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Abstract

Let n denote a positive integer. A graph Γ of diameter at least n is said to be n-distance-
balanced whenever for any pair of vertices u, v of Γ at distance n, the number of vertices
closer to u than to v is equal to the number of vertices closer to v than to u. In this article
we consider n = 2 (e.g. we consider 2-distance-balanced graphs). We show that there
exist 2-distance-balanced graphs that are not 1-distance-balanced (e.g. distance-balanced).
We characterize all connected 2-distance-balanced graphs that are not 2-connected. We
also characterize 2-distance-balanced graphs that can be obtained as cartesian product or
lexicographic product of two graphs.
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1 Introductory remarks
A graph Γ is distance-balanced if for each pair u, v of adjacent vertices of Γ the number
of vertices closer to u than to v is equal to the number of vertices closer to v than to
u. Although these graphs are interesting from the purely graph-theoretical point of view,
they also have applications in other areas of research, such as mathematical chemistry and
communication networks. It is for that reason that they have been studied from various
different points of view in the literature.

Distance-balanced graphs were first studied by Handa [9] in 1999. The name distance-
balanced, however, was introduced nine years later by Jerebic, Klavžar and Rall [12]. The
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family of distance-balanced graphs is very rich (for instance, every distance-regular graph
as well as every vertex-transitive graph has this property [13]). In the literature these graphs
were studied from various purely graph-theoretic aspects such as symmetry [13], connec-
tivity [9, 16] or complexity aspects of algorithms related to such graphs [6], to name just
a few. However, it turns out that these graphs have applications in other areas, such as
mathematical chemistry (see for instance [3, 11, 12]) and communication networks (see for
instance [3]).

Another interesting fact is that these graphs can be characterized by properties that do
not seem to have much in common with the original definition from [12]. For example,
the distance-balanced graphs coincide with self-median graphs, that is graphs for which the
sum of the distances from a given vertex to all other vertices is independent of the chosen
vertex (see [4]). In [1], distance-balanced graphs are called transmission regular. Finally,
even order distance-balanced graphs possess yet another nice property, making them what
are called equal opportunity graphs (see [3] for the definition).

In distance-balanced graphs one only considers pairs of adjacent vertices. However,
it is very natural to extend the definition to the pairs of nonadjacent vertices. This gen-
eralized concept of n-distance-balanced graphs (see Section 2 for the definition) was first
introduced by Boštjan Frelih in 2014 [8] (we point out that certain other generalizations
of this concept, where one still focuses just on pairs of adjacent vertices, have also been
considered in the recent years [10, 14, 15]). The n-distance-balanced graphs and their prop-
erties were extensively studied in [17]. They are also the main topic in the paper [7], but
in this paper some of the stated results do not hold. We comment on one of these problems
later (see Remark 5.1).

In this article we consider 2-distance-balanced graphs. We now summarize our re-
sults. After some preliminaries in Section 2, we show in Section 3 that there exist 2-
distance-balanced graphs that are not 1-distance-balanced (e.g. distance-balanced). It was
shown in [9] that every distance-balanced graph is 2-connected. It turns out that not all
2-distance-balanced graphs are 2-connected. However, we characterize all connected 2-
distance-balanced graphs that are not 2-connected.

In [12] distance-balanced cartesian products and distance-balanced lexicographic pro-
ducts of two graphs were characterized. We characterize 2-distance-balanced cartesian
products and 2-distance-balanced lexicographic products of two graphs in Section 4 and 5,
respectively.

2 Preliminaries
In this section we review some basic definitions that we will need later. Throughout this
paper, all graphs are assumed to be finite, undirected, without loops and multiple edges.
Given a graph Γ let V (Γ) and E(Γ) denote its vertex set and edge set, respectively.

For v ∈ V (Γ) we denote the set of vertices adjacent to v by NΓ(v). If the number
|NΓ(v)| is independent of the choice of v ∈ V (Γ), then we call this number the valency of
Γ and we denote it by kΓ (or simply by k if the graph Γ is clear from the context). In this
case we say that Γ is regular with valency k or k-regular.

For u, v ∈ V (Γ) we denote the distance between u and v by ∂Γ(u, v) (or simply by
∂(u, v) if the graph Γ is clear from the context). The diameter max{∂Γ(u, v) | u, v ∈
V (Γ)} of Γ will be denoted by DΓ (or simply by D if the graph Γ is clear from the context).
For any pair of vertices u, v ∈ V (Γ) we let WΓ

uv be the set of vertices of Γ that are closer
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to u than to v, that is

WΓ
uv = {w ∈ V (Γ) | ∂Γ(u,w) < ∂Γ(v, w)}.

