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In this paper, a novel 3D Bending Invariant Correlative Features (3D BI-LBP) is used for 3D face recog-
nition to overcome some of the unsolved problems encountered with 3D facial images. In this challenging 
topic, large expression and pose variations along with data noise are three major obstacles. We first ex-
ploit an automatic procedure regarding face area extraction, and then process it to minimize the effect of 
large pose variations and effectively improve the total 3D face recognition performance. To overcome the 
large expression variations, the key idea in the proposed algorithm is a representation of the facial surface, 
by what is called a Bending Invariant (BI), which is invariant to isometric deformations resulting from 
changes in expression and posture. In order to encode relationships in neighboring mesh nodes, 3D LBP 
is used for the obtained geometric invariant, which own more potential power to describe the structure 
of faces than individual points and effectiveness in characterizing local details of a signal. The signature 
images are then decomposed into their principle components based on Spectral Regression (SR) resulting 
in a huge time saving. Our experiments were based on the CASIA and FRGC 3D face databases which 
contain large expression and pose variations. Experimental results show our proposed method provides 
better effectiveness and efficiency than many commonly used existing methods for 3D face recognition 
and handles variations in facial expression quite well. 

Povzetek: Razvitaje nova metoda za prepoznavanje 3D obrazov. 

1 Introduction 
Information and Communication Technologies are gradu-
ally entering all aspects of our life. They are also opening 
a world where people unprecedentedly interact with elec-
tronic devices embedded in environments sensitive and re-
sponsive to the presence of users. These scenarios offer 
the opportunity to exploit the potential of faces as a non-
intrusive biometric identifier to not just regulate access to a 
controlled environment but also to adapt provided services 
to the preferences of a recognized user. 

Automatic human face recognition is an important re-
search area within the field of biometric identification. 
Compared with other biometric features, face recognition 
has the advantages of pro-active, non-invasiveness and 
user-friendliness and has gained great attention during the 
last decade [1]. While, currently, most efforts are devoted 
to face recognition using 2D images, they continue to en-
counter difficulties in handling large facial variations due to 
head pose, lighting conditions and facial expressions. 2D 
face recognition systems have a strict constrain on improv-
ing accuracy. So far it is still quite difficult to build a robust 
automatic human face recognition system. 

Many researchers are committed to utilizing of three-
dimensional information to overcome some of the diffi-
cult issues associated with face recognition. Range images 

which contain texture and shape information are very effec-
tive for recognition of a face image, when comparing one 
face with another face. There is evidence that range images 
have the potential to overcome problems inherent in inten-
sity and color images. Some advantages of range images 
are explicit representation of the 3D shape, invariance un-
der change of illumination, pose and reflectance properties 
of objects. 

In view of the shortcomings of the 2D approaches, a 
number of 3D and 3D+2D multi-modal approaches have 
recently been proposed. We extensively examined the prior 
literature on 3D face recognition, which can be catego-
rized into methods using point cloud representations, depth 
images, facial surface features or spherical representations 
[2]. A priori registration of the point clouds is commonly 
performed by ICP algorithms with 92.1% rank-one identifi-
cation on a subset of FRGC v2 [3]. Based on depth images, 
Faltemier et al. [4] introduced concentrate dimensional re-
duction based on the fusion of results from group regions 
that have been independently matched. Facial surface fea-
tures, such as curvature descriptors [5], have also been pro-
posed for 3D face recognition. 

Alternatively, spherical representations have been used 
recently for modeling illumination variations [6,7] or both 
illumination and pose variations in face images [2,8]. In 
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addition, Kakadiaris et al. [9] used an annotated face 
model to fit the changes of the face surface and then ob-
tained the deformation image by a fitting model. A mul-
tistage alignment algorithm and advanced wavelet analy-
sis resulted in robust performance. They reported a best 
performance of 97.0% verification as a 0.1% FAR. Face 
recognition combining 3D shape and 2D intensity/color in-
formation is a developing area of research. Mian et al. [10] 
handled the expression problem using a fusion scheme in 
which three kinds of methods, spherical face representa-
tion (SFR), scale-invariant feature transform (SIFT)-based 
matching and a modified ICP were combined to achieve 
the final result. Their results showed the potential of 
appearance-based methods for solving the expression prob-
lem in 3D face recognition. Because of the extremely high 
dimensionality of the Gabor features for depth and intensity 
images, Xu et al. [11] proposed a novel hierarchical selec-
tion scheme with embedded LDA and AdaBoost learning 
for dimensionality reduction. With this scheme an effec-
tive classifier can be built. However, some details in these 
approaches are ignored on how depth and intensity infor-
mation contributes to recognition with expression and pose 
variations. 

