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Abstract

In this paper we characterize all graphs with exactly two non-negative eigenvalues. As
a consequence we obtain all graphs G such that λ3(G) < 0, where λ3(G) is the third
largest eigenvalue of G.
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1 Introduction
Throughout this paper all graphs are simple, that is finite and undirected without loops and
multiple edges. Let G be a graph with vertex set {v1, . . . , vn}. The adjacency matrix of
G, A(G) = [aij ], is an n × n matrix such that aij = 1 if vi and vj are adjacent, and
aij = 0, otherwise. Thus A(G) is a symmetric matrix with zeros on the diagonal and all
the eigenvalues of A(G) are real. By the eigenvalues of G we mean those of its adjacency
matrix. We denote the eigenvalues of G by λ1(G) ≥ · · · ≥ λn(G). By the spectrum of G
that is denoted by Spec(G), we mean the multiset of eigenvalues of G. The characteristic
polynomial of G, det(λI − A(G)), is denoted by P (G,λ). Studying the eigenvalues of
graphs, the roots of characteristic polynomials of graphs, has always been of great interest
to researchers, for instance see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the references therein.

It is well known that λ1(G)+ · · ·+λn(G) = 0 and λ21(G)+ · · ·+λ2n(G) = 2m, where
m is the number of edges of G. Thus if G has at least one edge, then G has at least one
positive eigenvalue. One of the attractive problems is the characterization of graphs with a
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few non-zero eigenvalues. In [5] all bipartite graphs with at most six non-zero eigenvalues
have been characterized. The another interesting problem is the characterization of graphs
with a few positive eigenvalues. In [10] Smith characterized all graphs with exactly one
positive eigenvalue. In fact, a graph has exactly one positive eigenvalue if and only if its
non-isolated vertices form a complete multipartite graph. In [9] Petrović has studied the
characterization of graphs with exactly two non-negative eigenvalues. In this paper with
a different proof we state a new characterization of all graphs G with exactly two non-
negative eigenvalues. In other words we find the graphs G with λ1(G) ≥ 0, λ2(G) ≥ 0
and λ3(G) < 0.

For a graphG, V (G) andE(G) denote the vertex set and the edge set ofG, respectively;
G denotes the complement of G. The order of G denotes the number of vertices of G.
The closed neighborhood of a vertex v of G which is denoted by N [v], is the set {u ∈
V (G) : uv ∈ E(G)} ∪ {v}. For every vertex v ∈ V (G), the degree of v is the number of
edges incident with v and is denoted by degG(v) (for simplicity we use deg(v) instead of
degG(v)). By δ(G) we mean the minimum degree of vertices of G. A set S ⊆ V (G) is an
independent set if there is no edge between the vertices of S. The independence number of
G, α(G), is the maximum cardinality of an independent set of G. For two graphs G and H
with disjoint vertex sets, G + H denotes the graph with the vertex set V (G) ∪ V (H) and
the edge set E(G) ∪ E(H), i.e. the disjoint union of two graphs G and H . In particular,
nG denotes the disjoint union of n copies of G. The complete product (join) G ∨ H of
graphs G and H is the graph obtained from G+H by joining every vertex of G with every
vertex of H . For positive integers n1, . . . , n`, Kn1,...,n`

denotes the complete multipartite
graph with ` parts of sizes n1, . . . , n`. Let Kn, nK1 = Kn, Cn and Pn be the complete
graph, the null graph, the cycle and the path on n vertices, respectively.

2 The structure of graphs with exactly two positive eigenvalues
In this section we obtain a characterization of graphs that have exactly two positive eigen-
values. We need the Interlacing Theorem.

Theorem 2.1. ([4, Theorem 9.1.1]) Let G be a graph of order n and H be an induced
subgraph of G with order m. Suppose that λ1(G) ≥ · · · ≥ λn(G) and λ1(H) ≥ · · · ≥
λm(H) are the eigenvalues of G and H , respectively. Then for every i, 1 ≤ i ≤ m,
λi(G) ≥ λi(H) ≥ λn−m+i(G).

Theorem 2.2. ([10], see also [3, Theorem 6.7]) A graph has exactly one positive eigen-
value if and only if its non-isolated vertices form a complete multipartite graph.

First we characterize all graphs with exactly one non-negative eigenvalue.

Theorem 2.3. Let G be a graph of order n ≥ 2 with eigenvalues λ1 ≥ · · · ≥ λn. Then
λ2 < 0 if and only if G ∼= Kn.

Proof. If G ∼= Kn and n ≥ 2, then λ2 = −1. Now suppose that λ2 < 0. We show that
G ∼= Kn. Suppose thatG 6∼= Kn. Thus 2K1 is an induced subgraph ofG. So by Interlacing
Theorem 2.1, λ2 ≥ λ2(2K1) = 0, a contradiction. Hence G ∼= Kn.

Lemma 2.4. Let G be a graph of order n ≥ 3 with eigenvalues λ1 ≥ · · · ≥ λn. Suppose
that λ1 ≥ 0, λ2 ≥ 0 and λ3 < 0. Then the following hold:
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1. If G is disconnected, then G ∼= Kr + Kn−r, for some positive integer r, where
r ≤ n− 1.

2. If G is connected and λ2 = 0, then G ∼= Kn \ e for an edge e of Kn.

Proof. 1. Let G be disconnected. Assume that G1, . . . , Gk are the connected components
of G, where k ≥ 2. Since λ1(G1) ≥ 0, . . . , λ1(Gk) ≥ 0 are k eigenvalues of G and
λ3 < 0 we obtain that k = 2. In other words G has exactly two connected components.
Thus G = G1 + G2. We prove that G1 and G2 are complete graphs. First we show that
G1 is a complete graph. If G1

∼= K1, there is nothing to prove. Assume that |V (G1)| ≥ 2
(equivalently G1 � K1). We claim that λ2(G1) < 0. By contradiction suppose that
λ2(G1) ≥ 0. Since λ1(G1) ≥ 0, λ2(G1) ≥ 0 and λ1(G2) ≥ 0 are three eigenvalues of G
we obtain that λ3 ≥ 0, a contradiction (since λ3 < 0). Hence the claim is proved. In other
words λ2(G1) < 0. So by Theorem 2.3, G1 is a complete graph. Similarly we obtain that
G2 is a complete graph. Hence G is a disjoint union of two complete graphs.

