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0  INTRODUCTION

It is well known that the dynamic behaviour of 
bolted joints plays a significant role in determining 
the machining stability and precision of a machine 
tool. The dynamic behaviour of bolted joint can be 
affected by the geometry and machining precision of 
the surface, the property of material, external load, 
and pre-tightening force of bolts [1]. All of those 
factors and the complicated contact mechanism 
make it difficult to build an accurate model of bolted 
joints. The bolted joint also shows a strong nonlinear 
property, and it depicts with difficulty the relationship 
of the dynamic characteristic of bolted joints and 
influencing factors. The displacement measurement 
techniques can be used to obtain the frictional 
properties of bolted joint, such as LVDT Method [2], 
extensometer method [3], digital image correlation 
method [4] and [5], laser interferometer [6] or 
ultrasound method [7]. However, the contact surface of 
a bolted joint is difficult to measure directly by using 

those experimental methods. Recently, the receptance 
coupling substructure analysis (RCSA) method was 
adopted to identify the stiffness and damping of bolted 
joints [8] to [10]. However, the RCSA method is easily 
affected by the measuring noise and environment. The 
identified results could not be applied to the bolted 
assembly with different technological parameters.

The micro-contact theory is another method to 
obtain the contact stiffness and damping of bolted 
joints, which make it possible to accurately model 
bolted joints and to optimize bolted assemblies. The 
micro-contact mechanics of bolted joints is based 
on the geometry topography of surface and Hertz 
contact theory. There are three methods in geometry 
topography of surface: the statistics method [11], the 
fractal geometry method [12], and the reconstruction 
of experimental data method [13]. The statistics 
method can be affected by the resolution and sampling 
length of the measuring instrument, which do not 
adequately reflect all features of the rough surface. 
However, the actual surface is always multi-scaled 
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with non-uniform asperities. The reconstruction of the 
experimental data method is also limited by the testing 
instrument. In contrast, the fractal geometry method 
has the merit of independent resolution and sampling 
length of measuring instrument and is suitable for the 
machined surface [14]. Therefore, researchers have 
focused on studying the contact mechanics of surface 
based on the fractal contact theory. 

For the normal and tangential contact stiffness of 
bolted joints, most researchers have studied the contact 
model of asperities based on the Hertz contact theory 
and obtained the contact stiffness by integrating each 
micro-contact in the contact surface. Majumdar and 
Bhushan [14] and [15] introduced scale-independent 
fractal parameters to characterize the contact surface 
topography, known as the Majumdar-Bhushan (MB) 
model. Zhang et al. [16] built up the fractal model 
for normal contact stiffness of machine joint surfaces 
based on the Hertz contact theory between a sphere 
and a plane. Jiang et al. [17] used three different 
machining methods (milling, grinding, and scraping) 
iron specimens to obtain the contact stiffness under 
different contact loads. Shi et al. [18] established the 
contact stiffness and micro parameters on the joint 
surface based on the Greenwood and Williamson 
theory. Sherif [19] found that the ratio between the 
normal and tangential contact stiffness is constant and 
is merely a function of Poisson’s ratio of the contact 
surfaces. Fuadi et al. [20] estimated the tangential 
contact stiffness of the contact interface with 
controlled contact asperities based on an experimental 
method. 

For the normal and tangential contact damping of 
bolted joints, the energy dissipation model of bolted 
joints is adopted to obtain the contact damping. 
Zhang and Ding [21] proposed a fractal model of 
normal damping for joint interfaces based on the 
modified MB fractal model and mechanism of normal 
contact damping dissipating energy. Bograd et al. 
[22] studied tangential damping parameters based 
on a generic isolated joint test bench. The influence 
of joint parameters, such as normal contact force 
and frequency dependence is examined. Li et al. [23] 
proposed the fractal prediction model of the tangential 
contact damping of joint surface based on the “solid-
gap-solid” contact model and the Hertz theory. Zhang 
et al. [24] also proposed tangential contact damping 
of joint interfaces by considering the mechanism of 
energy dissipation and the elastic-plastic deformation 
regime of joint plane interfaces. The studies show that 
the stiffness and damping model of contact surfaces 
have a close relationship with pre-tightening force, 
geometry, material and other influencing factors, 

and could be modeled by using the fractal method. 
Nevertheless, it does not correspond well with the 
case of a larger contact area and sparse distribution of 
multi-bolts.

