Triassic and Jurassic beds in Krim Mountain area (Slovenia) Triasne in jurske plasti na območju Krima Miloš MILER1 & Jernej PAVŠIČ2 1Hribi 2, 1291 Škofljica, SI-1000 Ljubljana; e-mail: mmiler@email.si 2Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za geologijo, Privoz 11, SI-1000 Ljubljana; e-mail: jernej.pavsic@ntf.uni-lj.si Key words: Triassic, Jurassic, stratigraphy, Dinaric Carbonate Platform, Krim Mountain, Slovenia Ključne besede: trias, jura, stratigrafija, Dinarska karbonatna platforma, Krim, Slovenija Abstract The Krim Mountain and its surroundings are characterized by Upper Triassic to Middle Jurassic rocks, which were deposited on the northern margin of the Dinaric Carbonate Platform. Upper Triassic beds are represented by Main dolomite that exhibits supra- to subtidal Lofer facies. The uppermost Triassic is characterized by approximately 40 m thick horizon of dolomitic breccia. Upper Triassic beds pass gradually into Lower Liassic dolomitic breccia, coarse-grained dolomite and micritic limestone. Presence of dolomitic breccias and absence of supra-intertidal sedimentary structures indicate sea-level rise. Middle Liassic beds consist of oolitic-oncolitic and lithiotid limestones deposited in alternating restricted lagoonal and open shallow-water environment. Upper Liassic beds are characterized by oolitic-oncolitic limestones, bituminous dolomitized limestones and dolomitic breccia deposited in high-energy shallow-water environment. Middle Jurassic beds consist of oolitic, oolitic-on-colitic and micritic limestones, formed predominantly in high-energy subtidal environment. Izvleček Ozemlje Krima in okolice gradijo zgornjetriasne, spodnje in srednjejurske kamnine, ki so nastale na severnem robu Dinarske karbonatne platforme. Zgornjetriasne plasti predstavlja glavni dolomit v loferskem razvoju. V njegovem zgornjem delu se pojavlja tudi okrog 40 m debel horizont dolomitne brece. Zgornjetriasne plasti prehajajo v spodnjeliasno dolomitno breco, zrnati dolomit in mikritni apnenec. Dolomitna breca in odsotnost nadplimskih in medplimskih sedimentnih tekstur nakazujeta poglabljanje morja. Spodnjeliasnim plastem sledi menjavanje srednjeliasnih ooidno-onkoidnih in litiotidnih apnencev, ki so nastali v zaprtem, lagunskem do obcasno odprtem plitvovodnem okolju. Zgornjeliasne plasti sestavljajo ooidno-onkoidni apnenec, bituminozni dolomitizirani apnenec in dolomitna breca, ki so bili odloženi v višjeenergijskem plitvovodnem okolju. Srednjejurske plasti so zastopane z ooidnimi, ooidno-onkoidnimi in mikritnimi apnenci, ki so nastali pretežno v visokoenergijskem pod-plimskem okolju. Introduction Krim Mountain (Fig. 1) with its 1107 m.a.s.l. represents one of the highest hills in the Ljublj ana region. It is located about 20 km SSW from Ljubljana and bordered to the north by Ljubljansko Barje basin, to the south by Rakitna-Bloke plateau, and to the east by Iski Vintgar gorge. Krim Mountain and its surroundings are characterized by Upper Triassic to Middle Jurassic karstified platform carbonates and are famous for outcrops of characteristic Lower Jurassic stratigraphic unit; the "Lithiotid horizons''. However due to the heavy karstification, dense woods, poor quality and limited extent of the outcrops in the Krim Mountain area the detailed stratigraphy and spatial relations between Upper Triassic to Middle Jurassic lithostratigraphic units have not been completely defined yet. In order to improve our understanding of Lower Jurassic - Middle Jurassic lithostratigraphy of the area, we performed detailed mapping of the area, accompanied by lithostratigraphical study. Geological setting The investigated area of the Krim Mountain and its surroundings represents southern border of the Ljubljansko Barje basin. In structural sense, the area represents a smaller unit of External Dinarides (Placer, 1998), cut by NW-SE and NE-SW trending normal and dextral faults. In the Triassic and Jurassic the area belonged to the Dinaric Carbonate Platform, more exactly to Fig. 1. Location of investigated area Sl. 1. Položaj raziskanega ozemlja the inner platform environments, proximal to the northern margin of Dinaric Carbonate Platform (Buser, 1989, Buser & Debeljak, 1996, Turnšek & Košir, 2000). Previous investigations First geological studies of the Krim Mountain area were carried out by Lipold (1858) during mapping of southern part of Slovenia. Stache (1889) first mentioned Jurassic beds in the area. Kramer (1905) mapped the Krim in 1:75.000 scale and recognized Lower Jurassic beds with mega-lodontids and oolitic limestones. Waagen (1914) subdivided Triassic and Jurassic beds. Germovšek (1955) studied southeastern margin of Ljubljansko Barje basin. Rakovec (1955) gave a detailed description of Lower Jurassic beds, namely he believed that Middle Jurassic beds were missing. Ramovš (1961) described Jurassic beds of southern part of Ljubljansko Barje basin and for the first time in Slovenia mentioned foraminifer Orbitop-sella praecursor. Buser (1965a,b) interpreted the development of Jurassic beds in Krim-Mokrec area and subdivided Jurassic beds into Lower Liassic, Middle Liassic and Upper Liassic-Mid-dle Jurassic. The emphasis of his study was on Middle Liassic beds with lithiotid bivalves. The Krim area was also mapped for the Basic geological map of Yugoslavia at a scale 1:100.000 by Buser and co-authors (1967) (the Postojna sheet) and Plenicar (1970) (explanatory note of Postojna sheet). The authors, however, did not define the boundary between Lower Jurassic and Middle Jurassic beds. Buser and Debeljak (1996) studied the Middle Liassic beds with "Lithiotid horizon". Turnšek and