In this paper, we address the major challenges of 3D 
field-deployable face recognition systems. We propose a 
novel framework for expression-robust 3D face recogni-
tion. The flowchart is shown in Fig.1. Our method can 
be divided into feature extraction, dimension reduction and 
classification sections. For all sections, because expres-
sion variations and data noise are major obstacles to good 
system performance, we preprocess the raw 3D data and 
extract the face area which is least affected by expression 
changes. In the feature extraction section, the Bending In-
variant and its statistical codebook analysis of correlative 
features are used to describe the intrinsic geometric infor-
mation, denoted as 3D BI-LBP. This procedure very ef-
fectively eliminates the effect of the expression variations. 
With dimensional reduction based on Spectral Regression, 
more useful and significant features can be produced for 
a face than can be produced by current methods, resulting 
in a huge saving in computational cost. Finally, we achieve 
face recognition using Nearest Neighbor Classifiers. The 

Figure 1: The Framework of 3D Face Recognition 

rest of this paper is organized as follows. First, we de-
scribe the automatic face registration process that permits 
alignment the 3D point clouds before analysis in section 2. 

Section 3 describes the Bending Invariant Correlative Fea-
tures (3D BI-LBP) used in our framework. Section 4 intro-
duces Spectral Regression (SR) for reducing dimensions 
and classifier construction. Section 5 reports the experi-
mental results and gives some comparisons with existing 
algorithms. Finally, the paper is concluded in section 6. 

2 Automatic preprocessing of 3D 
face data 

In this paper, one face is described by one 3D scattered 
point cloud from one 3D laser scanner as illustrated in 
Fig.2. The preprocessing scheme is based on three main 
tasks, respectively the extraction of the facial region, the 
registration of the 3D face, and the acquisition of the nor-
malized depth and intensity images. They are fully auto-
mated; handling noisy and incomplete input data are im-
mune to rotation and translation and suitable for different 
resolutions. 

The main purpose of face extraction is to remove irrel-
evant information from the 3D point clouds, such as data 
corresponding to shoulders or hair, and spikes obtained by 
a laser scanner. First in face extraction, we estimate a verti-
cal projection curve from the point cloud by computing the 
column sum of the valid point's matrix [2, 12]. Then, we 
define two lateral thresholds on the left and right inflexion 
points of the projection curve for removing data points on 
the subject's shoulders beyond these thresholds. We further 
remove the data points corresponding to the subject's chest 
by thresholding of the histogram of depth values. Finally, 
we remove outlier points that remain in regions discon-
nected from the main facial area and treat only the largest 
region as the facial region. 

After extracting the main facial region from a 3D scan, 
registration (pose correction) is performed. We present a 
multistage approach for automatic registration that offers 
robust and accurate alignment even in the presence of fa-
cial expression variations. First, we compute the orthogo-
nal eigenvectors, v1; v2, v3, of the covariance matrix of the 
point cloud, as the three main axis of the point cloud. We 
rotate the point cloud so that V1, V2, V3 are parallel to Y-, 
X- and Z- axis of the reference coordinate system, respec-
tively. The nose tip obtained by [13] rests on the origin of 
the reference coordinate system. This permits construction 
of an average face model (AFM), by computing at each 
grid point the value across all training faces. The AFM 
is used as a reference face model, and all face signals are 
further aligned by running ICP [14] to avoid the unwanted 
influences of the mouth and the jaw. Finally, there is a re-
finement step that employs a global optimization technique 
[15] to minimize the z-buffer distance. This effectively re-
samples the data independent of the data's triangulation and 
removes all irrelevant information that may have been left 
over from the previous preprocessing steps. 



EXPRESSION-ROBUST 3D FACE RECOGNITION USING... Informatica 35 (2011)231-238 233 

Figure 2: Main steps in facial region preprocessing. 