Let n denote a positive integer. A graph Γ of diameter at least n is said to be n-distance-
balanced, if |WΓ

uv| = |WΓ
vu| for any u, v ∈ V (Γ) at distance n. The distance-balanced

graphs are n-distance-balanced graphs for n = 1.
For W ⊆ V (Γ) the subgraph of Γ induced by W is denoted by 〈W 〉 (we abbreviate

Γ −W = 〈V (Γ) \W 〉). A vertex cut of a connected graph Γ is a set W ⊆ V (Γ) such
that Γ −W is disconnected. A vertex cut of size k is called a k-cut. A graph is said to be
k-connected if it has at least k + 1 vertices and the size of the smallest vertex cut is at least
k. If a vertex cut consists of a single vertex v, then v is called the cut vertex.

We complete this section by defining the cartesian product and the lexicographic prod-
uct of graphs G and H . In both cases, the vertex set of the product is V (G)× V (H). Pick
(g1, h1), (g2, h2) ∈ V (G)× V (H).

In the cartesian product of G and H , denoted by G�H , (g1, h1) and (g2, h2) are
adjacent if and only if g1 = g2 and h1, h2 are adjacent in H , or h1 = h2 and g1, g2 are
adjacent in G. Note that the cartesian product is commutative.

In the lexicographic product of G and H , denoted by G[H], (g1, h1) and (g2, h2) are
adjacent if and only if g1 = g2 and h1, h2 are adjacent in H , or g1, g2 are adjacent in G.

3 On the connectivity of 2-distance-balanced graphs
In this section we characterize connected 2-distance-balanced graphs that are not 2-connect-
ed (Corollary 3.4). As a consequence, using the well known fact that an arbitrary connected
distance-balanced graph is at least 2-connected (see [9]), we construct an infinite family of
2-distance-balanced graphs that are not distance-balanced.

Let G be an arbitrary (not necessary connected) graph, and let c be a vertex that does
not belong to the set of vertices of G. We construct a graph, denoted by Γ(G, c), with the
set of vertices

V (Γ(G, c)) = V (G) ∪ {c}

and the set of edges

E(Γ(G, c)) = E(G) ∪ {cv | v ∈ V (G)}.

This graph is obviously connected. Next theorem follows directly from the construction
of Γ(G, c).

Theorem 3.1. G is not connected if and only if Γ(G, c) is not 2-connected.

We show that regularity of G is a sufficient condition for Γ(G, c) to be 2-distance-
balanced.

Theorem 3.2. If G is a regular graph that is not a complete graph, then Γ = Γ(G, c) is
2-distance-balanced.

Proof. Assume that G is a k-regular graph that is not a complete graph. Let G1, G2, . . . , Gn

be its connected components for some positive integer n. If G is connected, then n = 1,
otherwise G has at least two connected components. Since G is not a complete graph, it
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is clear that the diameter of Γ equals 2, which means that two arbitrary vertices of Γ are
either adjacent or they are at distance 2.

There are two different types of vertices at distance 2 in Γ. The first type is when both
vertices at distance 2 belong to the same connected component of G. The second type is
when vertices at distance 2 belong to different connected components of G.

Let Gi be an arbitrary connected component of G. Let v1, v2 ∈ V (Gi) be arbitrary
vertices at distance 2 in Γ. We count vertices that are closer to v1 than to v2 in Γ and
vertices that are closer to v2 than to v1 in Γ. We get

WΓ
v1v2 = {v1} ∪ (NGi

(v1) \ (NGi
(v1) ∩NGi

(v2))).

It follows that ∣∣WΓ
v1v2

∣∣ = 1 + |NGi
(v1)| − |NGi

(v1) ∩NGi
(v2)|.

Changing the roles of vertices v1 and v2, we get∣∣WΓ
v2v1

∣∣ = 1 + |NGi
(v2)| − |NGi

(v2) ∩NGi
(v1)|.

Since G is regular, the number of vertices that are closer to v1 than to v2 in Γ equals the
number of vertices that are closer to v2 than to v1 in Γ.

Let now Gi and Gj be arbitrary different connected components of a disconnected
graph G. Pick arbitrary v1 ∈ V (Gi) and v2 ∈ V (Gj). Obviously these two vertices are at
distance 2 in Γ. Observe that

WΓ
v1v2 = {v1} ∪NGi(v1) and WΓ

v2v1 = {v2} ∪NGj (v2).

Since every connected component of a k-regular graph is also a k-regular (induced) sub-
graph, it follows that ∣∣WΓ

v1v2

∣∣ = 1 + k and
∣∣WΓ

v2v1

∣∣ = 1 + k,

where k is the valency of G. So the number of vertices that are closer to v1 than to v2 in Γ
equals the number of vertices that are closer to v2 than to v1 in Γ. Since this is true for an
arbitrary pair of vertices at distance 2 in Γ, this graph is 2-distance-balanced.

Next we prove that every connected 2-distance-balanced graph, that is not 2-connected,
is isomorphic to Γ(G, c) for some regular graph G that is not connected.

Theorem 3.3. Let Γ be a connected 2-distance-balanced graph that is not 2-connected.
Then Γ is isomorphic to Γ(G, c) for some disconnected regular graph G.