2. Suppose that G is connected and λ2 = 0. Since λ3 < 0, G 6∼= nK1. Thus λ1 > 0.
Hence G has exactly one positive eigenvalue. By Theorem 2.2 there are some positive
integers t and n1 ≥ · · · ≥ nt ≥ 1, so that n1 + · · · + nt = n and G ∼= Kn1,...,nt . If
t = 1, then G ∼= nK1, a contradiction (since G is connected). Thus t ≥ 2. If n1 = 1,
then G ∼= Kn and so λ2 = −1, a contradiction. Therefore n1 ≥ 2. If n2 ≥ 2, then C4

is an induced subgraph of G. Using Interlacing Theorem 2.1 we get λ3 ≥ λ3(C4) = 0, a
contradiction. Thus n2 = · · · = nt = 1. Now if n1 ≥ 3, then K1,3 is an induced subgraph
ofG. Similarly by Interlacing Theorem 2.1 we obtain λ3 ≥ λ3(K1,3) = 0, a contradiction.
So n1 = 2. Thus G ∼= K2,1,...,1. In other words G ∼= Kn \ e, for an edge e of Kn. We note
that

Spec(Kn \ e) = {n− 3 +
√
n2 + 2n− 7

2
, 0,−1, . . . ,−1︸ ︷︷ ︸

n−3

,
n− 3−

√
n2 + 2n− 7

2
}.

The proof is complete.

In [2] all graphs G with λ1 > 0, λ2 ≤ 0 and λ3 < 0 have been characterized.

Remark 2.5. Let n1, . . . , nt be some positive integers and G = Kn1,...,nt
. Similar to

the proof of the second part of Lemma 2.4 by Interlacing Theorem 2.1 one can see that
λ2(G) < 0 if and only if n1 = · · · = nt = 1. On the other hand by Theorem 2.2,
λ2(Kn1,...,nt) ≤ 0. Thus λ2(Kn1,...,nt) = 0 if and only if nk > 1 for some k. In other
words, the second largest eigenvalue of any complete multipartite graph except complete
graph is zero.

Remark 2.6. Let G be a graph of order n ≥ 3 with eigenvalues λ1 ≥ · · · ≥ λn. Assume
that G has exactly two non-negative eigenvalues. In other words, λ1 ≥ 0, λ2 ≥ 0 and
λ3 < 0. Since λ3 < 0, G 6∼= nK1. Thus λ1 > 0. Hence λ1 > 0, λ2 ≥ 0 and λ3 < 0. If
G is disconnected, then by the first part of Lemma 2.4, G ∼= Kr +Kn−r for some positive
integer r ≤ n − 1. If G is connected and λ2 = 0, then by the second part of Lemma 2.4,
G ∼= Kn \ e, where e is an edge of Kn. Thus to characterize all graphs with exactly
two non-negative eigenvalues it remains to find connected graphs G such that λ1(G) > 0,
λ2(G) > 0 and λ3(G) < 0. In sequel we find this characterization.
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Definition 2.7. A graph G is called semi-complete if G is a disjoint union of two complete
graphs or is obtained by adding some new edges to disjoint union of two complete graphs
(see Figure 1).

H1 H2 H3

Figure 1: The graphs H1, H2 and H3 are semi-complete that are obtained from K3 +K4.

Now we prove one of the main results of this section.

Lemma 2.8. Let G be a connected graph of order n ≥ 3 and with eigenvalues λ1 ≥ · · · ≥
λn. If λ2 > 0 and λ3 < 0, then for every vertex v ∈ V (G) with degree δ(G) we have
N [v] ∼= Kδ(G)+1 and G \N [v] ∼= Kn−δ(G)−1. In particular, G is semi-complete.

Proof. Let λ2 > 0 and λ3 < 0. Since λ2 > 0, G is not complete graph. Therefore
α(G) ≥ 2. If α(G) ≥ 3, then 3K1 is an induced subgraph of G. Thus by Interlacing
Theorem 2.1, λ3(G) ≥ λ3(3K1) = 0, a contradiction. Therefore α(G) = 2. Thus for
every vertex u ∈ V (G), G \N [u] is a complete graph. In fact, G \N [u] ∼= Kn−deg(u)−1.

Let v0 be a vertex of G with degree δ(G), that is v0 has the minimum degree among all
vertices of G. Since G 6∼= Kn, deg(v0) ≤ n − 2. Since G \N [v0] is a complete graph, to
complete the proof it is sufficient to show that the induced subgraph on the set N [v0] is a
complete graph, that is every two vertices of N [v0] are adjacent. This also shows that G is
obtained by adding some edges to the complete graphs N [v0] and G \ N [v0] and so G is
semi-complete.

Now we show that N [v0] is a complete graph. By contradiction, suppose that w and
z are two non-adjacent vertices of N [v0]. Let a be an arbitrary vertex of V (G) \ N [v0].
The induced subgraph on {v0, w, z, a} in G is one of the graphs, A1, A2, A3 or A4 (see
Figure 2). Since λ3(A1) = λ3(A4) = 0 and λ3 < 0, Interlacing Theorem 2.1 shows that

v0

w z

a

A1

v0

w z

a

A2

v0

w z

a

A3

v0

w z

a

A4

Figure 2: The subgraphs A1, A2, A3 and A4.

the induced subgraph on {v0, w, z, a} is A2 or A3. In other words any vertex of G \N [v0]
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has exactly one neighbor in {w, z}. Without losing the generality assume that a is adjacent
to w. Now we show that every vertex of G \ N [v0] is adjacent to w. By contradiction
suppose that b 6= a is a vertex of G \ N [v0] such that b is adjacent to z. Since G \ N [v0]
is complete and a, b ∈ V (G) \ N [v0], the vertices a and b are adjacent. Thus the induced
subgraph on {v0, w, z, a, b} is isomorphic to the cycle C5. Since λ3(C5) ' .618 > 0, by
Interlacing Theorem 2.1, we have λ3 > 0, a contradiction. This contradiction shows that
all vertices of G \N [v0] are adjacent only to w. This implies that deg(z) ≤ deg(v0)− 1, a
contradiction, since v0 has minimum degree. This contradiction completes the proof.

Claim 2.9. Let G be a connected graph of order n ≥ 3 and with eigenvalues λ1 ≥ · · · ≥
λn such that λ2 > 0 and λ3 < 0. Let X = N [v0] and Y = G \N [v0], where v0 is a vertex
of G with degree δ(G). Then for every two vertices a and b in X (also for a and b in Y )
N [a] ⊆ N [b] or N [b] ⊆ N [a].