The main objective of this study is to obtain the 
normal and tangential stiffness, and the damping of 
the bolted joint with uneven pressure distribution. 
The contact surface is assumed as flat in macro-
scale, and the finite element method is used to obtain 
the uneven pressure distribution. The relationship of 
stiffness, damping, and pressure of contact surface can 
be deduced based on the fractal contact theory. The 
finite element model of assembly with bolted joint can 
be established, in which the MATRIX27 element is 
introduced to define the bolted joint. An experimental 
set-up with two box-shaped specimens is designed 
for validating the presented model. By comparing the 
experimental and theoretical natural frequency and 
mode shape, the maximum error of presented model 
is less than 5.1 %. The equal pre-tightening force and 
bending moment effect cases are also considered to 
demonstrate the effectiveness of the presented model.

1  NORMAL AND TANGENTIAL STIFFNESS, DAMPING MODEL 
BASED ON THE CONTACT PRESSURE

The normal, tangential stiffness and damping model is 
widely adopted to depict the bolted joint. It is usually 
assumed to be equal for each stiffness and damping 
element in the overall contact surface during the 
process of modelling the bolted assembly [8] to [10]. 
However, this hypothesis is not suitable for the bolted 
joint because of the influence of the concentrated 
force of multi-bolts. The uneven pressure distribution 
makes the stiffness and damping of bolted joint 
different for each other in the contact surface. In this 
section, the contact pressure is assumed to be evenly 
distributed locally but unevenly distributed across the 
whole contact surface. The contact pressure of surface 
is used as a variable to deduce the stiffness, damping 
of the contact surface.

1.1  Normal Stiffness and Damping Model

Fractal geometry theory can describe profile features 
of a rough surface and thus provide a means of 
characterizing asperities of a large range of sizes. 
Previous studies [12] to [14], have shown that 
machined surface can be simulated by the Weierstrass-
Mandelbrot (W-M) function as:
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where, n is the frequency index, nmax is the upper limit 
of frequency, Z is the height of the machined surface, z 
is the lateral distance, γ denotes the scaling parameter 
for determining the spectral density and self-affine 
property, G is the fractal roughness parameter where 
a higher value of G indicates a rougher surface. D 
denotes the fractal dimension of a surface profile, 
which determines the contribution of high and low-
frequency components in the surface profile. The 
fractal parameters D and G can be obtained by the 
power spectral density method based on the measured 
data of surface. 

Nominal flat surfaces are rough in micro-scale. 
When brought into contact, an asperity is plastically 
or elastically deformed depending on its size. 
For simplicity, the two contact rough surfaces are 
supposedly equivalent to an assumed rigid flat surface 
and a rough surface, as shown in Fig. 1a. The real 
contact area is only a very small part of the nominal 
contact area (< 1 %). It is assumed that the numerous 
circular asperities are sufficiently apart from each 
other, and the asperities interactions are neglected 
[24]. The statistical distribution of the truncated micro-
contact area a' can be described as [6]:

 n a D a a for a aD
L
D D

L( ) ,( )/ / ( )/′ = ′ ′ < ′ ≤ ′− − +1

2
02 2 2 2 2ψ 	 (2)

where, a' = 2a represents the truncated area of a 
micro-contact, and a is the real contact area of a 
micro-contact, ′aL  is the truncated area of the largest 
elastic micro-contact, which is shown in Fig. 1b, ψ 
describes the domain extension factor for micro-
contact size distribution and decided by the equation:

   ψ ψ( )/ / ( )/( ) ( ) / .2 2 2 21 2 1− − −−  −[ ] =D D D D D D+ - 	 (3)

a) 

b) 
Fig. 1.  Contact mechanism; a) contact of a rough surface and a 

flat surface, and b) contact region of a single asperity

The critical truncated area demarcating the elastic 
and plastic deformation regimes can be expressed as 
[24]:
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where, H = 2.8 Y is the hardness of the softer material 
[25], Y is the yield strength of softer material. 
Asperities with a' >  ca′  are in the full elastic 
deformation regime, and the asperities are in plastic 
deformation if they satisfy a' ≤  ca′ .

Based on Hertz contact theory, the deformation δ 
and the equivalent radius R for one micro-contact are 
determined by the W-M fractal function as [8]:
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For the cases of elastic or fully plastic asperity 
deformations, the relationship of contact force f f  
and truncated area a' for one micro-contact can be 
given by [16].
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where the subscripts e and p denote elastic and full 
plastic deformations, respectively. 
E v E v E* = −( ) + −( )( )−1 11
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  is equivalent 
elastic modulus, E1, E2, v1 and v2 are the elastic 
modulus and Poisson ratios of two surfaces, 
respectively. 