3 Feature extraction 

3.1 Bending invariant 
The core of our 3D face recognition framework is the repre-
sentation of a facial surface which is invariant to isometric 
deformations, by bending invariants (BI) [16, 17]. This pa-
per extends our previous work [18-20]. The class of trans-
formations that a facial surface can undergo is not arbitrary, 
and empirical observations show that facial expressions can 
be modeled as isometric (or length-preserving) transforma-
tions [21]. Therefore, we introduced an efficient feature for 
constructing a signature for isometric surfaces, referred to 
as a bending invariant. The Bending Invariant is a poly-
hedral approximation of the facial surface obtained by per-
forming an Isomap on a reduced set of points and interpo-
lating on the full set of points. 

Given a facial surface M(x, y, z) e R3, the bending invari-
ant IM(x, y, z) e R3 is the output of an Isomap algorithm. A 
geodesic isometric is formally a mapping y : M ^ M' such 
that 

dM(x,y,z) = dM'(v(x), v(y), w(z)), 
W(x, y, z) G M3 (1) 

One of the crucial practical requirements for the con-
struction of the invariant feature of a given surface, is an 
efficient algorithm for the computation of the geodesic dis-
tance on the surface, that is, dM(x, y, z). Computation of the 
geodesic distance can effectively reflect the facial shape in-
formation and overcome some of the unsolved problems 
encountered with 3D facial images, such as large expres-
sion and pose variations along with data noise. A numer-
ically consistent algorithm for the computation of the dis-
tance between a surface vertex and the rest of the n sur-

face vertices on a regular triangulated domain in O(n) op-
erations is referred to as fast marching on triangulated do-
mains (FMTD) [16]. After distance computation, we can 
obtain an approximation of the geodesic distance by sam-
pling the continuous surface on a finite set of points and 
making discrete the metric associated with the surface. 

The metric is invariant under isometric surface deforma-
tion, depending on an arbitrary ordering of the points. We 
would like to obtain a geometric invariant, which is both 
unique for isometric surfaces and allows using simple rigid 
surface matching to compare the invariants. 

Based on the discussion above, this is equivalent to find-
ing a mapping between two metric spaces, 9 : (M, dM) ^ 
(Rm, d); 9(pi) = xi which minimizes the embedding error, 

e = f (|dM — d|); d = ||x¡ — x i l l 2 (2) 

d is the distance to embed the surface into a low-
dimensional Euclidean space Rm based on Isomap [21]. 
The m-dimensional representation obtained is a set of 
points xi e Rm(i = 1,...,n) corresponding to the surface 
points pi. 

The embedding in Rm is performed by double-centering 
the matrix A:B = — 2 JAJ (here J = I — 1U , I is an n x n 
identity matrix, and U is a matrix consisting entirely of 
one's). The first m eigenvectors ei, corresponding to the 
m largest eigenvalues of B , are used as the embedding co-
ordinates 

xj = ej; i = 1,...n, j = 1,..., m (3) 

where xj denotes the j - th coordinate of the vector 
x¡. Eigenvectors are computed using a standard eigen-
decomposition method. Since only m eigenvectors are re-
quired (usually, m = 3), the computation can be done effi-
ciently. 

Through an Isomap, 3D face samples are mapped to a 
lower dimensional feature space from a higher dimensional 
observation space via non-linear mapping, thereby build-
ing a mutual mapping between the higher dimensional data 
manifold space and the lower dimensional representative 
space. This brings out intrinsic lower dimensional struc-
ture hidden in the higher dimensional observational data. 
This has many positive benefits, such as compressing data 
thereby reducing storage requirements, removing unneces-
sary noise, extracting effective features for recognition and 
providing visualization of higher dimensional data. 

Finally, interpolation is used to obtain a geometric in-
variant on the full set of points. The primary property of 
bending invariants is that up to rigid motion, IM they are 
invariant to geodesic isometrics. 

IM (x, y, z) = v + UIM' ( Y(x, y, z)), 
U G O(3), v G R3 (4) 

The Bending Invariant (BI) preserves the local neighbor 
structure of a 3D facial shape and increases global discrimi-
nant information. Combined geodesic distance and Isomap 
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sampling can nicely inherit the ability of local preserva-
tion and at the same time increase separability, which over-
comes expression and pose variations to some extent. 

