
Informatica27 (2003) 445–450 445

Improving Efficiency of Program Graph Scheduling with Partial Strict
Triggering of Program Graph Nodes

Milan Ojsteršek and Aleksander Kvas
FERI Maribor, Smetanova 17, Maribor, Slovenia
Phone:+386 2 220 7451, Fax:+386 2 251 1178
E-mail: ojstersek@uni-mb.si

Keywords: parallel computers, program graphs, scheduling

Received:June 15, 2003

An efficient scheduling of a parallel program onto the processors is critical for achieving a high perfor-
mance from a parallel computer system. The scheduling problem is known to be NP-hard and heuristic
algorithms have been proposed to obtain optimal and sub optimal solutions. The partitioning algorithm
partitions an application into tasks with appropriate grain size and represents them in the form of a directed
acyclic graph (DAG). The nodes of the resulting DAG are then scheduled onto the processors of a parallel
computer system. We can see that almost all coarse grained program graph nodes don’t need all of their
input operands at the beginning of their execution. Thereafter they can be scheduled a bit earlier. This
type of program graph nodes triggering is called partial strict triggering. The missing operands will be
requested later during the execution. Coarse grained program graph nodes send their output operand to
all successors, as soon as they produce them. Successors of coarse grained program graph nodes will be
scheduled earlier too, because they will receive their input operands sooner. An evaluation of improved
CPM, VL and DSH scheduling algorithms is done in this paper. We have improved them with partial strict
triggering of coarse grained program graph nodes.

1 Introduction

Optimal execution of parallel programs which are executed
on a parallel computer system depends on partitioning pro-
grams into modules and scheduling those modules for the
shortest possible execution time. In this paper, we present
three efficient algorithms for scheduling modules to the
processing units of a parallel computer system. An algo-
rithm for the partitioning programs into modules is dis-
cussed in (Ojsteršek 1994). We will make only a brief de-
scription of it in chapter 2.

The general problem of multiprocessor scheduling can
be stated as scheduling a set of partially ordered com-
putational tasks onto a multiprocessor system so that a
set of performance criteria will be optimised. The diffi-
culty of the problem depends heavily on the topology of
the program graph representing the precedence relations
among the tasks, the topology of the multiprocessor sys-
tem, the number of parallel processors, the uniformity of
the node processing time and the performance criteria cho-
sen. In general, the multiprocessor scheduling problem is
computationally intractable even under simplified assump-
tions. Because of this computational complexity issue,
many heuristic algorithms have been proposed to obtain op-
timal and suboptimal solutions to various scheduling prob-
lems (Palis et al. 1996, Gerasoulis & Yang 1992, Darbha
& Agrawal 1998, Park & Chloe 2002).

The scheduling of programs onto parallel computer sys-
tem can be achieved using three approaches: static, dy-

namic and hybrid. The distinction indicates the time at
which the scheduling decisions are made. Withstatic
scheduling, information regarding the program graph rep-
resenting the program must be estimated prior to execution.
In static scheduling, each node of a program graph has a
static assignment to a particular processor, and each time
that task is submitted for execution, it is assigned to that
processor. Indynamicscheduling, the parallel processor
system must attempt to schedule tasks on the fly. Thus, the
scheduling decisions are made while the program is run-
ning. The disadvantage of dynamic scheduling is the over-
head incurred to determine the schedule while the program
is running.Hybrid scheduling technique are a mix of static
and dynamic methods, where some preprocessing is done
statically to guide the dynamic scheduler and/or reduce the
amount of undeterminism.

We have improved three well known static scheduling
algorithms (CPM, VL and DSH) with partial strict trigger-
ing of program graph nodes. We compare our improved
algorithms with original CPM static scheduling algorithm.

This paper is organised as follows. First we give a
brief description of our partitioning algorithm. In Sec-
tion 3 we present partial strict triggering of program graph
nodes. Next, a brief description of improved scheduling al-
gorithms is given in Section 4. In Section 5 we present a
model of a macro dataflow computer which supports par-
tial strict triggering of program graph nodes. Performance
evaluation of improved scheduling algorithms with execu-
tion of program graph on the macro dataflow computer sim-



446 Informatica27 (2003) 445–450 M. Ojsteršek et al.

ulator is done in Section 6. And, finally, Section 7 presents
presents concluding remarks, as well as directions for fu-
ture research work.