The total elastic force FE, plastic force FP, and 
real contact area Ar can be obtained by integrating the 
asperities over the contact surface.
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The total force F of contact surface is composed 
of the elastic and plastic force. Based on the 
definitions of pressure in the contact surface, the mean 
pressure of contact surface in the nominal area Ar can 
be written as:
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The normal contact stiffness kn for each elastic 
micro-contact can be written as:
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Since all asperities are plastic deformations when 
a' ≤  ca′ , the normal contact stiffness should take kn = 0. 
The whole normal stiffness KN of contact surface can 
be given as:
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The asperities of contact surface are elastic or 
plastic deformations. The elastic energy is generated 
due to the effect of stiffness in the elastic deformation 
region, and the plastic energy is generated due to the 
effect of damping in the plastic deformation region. It 
is plastic deformation for micro-contact when a' ≤  ca′  , 

the plastic energy of one micro-contact is given by 
[21]:
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The plastic strain energy in plastic contact region 
can be obtained as:

  

W w n a da

HDG
D

a

NP np

a

D D D D

L

D

c= ′ ′ =

=
−

( ) ′ ′

′

− − − −

∫ ( )

ln

0

2 1 2

2
1

2

2

2 2
2

2
ψ γ π aac

D2− . 	 (16)

When the truncated area a' of a micro-contact 
satisfies ca′ < a'  < ′aL , the elastic energy of one micro-
contact can be written as:
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The elastic energy of contact surface can be 
obtained by integrating Eq. (17), results in:
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The normal contact damping dissipation factor 
can be obtained as [21]:
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The normal damping of contact surface can be 
written as:
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where, M is the mass of the structure.

1.2  Tangential Stiffness and Damping Model

When the contact surface suffers tangential force under 
a certain normal force, the deformation of asperities 
on the surface will occur in the shear direction. 
According to [25], the tangential deformation of the 
single asperity can be given as:
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where p, t is the normal and tangential load of a single 
asperity respectively, G is the equivalent shear 
modulus of the contact surfaces, 
1 2 21 1 2 2

′ = − + −G G G( ) ( )ν ν , where G1, G2 is he 
modulus of the two materials, respectively. μ is the 
static friction factor. r is the contact radius of one 
micro-contact. 

For one micro-contact, the ratio of shear force and 
normal force satisfies t / p = T / P, T is the tangential 
force acting on the contact surface and described as 
T = τbAr , where τb is the shear strength of the softer 
material [26]. The tangential stiffness of one micro-
contact can be expressed as kt = dt / dδt, then the total 
tangential stiffness can be written as follows:
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For one single micro-contact, a small relative 
motion will be caused when a tangential force is less 
than the limiting friction force, as depicted in [24]. 
The contact area of micro-contact can be divided 
into a “microslip” section and a “stick” section. The 
hysteretic damping of contact surface mainly depends 
on the microslip of asperities for the contact surface, 
which is the main reason for the energy dissipation of 
contact surface.

According to [24], the energy dissipation of 
one micro-contact per cycle in the vibration can be 
expressed as:
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The energy dissipation of contact damping for the 
whole surface can be expressed as:
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The total energy input W is a combination of 
dissipation energy Wd and elastic strain energy We 
of the two contact surfaces. Then, the elastic strain 
energy of the two surfaces can be obtained by the 
difference of total energy storage and dissipation 
energy per cycle. The energy storage of one micro-
contact w caused by the tangential force can be 
expressed as [27]:
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The total energy input W per cycle for the contact 
surface due to tangential force can be obtained as:
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The elastic strain energy of two surfaces We can 
be written as:

	 W W We d= − . 	 (27)

According to the definition of damping dissipation 
factor, it is the ratio of the dissipated energy to total 
elastic strain energy. The tangential contact damping 
dissipation factor can be expressed as:

	 ηt
d

e

W
W

= . 	 (28)