Proof. Since Γ is not 2-connected, there exists a cut vertex c ∈ V (Γ). Let G1, G2, . . . , Gn

be connected components of G = Γ− {c}, n ≥ 2. We want to prove that G is regular and
that the cut vertex c is adjacent to every other vertex in Γ. To do this we will first prove
some partial results.

First we claim that the cut vertex c is adjacent to every vertex in a connected component
G` of G for at least one integer `, 1 ≤ ` ≤ n. Suppose that this is not true. Let Gi and Gj be
two different connected components of G. Then there exist v2 ∈ V (Gi) and u2 ∈ V (Gj),
both at distance 2 from c in Γ. This means that there exists v1 ∈ V (Gi) that is adjacent to
c and v2 in Γ, and there exists u1 ∈ V (Gj) that is adjacent to c and u2 in Γ. If we compare
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the set of vertices that are closer to c than to v2 in Γ and the set of vertices that are closer
to v2 than to c in Γ, we get

WΓ
cv2
⊇ {c} ∪ V (Gj) and WΓ

v2c ⊆ V (Gi) \ {v1}.

It follows that

1 + |V (Gj)| ≤
∣∣WΓ

cv2

∣∣ and
∣∣WΓ

v2c

∣∣ ≤ |V (Gi)| − 1.

Since Γ is 2-distance-balanced, we get

|V (Gj)| ≤ |V (Gi)| − 2. (3.1)

Similarly as above (changing vertex v2 with u2) we get

|V (Gi)|+ 2 ≤ |V (Gj)|. (3.2)

However, inequalities (3.1) and (3.2) imply

|V (Gi)|+ 2 ≤ |V (Gj)| ≤ |V (Gi)| − 2,

a contradiction. It follows that the cut vertex c ∈ V (Γ) is adjacent to every vertex in V (G`)
for at least one integer `, 1 ≤ ` ≤ n. Without loss of generality we may assume that ` = 1.

Next we claim that the induced subgraph G1 of Γ is regular. Pick some u ∈ V (G) \
V (G1) that is adjacent to the cut vertex c in Γ. Since c is adjacent to every vertex in V (G1),
the distance between u and an arbitrary v ∈ V (G1) equals 2 in Γ. Pick v ∈ V (G1). Notice
that

WΓ
vu = {v} ∪ (NΓ(v) \ {c}).

It follows that ∣∣WΓ
vu

∣∣ = 1 + |NΓ(v)| − 1 = |NG1
(v)|+ 1.

Pick w ∈ V (G1). Since Γ is 2-distance-balanced and c is adjacent to every vertex of
V (G1), we get the following sequence of equalities

|NG1
(v)|+ 1 = |NΓ(v)| =

∣∣WΓ
vu

∣∣ =
∣∣WΓ

uv

∣∣ =
∣∣WΓ

uw

∣∣
=
∣∣WΓ

wu

∣∣ = |NΓ(w)| = |NG1
(w)|+ 1.

So
|NG1

(v)| = |NG1
(w)|

for arbitrary v, w ∈ V (G1). From now on we may assume that the induced subgraph G1

of Γ is k-regular. This also means that every vertex in V (G1) has valency k + 1 in Γ.
Our next step is to show that the cut vertex c ∈ V (Γ) is adjacent to every vertex

in V (G) \ V (G1). Suppose that this is not true. Then there exists some vertex u2 in a
connected component G` of G, 2 ≤ ` ≤ n, that is at distance 2 from c in Γ. Without
loss of generality we can take ` = 2. Consequently there exists some u1 ∈ V (G2) that is
adjacent to both c and u2 in Γ. Pick an arbitrary v ∈ V (G1). We have already proved that
the valency of an arbitrary vertex in V (G1) is k + 1 in Γ. Now we count vertices that are
closer to v than to u1 in Γ. Since

WΓ
vu1

= {v} ∪ (NΓ(v) \ {c}),
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we get ∣∣WΓ
vu1

∣∣ = 1 + k + 1− 1 = k + 1.

In addition, for vertices that are closer to c than to u2 in Γ, we have

WΓ
cu2
⊇ V (G1) ∪ {c}.

It follows that ∣∣WΓ
cu2

∣∣ ≥ |V (G1)|+ 1 ≥ k + 2. (3.3)

Consider the distance partition of Γ according to adjacent vertices c and u1 that is shown
in Figure 1. The symbol Di

j denotes the set of vertices that are at distance i from u1 and at
distance j from c in Γ. Define a set

Figure 1: The distance partition of Γ according to adjacent vertices c and u1.

U =

D⋃
i=1

=
(
Di−1

i ∪Di
i

)
,

where D denotes the diameter of Γ. First we show that WΓ
u2c ⊆ U . Recall that for u, v ∈

V (Γ), ∂(u, v) denotes the distance between vertices u and v. Pick an arbitrary w ∈ WΓ
u2c.