Proof. Let a and b be two vertices of X . We show that N [a] ⊆ N [b] or N [b] ⊆ N [a].
First note that by Lemma 2.8, X is a complete graph. This implies that N [a] ∩ X =
N [b] ∩ X = X . Now by contradiction suppose that there are some vertices c and d in Y
such that c ∈ N [a]\N [b] and d ∈ N [b]\N [a]. Thus the induced subgraph on {a, b, c, d} is
isomorphic toC4. Using Interlacing Theorem 2.1 we get λ3 ≥ λ3(C4) = 0, a contradiction
(since λ3 < 0). Thus the result follows. Similarly one can prove that for any two vertices
v and w in Y , N [v] ⊆ N [w] or N [w] ⊆ N [v].

As an example we find an infinite family of connected graphs with positive second
largest eigenvalue and negative third largest eigenvalue.

Corollary 2.10. Let n ≥ 4 be an integer. Let K(n, t) be the graph obtained by deleting
t edges incident to one vertex of Kn, where 2 ≤ t ≤ n − 2. Then λ2(K(n, t)) > 0 and
λ3(K(n, t)) < 0.

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of K(n, t). Since Kn−1 is an induced
subgraph of K(n, t), by Interlacing Theorem 2.1, λ1 ≥ n − 2 ≥ λ2 ≥ −1 ≥ λ3. Thus
λ3 < 0. On the other, since K(n, t) is not a complete multipartite, by Theorem 2.2,
λ2 > 0.

Definition 2.11. A graph G is called quasi-reduced if for every two vertices u and v of G,
N [u] 6= N [v].

As an example of quasi-reduced graphs, we define the graphs Gn that have important
role for characterizing graphs with λ2 > 0 and λ3 < 0.

Definition 2.12. For every integer n ≥ 2, let Gn be the graph of order n such that Gn
is obtained from disjoint complete graphs Kdn2 e and Kbn2 c as following: Let V (Kdn2 e) =
{v1, . . . , vdn2 e} and V (Kbn2 c) = {w1, . . . , wbn2 c}. Then add some new edges to Kdn2 e +
Kbn2 c such that the following hold:

(i) N [v1] ⊂ · · · ⊂ N [vdn2 e] and N [w1] ⊂ · · · ⊂ N [wbn2 c].

(ii)
∣∣N [vi] ∩ V (Kbn2 c)

∣∣ = i− 1 for i = 1, . . . , dn2 e.

(iii)
∣∣N [wj ] ∩ V (Kdn2 e)

∣∣ =

{
j − 1, if n is even;
j, if n is odd for j = 1, . . . , bn2 c.
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In Figure 3, the graphsG2, G3, G4, G5 andG6 have been shown. In addition in Figure 4
one can see the complement of G7, . . . , G12. We note that G2k = B2k(1, . . . , 1; 1, . . . , 1)
and G2k+1 = B2k+1(1, . . . , 1; 1, . . . , 1; 1), where B2k and B2k+1 are the graphs that have
been defined in [9].

Remark 2.13. For every n ≥ 2,Gn is semi-complete and quasi-reduced. In addition if n ≥
3, thenGn is connected. We note that for every n ≥ 3,Gn is an induced subgraph ofGn+1.
In fact if n is even, then Gn+1

∼= K1 ∨ Gn and if n is odd, then Gn+1 is obtained from
Gn by adding a new vertex w such that w is adjacent to any vertex of {w1, . . . , wbn2 c} =
V (Kbn2 c), where Kbn2 c is one of the parts of Gn (see Definition 2.12).

Remark 2.14. We note that for every n ≥ 2, the group of all automorphisms of the graph
Gn, Aut(Gn), has exactly two elements.

G2

v1

w1

G3

v1

v2

w1

G4

v1

v2

w2w1

G5

v1

v2v3

w2w1

G6

v1

v2v3

w3w2

w1

Figure 3: The graphs G2,G3, G4, G5 and G6 are semi-complete and quasi-reduced.

The next result shows that there is only one connected quasi-reduced graph with λ2 > 0
and λ3 < 0.

Lemma 2.15. Let G be a connected graph of order n ≥ 3. If G is quasi-reduced and
λ2(G) > 0 and λ3(G) < 0, then G ∼= Gn.

Proof. Assume that λ2(G) > 0 and λ3(G) < 0. Since G is connected, by Lemma 2.8, G
is semi-complete. Let δ(G) = t and v′1 be a vertex of G with degree t. By Lemma 2.8,
N [v′1] ∼= Kt+1 and G \N [v′1] ∼= Kn−t−1. In fact G is obtained from the disjoint complete
graphs Kt+1 and Kn−t−1 by adding some new edges (see the proof of Lemma 2.8). Let
V (Kt+1) = {v′1, v′2, . . . , v′t+1} and V (Kn−t−1) = {w′1, . . . , w′n−t−1}. By Claim 2.9, for
every two vertices v′i and v′j in Kt+1, N [v′i] ⊆ N [v′j ] or N [v′j ] ⊆ N [v′i]. Also for every
two vertices w′i and w′j in Kn−t−1, N [w′i] ⊆ N [w′j ] or N [w′j ] ⊆ N [w′i]. So without losing
the generality assume that N [v′1] ⊆ · · · ⊆ N [v′t+1] and N [w′1] ⊆ · · · ⊆ N [w′n−t−1] (note
that N [v′1] = V (Kt+1) and for every 1 ≤ i ≤ t+ 1, N [v′1] ⊆ N [v′i]). Now suppose that G
is quasi-reduced. Therefore we find that

0 = |N [v′1] ∩ V (Kn−t−1)| < · · · < |N [v′t+1] ∩ V (Kn−t−1)| ≤ n− t− 1, (2.1)

and
0 ≤ |N [w′1] ∩ V (Kt+1)| < · · · < |N [w′n−t−1] ∩ V (Kt+1)| ≤ t. (2.2)
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G7

v1v2v3v4

w1w2w3
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v1v2v3v4v5

w1w2w3w4
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w1w2w3w4w5

G12
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w1w2w3w4w5w6

Figure 4: The complement graphs of G7, G8, G9, G10, G11 and G12.

Since |N [v′1]∩V (Kn−t−1)|, . . . , |N [v′t+1]∩V (Kn−t−1)| are t+1 distinct integers between
0 and n− t− 1, the Equation (2.1) shows that t ≤ n− t− 1. Similarly, the Equation (2.2)
implies that n− t− 2 ≤ t. Hence n− 2 ≤ 2t ≤ n− 1. So t = dn2 e − 1.