Košir (2000) described 7 species of Pliensbachian corals found in and above the "Lithiotid horizon" near Lopata and Gornja Brezovica, West of Krim. Methods Detailed mapping was carried out for the 13 km2 large Krim Mountain area on a 1:5 000 scale. More than 50 thin sections were prepared for microfacial and biostratigraphical analysis. Rocks were classified according to Folk's (1959, 1962) petrographic classification of limestones and Dunham's (1962) classification of carbonate rocks supplemented by Embry and Klovan (1972). The age of stratigraphic units was determined on basis of microfossils, corals (determined by Dragica Turnsek) and specific microfacies. Stratigraphic units Krim Mountain area is characterized by shallow-water carbonate deposits of the Di-naric Carbonate Platform. Due to poor exposure that did not allow detailed measuring, the lithostratigraphic units were studied in limited outcrops. The stratigraphic span of the investigated lithostratigraphic units, that are described in stratigraphic order below, ranges from Upper Triassic to Middle Jurassic. Triassic (Norian and Rhaetian) Upper Triassic beds (T32+3) are represented by Main dolomite and occupy the largest area of the mapped territory. They outcrop in the eastern part, between Iski Vintgar and Vogle and in the western part, west of Kamnice and Lopata (Fig. 2). Gradual lithologic transition from Upper Triassic to lowermost Jurassic beds is present at Mrzli dol, Vogle and Zvencelj area, while the boundary in the western part is tectonic. The maximum thickness of Upper Triassic beds reaches more than 400 m. Main dolomite exhibits cyclic bedded, inter- to subtidal "Lofer facies'' (Fischer, 1964). It is characterized by rhytmic alternation of dark grey to black dolomitic breccia (member A), grey to dark grey micritic dolomite with stromatolitic laminae and grey oncodolomicrosparite (member B) and grey to light grey coarse- and medium-grained dolomite (member C). Similar development of Upper Triassic beds near Borovnica was described by Ogorelec and Rothe (1992). Beds of Explanation of Fig. 2 Legenda k sl. 2 1 - Middle Jurassic, 2 - Upper Liassic, 3 - Middle Liassic, 4 - Lower Liassic, 5 - Upper Triassic, 6 - presumed lithostrati-graphic boundary, 7 - dip and strike of beds, 8 - spring, 9 - quarry, 10 - presumed fault, 11 - dip and strike of fault plane, 12 - dip and strike of fractures, 13 - crushed zone, 14 - macrofauna, 15 - microfauna, 16 - microflora, 17 - corals 1 - srednja jura, 2 - zgornji lias, 3 - srednji lias, 4 - spodnji lias, 5 - zgornji trias, 6 - domnevna litostratigrafska meja, 7 - vpad plasti, 8 - izvir, 9 - kamnolom, 10 - domneven prelom, 11 - vpad prelomne ploskve, 12 - vpad razpok, 13 - zdrobljena cona, 14 - makrofavna, 15 - mikrofavna, 16 - mikroflora, 17 - korale Fig. 2. Geological map of Krim area and its surroundings Sl. 2. Geološka karta ozemlja Krima in okolice dolomitic breccia are up to 1 m thick and composed of up to 10 cm large angular clasts of light grey dolomite. Beds of dolomitic breccia are more frequent in the upper part of the formation. Breccia is usually overlain by 20 cm thick beds of laminated micritic dolomite with alternation of do-lomicritic and dolomicrosparitic laminae, formed by planar, collenia type stromatolites. Laminated dolomite is overlain by up to 80 cm thick beds of oncodolomicrosparite (floatstone-rudstone) that consists of oncoids (Pl. 1, Fig. 1), having approximately 7 mm in diameter. Buser (1966) considered these oncoids to be algae "Sphaerocodium borne-manni". Light grey medium-grained dolomite of member C contains rare remains of megalodontid bivalves (Pl. 1, Fig. 2). Approximately 40 m thick horizon of dolomitic breccia occurs in the uppermost Triassic. Dolomitic breccia consists of over 10 cm large very angular clasts of light grey coarse-grained and grey laminated dolomite in medium-grained matrix. Due to limited extent of the outcrops, geometry of the horizon could not be defined. The Norian-Rhaetian age of Main dolomite was determined on basis of megalodontid bivalves. Jurassic Hettangian and Sinemurian Lower Liassic beds (Jj1) stretch out over Vogle, Novi zavodi and Florjanova ravan area. West of Mrzli dol and Koren the extent of Lower Liassic beds was not precisely defined, due to lack of outcrops (Fig. 2). Their thickness is about 200 m. The lower part of the succession is represented by alternation of black dolomitic breccia beds and beds of light grey to black medium-to coarse-grained dolomite (Fig. 3). Dolomitic breccia consists of medium-grained dolomitic matrix and clasts of light grey medium-grained dolomite, laminated dolomite and grey coarsegrained dolomite. It passes upwards into grey to black fine- to medium-grained dolomite and light grey coarse-grained dolomite with intercalations of light grey to grey dolomitic breccia containing black and light grey clasts in medium-grained dolomitic matrix. In the upper part of Lower Li-assic succession dolomites pass upwards through light grey micritic dolomitized limestone into light grey micritic limestone. The above-mentioned succession of dolomitic breccias, dolomites and limestones was tentatively placed into Lower Liassic on the basis of stratigraphic position and carbon and oxygen stable isotope analysis (Miler, 2007; Miler et al., 2007). Pliensbachian The Middle Liassic beds (Jx2) outcrop in the northeast. In the central part of the studied area they extend across Lapusnik, area east of Krim and Murn. In the west they are in tectonic con- starost twcknesí debelina (m) lith0l06y utotogua fossils fosil) colour barva explanation ¡ legenda jurassic - jura t" < t» 1 i ' i © 1 © 1 © M'.V gr-LGr i i i © i © 1 g-r Gf ' i ' s o t o 1 gr i o i 2 * ! ]• ! * g gr-dgr & i i m i 4 y « co < co — c _ z a. a- A ° is 8 C gf j G ® ôirôo^ si A -T A* + r> í ' / J ' / C 6 lir /'i gi»dgr * * A * ted o-n g* s s 7 FI o - v> V) -< -1 ~1 -) UJ 2 _i a Q W a* - 2 o ? 