Since u1, u2 are, by the assumption, adjacent vertices in Γ, the triangle inequality tells us
that

∂(u1, w) ∈ {∂(u2, w)− 1, ∂(u2, w), ∂(u2, w) + 1}.
If we consider all three cases, we get

∂(u1, w) = ∂(u2, w)− 1 < ∂(c, w),

∂(u1, w) = ∂(u2, w) < ∂(c, w),

∂(u1, w) = ∂(u2, w) + 1 ≤ ∂(c, w).

Each considered case gives us that w ∈ U and so WΓ
u2c ⊆ U . Note also that U ⊆ V (G2).

Now we show that U ⊆ WΓ
u1v (recall that v is an abitrary vertex in V (G1)). Let w be an

arbitrary vertex in U , which means that w is also in V (G2). We get that

∂(u1, w) ≤ ∂(c, w) < ∂(v, w),

since vertices v and c are adjacent in Γ, and v is not in V (G2). It follows that w ∈ WΓ
u1v ,

and so U ⊆WΓ
u1v . From relations WΓ

u2c ⊆ U ⊆WΓ
u1v , we get that WΓ

u2c ⊆WΓ
u1v and so∣∣WΓ

u2c

∣∣ ≤ ∣∣WΓ
u1v

∣∣ =
∣∣WΓ

vu1

∣∣ = k + 1. (3.4)
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By taking into account inequalities (3.3) and (3.4), and since Γ is 2-distance-balanced, we
get

k + 2 ≤ |WΓ
cu2
| = |WΓ

u2c| ≤ k + 1,

which is a contradiction. This shows that the cut vertex c ∈ V (Γ) is adjacent to all vertices
in V (G).

It remains to prove that the induced subgraph G` (2 ≤ ` ≤ n) of Γ is k-regular. Without
loss of generality assume ` = 2. Since we already know that the cut vertex c is adjacent to
every vertex in Γ, an arbitrary vertex u in V (G2) is at distance 2 from an arbitrary vertex v
in V (G1) in Γ. Observe that

WΓ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪NG2

(u)

and
WΓ

vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪NG1
(v).

This means that ∣∣WΓ
uv

∣∣ = 1 + |NG2(u)| and
∣∣WΓ

vu

∣∣ = 1 + k.

Since Γ is 2-distance balanced, it follows that
∣∣WΓ

uv

∣∣ =
∣∣WΓ

vu

∣∣ and so |NG2
(u)| = k for

an arbitrary vertex u ∈ V (G2). Therefore, G2 is regular and has the same valency k as the
induced subgraph G1. It follows that G is regular and this completes the proof.

The characterization of all connected 2-distance-balanced graphs that are not 2-co-
nnected follows immediately from Theorems 3.1, 3.2 and 3.3.

Corollary 3.4. Let Γ be a connected graph. Then Γ is 2-distance-balanced and not 2-
connected if and only if it is isomorphic to Γ(G, c) for some disconnected regular graph
G.

4 2-distance-balanced cartesian product
Throughout this section let G and H be graphs and let Γ = G�H be the cartesian product
of G and H . We characterize connected 2-distance-balanced cartesian products of graphs
G and H (see Theorem 4.4). It follows from the definition that the cartesian product Γ
is connected if and only if G and H are both connected. In order to avoid trivialities we
assume that |V (G)| ≥ 2 and |V (H)| ≥ 2.

Recall that
∂Γ((g1, h1), (g2, h2)) = ∂G(g1, g2) + ∂H(h1, h2) (4.1)

for arbitrary (g1, h1), (g2, h2) ∈ V (Γ). Since we are dealing with 2-distance-balanced
cartesian products of graphs, we are interested in vertices at distance 2. It follows from
equality (4.1), that there exist three different types of vertices at distance 2 in Γ. We now
state these three types and we will refer to them later. Let (g1, h1), (g2, h2) ∈ V (Γ) be
vertices at distance 2 in Γ. We say that these two vertices are of type

• G2, if h1 = h2 and ∂G(g1, g2) = 2,

• H2, if g1 = g2 and ∂H(h1, h2) = 2,

• GH2, if ∂G(g1, g2) = ∂H(h1, h2) = 1.
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Note that vertices of type G2 (H2, respectively) do not exist if G (H , respectively) is a
complete graph. Denote the set of vertices that are at equal distance from g1 and g2 in G
by EG

g1g2 , and the set of vertices that are at equal distance from h1 and h2 in H by EH
h1h2

.
We first prove three lemmas that we will need later in the proof of the main theorem of

this section.

Lemma 4.1. Let (g1, h) and (g2, h) be arbitrary vertices of type G2 in Γ = G�H . Then∣∣∣WΓ
(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ and
∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ = |H|
∣∣WG

g2g1

∣∣ .
Proof. Let (a, x) be an arbitrary vertex of Γ. It follows from the equality (4.1) that

∂Γ((g1, h), (a, x)) = ∂G(g1, a) + ∂H(h, x)

and
∂Γ((g2, h), (a, x)) = ∂G(g2, a) + ∂H(h, x).