2 Description of the partitioning
algorithm

We have used similar grain size determination algorithm as
Sarkar’s "internalisation" algorithm (Sarkar 1989), which
clusters nodes together to minimise the schedule length on
an unbounded number of processors. The algorithm ini-
tially places each task in a separate cluster and considers
the arcs in descending order according to the amount of
data transferred over each arc. Given arcAij connecting
nodesNi andNj , the algorithm merges the clusters con-
taining these nodes to ’internalise’ any communications
between nodes in these respective clusters. This merging
step is accepted if it does not increase an estimate of the
parallel execution time of the program graph on an infinite
number of processors, where nodes in the same cluster are
constrained to be executed on the same processor. The par-
titioning process in ’internalisation’ algorithm is stopped
when cluster’s execution time is equal or greater than one
percent of ideal parallel execution time. A cluster must also
satisfies a convexity constraint, which ensures that a clus-
ter can run to completion once all its inputs are available.
Our opinion is that the size of clusters (execution time) is
computer architecture dependent, so our partitioning algo-
rithm stops further aggregation into bigger clusters when
the size of a cluster is equal or greater than maximal gran-
ularity of cluster which depends on the organisation of the
macro dataflow computer architecture.

3 Partial strict triggering of
program graph nodes

Now, let us consider a group of program nodes that are con-
nected with the precedence relation. If the sum of commu-
nication delays for transferring operands between nodes is
greater than the sum of their execution times, it is possi-
ble to achieve fastest execution time with joining them in
a larger program grain. Of course, there are other tech-
niques for grain size determination, but it is interesting that
joining small grains into larger one enables the processing
element to start with execution of a new grain without all
input operands. An example is shown in Figure 1. We
aggregate fine grain program graph nodes (1, 2, 3) into a
coarse grained program graph node. The new node N can
start with the execution on a free processing unit immedi-
ately after operand number 1 is available, although operand
number 2 is not present. This operand must be available at
least 10 time units after the beginning of the node N ex-
ecution to avoid the node execution delay. The operand
number 4 is sent to the successor nodes 20 time units be-
fore the end of the execution of node N, so the triggering

3

1

2

T=10

T=3

T=20

3

1 2

4

1 2

3 4

Cr=0

Cs=0

Cr=10

Cs=20

T=33N

Figure 1: Example of partial strict triggered node

of successors which use this operand is faster.
We have introduced two new attributes for each com-

munication arc. CS represents operand’s relative send-
ing time. It defines the time from the moment when
the operand is sent to the end of a node execution.CR

represents operand’s relative receiving time. It defines
the time from beginning of a program graph node execu-
tion to the moment when this operand must be present to
avoid delaying the node’s execution. Operands which have
CR equal to zero are calledstrict operandsand must be
present before the execution of their program graph nodes.
Operands which haveCR greater than zero are callednon-
strict operandsand must be present between time from be-
ginning of a program graph node execution andCR.

The following notation is used throughout this paper:
G : graphG(N,E),
N(G) : set of nodes inG,
E(G) : set of arcs inG,
n : number of nodes in inG,
ni : i-th node inG; i = 1..n,
T (ni) : execution time of nodeni,
Ns(ni) : set of successors of the nodeni,
nsi : number of successors of the nodeni,
O(G) : set of output nodes of graphG,
CP (nj) : the length of exit path for nodenj ,
I(nij) : set of input operands ofnj that

originates fromni,
C(ni, nj , nii, noj) : communication delay time between
nodesni andnj , ni is source andnj is destination,nii is
a number of particular input operand of nodenj , noj is a



IMPROVING EFFICIENCY OF PROGRAM. . . Informatica27 (2003) 445–450 447

number of particular output operand of nodeni,

CS(ni, nj , nii, noj) : relative sending time of ope-rand be-
tween nodesni andnj , ni is source andnj is destination,
nii is a number of particular input operand of nodenj , noj
is a number of particular output operand of nodeni,
CR(ni, nj , nii, noj) : relative receiving time of operand
between nodesni andnj , ni is source andnj is destina-
tion, nii is a number of parti- cular input operand of node
nj , noj is a number of particular output operand of node
ni.

