holder/part surfaces. 

T
Sj Pj

i,
 models the deviation of the machined 

surface j realised in set-up Sj. This deviation is 
expressed relatively to the nominal machine. This 
torsor merges deviations of the surface swept by the 
tool and cutting local deformations.

A product is made up of parts assembled by the 
way of connections. Each part has already passed 
through the manufacturing stage where geometrical 
deviations were generated. Then, the product passes 
through assembly stage of its life cycle. The assembly 
stage brings its share of deviations to the product. The 
GDM for the assembly stage is based on the model of 
the assembled part (MAP). The positioning deviations 
of each part relative to its nominal position in the 
global coordinate system of the product are modelled 
by a SDT T

P Pi,
.

	 T T T T T
P P P P P P P P P Pi k k

n
k

n
k

m
i i

m
i, , , , ,
,= + + + 	 (2)

where TP Pn
k

m
i,   is the link torsor between surface m of 

MMP i (part i) and surface n of MMP k (part k). T
P Pk,

  
is the positioning deviation torsor of part k, it models 
the positioning deviation of the part k (a subassembled 
part coming from the previous set-up of the assembly 
process) relative to their nominal position in the global 
frame of the product. 

The GDM establishes the mathematical relation 
between the deviation sources from the manufacturing 
and assembly stage and product surfaces deviations. 
A Monte-Carlo simulation method is then used to 
create a set of M products with geometrical deviations 
(M generally chosen between 10,000 and 1 million). 
As a result, the product designers can be aware of the 
distribution of the product surfaces deviation [15].

1.2 Design of Experiment

Simulations to predict product performance 
(kinematics, dynamics, behaviour, failure, etc.) are 
usually carried out based on the numerical model 
of the product. This numerical model is created 
using the current product modelling technology 
such as CAD software and the simulation, which are 
performed using current simulation technologies such 
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as finite element, computing fluid dynamics, etc. For 
a complex product system, it is, however, difficult 
to create M models of the product with geometrical 
deviations and to calculate the performance of M 
products because performance simulations can be 
time consuming (several hours for one simulation). 
Thus, it is not possible to perform simulation for the M 
products. In order to overcome this limitation, a DOE 
approach is proposed to determine an approximated 
mathematical relationship between the performance 
of the product and the product parameters deviation. 
Then, it is possible to determine the performance of 
the M products by using this relationship.

Considering that each simulation is CPU 
time intensive, it is necessary to limit the number 
of simulations to be performed. The number of 
simulations increases with the number of factors taken 
into account for the design of experiment. It is thus 
necessary to limit this number of factors. These factors 
are geometrical deviation parameters and are defined 
based on expert knowledge. These key parameters are 
measured on the virtual product and are functions of 
the elementary deviation parameters. The value of 
these factors can be calculated by using the result of 
Monte-Carlo simulation of the M products. 

The design of the experiment requires a defining 
level for these factors. The number of levels for these 
factors is chosen based on a compromise between the 
desired precision and the calculation time. The values 
of the factor levels are then calculated according 
to the factor range of variation. Depending on the 
number of factors n, the number of levels k and the 
chosen strategy, the number of deviated products N 
are determined. The corresponding N values of the 
n factors are gathered in a matrix P named design 
matrix, as shown in Eq. 3.

	 P

p p p
p p p

p p p
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. 	 (3)

Next, simulation tools as FEA, CFD, etc., are 
used to calculate the performance of the N products. 
A set of N deviated models of the product has to be 
created in the CAD system. Each deviated model of 
the product j is modelled according to the value pij 
of the factors. The performance of each product is 
then calculated and finally, the performance of the 
N products is gathered in a vector R called response 
vector as expressed in Eq. (4).

	 R

r
r
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
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. 	 (4)

The relationship between the performance of the 
product and the selected factors {p1, p2, p3, ..., pn} 
is established using a regression model and can be 
expressed by Eq. (5).

	 Performance = f (p1, p2, p3, ..., pn).	 (5)

For example, the linear least square fit model [16] 
can be used to establish the relationship in the case of n 
factors and 2 levels. From the result of 2n simulations, 
the relationship is expressed by a function as given in 
Eq. (6).

	 f p= ⋅ +β ε� , 	 (6)

where ε is the residual vector, p = {p1, p2, p3, ..., pn}T 
is a vector gathering the n factors, β�  is a coefficient 
vector of the model. It is calculated by Eq. (7).