So (a, x) is closer to (g1, h) than to (g2, h) in Γ if and only if a is closer to g1 than to g2 in
G. Since (a, x) ∈ V (Γ) was an arbitrary vertex, this means that∣∣∣WΓ

(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ .
Similarly we get that ∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ = |H|
∣∣WG

g2g1

∣∣ .
Lemma 4.2. Let (g, h1) and (g, h2) be arbitrary vertices of type H2 in Γ = G�H . Then∣∣∣WΓ

(g,h1)(g,h2)

∣∣∣ = |G|
∣∣WH

h1h2

∣∣ and
∣∣∣WΓ

(g,h2)(g,h1)

∣∣∣ = |G|
∣∣WH

h2h1

∣∣ .
Proof. Similar to the proof of Lemma 4.1.

Lemma 4.3. Let (g1, h1) and (g2, h2) be arbitrary vertices of type GH2 in Γ = G�H .
Then ∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣EH

h1h2

∣∣ ∣∣WG
g1g2

∣∣+
∣∣WH

h1h2

∣∣ ∣∣WG
g1g2 ∪ EG

g1g2

∣∣
and ∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣ =
∣∣EH

h1h2

∣∣ ∣∣WG
g2g1

∣∣+
∣∣WH

h2h1

∣∣ ∣∣WG
g2g1 ∪ EG

g1g2

∣∣ .
Proof. Let (a, x) be an arbitrary vertex of Γ. It follows from the equality (4.1) that

∂Γ((g1, h1), (a, x)) = ∂G(g1, a) + ∂H(h1, x) (4.2)

and
∂Γ((g2, h2), (a, x)) = ∂G(g2, a) + ∂H(h2, x). (4.3)

There are three different cases according to the distance of h1 and h2 from x in H .
In the first case let ∂H(h1, x) = ∂H(h2, x). From equalities (4.2) and (4.3) we get that

∂Γ((g1, h1), (a, x)) < ∂Γ((g2, h2), (a, x))⇐⇒ ∂G(g1, a) < ∂G(g2, a).
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This is true for exactly those (a, x) ∈ V (Γ), for which a ∈WG
g1g2 . Similarly we get that

∂Γ((g2, h2), (a, x)) < ∂Γ((g1, h1), (a, x))⇐⇒ ∂G(g2, a) < ∂G(g1, a).

And this is true for exactly those (a, x) ∈ V (Γ), for which a ∈WG
g2g1 .

In the second case let ∂H(h1, x) < ∂H(h2, x). Since h1 and h2 are adjacent in H , it is
obvious that ∂H(h2, x) = ∂H(h1, x) + 1. From equalities (4.2) and (4.3) we get that

∂Γ((g1, h1), (a, x)) < ∂Γ((g2, h2), (a, x))⇐⇒ ∂G(g1, a) < ∂G(g2, a) + 1.

This is true for exactly those (a, x) ∈ V (Γ), for which a ∈ WG
g1g2 ∪ EG

g1g2 . Similarly we
get that

∂Γ((g2, h2), (a, x)) < ∂Γ((g1, h1), (a, x))⇐⇒ ∂G(g2, a) + 1 < ∂G(g1, a).

But such vertices do not exist, since ∂G(g1, a) ≤ ∂G(g2, a) + 1 by the triangle inequality.
In the third case let ∂H(h2, x) < ∂H(h1, x). Similarly as above we get that (a, x) is

closer to (g2, h2) that to (g1, h1) if and only if a ∈WG
g2g1 ∪ EG

g1g2 , and that (a, x) is never
closer to (g1, h1) that to (g2, h2).

It follows from the above comments that

WΓ
(g1,h1)(g2,h2) =

(
EH

h1h2
×WG

g1g2

)⋃(
WH

h1h2
×
(
WG

g1g2 ∪ EG
g1g2

))
and

WΓ
(g2,h2)(g1,h1) =

(
EH

h1h2
×WG

g2g1

)⋃(
WH

h2h1
×
(
WG

g2g1 ∪ EG
g1g2

))
.

The result follows.

Next theorem gives the characterization of connected 2-distance-balanced cartesian
products of graphs G and H .

Theorem 4.4. The cartesian product Γ = G�H is a connected 2-distance-balanced graph
if and only if each of G, H is either a connected 2-distance-balanced and 1-distance-
balanced graph, or a complete graph.

Proof. We first prove that if each of G, H is either a connected 2-distance-balanced and
1-distance-balanced graph or a complete graph, then Γ is a connected 2-distance-balanced
graph.

Let us assume that G and H are connected 2-distance-balanced and 1-distance-balanced
graphs. The connectivity of Γ follows from the connectivity of G and H . In this case all
three types of vertices at distance 2 are present in Γ.