The tangential contact damping mainly depends 
on hysteretic damping, which is the result of energy 
dissipation in the contact surfaces. The total tangential 
contact damping can be written as [24]:
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where, H1, H2 are two nonlinear functions of T and P, 
which can be expressed as:
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In this section, the local uniform pressure case is 
introduced to study the normal and tangential stiffness, 
damping of contact surfaces based on the fractal 
contact theory. However, the contact pressure of 
bolted joint is uneven distribution due to the effect of 
the concentrated force of multi-bolts. To obtain the 
contact pressure distribution of surface, the contact 
surface is assumed to be flat in macro-scale. Then, the 
nodes of the contact surface are selected, and the 
contact stress can be extracted from the general 
Postproc section of ANSYS software. Based on the 
nodal stress of contact surface, the largest truncated 
area ′aL  can be calculated by using Eq. (12). The 
normal and tangential stiffness, damping of the 
contact surface can be obtained by using Eqs. (14), 
(20), (22) and (29) based on the obtained area ′aL . The 

values of stiffness and damping are assigned to the 
MATRIX27 element, which is used to connect the 
node-to-node of two contact surfaces. Fig. 2 shows the 
flowchart diagram for the stiffness and damping 
model of the bolted joint.

2  EXPERIMENTAL SET-UP AND VALIDATION  
FOR THE BOLTED JOINT

In order to validate the presented model of the bolted 
joint, a box-shaped specimen is designed as shown in 
Fig. 3. The material of the specimen is nodular cast 
iron (material type QT600-3). The contact surfaces are 
machined by milling with roughness Ra = 1.6 μm. The 
material property of the specimen is listed in Table 1. 
A surface profilometer is used to measure the contact 
surface for obtaining the data of surface profile. The 
fractal dimension D and fractal roughness parameter 
G can be computed based on the power spectrum 
density method [17], the reticular cell counting method 
[28], the variation method [29], yardstick method [30] 
and structure-function method [31]. In this paper, the 
power spectrum density method is used to obtain the 
fractal dimension D and fractal roughness parameter 
G. The power spectral density P(ω) of W-M function 
can be calculated by the following equation as:

	 P G D
Dω

γ
ω( ) =

−( )
−

2 1

2 5

2ln
, 	 (30)

where γ is the scaling parameter for determining the 
spectral density and self-affine property γ = 1.5, and ω 
is the spatial frequency. Taking the logarithm of Eq. 

 
Fig. 2.  Flowchart diagram for the stiffness and damping model of the bolted joint
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(30), the linearized equation can be obtained, and its 
slope k and intercept b can be given by:

	
k D
b D G
= −

= −( ) − ( )
2 5

2 1 2

,

lg lg ln ,γ 	 (31)

The power spectrum density of a specimen 
surface and its linear fitting function can be obtained 
by adopting the least square method, as shown in 
Fig. 3. Based on the slope and intercept of the fitting 
function, the fractal dimension and fractal roughness 
parameter can be obtained as D = 1.42, G = 1.21E–8 m.

Fig. 3.  Power spectrum density of a specimen surface

Fig. 4.  Plane dimension of box-shaped specimen 

The assembly is composed of two specimens and 
connected by eight M16 bolts. The material of bolts 
is 45# steel. The assembly is suspended to simulate 
the free degree of a freedom state, as shown in Fig. 
5. Two group sensors are placed in two specimens, 
respectively. Each group consists of nine piezoelectric 
acceleration sensors. The sensor type is PCB Mode 
330B30. An impact hammer is adopted for excitement. 
The signals of the impact hammer and the sensors are 
collected and analysed in an LMS modal analyser. In 
the experiment, the key problem is how to ensure an 
accurate pre-tightening force for each bolt. The errors 

of the pre-tightening force will affect the contact 
status and dynamic characteristic of the bolted joint. 
It is difficult to obtain the accurate pre-tightening 
force only using the torque wrench, due to the effect 
of friction and the coupling effect of multi-bolts. 
Therefore, the pre-calibrated tension bolts are used to 
provide the accurate pre-tightening force.