If n is even, then the Equation (2.2) shows that |N [w′j ] ∩ V (Kt+1)| = j − 1, for
j = 1, . . . , n − t − 1. So w′1 has no neighbor in Kt+1. Thus for any 1 ≤ i ≤ t + 1,
|N [v′i] ∩ V (Kn−t−1)| ≤ n − t − 2. Using Equation (2.1) we conclude that |N [v′i] ∩
V (Kn−t−1)| = i− 1, for i = 1, . . . , t+ 1. Hence G ∼= Gn.

Similarly, for odd n we obtain that |N [v′i]∩ V (Kn−t−1)| = i− 1, for i = 1, . . . , t+ 1.
Thus v′t+1 is adjacent to every vertex of V (Kn−t−1). Hence 1 ≤ |N [w′1] ∩ V (Kt+1)|.
Using inequality (2.2) we find that |N [w′j ]∩V (Kt+1)| = j, for j = 1, . . . , n− t−1. Thus
G ∼= Gn.

Lemma 2.16. Let Gn be the semi-complete and quasi-reduced graph as mentioned above.
Then λ2(Gn) > 0 and λ3(Gn) < 0 if and only if 4 ≤ n ≤ 12.

Proof. One can see that λ2(G3) = 0 and for every 4 ≤ n ≤ 12, λ2(Gn) > 0 and
λ3(Gn) < 0. Now assume that n ≥ 13. Since λ3(G13) = 0 and G13 is an induced
subgraph of Gn (by Remark 2.13), by Interlacing Theorem 2.1 we find that λ3(Gn) ≥
λ3(G13) = 0. This completes the proof.

Definition 2.17. Let G be a graph with vertex set {v1, . . . , vn}. By G[Kt1 , . . . ,Ktn ]
we mean the graph obtained by replacing the vertex vj by the complete graph Ktj for
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1 ≤ j ≤ n, where every vertex of Kti is adjacent to every vertex of Ktj if and only if vi is
adjacent to vj (in G). For example K2[Kp,Kq] ∼= Kp+q and K2[Kp,Kq] ∼= Kp +Kq .

Now we prove one of the main results of the paper.

Theorem 2.18. LetG be a connected graph of order n ≥ 3. If λ2(G) > 0 and λ3(G) < 0,
then there exist some positive integers s and t1, . . . , ts so that 3 ≤ s ≤ 12 and t1+· · ·+ts =
n and G ∼= Gs[Kt1 , . . . ,Kts ].

Proof. Suppose that λ2(G) > 0 and λ3(G) < 0. By Lemma 2.8, G is semi-complete. If
G is quasi-reduced, then by Lemma 2.15, G ∼= Gn ∼= Gn[K1, . . . ,K1]. So λ2(Gn) =
λ2(G) > 0 and λ3(Gn) = λ3(G) < 0. Hence by Lemma 2.16, 4 ≤ n ≤ 12.

Now assume that G is not quasi-reduced. Thus there exists a connected induced sub-
graph of G, say H , such that H is quasi-reduced and G = H[Kt1 , . . . ,Kts ], where s is the
order of H and t1, . . . , ts are some positive integers. Thus t1 + · · ·+ ts = n. If H ∼= Ks,
then G ∼= Kn, a contradiction (since λ2(Kn) = −1 < 0 while λ2(G) > 0). Thus H is
not a complete graph. On the other hand H is a connected graph of order s. Thus s ≥ 3.
Since H is obtained from G by removing some vertices and G is semi-complete, H is also
semi-complete. Suppose that C4 is an induced subgraph of H . Since H is an induced sub-
graph of G, by Interlacing Theorem 2.1 we conclude that λ3(G) ≥ λ3(H) ≥ λ3(C4) = 0,
a contradiction. Thus H has no induced cycle C4.

Now we show thatH ∼= Gs. SinceH is semi-complete,H is obtained from the disjoint
union of two complete graphs, say Kp and Kq , for some positive integers p and q. Let
X = Kp and Y = Kq . We claim that for every two vertices a, b ∈ V (X), N [a] ⊆ N [b]
or N [b] ⊆ N [a]. By contradiction assume that N [a] * N [b] and N [b] * N [a]. Thus
there are two vertices c and d such that c ∈ N [a] \ N [b] and d ∈ N [b] \ N [a]. Since
V (X) ⊆ N [a] ∩ N [b], we find that c and d are two vertices of Y . Now we remark that
the induced subgraph on the vertices a, b, c, d is isomorphic to C4. It is a contradiction,
since H has no induced cycle C4. So the claim holds. Similarly for every two vertices
z, w ∈ V (Y ), N [z] ⊆ N [w] or N [w] ⊆ N [z]. On the other hand H is quasi-reduced, thus
similar to the proof of Lemma 2.15 one can see that H ∼= Gs.

If s ≥ 13, then by Remark 2.13, G13 is an induced subgraph of H and so is an induced
subgraph of G. Thus by Interlacing Theorem 2.1, λ3(G) ≥ λ3(G13) = 0, a contradiction,
since λ3(G) < 0. Hence s ≤ 12. The proof is complete.

We end this section by characterization the graphs with λ3 < 0. We note that if G
is a graph with λ3(G) < 0, then G is not the null graph. Thus λ1(G) > 0. Using
Remark 2.5, the second part of Lemma 2.4 and Theorems 2.2, 2.3 and 2.18 we obtain this
characterization.

Theorem 2.19. Let G be a graph with eigenvalues λ1 ≥ · · · ≥ λn. Assume that λ3 < 0.
Then the following hold:

1. If λ1 > 0 and λ2 > 0, then G ∼= Kp + Kq for some integers p, q ≥ 2 or there exist
some positive integers s and t1, . . . , ts so that 3 ≤ s ≤ 12 and t1 + · · ·+ ts = n and
G ∼= Gs[Kt1 , . . . ,Kts ].

2. If λ1 > 0 and λ2 = 0, then G ∼= K1 +Kn−1 or G ∼= Kn \ e, where e is an edge of
Kn.

3. If λ1 > 0 and λ2 < 0, then G ∼= Kn.
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Since Kn \ e ∼= G3[K1,K1,Kn−2] and Kp + Kq
∼= K2[Kp,Kq], we can rewrite

Theorem 2.19 as following:

Theorem 2.20. Let G be a graph. If λ3(G) < 0, then G ∼= Kn or there exist some
positive integers s and t1, . . . , ts such that 2 ≤ s ≤ 12 and t1 + · · · + ts = n and
G ∼= Gs[Kt1 , . . . ,Kts ].