Let (g1, h) and (g2, h) be arbitrary vertices of type G2 in Γ. Since G is, by the assump-
tion, 2-distance-balanced and since vertices g1, g2 are at distance 2 in G, it follows from
Lemma 4.1 that∣∣∣WΓ

(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ = |H|
∣∣WG

g2g1

∣∣ =
∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ .
So for arbitrary vertices (g1, h), (g2, h) ∈ V (Γ) of type G2, the number of vertices that are
closer to (g1, h) than to (g2, h) in Γ equals the number of vertices that are closer to (g2, h)
than to (g1, h) in Γ.
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If (g, h1) and (g, h2) are arbitrary vertices of type H2 in Γ, then similarly as above
(using Lemma 4.2 instead of Lemma 4.1) we find that the number of vertices that are
closer to (g, h1) than to (g, h2) in Γ equals the number of vertices that are closer to (g, h2)
than to (g, h1) in Γ.

Let (g1, h1), (g2, h2) ∈ V (Γ) be arbitrary vertices of type GH2 in Γ. Since G and H
are both, by the assumption, 1-distance-balanced, and since g1, g2 are adjacent in G and
h1, h2 are adjacent in H , we have∣∣WG

g1g2

∣∣ =
∣∣WG

g2g1

∣∣ and
∣∣WH

h1h2

∣∣ =
∣∣WH

h2h1

∣∣ .
It follows from Lemma 4.3 that∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣
for arbitrary vertices of type GH2 in Γ. So we proved that if G and H are both connected
2-distance-balanced and 1-distance-balanced graphs, then the cartesian product Γ = G�H
is a connected 2-distance-balanced graph. Note that since G and H are 1-distance-balanced
graphs, it follows that the cartesian product Γ = G�H is also 1-distance-balanced (see [12,
Proposition 4.1]).

If one (or both) of G, H is a complete graph, then the proof that Γ = G�H is a
connected 2-distance balanced graph is similar to the proof above. The only diference is
that we do not have to consider vertices of type G2 (H2, respectively).

Assume now that Γ = G�H is a connected 2-distance-balanced graph. The connectiv-
ity of G and H follows from the connectivity of Γ. If G and H are complete graphs, then
we are done. Therefore we assume that at least one of G or H is not a complete graph.
First we show that in this case G and H are 2-distance-balanced graphs provided they are
not complete.

Assume that G is not a complete graph. For an arbitrary h ∈ V (H) and arbitrary
g1, g2 ∈ V (G) that are at distance 2 in G, consider (g1, h), (g2, h) ∈ V (Γ). Note that
∂Γ((g1, h), (g2, h)) = 2 by (4.1) and that∣∣∣WΓ

(g1,h)(g2,h)

∣∣∣ = |H|
∣∣WG

g1g2

∣∣ and
∣∣∣WΓ

(g2,h)(g1,h)

∣∣∣ = |H|
∣∣WG

g2g1

∣∣
by Lemma 4.1. Since Γ is 2-distance-balanced, it follows that

∣∣WG
g1g2

∣∣ =
∣∣WG

g2g1

∣∣, so also
G is a 2-distance-balanced graph. Due to commutativity of the cartesian product, if H is
not a complete graph, we can similarly show that H is a 2-distance-balanced graph.

Finally we show that G and H are also 1-distance-balanced graphs. Pick arbitrary
adjacent vertices g1, g2 of G and arbitrary adjacent vertices h1, h2 of H , and note that
(g1, h1), (g2, h2) ∈ V (Γ) are at distance 2. Since Γ is 2-distance-balanced, it follows that∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣ .
From Lemma 4.3 we get that∣∣EH

h1h2

∣∣ (∣∣WG
g1g2

∣∣− ∣∣WG
g2g1

∣∣) =
∣∣WH

h2h1

∣∣ ∣∣WG
g2g1 ∪ EG

g1g2

∣∣
−
∣∣WH

h1h2

∣∣ ∣∣WG
g1g2 ∪ EG

g1g2

∣∣ . (4.4)
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Assume that G is not a 1-distance-balanced graph. Then we could choose g1, g2 in such a
way that

∣∣WG
g1g2

∣∣ > ∣∣WG
g2g1

∣∣. As a consequence we also have that∣∣WG
g1g2 ∪ EG

g1g2

∣∣ > ∣∣WG
g2g1 ∪ EG

g1g2

∣∣ .
It follows from (4.4) that

∣∣WH
h2h1

∣∣ > ∣∣WH
h1h2

∣∣. Consider now vertices (g1, h2), (g2, h1),
which are also at distance 2 in Γ. Similar argument as above shows that

∣∣WH
h2h1

∣∣ <∣∣WH
h1h2

∣∣, which is a contradiction. So G is a 1-distance balanced graph. Since the cartesian
product is commutative, the proof that H is a 1-distance balanced graph is analogous to the
proof for G.