1 g 6 dg.-0 ¥ , i. 4 -t 1 / s T » r® PF $ 8 O A 4 ^ dgf y1 / 'y 1 / c c-i.ei < > a 1 j JI dgf-ei J ■ / 1 ^ / «ir / p bi / íitfs / / (\ / s 1C g DGr-ei C* " o 7 « / a- « g-r ^ÎOôo^ Gr-DGf / / / m / O — » if) < V) — < J ! , . / --/ c lgr-ogr V/ 4 V 11 i; lgr / / C gr-lgi /* » / g..0g. /V 4/ ^T^ gi fñ« 1A / / & $16 a17 €'18 619 &20 021 &22 lîr23 124 ô> 25 O 26 ^ 27 PM 20 í^ 29 O 31 ^32 & 33 gr 34 LGr 35 DGr 36 bi 37 wh 38 m 39 w 40 p 41 g 42 f 43 r 44 c 45 b 46 t, a/a i/ DGr-ei c LGr < ; ; ; lg«-wh < nc h u VI t/1 < OL 1- z < — —> UJ H < LU I dc « -, z ~ t- , / / I m-w Gr /4 v /a. Xf DGr-b) - ; / > DGr ■ ' / f, c gf-lgf v/a a /a dg> M-W Gr - 7 ^ T c gm.g» ' ? MW g» 7 LGr 1 iT? c L\ LGr-wh ? f-r gf b gt á £>/ v 7/ DGr Fig. 3. Lithostratigraphic column of Triassic and Jurassic beds in Krim area Sl. 3. Litostratigrafski stolpec triasnih in jurskih plasti na območju Krima tact with Upper Triassic beds (Fig. 2). Middle Liassic beds are represented by four different facies associations: oolitic-oncolitic limestone, lithiotid limestone, rare limestone breccia and dolomite, and limestone with corals (Fig. 3). The thickness of Middle Liassic beds ammounts to approximately 200 m. Oolitic-oncolitic limestone Limestone consists of grey to dark grey on-cointrabiosparite (rudstone) with asymmetrical oncoids, having up to 1 cm in diameter, oobioin- Explanation of Fig. 3 Legenda k sl. 3 1 - limestone, 2 - oolitic limestone, 3 - oncolitic limestone, 4 - limestone breccia, 5 - coarse-grained bituminous dolo-mitized limestone, 6 - dolomite, 7 - bituminous dolomite, 8 - stromatolitic dolomite, 9 - dolomite with megalodontids, 10 - oncolitic dolomite, 11 - dolomitic breccia with light grey clasts, 12 - dolomitic breccia with black clasts, 13 - corals, 14 - lithiotids, 15 - orbitopsellas, 16 - Agerina, 17 - Trocho-lina, 18 - Endothyra, 19 - foraminifers in general, 20 - orbi-tolinids, 21 - microflora (algae), 22 - sponges, 23 - crinoids, 24 - nerineids, 25 - gastropods, 26 - ostracods, 27 - bivalves, 28 - bioclasts, 29 - oncoids, 30 - stromatolites, 31 - megalo-dontids, 32 - rhomboids of dolomite, 33 - parallel lamination, 34 - grey, 35 - light grey, 36 - dark grey, 37 - black, 38 - white, 39 - mudstone, 40 - wackestone, 41 - packstone, 42 - grainstone, 43 - floatstone, 44 - rudstone, 45 - crystalline, 46 - boundstone 1 - apnenec, 2 - oolitni apnenec, 3 - onkolitni apnenec, 4 - apnenčeva breca, 5 - zrnati bituminozni dolomitiziran apnenec, 6 - dolomit, 7 - bituminozni dolomit, 8 - stromato-litni dolomit, 9 - dolomit z megalodontidami, 10 - onkolitni dolomit, 11 - dolomitna breča s svetlosivimi klasti, 12 - do-lomitna breča s črnimi klasti, 13 - korale, 14 - litiotide, 15 - orbitopsele, 16 - Agerina, 17 - Trocholina, 18 - Endothyra, 19 - foraminifere (splošno), 20 - orbitolinide, 21 - mikroflora (alge), 22 - spongije, 23 - krinoidi, 24 - nerineide, 25 - polži, 26 - ostrakodi, 27 - školjke, 28 - bioklasti, 29 - onkoidi, 30 - stromatoliti, 31 - megalodontidne školjke, 32 - dolomitni romboedri, 33 - vzporedna laminacija, 34 - siva, 35 - svetlo siva, 36 - temno siva, 37 - črna, 38 - bela, 39 - mudstone, 40 -wackestone, 41 - packstone, 42 - grainstone, 43 - floatstone, 44 - rudstone, 45 - zrnata struktura, 46 - boundstone trasparite (grainstone) with symmetrical micritic ooids and black intrabiopelmicrite (floatstone) with nerineid gastropods. Oolitic-oncolitic limestone contains numerous fossil remains of fora-minifers Orbitopsella sp. (Pl. 1, Fig. 3), Amijiella sp. (Pl. 1, Fig. 4), Agerina martana (Farinacci) (Pl. 1, Figs. 5, 6), Cristellaria sp. (Pl. 1, Fig. 7), Glomospira sp., Textularia sp., gastropods Ner-inea jeanjeani (Roman) (Pl. 1, Fig. 8) and algae Cayeuxia sp. (Pl. 1, Fig. 9). At places, oolitic-oncolitic limestone gradually passes upwards into microsparitic lithiotid limestone that consists of up to 1 cm large on-coids and bioclasts and large white recrystallized lithiotid shells in black microsparitic and spa-ritic matrix. The Middle Liassic age of oolitic-oncolitic limestone was determined according to above-mentioned well preserved fossils. Lithiotid limestone Lithiotid limestone and intermediate marly limestone form three distinctive horizons. Their thickness changes laterally and ranges from 40 to 160 cm (Fig. 3). Lithiotid limestones are black biointramicrosparite (packstone-floatstone) and biointrasparite (grainstone) with remains of white mostly recrystallized lithiotid bivalves represented by genera Cochlearites sp. and Lithioperna sp. (Debeljak & Buser, 1997) that can somewhere still be found preserved in their life position. Among other fossils are the most common foraminifers Pseudocyclammina sp. (Tab. 1, sl. 10, 11), Textularia sp., Glomospira sp., Amijiella sp. and algae Thaumatoporella sp. The Middle Liassic age of the litihiotid limestone was determined on basis of lithiotid bi- valves Cochlearites sp. and Lithioperna sp. and foraminifers Pseudocyclammina sp. and Amijiella sp. Limestone breccia and dolomite Within black micritic limestones rare intercalations of grey to dark grey limestone breccia and dark grey medium- to coarse-grained bituminous dolomite appear. The Middle Liassic age of limestone breccia and dolomite was determined on basis of their stratigraphic position. Limestone with corals (biolithite) In uppermost part of oolitic-oncolitic limestone, above the third "Lithiotid