Fig. 5.  Experimental set-up of bolted joint

Table 1.  Material property of two specimens

Parameter name Parameter value

Density ρ (kg/m3) 7800

Elastic modulus E (Pa) 1.5E11

Poisson modulus 0.28

Hardness H (Pa) 1.96E9

In order to verify the presented stiffness and 
damping model based on the surface contact pressure, 
a finite element model for the assembly bolted joint 
is established in ANSYS as shown in Fig. 6. The 
contact pressure distribution of the bolted joint can be 
obtained based on the static analysis method. The pre-
tightening force can be loaded in the ① to ⑧ for 
each bolt as shown in Fig. 6. The nodes of the contact 
surface are selected, and the contact pressure could 
be extracted from analysis results.  Then, we can use 
the values of nodes pressure to compute the contact 
stiffness and damping in the normal and tangential 
directions as depicted in section 2. Fig. 7 shows the 
mesh of contact surface with 1019 nodes, and two 
surfaces have identical meshes so that the nodes are 
in one-to-one correspondence on two surfaces, which 
makes it possible to add the self-defined element 
between two nodes. Here, the MATRIX27 element of 
ANSYS software is introduced to define the normal 
and tangential stiffness, damping of bolted joint 
respectively. The MATRIX27 stiffness element for a 
pair of nodes could be expressed as follows,
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where Kxx, Kyy are the tangential stiffness along 
the contact surface, Kzz is the normal stiffness 
perpendicular to the contact surface. The MATRIX27 
damping element has a similar expression.

Fig. 6.  FE model of assembly with bolted joint

Fig. 7.  Mesh of contact surface

3  RESULTS AND DISCUSSION

The dynamic characteristic of a bolted joint can be 
affected by the contact status of the surface. Usually, 
the initial status of a bolted joint is always different 
with its operating status. The main reason is that 

the bolted parts of the machine tool are affected by 
the external loads. As a result, the contact status of 
bolted joint can be changed by those external loads. 
Therefore, two typical cases are introduced to verify 
the presented method in this paper: the bolted joint 
with the equal pre-tightening force for each bolt and 
the bolted joint with bending moment effect. Figs. 8 
and 9 show the contact pressure distribution of bolted 
joint. The pressure of contact surface is an uneven 
symmetrical distribution for the case of equal pre-
tightening force, as shown in Fig. 8. For example, the 
maximum pressure appears near the bolt hole with 
7.98 MPa and the pressure gradually declines to 0.62 
MPa in the middle of two bolt holes when the pre-
tightening force of each bolt is 9 kN. Fig. 9 shows the 
pressure distribution of contact surface with bending 
moment effect. The bending moment acting on the 
assembly alters the stress of the contact surface. An 
equivalent model can be presented to represent the 
bending moment effect by adjusting the pre-tightening 
force of each bolt. For example, the pre-tightening 
force of bolts increase from Fb to Fb' for ① to ③ and 
decrease from Fb to Fb'' for ⑥ to ⑧, where Fb is the 
pre-tightening force without the effect of bending 
moment, Fb and Fb'' are the pre-tightening force 
with the effect of bending moment, respectively. The 

Fig. 8.  Contact pressure distribution with the identical pre-
tightening force for each bolt

Fig. 9.  Contact pressure distribution with bending moment effect
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equivalent bending moment acting on the assembly 
can be written as M = La / 2 (Fb' – Fb'') Nb, where La 
is the distance between two-row bolts and Nb = 3 
is the number of bolts in each side of the assembly.  
The pressure distribution is more non-uniform, in 
which the pressure of one side of the contact surface 
is improved, and that of the other side is decreased. 
Compared with the pressure distribution of the contact 
surface with only an equal pre-tightening force effect 
for each bolt, the bending moment can significantly 
affect the pressure distribution of the contact surface.

The finite element model of assembly with bolted 
joint can be established by assigning the values of 
stiffness and damping between two surfaces based on 
the contact pressure. In order to verify the presented 
stiffness and damping model based on the surface 
contact pressure for the bolted joint, the frequency 
response analysis is necessary for the presented 
model. The hammer mode experiment is adopted to 
obtain the experimental mode. The points of A and B 
are chosen as the exciting point, and points C, and D 
points are chosen as the pick-up point in the normal 
and tangential directions, respectively. The tangential 
and normal displacements of bolted assembly can be 
obtained. The frequency responses in a normal and 
tangential directions at pre-tightening force 15 kN for 
each bolt are shown in Figs. 10 and 11. Comparing the 
predicted frequency response with the measured one, 
it is almost coincident in the frequency range.