5 2-distance-balanced lexicographic product
Throughout this section let G and H be graphs and let Γ = G[H] be the lexicographic prod-
uct of G and H . It follows from the definition that the lexicographic product Γ is connected
if and only if G is connected. In order to avoid trivialities we assume that |V (G)| ≥ 2 and
|V (H)| ≥ 2. We characterize connected 2-distance-balanced lexicographic products of G
and H (see Theorem 5.4).

Remark 5.1. A more general result about the characterization of connected n-distance-
balanced lexicographic products of G and H as in Theorem 5.4 is stated in [7, Theo-
rem 3.4]. But the result is not correct for at least n = 2. As a counterexample, let both G
and H be paths on 3 vertices, which are connected graphs. Observe that G is 2-distance-
balanced, and that H is locally regular (in a sense that any non-adjacent vertices in H
have the same number of neighbours). By [7, Theorem 3.4], G[H] is 2-distance-balanced.
However, one can easily check that the G[H] is not 2-distance-balanced.

Notice that there exist two different types of vertices at distance 2 in Γ. We now state
these two types and we will refer to them in the proof of the Theorem 5.4. Let (g1, h1),
(g2, h2) ∈ V (Γ) be vertices at distance 2 in Γ. We say that this two vertices are of type

• G2, if ∂G(g1, g2) = 2,

• H2, if g1 = g2 and ∂H(h1, h2) ≥ 2.

It follows from the definition that there exist vertices of type G2 in Γ if and only if G is
connected non-complete graph. Similarly, there exist vertices of type H2 in Γ if and only
if H is non-complete graph.

The following two lemmas will be used in the proof of the main theorem of this section.

Lemma 5.2. Let (g1, h1) and (g2, h2) be arbitrary vertices of type G2 in Γ = G[H]. Then∣∣∣WΓ
(g1,h1)(g2,h2)

∣∣∣ = 1 + |NH(h1)|+
(∣∣WG

g1g2

∣∣− 1
)
|V (H)|

and ∣∣∣WΓ
(g2,h2)(g1,h1)

∣∣∣ = 1 + |NH(h2)|+
(∣∣WG

g2g1 | − 1
)∣∣V (H)|.

Proof. Let (g1, h1) and (g2, h2) be arbitrary vertices of type G2 in Γ. Clearly, (g1, h1) is
closer to itself than to (g2, h2). Now consider vertices of Γ of type (g1, h), where h 6=
h1. Note that ∂Γ((g1, h), (g2, h2)) = 2, and so (g1, h) ∈ WΓ

(g1,h1)(g2,h2) if and only
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if h ∈ NH(h1). Finally, consider vertices of Γ of type (g, h), where g 6= g1. Then
∂Γ((g1, h1), (g, h)) = ∂G(g1, g), and so (g, h) ∈WΓ

(g1,h1)(g2,h2) if and only if g ∈WG
g1g2 \

{g1}. It follows that

WΓ
(g1,h1)(g2,h2) = {(g1, h1)} ∪ ({g1} ×NH(h1)) ∪ ((WG

g1g2 \ {g1})× V (H)).

Similarly we get

WΓ
(g2,h2)(g1,h1) = {(g2, h2)} ∪ ({g2} ×NH(h2)) ∪ ((WG

g2g1 \ {g2})× V (H)).

The result follows.

Lemma 5.3. Let (g, h1) and (g, h2) be arbitrary vertices of type H2 in Γ = G[H]. Then∣∣∣WΓ
(g,h1)(g,h2)

∣∣∣ = 1 + |NH(h1)| − |NH(h1) ∩NH(h2)|

and ∣∣∣WΓ
(g,h2)(g,h1)

∣∣∣ = 1 + |NH(h2)| − |NH(h1) ∩NH(h2)|.

Proof. Let (g, h1) and (g, h2) be arbitrary vertices of type H2 in Γ, and let (g′, h′) be an
arbitrary vertex of Γ. Note that if g 6= g′ then ∂Γ((g, h1), (g′, h′)) = ∂Γ((g, h2), (g′, h′)).
Assume therefore that g′ = g. But it is clear that in this case (g, h′) ∈ WΓ

(g,h1)(g,h2) if and
only if ∂H(h1, h

′) ≤ 1 < ∂H(h2, h
′). It follows that

WΓ
(g,h1)(g,h2) = {(g, h1)} ∪ ({g} × (NH(h1) \ (NH(h1) ∩NH(h2)))).

Similarly we get

WΓ
(g,h2)(g,h1) = {(g, h2)} ∪ ({g} × (NH(h2) \ (NH(h1) ∩NH(h2)))).

The result follows.

Next theorem gives the characterization of connected 2-distance-balanced lexicographic
products of graphs G and H .

Theorem 5.4. The lexicographic product Γ = G[H] is a connected 2-distance-balanced
graph if and only if one of the following (i), (ii) holds:

(i) G is a connected 2-distance-balanced graph and H is a regular graph.