In the next section we investigate the converse of Theorem 2.20. In other words we
obtain all values of t1, . . . , ts (for 2 ≤ s ≤ 12) such that λ3(Gs[Kt1 , . . . ,Kts ]) < 0.
We need the following important result for computing the characteristic polynomial of
Gs[Kt1 , . . . ,Kts ], the polynomial P (Gn[Kt1 , . . . ,Ktn ], λ).

Theorem 2.21. [7] Let n ≥ 2. Suppose that {v1, . . . , vn} is the vertex set of Gn and
A = [aij ] is the adjacency matrix of Gn with respect to {v1, . . . , vn} (aij = 1 if and only
if vi and vj are adjacent and aij = 0, otherwise). Let t1, . . . , tn be some positive integers
and M = [mij ] be a n× n matrix, where

mij :=

{
ti − 1, if i = j;
aijtj , if i 6= j.

Then
P (Gn[Kt1 , . . . ,Ktn ], λ) = (λ+ 1)t1+···+tn−n g(λ),

where g(λ) = det(λI − M). In addition, the multiplicity of −1 as an eigenvalue of
Gn[Kt1 , . . . ,Ktn ] is equal to t1 + · · ·+ tn − n.

3 The list of all connected graphs with λ2 > 0 and λ3 < 0

In this section we investigate the converse of Theorem 2.20. We use Petrović’s notation [9]
that is very similar to the notation of Definition 2.17. We note that in Definition 2.17,
the graph G[H1, . . . ,Hn] is dependent to the labeling of the vertices of G while in the
next definition first we fix a labeling for the vertices of Gn (see Definition 2.12), and then
use the operation of Definition 2.17. For instance we consider the labeling v1, . . . , vs and
w1, . . . , ws for the vertices of G2s and then apply the operation of Definition 2.17.

Definition 3.1. Let s ≥ 1 be an integer and n1, . . . , n2s+1 be some positive integers.
Let B2s(n1, . . . , ns;ns+1, . . . , n2s) denote the graph obtained from G2s by replacing the
vertices v1 by Kn1

, v2 by Kn2
,. . ., and vs by Kns

and w1 by Kns+1
, w2 by Kns+2

, . . .,
and ws by Kn2s

(see Definition 2.12). In other words

B2s(n1, . . . , ns;ns+1, . . . , n2s) = G2s[Kn1
, . . . ,Kn2s

],

where the ordering of the vertices of G2s is V (G2s) = {v1, . . . , vs, w1, . . . , ws}.
Similarly, by B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1) we mean

B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1) = G2s+1[Kn1
, . . . ,Kn2s+1

],

where the ordering of the vertices ofG2s+1 is V (G2s+1) = {v1, . . . , vs, w1, . . . , ws, vs+1},
(see Figure 5).
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Remark 3.2. For every positive integers s and n1, . . . , n2s+1, one can easily see that

B2s(n1, . . . , ns;ns+1, . . . , n2s) ∼= B2s(ns+1, . . . , n2s;n1, . . . , ns),

and

B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1) ∼= B2s+1(ns+1, . . . , n2s;n1, . . . , ns;n2s+1).

For avoiding the repeating, using the dictionary ordering on (n1, . . . , ns) and (ns+1, . . . ,
n2s) we just cite one of the graphs B2s(n1, . . . , ns;ns+1, . . . , n2s) or B2s(ns+1, . . . , n2s;
n1, . . . , ns) in our characterization. Similarly for the graphs B2s+1(n1, . . . , ns;ns+1, . . . ,
n2s;n2s+1) and B2s+1(ns+1, . . . , n2s;n1, . . . , ns;n2s+1) we only consider one of them.
For example since by dictionary ordering (4, 3, 2) ≥ (4, 3, 1) we use B6(4, 3, 2; 4, 3, 1)
instead of B6(4, 3, 1; 4, 3, 2). As another example we use B7(5, 3, 2; 5, 2, 4; 8) instead of
B7(5, 2, 4; 5, 3, 2; 8), since (5, 3, 2) ≥ (5, 2, 4).

B3(2; 2; 4) B4(1, 2; 4, 2)

Figure 5: The graphs B3(2; 2; 4) and B4(1, 2; 4, 2).

The following theorem is the main result of [9].

Theorem 3.3. [9] GraphG has the property λ3 < 0 if and only ifG is an induced subgraph
of one of the following graphs:

1. B4(3, 2; 2, r),

2. B5(1, r; 2, 3; 1),

3. B5(r, 1; 2, 3; 1),

4. B5(3, 2; 2, 1; r),

5. B5(r, 2; 1, 2; 2),

6. B6(r, 1, s; 1, 2, 2),

7. B6(2, 1, r; 2, 1, s),

8. B6(1, 2, 2; 1, r, 1),

9. B6(2, 2, 1; 1, 1, r),

10. B7(2, 1, 1; 2, 1, 1; r),
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11. B7(r, 1, 2; 1, s, 1; 1),

12. B7(r, 1, 1; 1, 1, 2; 1),

13. B7(2, 2, 1; 1, r, 1; s),

14. B8(r, 1, 1, s; 1, 1, t, 1),

15. B9(1, r, 1, 1; 1, s, 1, 1; t),

where r, s and t are some positive integers or G is an induced subgraph of one of the
323 graphs with 12 vertices belonging respectively to the classes B4 (10 graphs), B5 (25
graphs),B6 (69 graphs),B7 (74 graphs),B8 (80 graphs),B9 (40 graphs),B10 (20 graphs),
B11 (4 graphs) and B12 (1 graph).

