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Abstract

The metric dimension of a general metric space was defined in 1953, applied to the set
of vertices of a graph metric in 1975, and developed further for metric spaces in 2013. It
was then generalised in 2015 to the k-metric dimension of a graph for each positive integer
k, where k = 1 corresponds to the original definition. Here, we discuss the k-metric
dimension of general metric spaces.
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1 Introduction
The metric dimension of a general metric space was introduced in 1953 in [4, p. 95] but
attracted little attention until, about twenty years later, it was applied to the distances be-
tween vertices of a graph [12, 14, 15, 18]. Since then it has been frequently used in graph
theory, chemistry, biology, robotics and many other disciplines. The theory was developed
further in 2013 for general metric spaces [1]. More recently, the theory of metric dimen-
sion has been generalised, again in the context of graph theory, to the notion of a k-metric
dimension, where k is any positive integer, and where the case k = 1 corresponds to the
original theory [7, 8, 9, 10, 11]. Here we develop the idea of the k-metric dimension both
in graph theory and in metric spaces. As the theory is trivial when the space has at most
two points, we shall assume that any space we are considering has at least three points.
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Finally, whenever we discuss a connected graph G, we shall always consider the metric
space (X, d), where X is the vertex set of G, and d is the usual graph metric in which the
distance between two vertices is the smallest number of edges that connect them.

Let (X, d) be a metric space. If X is a finite set, we denote its cardinality by |X|; if
X is an infinite set, we put |X| = +∞. In fact, it is possible to develop the theory with
|X| any cardinal number, but we shall not do this. The distances from a point x in X to the
points a in a subset A of X are given by the function a 7→ d(x, a), and the subset A is said
to resolve X if each point x is uniquely determined by this function. Thus A resolves X
if and only if d(x, a) = d(y, a) for all a in A implies that x = y; informally, if an object
in X knows its distance from each point of A, then it knows exactly where it is located in
X . The classR(X) of subsets of X that resolve X is non-empty since X resolves X . The
metric dimension dim(X) of (X, d) is the minimum value of |S| taken over all S inR(X).
The sets in R(X) are called the metric generators, or resolving subsets, of X , and S is a
metric basis of X if S ∈ R(X) and |S| = dim(X). A metric generator of a metric space
(X, d) is, in effect, a global co-ordinate system on X . For example, if (x1, . . . , xm) is an
ordered metric generator of X , then the map ∆: X → Rm given by

∆(x) =
(
d(x, x1), . . . , d(x, xm)

)
(1.1)

is injective (for this vector determines x), so that ∆ is a bijection from X to a subset of
Rm, and X inherits its co-ordinates from this subset.

Now let k be a positive integer, and (X, d) a metric space. A subset S ofX is a k-metric
generator for X (see [8]) if and only if any pair of points in X is distinguished by at least
k elements of S: that is, for any pair of distinct points u and v in X , there exist k points
w1, w2, . . . , wk in S such that

d(u,wi) 6= d(v, wi), i = 1, . . . , k.

A k-metric generator of minimum cardinality in X is called a k-metric basis, and its
cardinality, which is denoted by dimk(X), is called the k-metric dimension of X . Let
Rk(X) be the set of k-metric generators for X . Since R1(X) = R(X), we see that
dim1(X) = dim(X). Also, as inf ∅ = +∞, this means that dimk(X) = +∞ if and only
if no finite subset of X is a k-metric generator for X .

Given a metric space (X, d), we define the dimension sequence ofX to be the sequence(
dim1(X),dim2(X), . . . ,dimk(X), . . .

)
,

and we address the following two problems.

• Can we find necessary and sufficient conditions for a sequence (d1, d2, d3, . . .) to be
the dimension sequence of some metric space?

• How does the dimension sequence of (X, d) relate to the properties of (X, d)?

In Sections 2, 3 and 4 we provide some basic results on the k-metric dimension, and
in Section 5 we calculate the dimension sequences of some metric spaces. We then apply
these ideas to the join of two metric spaces, and to the Cayley graph of a finitely generated
group.
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2 Bisectors
As shown in [1], the ideas about metric dimension are best described in terms of bisectors.
For distinct u and v in X , the bisector B(u|v) of u and v is given by

B(u|v) = {x ∈ X : d(x, u) = d(x, v)}.

The complement of B(u|v) is denoted by Bc(u|v); thus

Bc(u|v) = {x ∈ X : d(x, u) 6= d(x, v)},

and this contains both u and v. Whenever we speak of a bisector B, we shall assume that
it is some bisector B(u|v), where u 6= v, so that its complement Bc is not empty.