	 β� = ⋅ ⋅ ⋅−( ) ,P P P RT T1 	 (7)

where R = {r1, r2, r3, ..., rN}T is a response vector 
including N simulation responses.

The performance for the population of M products 
is then calculated by replacing the value of the selected 
factors {p1, p2, p3, ..., pn} with the collected data from 
the Monte-Carlo simulation into Eq. (5).

1.2.1 Factorial Design

As mentioned before, the number of simulations 
to be performed depends on the number of factors, 
the number of levels and the chosen strategies.  In 
this paper, three strategies are proposed and can be 
chosen depending on the required precision, expert 
knowledge, the number of factors and calculation 
time. Two strategies, full factorial and Taguchi design, 
are commonly used while the last one, while random 
design is original.

A full factorial design of the experiment is an 
experiment that takes on all possible combinations of 
levels across all factors. The number of experimental 
to run is thus equal to kn for n factors and k levels. 
To limit the number of factors, key geometrical 
parameters are defined based on expert knowledge. 
Then, the number of levels for these factors has to 
be defined depending on a compromise between 
the desired precision and the calculation time. The 
values of the key parameters are measured on the 
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virtual product and are functions of the elementary 
deviation parameters. The variation range of these 
factors can be determined based on the M results from 
the Monte-Carlo simulation. The value assigned to 
the levels of these factors is determined according 
to these ranges of variation. The kn values of the n 
parameters are then gathered in the design matrix P. 
An extended description of the use of full factorial 
design of experiment has been presented in [18]. With 
full factorial design of the experiment, the number of 
numerical simulations increases dramatically with the 
numbers of selected factors and levels. For example, 
23=8 simulations are necessary in the case of three 
factors and two levels (see Fig. 2). It is then necessary 
to find some alternatives to this method.

Fig. 2.  Full factorial design with three factors, two levels

1.2.2 Taguchi Design

One alternative method is Taguchi’s orthogonal arrays. 
This method has been designed in order to reduce the 
number of simulations to be performed. 

Table 1.  Table of Taguchi design

Nu
m

be
r o

f l
ev

el
s 

(k
) Number of factors (n)

2 3 4 5 6 7 8 9 10 11 12
2 L4 L4 L8 L8 L8 L8 L12 L12 L12 L12 L16
3 L9 L9 L9 L18 L18 L18 L18 L27 L27 L27 L27
4 L16 L16 L16 L16 L32 L32 L32 L32 L32    
5 L25 L25 L25 L25 L25 L50 L50 L50 L50 L50 L50

Taguchi’s orthogonal arrays are highly fractional 
orthogonal designs proposed by Taguchi. They are 
used to estimate the main effects with only a few 
experiments. This approach is also suitable to apply 
for certain mixed level experiments where the factors 
included do not have the same number of levels.

The number of factors is selected from expert 
knowledge in order to eliminate the factors that have 
few effects on the performance of the product. The 
value associated with the levels of each factor is also 

defined from the results of the geometrical deviation 
Monte-Carlo simulation. Then, the number of 
experimental to run is selected based on the Taguchi’s 
orthogonal arrays, as shown in Table 1. In the case of 
n factors and k levels, there are Ln experimental runs 
that must be realized according to Taguchi table. For 
example, it is necessary to create 4 deviated models of 
the product for the performance simulation in the case 
of 3 factors and 2 levels. The design matrix P in this 
case is different from the one from factorial design. It 
is defined according to Taguchi table for each factor 
and level, as given in Eq. (8).
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An extended description of the use of Taguchi’s 
orthogonal arrays has been presented in [17] and [18].

1.2.3 Random Design

In case of increasing complexity alongside with 
the number of factors, the number of necessary 
simulations to determine the relationship between 
performance and deviations can become too large and 
thus time consuming even when using Taguchi design. 
Moreover, the use of expert knowledge to determine 
key factors filters the deviation sources and can reach 
the list of some influential factors. Factorial design 
and Taguchi’s orthogonal arrays are not effective in 
this case. Thus, a random design of the experiment 
method is proposed in order to address these issues. 
All product geometrical deviations parameters, called 
factors {pi} (i = 1, ..., n) that have small effects on the 
performance of the product are taken into account. 