4 Description of scheduling
algorithms with partial strict
triggering of program graph nodes

CPM scheduling algorithm (Kohler 1975, Ojsteršek 1994,
Shirazi et al. 1990) assigns the program graph nodes to
the processing elements on the basis of the priority list
scheduling method. A priority weight for each node is a
length of the longest path from program graph node to
the terminal node. The original CPM algorithm computes
the priority weight (the length of exit path) of each node
without using communication delay time for transferring
operands between nodes. We have defined new priority
weight which is computed by using execution time of a
node and communication delay timesCS and CR of its
input and output operands. The length of exit path for node
ni (CP (ni)) is computed in the following way:

∀ni ∈ O(G) : CP (ni) = T (ni)
∀ni 6∈ O(G) ∧ ∀nj ∈ Ns(ni) ∧ ∀nj ∃ CP (nj) :
CP (ni) = MAXj=1,nsi(CP (nj)

+C(ni, nj , nii, noj)− CR(ni, nj , nii, noj)
−CS(ni, nj , nii, noj) + T (ni)) (4.1)

In the improved CPM algorithm we also make sure that
all nonstrict operands are present in time from beginning
of a program graph node execution to the moment when
these operands must be present to avoid delaying the node’s
execution. If we can’t assure this condition for nonstrict
operand, we assign itsCR to zero. Time complexity of
original CPM algorithm isO(n2), wheren is number of
program graph nodes. Time complexity of improved CPM
algorithm is alsoO(n2).

Vertically Layered (VL) scheduling algorithm (Hurson
et al. 1990, Kvas et al. 1994, Ojsteršek 1994) is based on
two philosophies:

1. assigning concurrently executable nodes to separate
processing units and

2. assigning nodes connected serially to the same pro-
cessing element.

Main idea of this algorithm is the distribution of program
graph nodes into vertical layers, where nodes constituting a

single layer, can be allocated to a processing element. Ac-
tual allocation is done in two phases: the separation and
optimisation phase. In separation phase critical path (CP )
is identified and nodes onCP are assigned to one vertical
layer. Rearranging is done in an iterative manner as fol-
lows: nodes on longest directed path emanating from an
arc in a node that is already assigned, are assigned to the
next available vertical layer.

The separation phase does not take into account com-
munication delays among processing elements (PEs). The
optimisation phase rearranges nodes by considering inter-
PE communication delays. For example, if two subsets
of nodes are arranged in two distinct vertical layers, and
there is the transitory relationship between them, there will
be inter-PE communication costs associated with the exe-
cution of two vertical layers. In order to improve overall
execution time, we can consider combining the subsets of
nodes into a single vertical layer. This eliminates the com-
munication time between two layers and the overall exe-
cution time is now the sum of execution times of subsets.
However, if the new execution time results in a larger delay,
two subsets are assigned to different PEs.

We improved VL algorithm optimisation phase that
rearranges nodes by considering communication delay
timesCS andCR. Original equations (Hurson et al. 1990)
that are used to compare communication and execution
time between nodes contain simple communication time
delays. Now, if we use partial strict triggering, we can
change the communication delays in the following way:

Cu(ni, nj) = MAXnii ∈ I(nij)(C(ni, nj , nii, noj)
−CS(ni, nj , nii, noj)− CR(ni, nj , nii, noj))

(4.2)

Then we useCu in equations instead ofC. We also as-
sure that all nonstrict operands are present in time from be-
ginning of a program graph node execution to the moment
when these operands must be present to avoid delaying the
node’s execution. If we can’t assure this condition for non-
strict operand, we assign itsCR to zero. Time complexity
of original VL algorithm isO(n4), wheren is number of
program graph nodes. Time complexity of improved VL
algorithm is alsoO(n4).

Duplication scheduling heuristic algorithm (Benko et al.
1995, Kruaratrachue & Lewis 1988, Ojsteršek 1994) max-
imises parallelism and mini-mises communication delays
by insertion of ready program graph nodes into idle time
slots of Gantt chart and by duplication of critical program
graph nodes. We have focused our research efforts to three
main extensions of the original heuristic:

– We have converted program graphs that have non-
strict operands into program graphs that have all strict
operands. A new type of program graph is called a
strictly triggered program graph. Each program graph
node of original program graph is transformed into
several nodes of strictly triggered program graph. We
call them a group of strict nodes. All nodes of a group



448 Informatica27 (2003) 445–450 M. Ojsteršek et al.

have to be executed on the same PE. PE pre-empts the
execution of a group if in the execution phase a non-
strict operand is not present. While this operand is not
present, PE executes other groups. When a nonstrict
operand arrives PE continues with the execution of the
pre-empted group.