horizon", outcrops of grey biolithite (framestone) with intra-clasts, symmetrical ooids and coral colonies (Fig. 3) were found in Plane Lopate area. Biolithite contains foraminifers: Agerina martana (Farinacci), Paleomayncina sp. and Lenticulina sp. and corals Thecactinastraea krimensis (Turnsek, 2000) (Pl. 1, Fig. 12), Phacelophyllia bacari (Turnsek, 2003) (Pl. 1, Fig. 13), Cuifastraea lopatensis (Turnsek, 2000) (Pl. 1, Fig. 14) and Actinastraea gibbosa (Duncan, 1867) (Pl. 1, Fig. 15). All corals form phaceloid colonies, except species Actinastraea gibbosa, which forms cerioid colonies. The above mentioned foraminifers and corals indicate Late Pliensbachian age of the biolithite. Toarcian The Upper Liassic beds (Jx3) extend across Krim, Malinovec and Murn area, where they are cut off by a major fault. They also outcrop north of Bajtarjev laz, southeast of Rob and between Gnojevec and northeast of Lopata (Fig. 2). The Upper Liassic beds consist of three facies associations: oolitic-oncolitic limestone, intermediate dolomitic breccia, fine-grained dolomite and bituminous dolomitized limestone. The overall thickness of Upper Liassic beds is approximately 150 m. Oolitic-oncolitic limestone Oolitic-oncolitic limestone prevails in the lower part of Upper Liassic succession. Interbeds of oolitic-oncolitic limestone are also present higher, between bituminous dolomitized limestones (Fig. 3). Limestone is represented by grey biooncoin-traoosparite (rudstone) with rhomboids of dolomite and up to 1 cm large symmetrical oncoids, grey to black biointraoosparite (grainstone) with symmetrical, partly dolomitized ooids and grey to dark grey oointrabiomicrosparite (floatstone). The oolitic-oncolitic limestone contains partially recrystallized and dolomitized remains of foraminifers Haplophragmoides sp., Agerina martana (Farinacci), Trocholina sp. (Pl. 2, Fig. 1), Ophthalmidium sp. (Pl. 2, Fig. 2), Dentalina sp. (Pl. 2, Fig. 3), Spirillina sp., crinoids Pentac-rinus sp., gastropods Nerinea sp. and corals Ac-tinastraea plana (Duncan, 1867), Allocoeniopsis dendroidea (Duncan, 1867) and Goldfusastraea toarciensis (Beauvais, 1986) (Tab. 2, sl. 4), forming thamnasterid plocoid colonies. The Upper Liassic age of oolitic-oncolitic limestone was determined according to foramini-fers Trocholina sp., Haplophragmoides sp., Oph-thalmidium sp. and Spirillina sp., crinoids Pen-tacrinus sp. and coral Goldfusastraea toarciensis (Beauvais, 1986). Dolomitic breccia Dark grey dolomitic breccia overlies the oolit-ic-oncolitic limestone (Fig. 3). It consists of dark grey and light grey, 5 mm to over 15 cm large, poorly rounded clasts of oolitic limestone. Matrix of dolomitic breccia is dark grey laminated oobiointradolomicrite (wackestone) with dolomite rhomboids. Laminae consist of alternating dark dolomicritic and light dolomicrosparitic stripes. Symmetrical ooids appear in limestone clasts, as well as in dolomitic matrix. Well preserved miliolids Istriloculina sp. and Decussoloculina sp. appear often in dolomitic matrix. The Upper Liassic age of dolomitic breccia was determined on basis of its stratigraphic position. Fine-grained dolomite and bituminous dolo-mitized limestone Upper part of the Upper Liassic beds is represented by fine-grained dolomite and dolo-mitized limestone (Fig. 3). Fine-grained dolomite is grey to dark grey biodolomicrosparite (packstone-wackestone) with corroded and recrystallized crinoid fragments. Bituminous coarse-grained dolomitized limestone is bioo-intradolosparite (grainstone) with rare, partially recrystallized and dolomitized ooids and crinoids Pentacrinus sp.. Dolomitized limestone is rather weathered in its upper part. The Upper Liassic age of fine-grained dolomite and dolomitized limestone was determined on basis of crinoids Pentacrinus sp. and stratigraphic position. Middle Jurassic (Dogger) Middle Jurassic beds (J2) outcrop in the northeastern part of the investigated area, between Rob, Travnik and Bajtarjev laz. In the central part they occur west of Krim and Malinovec and are in tectonic contact with Middle Liassic beds. In the northwestern part, they outcrop between Gnojevec and Lopata, where they are separated from Upper Triassic and Middle Liassic beds by a fault (Fig. 2). Middle Jurassic beds are represented by monotonous oolitic, oolitic-oncolitic limestones, rich in microflora and microfauna, and micritic limestones. Oolitic limestone Oolitic limestone is a prevailing lithologic member of Middle Jurassic beds. It is represented by coarse-grained oolitic limestone, which is built of grey to dark grey biointraoosparite (grainstone), grey intraoobiomicrosparite (packstone) with mostly symmetrical, partially recrys-tallized and dolomitized ooids and grey to black bioointramicrosparite (packstone-floatstone). Coarse-grained oolitic limestone, in its lower part, is interbedded with up to 50 cm thick distinctive beds of fine-grained oolitic limestone, although, gradual transition between them is also observed in some places. Fine-grained oolitic limestone consists of light grey to grey bio-intraoosparite (grainstone) with symmetrical, partly micritized and dissolved ooids and grey bioointramicrosparite (packstone) with symmetrical ooids. Coarse-grained oolitic limestone is also intercalated with light grey to grey biolithite (framestone) containing intraclasts, symmetrical ooids and well preserved corals. Oolitic limestone contains well preserved fora-minifers Spiraloconulus sp. (Pl. 2, Fig. 7), Endo-thyra sp. (Pl. 2, Fig. 8), Dictyoconus sp. (Pl. 2, Fig. 9), Agerina sp. (Pl. 2, Fig. 10), Lucasella sp., Pseu-docyclammina sp., Siphovalvulina sp., Duotaxis