Fig. 10.  Frequency response in normal direction

Fig. 11.  Frequency response in tangential direction

Table 2 shows the numerical and experimental 1st 
to 6th order mode shapes. The experimental mode 
shapes are measured by a modal hammering impact 
testing method and the average results of three times 
for the existing test are adopted to reduce the random 
error and improve the signal-to-noise ratio. In order to 
ensure the same pre-tightening force for each bolt, the 
numerical constant torque wrench is used to adjust the 
pre-tightening force of bolts. The results show that the 
mode shapes from the introduced method have good 
agreement with those of the experiment. In order to 
verify the effect of uneven pressure distribution in the 
contact surface, the uniform pressure distribution case 
is introduced as depicted in [11] The surface pressure 
for the uniform pressure distribution case can be 

obtained by the equation of p P Au n
n

Nu
=

=
∑

1
, where, Nu 

is the number of bolts, Pn is the pre-tightening force 
for each bolt, A is the whole area of bolted joint.

The 1st to 6th order natural frequencies of structure 
can be obtained as shown in Table 3. For obtaining 
the accurate experimental results, the specimens are 
decomposed and assembled three times again in the 
experiment. Every time the maximum error of pre-
tightening force is less than 0.1 kN for each bolt. 
Furthermore, comparing the natural frequencies of 
three experiments, the maximum error is 0.41 %, 
which indicates good agreement for the bolted joint. 
In Table 3, the experimental natural frequency is 
the mean value of the natural frequency of three 
experiments. For the uniform pressure case with 9 
kN pre-tightening force of each bolt, the errors of 
1st to 6th order natural frequencies of assembly are 
5.47 %, –8.62 %, –2.43 %, –8.1 %, –6.7 % and 4.7 %, 
respectively. Corresponding the errors of 1st to 6th 
order natural frequencies of assembly are 1.09 %, 
–3.79 %, 1.74 %, –3.88  %, –2.66 % and 2.48 % for the 
non-uniform pressure case. Comparing the natural 
frequency of the uniform pressure case, those of 
non-uniform pressure case are much closer to the 
experimental results. The results show that the uneven 
pressure distribution of contact surface can seriously 
affect the accuracy analysis of the bolted assembly. 
The contact stiffness and damping of the bolted joint 
can be changed by improving bolted pre-tightening 
force, which can enlarge the natural frequency of 
assembly. With the hammering test, the first order 
natural frequency is 526.03 Hz and 550.83 Hz for 
the pre-tightening force 9 kN and 15 kN of each bolt, 
respectively. The dynamic characteristic of the bolted 
assembly can be significantly improved with the 
increasing of the pre-tightening force.
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When the bolted assembly is loaded by the 
bending moment, the contact pressure distribution is 
altered, as shown in Table 3. The pre-tightening force 
for each bolt is 15 kN, and the bending moment is 
M = 4500 N·m. An equivalent model is adopted to 
represent the bending moment effect by adjusting the 
pre-tightening force of each bolt. The pre-tightening 
forces of the bolts are 20 kN for ① to ③, 15 kN for ④ 

and ⑤ and 10 kN for ⑥ to ⑧, as shown in Fig. 6. In 
comparison with the case without a bending moment, 
the 1st to 6th order natural frequency are depressed, 
which shows that the contact stiffness of the bolted 
joint is weakened by the bending moment. The main 
reason is that the uneven distribution of contact 
pressure is intensified due to the effect of the bending 
moment. The results show that it is unable to reflect 

the effect of bending moment and has much error for 
the uniform pressure case. However, it still maintains 
good consistency with the experimental results for 
the non-uniform stress case. The presented stiffness 
and damping method based on the contact surface 
pressure is more accurate in the modeling of the 
bolted joint, whether or not considering the influence 
of external load. The presented method can be used to 
accurately predict the behavior of the bolted assembly. 
It is also found that the first order natural frequency 
can be increased with the improvement of the pre-
tightening force, as shown in Fig. 12. However, the 
first order natural frequency increases slowly when 
the pre-tightening force is larger than 24 kN. The main 
reason is that the contact pressure near the bolts can 
increase with the increasing of pre-tightening force; 

Table 2.  Comparison of theoretical and experimental mode shapes (total displacement)
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nevertheless, the contact stress far away from the bolts 
is almost invariant for the bolted joint.