Next we can describe the Bending Invariant (BI) of each 
mesh point using the following vector, 

BI = {bi,b2, •••, bn} (5) 

where bi is the Bending Invariant of each mesh point i. 
Then all Bending Invariants are normalized to [0, 255]. 
This vector is a representation of the surface that is invari-
ant under geodesic isometrics, effectively extracting the in-
formation about rigid objects and overcoming the problems 
associated with facial expression variations. 

3.2 Correlative features 
Local Binary Pattern (LBP) operator is first proposed by 
Ojala et al. [22] for texture analysis and has been success-
fully applied to 2D face recognition by Timo et al. [23]. 
Based on the LBP operator, only encoding signs of the 
Bending Invariant differences of mesh nodes is not ade-
quate for describing 3D faces. This is because different 
Bending Invariant differences on the same point of a facial 
surfaces distinguishes different faces. For example nose 
tips with depth 255 [24]. As a result, if two facial regions 
of different persons on the same place have the same trends 
of Bending Invariant variation, we further encode the ex-
tract values of differences into binary patterns as shown in 
Fig. 3. To obtain local correlative features of facial sur-
face, 3D Local Binary Patterns (3D LBP) is introduced to 
3D face recognition. 3D LBP not only enhances local prop-
erties and details the texture information of facial images, 
but also extracts local details effectively improving recog-
nition, in addition to being intensive to expression, pose 
and illumination variations. 

First, the Bending Invariant of each node in 3D face 
mesh model is subtracted by their neighbors and the dif-
ferences are converted to binary units: 0 or 1 according to 
their signs. Then, binary units are arranged clockwise and 
a set of binary units as the local binary pattern of the node 
is obtained. 

According to our statistical analysis, more than 91% of 
the Bending Invariant differences between points are small 
than 7. Three binary units ({i2i3i4}) can correspond to the 
binary number of the absolute value of the Bending Invari-
ant difference (DD): [0, 7] and are assigned to Layer 2, 
Layer 3 and Layer 4 respectively. The head binary units (i1) 
is the original LBP codebook. Four binary units are divided 
into four layers and each of them is assigned clockwise. 
The binary pattern of each layer is further transformed to 
decimal number: P1, P2, P3, P4 at each node point as its cor-
relative feature representation. Finally, histograms of the 
four maps are concatenated as geometric statistics of cor-
relative features for recognition. 

. f 1, DD > 0 
11 = \ 0, DD < 0 ' (6) 
\DD\ = i2 • 22 + i3 • 21 + i4 • 20 

The method also enhance image low-level features like 
edges, peaks, valleys, and ridges, which is equal to enhanc-
ing key facial element information such as the nose, eyes, 
and mouth plus local characteristics like dimples, melan-
otic nevus and scars. They not only preserve global facial 
information but also enhance local characteristics. When 
the pose, expression and position of a face change, local 
changes are smaller than global changes, resulting are a 
very effective face representation. 
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Figure 3: The Flowchart of 3DLBP 

4 Spectral regression (SR) 

In learning section Spectral Regression is adopted to learn 
principle components from each 3D facial image based on 
3D Bending Invariant Correlative Features (3D BI-LBP) 
and these components are stored into the corresponding 
sub-codebook. Suppose we have m face range images. 
Let {xi}m=1 C Rn(n = 1024) denote their vector representa-
tions. Dimensionality reduction aims at finding {zi}m=1 C 
Rd, d C n, where zi can "represent" x.. In order to reflect 
the relationship of 3D face data among different samples 
better, Spectral Regression (SR) is introduced to reduce di-
mensions [25]. The algorithm divides into two steps. 

The first one is regularized least squares. Find c - 1 vec-
tors a1,...,ac-1 e Rn(k = 1,..., c- 1) is the solution of reg-
ularized least square problem 

m 
ak = a rgmin(£ (a T x . -tf )2 + a | |a | |2) (7) 

a i=1 

where yk is the i - th element of yk. It is easy to check that 
ak is the solution of linear equations system: 

(XXT + aI)ak = Xyk (8) 
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where I is a n x n identity matrix. The canonical Gaussian 
elimination method can be used to solve this linear equa-
tions system [25]. When X is large, some efficient iterative 
algorithms (eg., LSQR [26]) can be used to directly solve 
the above regularized least square problem. 