The random design approach is realized in four 
steps (see Fig. 3):

Fig. 3.  Algorithm diagram of random design

•	 Step 1. Draw randomly a product with geometrical 
deviations in the set of product collected from the 
Monte-Carlo simulation. 
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	 A kth product with geometrical deviations is 
randomly drawn in a set of M products collected 
from results of geometrical deviation simulation. 
The value of each factor { }( 1,.., )ip i n=  is 
calculated based on the drawn 
product deviation parameters values. The set of 
values of the factors {pi} (i = 1, ..., n) is added 
into the kth row of the design matrix P.

•	 Step 2. Create the deviated CAD model. 
The deviated model of kth product will be created 
in the CAD software corresponding to the value 
of each geometrical deviation parameters {pi} 
(i = 1, ..., n). 

•	 Step 3. Simulate the performance of the product.  
The deviated model created in Step 2 is used to 
simulate the performance of the product in order 
to determine the performance of the representative 
product. The result is appended into the response 
vector R.

•	 Step 4. Eliminate the drawn product in the set of 
M products. 

	 Repeat from Step 1 until the number of the drawn 
product reach the desired number N. 

The main limitation of this method is the 
definition of the number N of simulations to be 
run. The number N of products drawn is defined 
considering the balance between the required 
precision and the expected calculation time. However, 
the problem is similar to that of every stochastic 
method were the size of the sample is a key parameter.

2  A CASE STUDY

The DOE method to integrate geometrical deviation 
in product performance simulation has already been 
applied to the complex example of a centrifugal 
pump [19]. In this application Factorial and Taguchi 
strategies have been used. In the present paper, the 
three strategies are applied to the same case for the 
purpose of comparison and evaluation. Thus, a simple 
example, a harmonic oscillator, is proposed in order to 
save calculation time (less than 1 ms per simulation) 
and to compare the three strategies to the analytical 
result which is known in the present case.

2.1  A harmonic Oscillator

The harmonic oscillator system includes a spring and 
a mass (see Fig. 4). The performance considered in 
this case is the natural frequency of the oscillator. The 
natural frequency of the oscillator is expressed by Eq. 
(9).

	 f k
m

= ⋅
1
2π

, 	 (9)

where m is the mass of the load which depends on its 
density ρ and its volume. Thus, the load mass deviation 
depends on the geometrical deviations of the load 
surfaces. For example, the deviations of the cylinder 
radius and of the position of the two boundary planes 
(rotation and translation) affect the mass m. The mass 
is calculated by Eq. (10).

	 m = ρ · V,	 (10)

k is the spring constant or spring stiffness and it is 
calculated by Eq. (11).

	 k Gd
nD

=
4

38
, 	 (11)

	 G E
=

+2 1( )
,

υ
	 (12)

where E is Young’s modulus, d spring wire diameter, 
D spring mean diameter, n number of active windings 
and n a Poisson ratio.

From Eqs. (10) to (12), the variation of the 
frequency is obviously affected by geometrical 
deviations of the surfaces of the mass and the spring. 
Deviation torsor parameters of each surface, given in 
Table 2, influence the natural frequency of the mass-
spring system.

Table 2.  Geometrical deviation paramaters

Component Geometry
Deviation 

parameters
Description

Mass

Plan 1 Rx1, Ry1, Tz1
Parameters of deviation 

torsor of plan P1

Cylinder 2
Rx2, Ry2 Tx2, Ty2

Parameters of deviation 
torsor of cylinder C2

dr
Radius deviation  
of cylinder C2

Plan 3 Rx3, Ry3, Tz3
Parameters of deviation 

torsor of plan P3

Spring Spire ∆, δ Deviation of spring outer 
and wire diameter

The geometrical deviations of each surface of 
the mass-spring system are modeled by a GDM as 
presented in Section 1 and the Monte-Carlo simulation 
method is then used to give an image of the “real” 
production of the mass-spring systems.

For example, the distributions of the cylinder’s 
deviations of 100,000 virtually produced loads are 
described in Fig. 5. The histogram of the translational 
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deviation (Tx2, Ty2) of cylinder C2 relative to X and 
Y axis are shown in Figs. 6a and b. These deviations 
can be included in the volume V calculation and by 
using Eq. (10) the mass deviation can be determined 
as shown in Fig. 6c. 

Fig. 4.  Mass-spring system

From the expert knowledge presented above, 
the relationship between the frequency of the 
spring system and its geometrical deviations can be 
determined and expressed by Eq. (13).

f G d

n D
h R h dr R
R h T R h Tz z

=
+

+
− + + +

+ + + +

1
4 2 2

4

3
2 2

2
1

2

π
δ

ρ
π π

π π

( )

( )
( )

( ) (
∆

33 )

,












(13)

where h, R and r are respectively nominal height, 
radius and density of cylinder C2 of the load.