Fig. 12.  Effect of pre-tightening force on the natural frequency of 
assembly

4  CONCLUSIONS

In this paper, a normal and tangential stiffness 
damping model based on the contact surface pressure 
is presented for the bolted joint. The relationship of 
stiffness, the damping bolted joint, and the contact 
surface pressure can be deduced. An experimental 
set-up with a box-shaped specimen is designed 
for validating the proposed model. The equal pre-
tightening force and bending moment effect case 
studies are provided to demonstrate the effectiveness 
of the model. The maximum error of natural frequency 
for the uniform pressure case is twice that of non-
uniform pressure cases. The stiffness of bolted joint is 
weakened as the pressure distribution is more uneven, 

caused by the bending moment. The results show 
that the presented model is effective in the modeling 
of bolted joints whether having the influence of 
external load or not, which can meet the requirement 
of accurately predicting the behaviour of the bolted 
assembly for the machine tool.
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6  NOMENCLATURES

a	 real contact area of one micro-contact [m2]
A0	 nominal area [m2]
Ar	 total real contact area [m2]
C	 total normal damping
D	 fractal dimension
E	 equivalent elastic modulus [Pa]
E1, E2	 elastic modulus of two surfaces [Pa]
f	 normal load of one micro-contact [N]
F	 total normal load of contact surface [N]
G	 fractal roughness parameter [m]
G'	 equivalent shear modulus [Pa]
G1, G2	 shear modulus of two surfaces [Pa]
H	 hardness of the soft material [MPa]
k	 stiffness of one micro-contact [N/m]
K	 total stiffness for contact surface [N/m]
L	 sampling length, [m]

Table 3.  Comparison of natural frequency for experimental result, uniform and non-uniform pressure adopting the presented method

Pre-tightening force for each bolt f1 f2 f3 f4 f5 f6

9 kN

Experimental results 526.03 666.09 820.16 897.98 1334.41 1373.73
Uniform pressure case 556.5 613.21 840.12 830.64 1250.63 1441.49
Error of uniform pressure case [%] 5.47 -8.62 2.43 -8.1 -6.7 4.7
Non-uniform pressure case 531.74 640.83 834.67 863.05 1299.8 1408.7
Error of non-uniform pressure case [%] 1.09 -3.79 1.74 -3.88 -2.66 2.48

15 kN

Experimental results 550.83 668.11 871.12 903.26 1390.67 1414.80
Uniform pressure case 588.61 619.16 835.20 838.19 1263.35 1467.82
Error of uniform pressure case [%] 6.42 -7.9 -4.3 -7.76 -10.07 3.6
Non-uniform pressure case 555.26 641.8 854.63 872.8 1319.8 1407.5
Error of non-uniform pressure case [%] 0.8 -3.94 -1.89 -3.37 -5.1 -0.52

15 kN
(with bending 
moment effect  

M = 4500 N·m)

Experimental results 547.49 667.59 834.22 900.36 1355.13 1380.96
Uniform pressure case 588.61 619.16 835.20 838.19 1263.35 1467.82
Error of uniform pressure case [%] 6.98 -7.82 0.12 -7.42 -7.26 5.92
Non-uniform pressure case 551.81 637.53 836.72 878.42 1308.1 1416.8
Error of non-uniform pressure case [%] 0.78 -4.5 0.29 -2.44 -3.59 2.53
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M	 mass of the structure [kg]
n	 frequency index
nmax	upper limit of frequency index
p	 normal load of one micro-contact [N]
P	 normal force of contact surface[N]
r	 radius of the real contact region [m]
R	 curvature radius [m]
t	 tangential load of one micro-contact [N]
T	 shear force of contact surface [N]
w	 energy storage of one micro-contact [J]
wd	 dissipated energy of one micro-contact [J]
W	 energy storage of contact surface [J]
Wd	 dissipated energy of contact surface [J]
x	 lateral distance [m]
Y	 yield stress of the soft material [Pa]
z	 height of machined surface [m]
δ	 deformation of one micro-contact [m]
γ	 scaling parameter of the spectral density
η	 contact damping dissipation factor
ν1, ν2	 Poisson ratio
μ	 static friction coefficient
σm	 mean pressure of contact surface [Pa]
τb	 shear strength of the soft material [Pa]
ψ	 expand coefficient

Subscripts or superscripts:
'	 truncated section of one micro-contact
c	 critical parameter demarcating the elastic and 

plastic regimes
e	 parameter of one micro-contact in the elastic 

regime
E	 parameter of contact surface in the elastic regime
L	 parameter for the largest asperity
n	 normal parameter of one micro-contact
N	 normal parameter of contact surface
p	 parameter of one micro-contact in the plastic 

regime
P	 parameter of contact surface in the plastic regime
t	 tangential parameter of one micro-contact
T	 tangential parameter of contact surface
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