Now we give a nicer characterization for graphs with λ3 < 0. Note that the Petrović’s
result shows that any graph with exactly two non-negative eigenvalues is an induced sub-
graph of one the graphs described by Theorem 3.3. Since finding the structure of induced
subgraphs of a graph is complicated, it is better to find the exact structure of all graphs
with λ3 < 0. In sequel we find this structure. To find our characterization, first we note
that by Theorem 2.20 every graph with exactly two non-negative eigenvalues is isomor-
phic to Gs[Kt1 , . . . ,Kts ] for some positive integers t1, . . . , ts, where 2 ≤ s ≤ 12. In
this section we find all values of t1, . . . , ts such that Gs[Kt1 , . . . ,Kts ] has exactly two
non-negative eigenvalues. In other words we solve the converse of Theorem 2.20. We
note that by Remark 2.6 it suffices to find all connected graphs with λ1 > 0, λ2 > 0
and λ3 < 0. In other words we find all connected graphs Gs[Kt1 , . . . ,Kts ] such that
3 ≤ s ≤ 12 and λ1 > 0, λ2 > 0 and λ3 < 0. We obtain these graphs in ten theorems
(for every s, 3 ≤ s ≤ 12, we consider a theorem). First we prove the case s = 3. Since
the cases s = 4, . . . , s = 9 similarly are proved, we just prove the case s = 6. In addition
the proofs of the cases s = 10, 11, 12 are similar and we only prove the case s = 10.
Our proofs are based on three theorems, Theorem 2.21 for computing the characteristic
polynomials of Gs[Kt1 , . . . ,Kts ], Descartes’ Sign Rule for polynomials and Interlacing
Theorem 2.1. Since Gs[Kt1 , . . . ,Kts ] = Bs(t1, . . . , ts), in sequel we use Bs(t1, . . . , ts)
instead of Gs[Kt1 , . . . ,Kts ].

Theorem 3.4. LetG = B3(a; b; c), where a, b, c are some positive integers. Then λ2(G) >
0 and λ3(G) < 0 if and only if ab 6= 1.

Proof. Let g(λ) = P (B3(a; b; c), λ). By Theorem 2.21 we obtain that

g(λ) = (λ+ 1)a+b+c−3 f(λ), (3.1)

where

f(λ) = λ3− (a+b+c−3)λ2 +(ab−2a−2b−2c+3)λ+ac(b−1)+(a−1)(b+c−1).

If ab = 1, that is a = b = 1, then g(λ) = λ(λ + 1)c−1(λ2 − (c − 1)λ − 2c). This shows
that λ1(G) > 0 and λ2(G) = 0. Now suppose that ab ≥ 2. Let z1 ≥ z2 ≥ z3 be all roots
of f . Hence f(λ) = (λ− z1)(λ− z2)(λ− z3). Therefore z1 + z2 + z3 = a+ b+ c−3 > 0
and z1z2z3 = −f(0) = −(ac(b − 1) + (a − 1)(b + c − 1)) < 0. These equalities show
that z1 > 0, z2 > 0 and z3 < 0. On the other hand by the Equation (3.1), the eigenvalues
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of B3(a; b; c) are z1, z2, z3,−1, . . . ,−1 (the multiplicity of −1 is a + b + c − 3). Hence
λ1(G) = z1 > 0, λ2(G) = z2 > 0 and λ3(G) = max{z3,−1} < 0. The proof is
complete.

Theorem 3.5. Let G = B4(a1, a2; a3, a4), where a1, a2, a3, a4 are some positive integers.
Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the following
graphs:

1. B4(a, b; 1, d), B4(a, x; y, 1), B4(a, 1; c, 1), B4(a, 1;w, x),

2. B4(a, 1;x, d), B4(w, b;x, 1), B4(w, x; y, d), B4(x, b; y, d),

3. 25 specific graphs: 5 graphs of order 10, 10 graphs of order 11, and 10 graphs of
order 12,

where a, b, c, d, x, y, w are some positive integers such that x ≤ 2, y ≤ 2 and w ≤ 3.

Theorem 3.6. Let G = B5(a1, a2; a3, a4; a5), where a1, a2, a3, a4, a5 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

1. B5(a,w; 1, 1; 1), B5(a, x; 1, d; 1), B5(a, x; 1, y; z), B5(a, x; 1, 1; e),

2. B5(a, 1; c, 1; e), B5(a, 1;x,w; 1), B5(a, 1;x, y; e), B5(a, 1; 1, d; e),

3. B5(w, x; y, 1; e), B5(x, b; 1, 1; 1), B5(x,w; 1, d; 1), B5(x,w; 1, 1; e),

4. B5(1, b; 1, d; 1), B5(1, b; 1, x; y), B5(1, x; 1, y; e),

5. 63 specific graphs: 13 graphs of order 10, 25 graphs of order 11, and 25 graphs of
order 12,

where a, b, c, d, e, x, y, z, w are some positive integers such that x ≤ 2, y ≤ 2, z ≤ 2 and
w ≤ 3.

Theorem 3.7. LetG = B6(a1, a2, a3; a4, a5, a6), where a1, . . . , a6 are some positive inte-
gers. Then λ2(G) > 0 and λ3(G) < 0 if and only ifG is isomorphic to one of the following
graphs:

1. B6(a, x, c; 1, 1, 1), B6(a, 1, c; 1, e, 1), B6(a, 1, c; 1, x, y), B6(a, 1, c; 1, 1, f),

2. B6(a, 1, 1;x, e, 1), B6(x, b, 1; y, 1, 1), B6(x, y, 1; 1, e, 1),

3. B6(x, y, 1; 1, 1, f), B6(x, 1, c; y, 1, f), B6(1, b, x; 1, 1, 1),

4. B6(1, b, 1; 1, e, 1), B6(1, b, 1; 1, x, y), B6(1, x, y; 1, 1, f),

5. 145 specific graphs: 22 graphs of order 10, 54 graphs of order 11, and 69 graphs of
order 12,

where a, b, c, d, e, f, x, y are some positive integers such that x ≤ 2 and y ≤ 2.
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Proof. Let Ω6 be the set of all 13 above types of graphs. In other words,

Ω6 =
{
B6(a, x, c; 1, 1, 1), B6(a, 1, c; 1, e, 1), . . . , B6(1, b, 1; 1, x, y), B6(1, x, y; 1, 1, f)

}
,

where a, b, c, d, e, f are arbitrary positive integers and x, y ∈ {1, 2}. First we prove that ev-
ery graph of Ω6 has positive second largest eigenvalue and negative third largest eigenvalue.
For instance we show that for any positive integers a, c and f , λ2(B6(a, 1, c; 1, 1, f)) > 0
and λ3(B6(a, 1, c; 1, 1, f)) < 0. The others are proved similarly.

First we note that G6 is an induced subgraph of B6(a, 1, c; 1, 1, f). Thus by Inter-
lacing Theorem 2.1, λ2(B6(a, 1, c; 1, 1, f)) ≥ λ2(G6) > 0. On the other hand, if m =
max{a, c, f}, then B6(a, 1, c; 1, 1, f) is an induced subgraph of B6(m, 1,m; 1, 1,m). So
by Interlacing Theorem 2.1, λ3(B6(a, 1, c; 1, 1, f)) ≤ λ3(B6(m, 1,m; 1, 1,m)). Thus to
show that the inequality λ3(B6(a, 1, c; 1, 1, f)) < 0, it is sufficient to prove that λ3(B6(m,
1,m; 1, 1,m)) < 0. Now we show that for every positive integer m, λ3(B6(m, 1,m; 1, 1,
m)) < 0.