In fact, the frequency simulation of this system 
can be realized using the Eq. (13) directly. A 
population of 100,000 frequencies is generated from 
the results of the Monte-Carlo simulation mentioned 
in [15]. The histogram of the 100,000 frequencies 
calculated is shown in Fig. 6. An approximated 
relationship between the frequency and the 
geometrical deviation parameters is then established 

Fig. 5.  Monte-Carlo simulation results

using a linear regression model with the 100,000 
frequencies data. This equation given in Eq. (14) is the 
most precise possible linear regression approximation. 
It will be used for the purpose of comparison with the 
other approximations.

Fig. 6.  The distribution of frequency

	 f = 4.79048 ‒ 0.0547296Tz1 ‒ 0.155346dr ‒
	 ‒ 0.0545993Tz3 + 2.48972δ ‒ 0.149673∆.	 (14)

The three other DOE strategies will then be 
applied to this simple example to compare accuracy 
among them. The results will also be compared to this 
first approach that will be used as a benchmark.

2.1.1 Factorial Design

From expert knowledge as given in Eq. (13), 
geometrical deviation parameters of the load and the 
spring that have a strong influence on the natural 
frequency of the oscillator are defined as factors. 
These factors are selected as follows for the factorial 
design study: 
•	 Tz1, Tz3: translational deviation of the two planes 

of the load P1, P3,
•	  D,d: deviation of the spring mean and wire 

diameter, 
•	 dr: radius deviation of the load cylinder. 
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The number of levels for the five factors is chosen 
as two and the number of runs is thus 32. The levels 
for the factors are calculated from the results of the 
Monte-Carlo simulation. The low and high levels are 
respectively selected at ‒3s and +3s of each factor 
distribution. The relationship between the frequency 
and selected factors is established by using a linear 
regression model from the 32 runs results. This 
function is expressed by Eq. (15). 

	 f = 4.82605 ‒ 0.0560401Tz1 ‒ 0.16062dr ‒	   
	 ‒ 0.0560471Tz3 + 2.51307d ‒ 0.152286D .	 (15)

Fig. 7.  The distribution of frequency by Factorial Design

The population of the frequency is generated 
from the results of Monte-Carlo simulation and Eq. 
(15). The distribution of the frequency is shown in 
Fig. 7.

2.1.2 Taguchi Design

The selected factors include all parameters of 
geometrical deviations of the spring system. There are 
thus 15 parameters as follows:
•	 6 parameters of deviation torsor of two plans of 

the load,
•	 4 parameters of deviation torsor of the load’s 

cylinder,
•	 2 parameters of deviation of the spring’s wire and 

mean diameter,
•	 3 parameters of dimensional deviation of the base 

plate (obviously not to influence the frequency).
The number of levels is chosen as two and, 

as indicated in the table of Taguchi’s orthogonal 
arrays, it is necessary to make 16 runs in this 
case. The relationship between the frequency and 
selected factors is similarly established by using the 
linear regression model from 32 runs results. The 
mathematical relationship is described by Eq. (16).

	 f = 4.91592 ‒ 0.0387945Tz1 ‒ 0.201746dr ‒ 	  
	 ‒ 0.0448108Tz3 + 2.53885δ ‒ 0.1232∆ .	 (16)

A population of 100,000 frequencies is generated 
by the collected data in the Monte-Carlo simulation 
and the Eq. (16). The histogram of the population is 
represented in Fig. 8.

Fig. 8.  The distribution of frequency by Taguchi Design

2.1.3 Random Design

This method is realized by the four steps as presented 
in Section 2. Ten oscillators are randomly drawn 
from the 100,000 virtually produced oscillators. 
Then, the relationship between the frequency and the 
geometrical deviation parameters is established from 
10 runs results. This relationship is expressed by Eq. 
(17). 

	 f = 4.91592 ‒ 0.0387945Tz1 ‒ 0.201746dr ‒	
	  ‒ 0.0448108Tz3 + 2.53885δ ‒ 0.1232∆ .	 (17)

Similarly, a population of 100000 frequencies 
is produced by using the result of the Monte-Carlo 
simulation and Eq. (17). The histogram of the 
population is shown in Fig. 9.