sp., Haplophragmoides sp., algae Cayeuxia sp., Thaumatoporella sp. (Pl. 2, Fig. 5), Solenopora sp., crinoids Pentacrinus sp., gastropods Nerinea cf. jeanjeani, phaceloid coral colony Stylophyl-lopsis veneta (Airaghi, 1907) with corallites, having up to 6,95 mm in diameter (Pl. 2, Fig. 6) and cerioid coral colony Actinastraea plana (Duncan, 1867). According to well preserved foraminifers: Spiraloconulus sp., Dictyoconus sp., Endothyra sp. and Lucasella sp. the age of oolitic limestone is Middle Jurassic. On the contrary, the corals from intercalated biolithite: Stylophyllopsis veneta (Airaghi, 1907) and Actinastraea plana (Duncan, 1867) point to Upper Pliensbachian, Lower To-arcian age respectively. There are three possible explanations of biolithite occurence: 1. The bio-lithite is a part of Toarcian bioherm that was fragmented and transported by gravity flow into Middle Jurassic sediments, 2. The biolithite is a part of Toarcian bioherm, rising upwards into younger beds, 3. The biolithite is of Middle Jurassic age, which means that the stratigraphic span of coral Stylophyllopsis veneta is wider. Due to rare and poor quality outcrops of biolithite, the exact interpretation of the biolithite origin was not possible. Oolitic-oncolitic limestone Interbeds of oolitic-oncolitic limestone lie within oolitic limestone in the middle part of Middle Jurassic column. Interbeds consist of grey oobiooncointrasparite (rudstone) with asymmetrical, partially corroded ooids and large oncoids. Distinctive stylolites, along which rock was con- siderably dissolved (Pl. 2, Fig. 11), are also present in some places. The Middle Jurassic age of oolitic-oncolitic limestone was determined according to well preserved foraminifers Trocholina sp., Endothyra sp. (Pl. 2, Figs. 12, 13), Dictyoconus sp. (Pl. 2, Fig. 14), Lucasella sp. (Pl. 2, Fig. 13), Spiraloco-nulus sp., Agerina sp., Duotaxis sp. (Pl. 2, Fig. 15), Pseudocyclammina sp., crinoids Pentacrinus sp. (Pl. 2, Fig. 15) and nerineid gastropods. Micritic limestone Light grey to grey micritic limestone is the youngest lithologic member in the studied area. Limestone does not contain any fossil remains, therefore, its Middle Jurassic age was determined according to stratigraphic position. Late Triassic to Middle Jurassic sedimentary and paleogeographic evolution The studied area of Krim Mountain and its surroundings is situated in the northern part of External Dinarides and in Triassic and Jurassic belonged to northern margin of Dinaric Carbonate Platform. The uppermost Triassic beds of the investigated area are composed of Main dolomite that exhibits cyclic "Lofer facies'' (Fischer, 1964) indicating deposition in lagoonal platform interior in inter-supratidal to subtidal environment. In the uppermost part of the formation there is a gradual increase in the inter-supratidal breccias of member A. We interpret this increase as a consequence of short-termed marine regression that was also proved in the Northern Calcareous Alps (McRoberts et al., 1997, Krystyn et al., 2005). The sea-level changes in the Northern Calcareous Alps are explained as a consequence of short-termed tectonic uplift, possibly regional thermal uplift connected to the activity in the Central North Atlantic Magmatic Province, and slow rebound within a locally or regionally limited area (Krystyn et al., 2005). Uppermost Triassic beds are also characterized by 40 m thick horizon of dolomitic breccia. Well lithified and angular clasts of underlying lithology indicate exhumation of older strata, most probably by normal faulting. The horizon of dolomitic breccia was not studied in detail, thus causes for its formation were not precisely defined. Upon shallow-water Main dolomite coarsegrained dolomite with intercalated dolomitic breccias deposited in Lower Liassic. Absence of the supra-intertidal sedimentary structures indicates deepening of the sea and deposition in shallow-water subtidal environment. We interpret the deepening of the environment as a consequence of global sea-level rise (Hallam, 1997, McRoberts et al., 1997) most probably accompanied by Lower Liassic normal faulting as indicated by intercalated breccia beds. Micritic limestones in the upper part of Lower Liassic were most probably deposited in quiet-water la-goonal environment. The Middle Liassic beds are characterized by the alternation of oolitic-oncolitic limestones, lithiotid limestones and grainy dolomites, indicating alternate open and restricted lagoonal environments and correspond to the outer part of the inner platform environments, proximal to the northern margin of Dinaric Carbonate Platform (Buser, 1989, Buser & Debeljak, 1996, Turnšek & Košir, 2000). Coral limestones with coral colonies, intercalated between oolitic-oncolitic limestones, indicate that smaller and some larger coral bioherms formed in the open lagoonal environment, rising upwards into younger beds in some places. Upper Liassic oolitic-oncolitic limestones and bituminous dolomitized limestones represent continuation of shallow-water sedimentation most probably in alternating high-energy open shallow-water environment to low-energy (restricted) lagoonal environment (Orehek & Og-orelec, 1981, Dozet & Šribar, 1997). The high organic content in the bituminous dolomitized limestone is tentatively intepreted as a consequence of Toarcian Ocean Anoxic event (Hallam, 1986, Jenkyns, 1988). Middle Jurassic is characterized by monotonous succession of oolitic, oncolitic and sparse micritic limestones, formed in shallow, high-energy subtidal sand belt environment. Acknowledgements The authors would like to express sincere thanks to