(ii) G is a complete graph, H is not a complete graph, and each connected component
of the complement of H induces a regular subgraph of the complement of H .

Proof. We first prove that if one of (i), (ii) holds, then Γ is a connected 2-distance-balanced
graph. The connectivity of Γ follows from the connectivity of G.

Assume that (i) holds. Take arbitrary (g1, h1), (g2, h2) ∈ V (Γ) of type G2. Since G
is a 2-distance-balanced graph and H is a regular graph, we have that

∣∣WG
g1g2

∣∣ =
∣∣WG

g2g1

∣∣
and |NH(h1)| = |NH(h2)|. It follows from Lemma 5.2 that∣∣∣WΓ

(g1,h1)(g2,h2)

∣∣∣ =
∣∣∣WΓ

(g2,h2)(g1,h1)

∣∣∣
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for arbitrary vertices of type G2 in Γ.

Take now arbitrary (g, h1), (g, h2) ∈ V (Γ) of type H2. Since, by the assumption, H
is a regular graph, we have that |NH(h1)| = |NH(h2)|. It follows from Lemma 5.3 that

∣∣∣WΓ
(g,h1)(g,h2)

∣∣∣ =
∣∣∣WΓ

(g,h2)(g,h1)

∣∣∣
for arbitrary vertices of type H2 in Γ. So, if (i) holds then Γ is a connected 2-distance-
balanced graph.

Assume that (ii) holds. Then G is a complete graph and H is not a complete graph,
so we only have vertices of type H2 in Γ. Let us denote the complement of H by H .
Let (g, h1), (g, h2) ∈ V (Γ) be arbitrary vertices of type H2. Note that this implies that
h1, h2 are not adjacent in H , and so h1, h2 are adjacent in H . As a consequence, h1, h2 are
contained in the same connected component of H . It follows that |NH(h1)| = |NH(h2)|,
and consequently also |NH(h1)| = |NH(h2)|. It follows from Lemma 5.3 that

∣∣∣WΓ
(g,h1)(g,h2)

∣∣∣ =
∣∣∣WΓ

(g,h2)(g,h1)

∣∣∣ .
So, if (ii) holds then Γ is a connected 2-distance-balanced graph.

Assume now that the lexicographic product Γ = G[H] is a connected 2-distance-
balanced graph. The connectivity of G follows from the connectivity of Γ. In what follows
we first treat the case where G is not a complete graph, and then the case when G is a
complete graph.

Suppose that G is not a complete graph. Take arbitrary g1, g2 ∈ V (G) at distance
2 in G. Then (g1, h), (g2, h) ∈ V (Γ) are of type G2 in Γ for an arbitrary h ∈ V (H).
Since Γ is, by the assumption, a 2-distance-balanced graph, it follows from Lemma 5.2
that

∣∣WG
g1g2

∣∣ =
∣∣WG

g2g1

∣∣ for arbitrary vertices at distance 2 in G. So, G is a connected
2-distance-balanced graph. For arbitrary h1, h2 ∈ V (H) and arbitrary g1, g2 ∈ V (G) at
distance 2 in G, consider (g1, h1), (g2, h2) ∈ V (Γ). These two vertices are of type G2 in
Γ. Since Γ is, by the assumption, a 2-distance-balanced graph and we already know that G
is also 2-distance-balanced graph, it follows from Lemma 5.2 that |NH(h1)| = |NH(h2)|
for arbitrary two vertices in H . So, H is a regular graph and (i) holds.

From now on let G be a complete graph. Since Γ is not a complete graph, it follows
that also H is not a complete graph. This means that all vertices at distance 2 in Γ are of
type H2. We want to show that in this case each connected component of the complement
of H induces a regular subgraph of the complement of H .

Let h1, h2 ∈ V (H) be arbitrary vertices at distance greater or equal than 2 in H (that
is, vertices h1, h2 are not adjacent in H). Observe that (g, h1), (g, h2) ∈ V (Γ) are of type
H2 for an arbitrary g ∈ V (G). From Lemma 5.3 we get that |NH(h1)| = |NH(h2)|, and
consequently also |NH(h1)| = |NH(h2)|. This shows that any adjacent vertices of H have
the same valency in H , and therefore each connected component of H induces a regular
subgraph of H .
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We finish our paper with a suggestion for further research. A fullerene is a cubic planar
graph having all faces 5- or 6-cycles. Examples include the dodecahedron and general-
ized Petersen graph GP(12, 2). Dodecahedron is distance-regular, and so it is n-distance-
balanced for every 1 ≤ n ≤ 5 (recall that the diameter of dodecahedron is 5). On the
other hand, the diameter of GP(12, 2) is also 5, but GP(12, 2) is n-distance-balanced only
for n = 5, see [17]. Therefore, it would be interesting to know, which fullerenes are n-
distance-balanced at least for some values of n (for example, for n ∈ {1, 2, D}, where D
is the diameter of a fullerene in question). For more on fullerenes see [2, 5, 18].
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