Let M and m be two positive integers. If M ≥ m, then by Interlacing Theorem 2.1,
λ3(B6(M, 1,M ; 1, 1,M)) ≥ λ3(B6(m, 1,m; 1, 1,m)). This shows that if for m ≥ 12,
λ3(B6(m, 1,m; 1, 1,m)) < 0, then for all m, λ3(B6(m, 1,m; 1, 1,m)) < 0. Hence
suppose that m ≥ 12. By Theorem 2.21 we can obtain the characteristic polynomial of
B6(m, 1,m; 1, 1,m). Let Φm(λ) = P (B6(m, 1,m; 1, 1,m), λ). By Theorem 2.21

Φm(λ) = (λ+ 1)3m−3 Ψm(λ), (3.2)

where

Ψm(λ) = 3m+ (6m2 + 7m− 1)λ+ (2m3 + 12m2 −m− 3)λ2+

(m3 + 7m2 − 14m− 2)λ3 + (m2 − 12m+ 2)λ4 + (3− 3m)λ5 + λ6.

Since m ≥ 12, all coefficients of Ψm(λ) are positive except the coefficient of λ5. In fact
the coefficient of λ5 is negative. Now by Descartes’ Sign Rule we conclude that the number
of positive roots of Ψm(λ) is 0 or 2 and the number of negative roots is 0 or 2 or 4. Since
Ψm(0) = 3m 6= 0, every root of Ψm(λ) is non-zero. On the other hand by Equation (3.2)
the roots of Ψm(λ) with many numbers −1 are the eigenvalues of B6(m, 1,m; 1, 1,m).
Hence every root of Ψm(λ) is real. Since B6(1, 1, 1; 1, 1, 1) ∼= G6 is an induced sub-
graph of B6(m, 1,m; 1, 1,m), by Interlacing Theorem 2.1 and Lemma 2.16 we find that
λ1(B6(m, 1,m; 1, 1,m)) ≥ λ1(G6) > 0 and λ2(B6(m, 1,m; 1, 1,m)) ≥ λ2(G6) > 0.
Therefore by Equation (3.2), λ1(B6(m, 1,m; 1, 1,m)) and λ2(B6(m, 1,m; 1, 1,m)) are
two roots of Ψm(λ). Hence Ψm(λ) has exactly two positive roots. Since the degree of
Ψm(λ) is six and Ψm(λ) has exactly two positive roots and Ψm(0) 6= 0, the number
of negative roots of Ψm(λ) is four. Therefore by Equation (3.2), B6(m, 1,m; 1, 1,m)
has exactly two positive eigenvalues and 3m + 1 negative eigenvalues. This shows that
λ3(B6(m, 1,m; 1, 1,m)) < 0. Now we prove the necessity.

Claim 1. Let H = B6(a′, b′, c′; d′, e′, f ′) be a graph with at least 19 vertices, that is
a′ + · · ·+ f ′ ≥ 19. If H 6∈ Ω6, then one of the graphs H1 = B6(a′ − 1, b′, c′; d′, e′, f ′) or
H2 = B6(a′, b′−1, c′; d′, e′, f ′) orH3 = B6(a′, b′, c′−1; d′, e′, f ′) orH4 = B6(a′, b′, c′;
d′ − 1, e′, f ′) or H5 = B6(a′, b′, c′; d′, e′ − 1, f ′) or B6(a′, b′, c′; d′, e′, f ′ − 1) is not in
Ω6. Note that these graphs are all induced subgraphs of H of order |V (H)| − 1.
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Proof of Claim 1. Suppose that H 6∈ Ω6. By contradiction assume that all graphs
H1, . . . ,H6 are in Ω6. Now we consider H1. If H1 = B6(a, x, c; 1, 1, 1) for some positive
integers a, c and x ≤ 2, thenH ∈ Ω6, a contradiction. IfH1 = B6(a, 1, c; 1, e, 1), for some
positive integers a, c and e, then H ∈ Ω6, a contradiction. Similarly one can see that H1 6=
B6(a, 1, c; 1, x, y), B6(a, 1, c; 1, 1, f), B6(a, 1, 1;x, e, 1). So H1 = B6(x, b, 1; y, 1, 1) or
B6(x, y, 1; 1, e, 1) or B6(x, y, 1; 1, 1, f) or B6(x, 1, c; y, 1, f) or B6(1, b, x; 1, 1, 1) or
B6(1, b, 1; 1, e, 1) or B6(1, b, 1; 1, x, y) or B6(1, x, y; 1, 1, f), for some positive integers
b, c, e, f and x, y ≤ 2. Since x ≤ 2, we find that a′ − 1 ≤ 2. Thus a′ ≤ 3. Similarly
if H2, . . . ,H6 ∈ Ω6, we obtain that b′, . . . , f ′ ≤ 3. Therefore a′ + · · · + f ′ ≤ 18, a
contradiction. Thus the claim is proved.

Claim 2. Let K = B6(a′′, b′′, c′′; d′′, e′′, f ′′) be a graph with at least 13 vertices. If
K 6∈ Ω6, then λ3(K) ≥ 0.

Proof of Claim 2. Assume that K 6∈ Ω6. We prove the claim by induction on n =
|V (K)|. By computer one can check the validity for n = 13, . . . , 18. Hence let n ≥ 19.
By Claim 1, K has an induced subgraph, say L, of order n − 1 such that L 6∈ Ω6. Since
n − 1 ≥ 18, by the induction hypothesis λ3(L) ≥ 0. Thus by Interlacing Theorem 2.1,
λ3(K) ≥ λ3(L) ≥ 0. Thus the claim is proved.

Now let W = B6(a′′′, b′′′, c′′′; d′′′, e′′′, f ′′′) be a graph of order n. Assume that
λ2(W ) > 0 and λ3(W ) < 0. If W 6∈ Ω6, then by Claim 2, n ≤ 12. By computer
we find that there are only 145 graphs with this property. More precisely there are 22
graphs of order 10, 54 graphs of order 11 and 69 graphs of order 12 such that they are not
in Ω6 while their second eigenvalues are positive and third eigenvalues are negative. The
proof is complete.