The second one is SREmbedding. Let A = [a\,.., ac -1}, 
A is a n x (c - 1) transformation matrix. The samples can 
be embedded into c - 1 dimensional subspace by 

x ^ z = ATx (9) 

Computational complexity is shown [25] that Spectral 
Regression decreases the complexity from cubic-time to 
linear-time which is a huge speed-up. The dimensionality 
reduction process and subspace projection based on Spec-
tral Regression preserve the discriminated facial informa-
tion which is able to capture salient facial characteristics 
and is further enhanced for improved recognition perfor-
mance by effective matching in the reduced space. 

5 Experimental and analysis 
In this paper, we present our results evaluating the perfor-
mance of our framework using the Face Recognition Grand 
Challenge (FRGC) data corpus, which is organized in 2004 
by NIST [12]. FRGC data contain a variety of facial ex-
pressions. Therefore it allows design of additional experi-
ments to evaluate the effect of such variation. In this sec-
tion, we demonstrate the excellent performance of our pro-
posed scheme by comparing experiments in terms of differ-
ent algorithms and different reducing dimension schemes. 
All of our experiments have been implemented in Matlab 
7.5 and run on a P4 2.1 GHz Windows XP machines with 
2GB memory. 

5.1 Experiments with different algorithms 
In this experiment, we make detailed comparisons with 
some existing methods for 3D face recognition to show the 
performance of the proposed algorithm. The considered 
features include surface curvature (SC) [5], point signature 
(PS) [27], Learned Visual Codebook (LVC) [28], UR3D [9] 
and our proposed framework for 3D face recognition. The 
different features are extracted for each node. In the FRGC 
verification, three mask are defined over the square simi-
larity matrix which holds the similarity value between all 
subject sessions. Each mask produces three different Re-
ceiver Operating Characteristic (ROC) curves, which will 
be referred to as ROC I, II and III. In ROC I all the data 
are within semesters, in ROC II they are within the year, 
while in ROC III the samples are between semesters. The 
FRGC data corpus can be divided into two disjoint sub-
sets, depending on whether the subset has a neutral facial 
expression or not. Table 1 shows the verification rates for 
ROC I, II and III. 

From these results, we can draw the following conclu-
sions: The highest verification rates is up to 96.2% which 
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Table 1: Verification Rates (%) for ROC I, II and III 
(FAR=10-3) 

Group 1 SC PS LVC UR3D Ours 
ROC I 49.5 43.1 91.2 95.2 96.2 
ROC II 43.2 41.5 88.4 94.8 95.3 
ROC III 42.8 41.3 86.2 94.4 94.6 
Group 2 SC PS LVC UR3D Ours 
ROC I 39.6 35.8 80.2 80.4 80.7 
ROC II 32.7 29.4 77.4 79.2 79.4 
ROC III 29.3 27.8 75.1 77.9 78.1 

group 1: 5 images with only neutral expression 
group 2: 10 images with non-neutral expression 

was obtained by our framework. Shape variation is the im-
portant information for characterizing an individual and the 
depth feature vector reflecting shape variation improves the 
verification rates distinctly in Table 1; Expression varia-
tions affect performance strongly and BI, a novel feature 
can obtain a representation of the surface which is invari-
ant under geodesic isometries and decrease the influence 
of expression effectively; Statistical codebook analysis (3D 
LBP) can encode relationships between neighboring mesh 
nodes and 3D LBP based on BI are likely to be correlated 
for nearby nodes. Experiment results show that our frame-
work yields consistently better performance than existing 
methods in only neutral. If we increase the node number, 
the performance will be improved significantly. Although 
due to expression variations, our performance is not better 
than UR3D [9], we use a simpler method which spends less 
time and memory. 

Second, we made a comparison between 3D BI-LBP and 
two appearance based methods, which contain local binary 
pattern (LBP)[23] and learned visual code-book (LVC) 
[28]. LBP is an efficient texture descriptor and has been 
successfully used for face recognition. LVC is a method 
which chooses K-means clustering to learn basic facial ele-
ments. K-fold cross validation was used on three methods. 
Because of the large face database, we did two groups of 
experiments. In the first, 10 images of each person consist-
ing of 5 neutral images and 5 images with different expres-
sions were divided into 10 groups and used for K-fold cross 
validation. In the second, all of the expression images were 
divided into 10 groups for K-fold cross validation. The re-
sults are presented in Table.2. It shows that our method 
outperformed other methods. 