– We proposed a new processing units allocation
scheme, which greatly improves the efficiency of
scheduling. An original DSH algorithm uses a length
of longest path from the node to the exit node and
number of immediate successors as a priority weight
for processor allocation. We introduced predeces-
sor selection scheme (PSS) and successor selection
scheme (SSS). Both selection schemes are trying to
decrease the amount of communication overhead be-
tween nodes by schedulingsimilar tasks on the same
processing unit. The termsimilar is used to refer
to tasks that are expected to communicate with each
other, either directly or indirectly. PSS considers two
tasks as similar, if one of the tasks is a direct or an in-
direct predecessor of the other one. SSS considers two
tasks as similar if they have at least one successor task
in common, i.e. they both send at least one message
to the same destination.

– We have also extended DSH algorithm to take into ac-
count a finite number of communication channels be-
tween processing units. In this way, the accuracy of
the results obtained from simulation of coarse grained
program graph execution on the model of parallel
computer has been improved.

Time complexity of original DSH algorithm isO(n4),
wheren is number of program graph nodes. Time com-
plexity of improved DSH algorithm isO(n6).

5 The model of macro dataflow
computer

INTERCONNECTION NETWORK

PE PE PE1 2 n.  .  .

Figure 2: The Model of a Macro Dataflow Computer

We have introduced our model of a macro dataflow com-
puter (Figure 2) which supports partial strict triggering of
coarse grained program graph nodes. Our model of a macro

dataflow computer (MMDC) is a loosely coupled multipro-
cessor with processing elements (PE) and an interconnec-
tion network.

input queue

memory processor

memory
local multiport

scheduling
processor

node execution
processor

tokens to
other PEs

tokens from
other PEs

Figure 3: A Structure of a Processing Element of the
MMDC

Every PE (Figure 3) contains an input queue, a local
multiport memory, a memory processor, a scheduling pro-
cessor and a node execution processor. Program graphs are
loaded on the model of a macro dataflow computer at the
beginning of their execution. Inputs of nodes (tokens) are
matched together in the memory processor. When all re-
quired inputs of a particular node are present, the memory
processor forms the executable node (activity) and sends
a node number to the scheduling processor. The schedul-
ing processor selects the executable nodes on the basis of a
Gantt chart which has been produced by the static schedul-
ing algorithm. It sends activities to the node execution pro-
cessor. The node execution processor executes activities.
If a nonstrict operand of executed activity have not arrived
in time when it is required, the node execution processor
preempts execution of this activity and executes another
activity. When the nonstrict operand of preempted activ-
ity arrives in the memory processor, the memory processor
sends the address where the activity has been preempted
into queue of preempted activities, which are in multiport
memory. When the node execution processor finishes with
the execution of temporary executed activity, it then contin-
ues with the execution of the preempted activity. The node
execution processor also sends results of computed activ-
ities to memory processor if the successor node is in the
same PE or to other PEs.

In our simulation we assume that the model of a macro
dataflow computer has the following features:

– All PEs have equal performances.

– A PE executes nodes and communicates with other
units simultaneously.



IMPROVING EFFICIENCY OF PROGRAM. . . Informatica27 (2003) 445–450 449

– All PEs are connected with communication network,
which has a finite number of communication channels.

– A memory space, needed for matching tokens in sets
of tokens, forming activities, scheduling and execut-
ing activities of program graphs that are executed on
the MMDC, must be less than the capacity of available
memory space in the model of the MMDC.

6 Performance evaluation of
improved scheduling

Figure 4: Comparison of improved scheduling algorithms
with original CPM algorithm. The total execution time
of program graph produced with usage of: (1) original
CPM scheduling algorithm is represented byTcpmo(PG),
(2) improved CPM scheduling algorithm is represented by
Tcpmi(PG), (3) improved VL scheduling algorithm is rep-
resented byTvl(PG), (4) improved DSH scheduling algo-
rithm is represented byTdsh(PG).

We have evaluated improved scheduling algorithms with
a simulation of a program graph execution on the MMDC.
Program graph consisted of 200 nodes and 374 operands
(306 strict operands and 68 nonstrict operands). Its level of
granularity (average execution time of nodes/average com-
munication delay time of operands) has been 0.092. We
have used program graph and Gantt charts produced by
original CPM algorithm and improved algorithms as sim-
ulation inputs. A comparison of ratios between total exe-
cution times of program graph with usage of original CPM
algorithm and improved scheduling algorithms is depicted
in Figure 4. As shown in Figure 4 all improved schedul-
ing algorithms outperform original CPM algorithm. Im-
provements have been from 35% to 60%. From Figure 4
we can see that the improved DSH algorithm gave the best
improvement but it have the highest computational com-
plexity (O(n6)). VL algorithm obtained better results than
improved CPM algorithm, but it has higher computational
complexity than the CPM algorithm.