Acad. Dr. Dragica Turnšek for determination of corals and especially to Doc. Dr. Andrej Šmuc for useful suggestions and thorough review of the article. We would also like to thank to technical co-workers from Department of Geology, Faculty of Natural Sciences and Engineering, Marjan Grm and Ema Hrovatin for help with preparation of thin-sections and photographs and Damjan Ulamec for assistance in the field work. Triasne in jurske plasti na območju Krima Povzetek Območje osrednjega dela Krimskega hribovja (Sl. 1), ki obsega približno 13 km2, je bilo raziskano z namenom natančnejše določitve meje trias-jura ter razčlenitve spodnje- in srednjejur-skih plasti (Sl. 2). V paleogeografskem smislu je ozemlje v triasu in juri pripadalo Dinarski karbonatni platformi (Buser, 1989). Največjo površino zavzema zgornjetriasni glavni dolomit v loferskem razvoju (Fischer, 1964) z jasno razvitimi členi, ki nakazujejo nastanek v nadplimskem do podplimskem okolju. Sestavlja ga menjavanje temnosive do črne do-lomitne breče s klasti svetlosivega dolomita (člen A), sivega do temnosivega mikritnega dolomita s stromatolitnimi laminami (člen B) in sivega onkodolomikrosparita z onkoidi, ki jih je BusER (1966) označil kot alge "Sphaerocodium borne-manni" (Tab. 1, sl. 1) ter sivega do svetlosivega zrnatega in srednjezrnatega dolomita z megalo-dontidami (Tab. 1, sl. 2) (člen C) (Sl. 3). Podoben razvoj zgornjetriasnih plasti je pri Borovnici (Ogorelec & Rothe, 1992). Pogostejše pojavljanje člena A loferske cikloteme v zgornjem delu stolpca kaže na regresijo morja, ki je bila dokazana tudi na območju Severnih Apneniških Alp (McRoberts et al., 1997 in Krystyn et al., 2005). V zgornjem delu zgornjega triasa se pojavlja tudi okrog 40 m debel horizont dolomitne breče, ki jo sestavljajo dobro litificirani ostrorobi klasti starejših kamnin. Vendar horizont ni bil podrobneje preučen. Triasni glavni dolomit prehaja v spodnje spod-njejurski svetlosiv do črn srednjezrnat do zrnat dolomit in črne dolomitne breče s klasti sivega zrnatega in laminiranega dolomita (Sl. 3). Odsotnost nadplimskih in medplimskih sedimentnih tekstur kaže na poglabljanje morja in sediment- acijo v plitvem podplimskem okolju. Sprememba sedimentacijskega okolja je verjetno posledica globalnega dviga gladine morja (Hallam, 1997 in McRoberts et al., 1997). V zgornjem delu dolomiti preidejo v svetlosiv mikriten apnenec, ki je nastal v mirnem lagunskem okolju. Značilne srednjeliasne plasti predstavlja črn litiotidni apnenec, ki nastopa v treh horizontih med temnosivimi ooidno-onkoidnimi in mikrit-nimi apnenci ter temnosivimi zrnatimi dolomiti (Sl. 3). To zaporedje je verjetno nastalo zaradi menjavanja odprte lagune, v kateri so nastali sparitni ooidno-onkoidni apnenci, z zaprto laguno, v kateri so nastali črni litiotidni in mikritni apnenci ter odgovarja sedimentacijskemu okolju zunanjega dela notranje platforme, proksimalno robu Dinarske karbonatne platforme (Buser & Debeljak, 1996 in Turnšek & Košir, 2000). Ooid-no-onkoidni apnenec sestavljajo siv do temnosiv PLATE 1 - TABLA 1 1 Oncodolomicrosparite with oncoid Onkodolomikrosparit z onkoidom 2 Light grey coarse-grained dolomite with megalodontid bivalve Svetlosiv zrnat dolomit z megalodontidno školjko 3 Oobiointrasparite with ooids, intraclasts and foraminifer Orbitopsella sp. Oobiointrasparit z ooidi, intraklasti in foraminifero Orbitopsella sp. 4 Biointrasparite with intraclasts and foraminifer Amijiella sp. Biointrasparit z intraklasti in foraminifero Amijiella sp. 5 Oobiointrasparite with intraclasts and foraminifer Agerina martana (Farinacci) Oobiointrasparit z intraklasti in foraminifero Agerina martana (Farinacci) 6 Biointrasparite with intraclasts and foraminifer Agerina martana (Farinacci) (center) Biointrasparit z intraklasti in foraminifero Agerina martana (Farinacci) v sredini 7 Oncobioointrasparite with intraclasts, ooids and foraminifer Cristellaria sp. Onkobioointrasparit z intraklasti, ooidi in foraminifero Cristellaria sp. 8 Intrabiopelmicrite with gastropod Nerinea jeanjeani (Roman) Intrabiopelmikrit s polžem Nerinea jeanjeani (Roman) 9 Biointramicrosparite with alga Cayeuxia sp. Biointramikrosparit z algo Cayeuxia sp. 10,11 Biointramicrosparite with foraminifera Pseudocyclammina sp. Biointramikrosparit s foraminiferami Pseudocyclammina sp. 12 Biolithite with intraclasts, ooids and corals Thecactinastraea krimensis (Turnšek, 2000) Biolitit z intraklasti, ooidi in koralami Thecactinastraea krimensis (Turnšek, 2000) 13 Biolithite with corals Phacelophyllia bacari (Turnšek, 2003) Biolitit s koralami Phacelophyllia bacari (Turnšek, 2003) 14 Grey oolitic-oncolitic limestone with coral colony Cuifastraea lopatensis (Turnšek, 2000) Siv ooidno-onkoidni apnenec s kolonijo koral Cuifastraea lopatensis (Turnšek, 2000) 15 Biolithite with coral colony Actinastraea gibbosa (Duncan, 1867) Biolitit s kolonijo koral Actinastraea gibbosa (Duncan, 1867) PLATE 1 -TABLA 1 onkointrabiosparit, siv oobiointrasparit ter črn intrabiopelmikrit s foraminiferami Orbitopsella sp. (Tab. 1, sl. 3), Amijiella sp. (Tab. 1, sl. 4), Age-rina martana (Farinacci) (Tab. 1, sl. 5, 6), Cristel-laria sp. (Tab. 1, sl. 7), polžem Nerinea jeanjeani (Roman) (Tab. 1, sl. 8) in algo Cayeuxia sp. (Tab. 1, sl. 9). Litiotidne apnence predstavljajo črn bioin-tramikrosparit in biointrasparit s prekristaljeni-mi školjkami Cochlearites sp. ali Lithioperna sp. (Debeljak & Buser, 1997) in foraminifero Pseu-docyclammina sp. (Tab. 1, sl. 10, 11). V zgornjem delu ooidno-onkoidnega apnenca (Sl. 3) se pojavlja siv biolitit s kolonijskimi koralami Thecactin-astraea krimensis (Turnšek, 2000) (Tab. 1, sl. 12), Phacelophyllia bacari (Turnšek, 2003) (Tab. 1, sl. 13), Cuifastraea lopatensis (Turnšek, 2000) (Tab. 1, sl. 14) in Actinastraea gibbosa (Duncan, 1867) (Tab. 1, sl. 15). Zgornjeliasne plasti gradijo ooidno-onkoidni apnenec, temnosiva dolomitna breča, drobnoz- rnat dolomit in bituminozen dolomitiziran apnenec. Te kamnine predstavljajo nadaljevanje plitvovodne sedimentacije v visokoenergijskem odprtem plitvovodnem okolju in nizkoenergi-jskem (zaprtem) lagunskem okolju (Orehek & Ogorelec, 1981 in Dozet & Šribar, 1997). Ooidno-onkoidni apnenec sestavljajo delno dolomitiziran siv bioonkointraoosparit z dolomitnimi rombo-edri, siv do črn biointraoosparit in temnosiv oo-intrabiomikrosparit s foraminiferami Trocholina sp. (Tab. 2, sl. 1), Agerina martana (Farinacci), Ophthalmidium sp. (Tab. 2, sl. 2), Dentalina sp. (Tab. 2, sl. 3), kolonijo koral Goldfusastraea toar-ciensis (Beauvais, 1986) (Tab. 2, sl. 4) in krinoidi Pentacrinus sp.. Vmesno temnosivo dolomitno brečo sestavljajo svetlosivi in temnosivi klasti ooidnega apnenca ter vezivo, ki ga predstavlja temnosiv laminiran oobiointradolomikrit z do-lomitnimi romboedri in foraminiferami Istri-loculina sp. in Decussoloculina sp.. Drobnozrnat PLATE 2 - TABLA 2 1 Bioointrasparite with intraclasts and foraminifer Trocholina sp.? Bioointrasparit z intraklasti in foraminifero Trocholina sp.? 2 Biointraoosparite with ooids and foraminifer Ophtalmidium sp. (center) Biointraoosparit z ooidi in foraminifero Ophtalmidium sp. (sredina) 3 Biointraoosparite with ooids, intraclasts and foraminifer Dentalina sp. Biointraoosparit z ooidi, intraklasti in foraminifero Dentalina sp. 4 Grey oolitic limestone with coral colony Goldfusastraea toarciensis (Beauvais, 1986) Siv ooidni apnenec s kolonijo koral Goldfusastraea toarciensis (Beauvais, 1986) 5 Biolithite with intraclasts, ooids and alga Thaumatoporella sp. Biolitit z intraklasti, ooidi in algo Thaumatoporella sp. 6 Biolithite with intraclasts, ooids and corals Stylophyllopsis veneta (Airaghi, 1907) Biolitit z intraklasti, ooidi in koralo Stylophyllopsis veneta (Airaghi, 1907) 7, 8 Bioointramicrosparite with Spiraloconulus sp. (7) and Endothyra sp. (8) Bioointramikrosparit s Spiraloconulus sp. (7) in Endothyra sp. (8) 9 Biointraoosparite with intraclasts, ooids and foraminifer Dictyoconus sp. Biointraoosparit z intraklasti, ooidi in foraminifero Dictyoconus sp. 10 Bioointramicrosparite with intraclasts, ooids and foraminifer Agerina sp. Bioointramikrosparit z intraklasti, ooidi in foraminifero Agerina sp. 11 Oobiooncointrasparite with partially dissolved intraclast along stylolite Oobioonkointrasparit z delno raztopljenim intraklastom ob stilolitu 12 Oobiooncointrasparite with foraminifera Endothyra sp. and Textularia sp. Oobioonkointrasparit s foraminiferami Endothyra sp. in Textularia sp. 13 Bioointramicrosparite with foraminifera Endothyra sp. and Lucasella sp. Bioointramikrosparit s foraminiferama Endothyra sp. in Lucasella sp. 14 Oobiooncointrasparite with intraclasts, ooids and Dictyoconus sp. Oobioonkointrasparit z intraklasti, ooidi in foraminifero Dictyoconus sp. 15 Oobiooncointrasparite with crinoid and foraminifer Duotaxis sp. Oobioonkointrasparit s krinoidom in foraminifero Duotaxis sp. PLATE 2 -TABLA 2 dolomit in dolomitiziran apnenec sestavljata siv do temnosiv biodolomikrosparit in siv bioointra-dolosparit z ostanki krinoidov Pentacrinus sp.. Visoka vsebnost organske komponente v bitumi-noznem dolomitiziranem apnencu bi lahko bila posledica toarcijskega anoksičnega dogodka. Srednjejurske kamnine zastopajo monotoni ooidni in ooidno-onkoidni apnenci ter mikritni apnenci, ki so se odložili v plitvem, visokoener-gijskem podplimskem okolju. Ooidne apnence sestavljajo siv do temnosiv biointraoosparit in siv intraoobiomikrosparit z ostanki foraminifer Spiraloconulus sp. (Tab. 2, sl. 7), Endothyra sp. (Tab. 2, sl. 8), Dictyoconus sp. (Tab. 2, sl. 9), Lucasella sp., Agerina sp. (Tab. 2, sl. 10) ter algo Thaumatoporella sp. (Tab. 2, sl. 5). Med ooidni-mi apnenci je vložen svetlosivi do sivi biolitit s kolonijo koral Stylophyllopsis veneta (Airaghi, 1907) (Tab. 2, sl. 6). Pojavljanje biolitita je možno pojasniti na tri načine: 1. biolitit predstavlja del toarcijske bioherme, ki je bila v srednji juri fragmentirana in transportirana z gravitacijskim tokom med srednjejurske sedimente, 2. biolitit je del toarcijske bioherme, ki se dviga v mlajše srednjejurske plasti, 3. biolitit je srednjejurske starosti, kar pomeni, da je stratigrafski razpon korale Stylophyllopsis veneta večji. Med ooidni-mi apnenci se pojavlja ooidno-onkoidni apnenec, ki ga predstavlja siv oobioonkointrasparit s fora-miniferami Endothyra sp. (Tab. 2, sl. 12, 13), Lucasella sp. (Tab. 2, sl. 13), Dictyoconus sp. (Tab. 2, sl. 14), Spiraloconulus sp., Duotaxis sp. (Tab. 2, sl. 15) in krinoidi Pentacrinus sp. (Tab. 2, sl. 15). Ponekod so prisotni izraziti stilolitski šivi, ob katerih je kamnina močno raztopljena (Tab. 2, sl. 11). Najmlajši člen je svetlosiv do siv mikritni apnenec. References Airaghi, C. 1907: Coralli dei calcari grigi del Veneto. Tipografia degli operai, (Milano): 4-17. Beauvais, L. 1986: Monographie des madre-poraires du jurassique inferieur du Maroc. [A monography on the lower jurassic madrepo-raria from Morocco]. Palaeontographica Abt. A, (Stuttgart):1-194. Buser, S. 1965a: Geološka zgradba južnega dela Ljubljanskega barja in njegovega obrobja. Geologija (Ljubljana) 8: 34-57. Buser, S. 1965b: Stratigrafski razvoj jurskih skladov na južnem Primorskem, Notranjskem in zahodni Dolenjski. Doktorska disertacija, Univerza v Ljubljani, FNT, (Ljubljana): 1-101, incl. 20 pls. Buser, S. 1966: Starost plasti z algo Sphaeroc-odium