Our method exhibits the desirable characteristics of 3D 
facial structure, captures local structural characteristics of 
image local areas in multiple directions and has the prop-
erties of orientation and scalar invariance. It can effec-
tively estimate the intrinsic dimensions of a data set and 
preserve local structure information more accurately than 
other methods, while being insensitive to the external fac-
tors of expression, pose and illumination. 
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Table 2: Comparison of recognition rates using K-fold 
cross validation 

Size groupl(FRGC) group2(FRGC) 
LBP 83.32% 85.29% 
LVC 91.87% 92.35% 

3D BI-LBP 96.75% 97.68% 

Size group1(CASIA) group2(CASIA) 
LBP 85.17% 88.05% 
LVC 93.12% 94.56% 

3D BI-LBP 97.08% 98.15% 

eigen-decomposition of dense matrices. From the experi-
mental results, we can intuitively see that the actual 3D in-
formation has no relation to view and illumination. Finally, 
compared to 2D face recognition, 3D face recognition has 
higher accuracy and can overcome the existing problems 
associated with 2D face recognition. 

group 1: 5 images with neutral expression and 5 image 
with different expression 

group 2: 10 images with different expression 

5.2 Experiments with different dimension 
reducing schemes 

Here, we make detailed comparisons between Spectral 
Regression (SR) [25] and PCA [29], LPP [30], OLPP 
[31], SRKDA [32] to show the efficiency of our proposed 
method for 3D face recognition, especially where there are 
expression variations. In view of the recognition accuracy 
curves in Fig.4, we can see PCA gives a good representa-
tion, which has a good recognition result in 36 dimensions. 
With the increase of dimensionality of the related feature 
vector, the recognition rate also rapidly increases. But 
when the dimensionality reaches 50 or higher, the recogni-
tion rate nearly stabilizes at a certain level (about 90.4%). 
LPP obtained a better accuracy when the dimensions are 
more than 50 and with increasing dimensions up to 100 
dimensions. This is mainly because in LPP models the 
local structure of a face manifold has a better discrimi-
nate. When the dimensions are lower, the representation 
ability of LPP is worse than PCA since its basic functions 
are non-orthogonal. In order to overcome the limitation of 
LPP, OLPP was introduced based on the orthogonal basic 
functions. It has better representation and discriminates. 
As a result, it shows better recognition performance in the 
lower dimensions. On the other hand, OLPP is expen-
sive in both time and memory. The Spectral Regression 
(SR) approach solves the optimization problem for linear 
graph embedding which reducing the cubic-time complex-
ity to linear-time complexity [25], while Spectral Regres-
sion Kernel Discriminate Analysis (SRKDA) is quadratic-
time complexity. We have performed extensive experimen-
tal comparisons of the state-of-the-art approaches, which 
demonstrate the effectiveness and efficiency of our method. 

In this experiment, The algorithm SR is analyzed, and 
used in 3D face recognition. Spectral methods have re-
cently emerged as a powerful tool for dimensionality re-
duction and manifold learning. These methods use in-
formation contained in the eigenvectors of a data affinity 
matrix to reveal low dimensional structure in high dimen-
sional data. SR casts the problem of learning an embed-
ding function into a regression framework, which avoids 
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Figure 4: The Results of Different Reducing Dimension 
Schemes 

6 Conclusion 
In this paper,we propose a novel method for 3D face recog-
nition. We connect a depth feature, Bending Invariant and 
its statistical codebook analysis (3D BI-LBP) as an intrinsic 
features. Spectral Regression is used for selecting effective 
features and combining them to a classification. Experi-
mental results show that our framework reflects the shape 
and geometric properties of 3D data and describes the rela-
tional properties of a local shape in a neighborhood. Com-
pared to the existing methods, it has demonstrated excel-
lent performance. All these reasons make face very suited 
for Ambient Intelligence applications. Such suitability is 
especially true for biometric identifier such as 3D face 
recognition, which is the most common method used in vi-
sual interactions and allows recognizing the user in a non-
intrusive way without any physical contact with the sensor. 
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