We have observed that improvements of our algorithms
are higher if level of granularity is lower than one. If level
of granularity is greater than one then improvements are
only few percents. In that case we use improved CPM al-
gorithm, because it has the lowest computation complexity.

7 Conclusion

This paper presented performance evaluation of three dif-
ferent static scheduling algorithms improved with partial
strict triggering of program graph nodes. The new model
of a macro dataflow computer which supports partial strict
triggering of program graph nodes is also presented. Sim-
ulation results of program graph execution on the MMDC
with usage of Gantt charts produced by improved schedul-
ing algorithms showed promising improvement over origi-
nal CPM algorithm.

In our previous work we build an integrated program-
ming environment for static partitioning and scheduling
of time critical tasks which are executed on the macro
dataflow realtime computer (Ojsteršek & Žumer 1992). In
our future research we will incorporate scheduling algo-
rithms into the new version of integrated programming en-
vironment.

References

[1] Benko B., Ojsteršek M., Žumer V. (1995) Improve-
ment of Duplication Scheduling Heuristic Algorithm
with Nonstrict Triggering of Program Graph Nodes.
Proceedings of First Aizu International Symposium
on Parallel Algorithms/Architecture Synthesis, Aizu-
Wakamatsu, Fukushima, Japan, IEEE Computer Society
Press, p. 227-233.

[2] Darbha S. and Agrawal D. P. (1996) Optimal Schedul-
ing Algorithm for Distributed-Memory Machines.IEEE
Trans. on Parallel and Distributed Systems, January, vol.
9, No. 1, p. 87-95.

[3] Gerasoulis A. and Yang T. (1992) A Comparison of
Clustering Heuristics for Scheduling Directed Acyclic
Graphs on Multiprocessors.J. Parallel and Distributed
Computing, vol. 16, p. 276-291.

[4] Hurson A. R., Lee B., Shirazi B., Wang M. (1990) A
Program Allocation Scheme for Data Flow Computers.
Proc. of the 1990 Intern. Conf. on Parallel Processing,
University Park, Peen, Pennsylvania State Univ., vol. 1,
p. 415-423.

[5] Kohler W. H. (1975) A Preliminary Evaluation of the
Critical Path Method for Scheduling Tasks on Multipro-
cessor Systems.IEEE Trans. on Computers, December,
p. 1235-1238.

[6] Kruaratrachue B., Lewis T. (1988) Grain Size Determi-
nation for Parallel Processing.IEEE Software, January,
p. 23-33.

[7] Kvas A., Ojsteršek M., Žumer V. (1994) Eva-luation
of Static Program Allocation Schemes for Macro Data-
flow Computer.Proceedings of the 20th EUROMICRO
Conference, Liverpool, England, IEEE Computer Soci-
ety Press, p. 573-580.



450 Informatica27 (2003) 445–450 M. Ojsteršek et al.

[8] Ojsteršek M., V. Žumer V. (1992) Improving a Time
Critical Task Execution Time Using an IPRESPS. Mi-
croprocessing and Microprogramming, Amsterdam, 34,
1-5, p. 197-200.

[9] Ojsteršek M. (1994) Partitioning and Scheduling Pro-
gram Graphs onto Parallel Computer System. PhD thes-
sis. University of Maribor, Faculty of Technical Sci-
ences Maribor, June 1994 (in slovene).

[10] Palis M. A., Liou J. C., Wei D. S. L. (1996) Task Clus-
tering and Scheduling for Distributed Memory Parallel
Architectures.IEEE Trans. on Parallel and Distributed
Systems, January, vol. 7, No. 1, p. 46-55.

[11] Park C.-I. and Choe T.-Y. (2002) An Optimal
Scheduling Algorithm Based on Task Duplication.IEEE
Trans. on Computers, April, vol. 51, No. 4, p. 444-448.

[12] Sarkar V. (1989) Partitioning and Scheduling Parallel
Programs for Execution on MultiProcessors, MIT Press,
1989.

[13] Shirazi B., Wang M., Pathak G. (1990) Analysis
and Evaluation of Heuristic Methods for Static Task
Scheduling.Journal of Parallel and Distributed Com-
puting, October, No. 10, p. 222-232.