bornemanni Rothpletz v slovenskih zunanjih Dinaridih. [The Age of the Strata with the Alga Sphaerocodium bornemanni Rothpletz in the Slovene External Dinarids]. Geologija (Ljubljana) 9: 379-383. Buser, S. 1989: Development of the Dinaric and Julian Carbonate Platforms and of the intermediate Slovenian Basin (NW Yugoslavia). -Mem. Soc. Geol. It. 40, (1987), 313-320, Roma. Buser, S. & Debeljak, I. 1996: Lower Jurassic beds with bivalves in south Slovenia. [Spodnjejurske plasti s školjkami v južni Sloveniji]. Geologija (Ljubljana) 37/38: (1994/95), 23-62. Buser, S., Grad, K. & Plenicar, M. 1967: Osnovna geološka karta SFRJ 1:100.000, list Postojna. Zvezni geološki zavod, Beograd. Debeljak, I. & Buser, S. 1997: Lithiotid Bivalves in Slovenia and Their Mode of Life. [Litiotidne školjke v Sloveniji in njihov način življenja]. Geologija (Ljubljana) 40: 11-64. Dozet, S. & Šribar, L. 1997: Biostratigraphy of Shallow Marine Jurassic Beds in Southeastern Slovenia. [Biostratigrafija plitvovodnih jurskih plasti južnovzhodne Slovenije]. Geologija (Ljubljana) 40: 187-221. Duncan, P. M. 1867: A Monograph of the British Fossil Corals. Second Series, Part IV. Corals from the Zones of Ammonites planorbis, angulatus, bucklandi, obtusus and raricostatus of the Lower Lias; from the Zones of Jamesoni and Henleyi of the Middle Lias; and from the Avicula-contorta Zone and the White Lias. Palaeontological Soc., (London): 1-73. Dunham, R. J. 1962: Classification of carbonate rocks according to depositional texture. In: W. E. Ham (ed.): Classification of carbonate rocks. AAPG Memoir (Tulsa) 1: 108-121. Embry, A. F. & Klovan, J. E. 1972: Absolute water depth limits of Late Devonian paleoecologic zones. Geol. Rundschau (Stuttgart) 61: 672-686, incl. 10 figs. Fischer, A. G. 1964: The Lofer cyclothems of the Alpine Triassic. In: D. F. Meeriam (ed.), Symposium on cyclic sedimentation. Kansas Geol. Soc. Bull. (Boulder) 169/1: 107-150. Folk, R. L. 1959: Practical petrographic classification of limestones. Bull. AAPG (Tulsa) 43/1: 1-38. Folk, R. L. 1962: Spectral subdivision of limestone types. In: W. E. Ham (ed.), Classification of Carbonate Rocks. AAPG Memoir (Tulsa) 1: 62-84. Germovšek, C. 1955: Poročilo o kartiranju južnovzhodnega obrobja Ljubljanskega barja. Geologija (Ljubljana) 3: 235-239. Hallam, A. 1986: The Pliensbachian and Ti-thonian extinction events. Nature (London) 319: 765-768. Hallam, A. 1997: Estimates of the amount and rate of sea-level change across the Rhaetian-Het-tangian and Pliensbachian-Toarcian boundaries (latest Triassic to early Jurassic). Jour. Geol. Soc. (London) 154: 733-779. Jenkyns, H. C. 1988: The early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence. Amer. Jour. Sci. 288: 101-151. Kramer, E. 1905: Das Laibacher Moor. Klein-mayr & Fed. Bamberg., (Ljubljana): 1-205. Krystyn, L., Böhm, F., Kürschner, W. & Dele-cat, S. 2005: The Triassic-Jurassic boundary in the Northern Calcareous Alps. Program, Abstracts and Field guide. 5th Field Workshop of IGCP 458 Project, 5-10 September 2005 (Tata and Hallein): 1-14. Lipold, M. V. 1858: Bericht über die geologische Aufnahme in Unter-Krain im Jahre 1857. Jahrb. d. Geol. R. A. (Wien): Bd 9. McRoberts, C. A., Furrer, H. & Jones, D. S. 1997: Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from Western Austria based on palaeoecological and geochemi-cal data. Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier (Amsterdam) 136: 79-95. Miler, M. 2007: Geologija Krima in okolice. Diplomsko delo, Univerza v Ljubljani, NTF, (Ljubljana): 1-64, incl. 12 pls. Miler, M., Pavšič, J. & Dolenec, M. 2007: Določitev meje T/J z analizo stabilnih izotopov S13C in S18O (Krim, Slovenija). [Determination of T/J boundary by ö13C and ö18O stable isotope analysis (Krim Mountain, Slovenia)]. RMZ - Materials and geoenvironment (Ljubljana) 54/2: 189-202. Ogorelec, B. & Rothe, P. 1992: Mikrofazies, Diagenese und Geochemie des Dachsteinkalkes und Hauptdolomits in Süd- West- Slowenien. Geologija (Ljubljana) 35: 81-181. Orehek, S. & Ogorelec, B. 1981: Korelacija mikrofacijalnih i geohemijskih osobina jurskih i krednih stena južne karbonatne platforme Slovenije. [Correlation of microfacial and geochemi-cal characteristics of Jurassic and Cretaceous rocks of the southern carbonate platform in Slovenia]. Glas. Republ. Zavod. Zašt. Prir. - Prir. Muzeja (Titograd) 14: 161-181. Placer, L. 1998: Contribution to the macro-tectonic subdivision of the border region between Southern Alps and External Dinarides. [Prispevek k makrotektonski rajonizaciji mejnega ozemlja med Južnimi Alpami in Zunanjimi Dinaridi]. Geologija (Ljubljana) 41: 223255. Plenicar, M. 1970: Osnovna geološka karta SFRJ 1:100.000. Tolmač lista Postojna. Zvezni geološki zavod, (Beograd): 1-62. Rakovec, I. 1955: Geološka zgodovina ljubljanskih tal. Zgodovina Ljubljane (Ljubljana) 1: 11-207. Ramovš, A. 1961: Geološki izleti po ljubljanski okolici. Mladi geolog (Ljubljana) 3: 1-231. Stäche, G. 1889: Übersicht der geologischen Verhältnisse der Küstenländer von ÖsterreichUngarn. Abh. Geol. R. A. (Wien) 13: 1-170. Turnšek, D., Buser, S. & Debeljak, I. 2003: Li-assic coral patch reef above the lithiotid limestone on Trnovski gozd plateau, west Slovenia. [Liasni koralni kopasti greben na litiotidnem apnencu v Trnovskem gozdu, zahodna Slovenija]. Razprave IV. razreda SAZU (Ljubljana) 44/1: 285-331, incl. 13 tabs. Turnšek, D. & Košir, A. 2000: Early Jurassic corals from Krim Mountain, Slovenia. [Spodnjejurske korale s Krima]. - Razprave IV. Razreda SAZU (Ljubljana) 41/1: 81-113, incl. 9 tabs. Waagen, L. 1914: Karsthydrographische Mitteilungen aus Unterkrain. Verh. Geol. R. A., (Wien): 1-102.