Theorem 3.8. Let G = B7(a1, a2, a3; a4, a5, a6; a7), where a1, . . . , a7 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

1. B7(a, 1, x; 1, e, 1; 1), B7(a, 1, 1; 1, e, 1; g), B7(a, 1, 1; 1, 1, x; 1),

2. B7(x, y, 1; 1, e, 1; g), B7(x, 1, 1; y, 1, 1; g), B7(1, b, x; 1, 1, 1; g),

3. B7(1, b, 1; 1, e, 1; g), B7(1, 1, c; 1, 1, f ; 1),

4. 143 specific graphs: 18 graphs of order 10, 52 graphs of order 11, and 73 graphs of
order 12,

where a, b, c, d, e, f, g, x, y are some positive integers such that x ≤ 2 and y ≤ 2.

Theorem 3.9. Let G = B8(a1, a2, a3, a4; a5, a6, a7, a8), where a1, . . . , a8 are some posi-
tive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

1. B8(a, 1, 1, d; 1, 1, g, 1), B8(1, b, 1, 1; 1, f, 1, 1),

2. 134 specific graphs: 12 graphs of order 10, 42 graphs of order 11, and 80 graphs of
order 12,

where a, b, d, f, g are some positive integers.
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Theorem 3.10. Let G = B9(a1, a2, a3, a4; a5, a6, a7, a8; a9), where a1, . . . , a9 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

1. B9(1, b, 1, 1; 1, f, 1, 1; k),

2. 59 specific graphs: 3 graphs of order 10, 17 graphs of order 11, and 39 graphs of
order 12,

where b, f, k are some positive integers.

Remark 3.11. The complete list of the mentioned 25 graphs in Theorem 3.5, 63 graphs
in Theorem 3.6, 145 graphs in Theorem 3.7, 143 graphs in Theorem 3.8, 134 graphs in
Theorem 3.9 and 59 graphs in Theorem 3.10 can be obtained from the author upon request.

Theorem 3.12. Let G = B10(a1, a2, a3, a4, a5; a6, a7, a8, a9, a10), where a1, . . . , a10 are
some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to
one of the following 26 graphs:

1. B10(1, 1, 1, 1, 1; 1, 1, 1, 1, 1),

2. B10(1, 1, 1, 1, 2; 1, 1, 1, 1, 1), B10(1, 1, 1, 2, 1; 1, 1, 1, 1, 1),

3. B10(1, 1, 2, 1, 1; 1, 1, 1, 1, 1), B10(1, 2, 1, 1, 1; 1, 1, 1, 1, 1),

4. B10(2, 1, 1, 1, 1; 1, 1, 1, 1, 1),

5. B10(1, 1, 1, 1, 3; 1, 1, 1, 1, 1), B10(1, 1, 1, 2, 1; 1, 1, 1, 1, 2),

6. B10(1, 1, 1, 2, 1; 1, 1, 1, 2, 1), B10(1, 1, 1, 2, 2; 1, 1, 1, 1, 1),

7. B10(1, 1, 1, 3, 1; 1, 1, 1, 1, 1), B10(1, 1, 2, 1, 1; 1, 1, 1, 1, 2),

8. B10(1, 1, 2, 2, 1; 1, 1, 1, 1, 1), B10(1, 1, 3, 1, 1; 1, 1, 1, 1, 1),

9. B10(1, 2, 1, 1, 1; 1, 1, 2, 1, 1), B10(1, 2, 1, 1, 1; 1, 2, 1, 1, 1),

10. B10(1, 2, 1, 1, 2; 1, 1, 1, 1, 1), B10(1, 2, 2, 1, 1; 1, 1, 1, 1, 1),

11. B10(1, 3, 1, 1, 1; 1, 1, 1, 1, 1), B10(2, 1, 1, 1, 1; 1, 1, 1, 2, 1),

12. B10(2, 1, 1, 1, 1; 1, 1, 2, 1, 1), B10(2, 1, 1, 1, 1; 2, 1, 1, 1, 1),

13. B10(2, 1, 1, 1, 2; 1, 1, 1, 1, 1), B10(2, 1, 1, 2, 1; 1, 1, 1, 1, 1),

14. B10(2, 2, 1, 1, 1; 1, 1, 1, 1, 1), B10(3, 1, 1, 1, 1; 1, 1, 1, 1, 1).

Proof. One can see that all of the above graphs have positive second largest eigenvalue and
negative third largest eigenvalue. Now we prove the necessity. LetG = B10(a1, . . . , a5; a6,
. . . , a10) such that λ2(G) > 0 and λ3(G) < 0. We show that for i = 1, . . . , 10, ai ≤ 3. For
example by contradiction suppose that a1 ≥ 4. Thus H = B10(4, 1, 1, 1, 1; 1, 1, 1, 1, 1) is
an induced subgraph of G. So by Interlacing Theorem 2.1, λ3(G) ≥ λ3(H). On the other
hand λ3(H) > 0, a contradiction. Similarly we obtain a2, . . . , a10 ≤ 3. Also one can
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see that at most one of the numbers a1, . . . , a10 is 3. For example if a1 = 3 and a2 = 3,
then K = B10(3, 3, 1, 1, 1; 1, 1, 1, 1, 1) is an induced subgraph of G. So by Interlacing
Theorem 2.1, λ3(G) ≥ λ3(K) while λ3(K) > 0, a contradiction. Since a1, . . . , a10 ≤ 3
and at most one of them is 3, a1 + · · ·+ a10 ≤ 21. Thus the order of G is at most 21. Now
by computer one can check the result.

Theorem 3.13. LetG = B11(a1, a2, a3, a4, a5; a6, a7, a8, a9, a10; a11), where a1, . . . , a11
are some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic
to one of the following 5 graphs:

1. B11(1, 1, 1, 1, 1; 1, 1, 1, 1, 1; 1),

2. B11(1, 1, 1, 1, 1; 1, 1, 1, 1, 1; 2), B11(1, 1, 1, 1, 2; 1, 1, 1, 1, 1; 1),

3. B11(1, 2, 1, 1, 1; 1, 1, 1, 1, 1; 1), B11(1, 1, 2, 1, 1; 1, 1, 1, 1, 1; 1).

Theorem 3.14. LetG=B12(a1, a2, a3, a4, a5, a6; a7, a8, a9, a10, a11, a12), where a1, . . . ,
a12 are some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G ∼=
B12(1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1).
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