Fig. 9.  The distribution of frequency by Random Design

2.1.4 Comparison

In order to compare the three DOE strategies accuracy, 
three points of view are proposed. First, the arithmetic 
difference between the frequency calculated from 
the approximated relationship obtained by each 
of the three DOE strategies and the exact result is 
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considered. The error distribution for each approach 
(factorial, Taguchi, random design) is shown in Fig. 
10. The three strategies are precise and the maximum 
error is equal to 0.16 to be compared with the mean 
natural frequency which is equal to 4.79. Among the 
three strategies, the random design approach is the 
less accurate. However, the number of runs is minimal 
for this strategy and the number of factors is maximal. 
Random design approach is the most effective when 
the product system is complex and not well known 
and when the performance calculation is time-
consuming. On the other hand, Factorial design is the 
most accurate approach but supposes a good expertise 
about the system behavior.

The second point of view, the main statistics 
descriptors of the natural frequency distribution 
obtained from the three proposed approaches are 
compared as shown in Table 3. The results for the 
three strategies and the first approach are very similar. 
The three approaches are then accurate and similar in 
terms of statistical results.

Table 3.  Summary of the proposed methods

Factorial 
design

Taguchi 
design

Random 
Design

Exact 
model

Mean of frequency 5.03582 5.0719 5.00409 4.99506
Standard deviation 
of frequency

0.594517 0.59592 0.61488 0.589002

Deviation 
parameters

5 All All All

Number of runs 32 32 10 100,000

The third point of view, the coefficient of the 
relationship between the natural frequency and the 
geometrical deviation parameters approximated by 
factorial, Taguchi and random design and the first 
approach are compared. These coefficients are given 
in Table 4. There is not much difference between 
factorial, Taguchi and random design approach and 
the first approach regarding these coefficients except 
for Tz1 coefficient of Random Design. The three 
strategies are then accurate for the determination 

of an approximate relationship between deviation 
parameters and performance except for the low 
influence coefficient in the case of random design.

Table 4.  Coefficient comparison among proposed methods

Variables
Factorial
design

Taguchi
design

Random
Design

Exact
model

Constant 4.82605 4.91592 4.82709 4.79048
Tz1 -0.05604 -0.03879 0.02266 -0.05473
dr -0.16062 -0.20174 -0.18498 -0.15535
Tz3 -0.05605 -0.04481 -0.11745 -0.05459
δ 2.51307 2.53885 2.61698 2.48972
∆ -0.152286 -0.1232 -0.09892 -0.14967

The selection among the three approaches to 
establish the relationship between the performance 
and the geometrical deviations of a product depends on 
the requirements concerning accuracy, time and cost. 
The factorial and Taguchi design are chosen when 
the expert knowledge is effective and the number of 
factors is not too large. The random design is chosen 
when it is difficult to determine the factors that have 
a strong influence on the product performance, and 
the number of factors is then considerably large and 
when performance calculation is complex and time 
consuming. Thus, random design is a new approach 
for performance simulation of complex product 
system, taking into account geometrical deviations 
generated during its lifecycle that can be used as the 
first approach to increase designer’s knowledge about 
the designed product behavior ad robustness. The 
three strategies are better than the first (full) approach 
in terms of time and cost and are necessary when the 
calculation time per simulation becomes long.

3 CONCLUSION

In this paper, a design of the experiment method is 
proposed to take into account the effects of geometrical 
deviations generated throughout the product lifecycle 
into product performance simulation. Three different 

		  Factorial design			   Taguchi design	         Random design
Fig. 10.  The distribution of error frequency
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strategies: factorial, Taguchi and random design, 
are proposed for use depending on the complexity 
of the product considered. Factorial and Taguchi 
design of experiment are already well known but a 
novel strategy is proposed based on random choice 
of the design sample. This random design strategy 
is effective when the number of factors and levels 
and the time needed for performance simulation are 
becoming high. 

The relationship between the performance of the 
product and the geometrical deviation parameters 
is established by using one of the three different 
strategies. An image of the population of the 
manufactured product is calculated by the Monte-
Carlo simulation method, from a GDM. From the 
result of the Monte Carlo simulation, using the 
established relationship, an image of the performance 
of the population of products virtually manufactured 
is calculated. Then, the product designer can identify 
and classify the effect of each parameter of variation 
source on the product performance based on the result 
of the Monte-Carlo simulation and the corresponding 
performance for each virtual product. 

In future work, the variance of product 
performance relative to variation of the deviation 
parameters can be determined. As a result, a robust 
design can then be found by minimizing the variance 
of the performance variation.
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