Let us now consider the k-metric dimension from the perspective of bisectors. A subset
A of X fails to resolve X if and only if there are distinct points u and v in X such that
d(u, a) = d(v, a) for all a in A. Thus A resolves X if and only if A is not contained in any
bisector or, equivalently, if and only if for every bisector B, we have |Bc ∩ A| ≥ 1. This
leads to an alternative (but equivalent) definition of the metric dimension dim(X), namely

dim(X) = inf{|A| : A ⊂ X and, for all bisectors B, |Bc ∩A| ≥ 1}.

Again, this infimum may be +∞. The extension to the k-metric dimension dimk(X) of X
is straightforward:

dimk(X) = inf{|A| : A ⊂ X and, for all bisectors B, |Bc ∩A| ≥ k}. (2.1)

Note that if X is a finite set then dim|X|+1(X) = +∞.
Clearly, the values dimk(X) depend only on the class B of bisectors inX; for example,

dim1(X) = 1 if and only if there is some point in X that is not in any bisector. More
generally, in all cases, dimk(X) ≥ k, and equality holds here if and only if there are k
points of X that do not lie in any bisector. For example, if X is the real, closed interval
[0, 1] with the Euclidean metric, then dimk(X) = k for k = 1, 2. For a more general
example of this type, let X = {√p : p a prime number} with the Euclidean metric d. If p,
q and r are primes, with p 6= q, then

√
r ∈ B(

√
p|√q) implies

√
r = 1

2 (
√
p+
√
q); hence

4r = p + q + 2
√
pq. Since

√
pq is irrational, this is false; hence every bisector is empty.

It follows that dimk(X) = k for k = 1, 2, . . .; thus the dimension sequence of (X, d) is
(1, 2, 3, . . .).

3 The monotonicity of dimensions
Let (X, d) be a metric space. Then, from (2.1), we have dimk(X) ≤ dimk+1(X), but
we shall now establish the stronger inequality dimk(X) + 1 ≤ dimk+1(X) (which is
dimk(X) < dimk+1(X) when the dimensions are finite, but not when they are +∞). This
inequality is known for graphs; see [8, 10]) where it is an important tool.

Theorem 3.1. Let (X, d) be a metric space. Then, for k = 1, 2, . . .,

(i) if dimk(X) < +∞ then dimk(X) < dimk+1(X);

(ii) if dimk(X) = +∞ then dimk+1(X) = +∞.

In particular, dimk(X) + 1 ≥ dim1(X) + k.
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Proof. First, (ii) follows immediately from (2.1). Next, (i) is true if dimk+1(X) = +∞,
so we may assume that dimk+1(X) = p < +∞. Thus there is a subset {x1, . . . , xp} (with
the xi distinct) of X such that for every bisector B, |Bc ∩ {x1, . . . , xp}| ≥ k + 1. As
k ≥ 1 we see that p ≥ 2. Clearly, |Bc ∩ {x1, . . . , xp−1}| ≥ k for every bisector B; hence
dimk(X) ≤ p− 1 < dimk+1(X). The last inequality follows by induction.

4 The 1-metric dimension
Theorem 3.1 shows that if +∞ occurs as a term in the dimension sequence of (X, d),
then all subsequent terms are also +∞. Thus dim1(X) = +∞ if and only if (X, d) has
dimension sequence (+∞,+∞,+∞, . . .). The next result shows when this is so.

Theorem 4.1. Let (X, d) be a metric space. Then dim1(X) = +∞ if and only if every
finite subset of X lies in some bisector. In particular, if X is the union of an increasing
sequence of bisectors, then dim1(X) = +∞.

Proof. First, the definition of dim(X) implies that dim1(X) = +∞ if and only if every
finite subset of X lies in some bisector. The second statement holds because if X =
∪nBn, where B1, B2, . . . is an increasing sequence of bisectors, then, given any finite
subset {x1, . . . , xm} of X , each xj lies in some Bij , and {x1, . . . , xm} ⊂ Br, where
r = max{i1, . . . , im}.

What can be said if dim1(X) < +∞? It seems that we can obtain very little informa-
tion from the single assumption that dim1(X) < +∞; for example, for each r ≥ 0 choose
a point xr in Rn with ‖xr‖ = r, and let X = {xr : r ≥ 0}. Then {0} is a 1-metric basis
for X , and dim1(X) = 1 but we can say almost nothing about the topological structure of
X . However, we can say more if we know that X is compact.

Theorem 4.2. Let (X, d) be a compact metric space with dim1(X) = m < +∞. Then
(X, d) is homeomorphic to a compact subset of Rm.

Proof. Suppose that X is compact, and that dim1(X) = m < +∞. Then there is a 1-
metric basis {x1, . . . , xm}, and the corresponding bijection ∆ in (1.1) that maps X onto
some subset of Rm. Now ∆ is continuous on X since

|∆(x)−∆(y)| ≤
m∑
j=1

|d(x, xj)− d(y, xj)| ≤ md(x, y).

As ∆ is a continuous, injective map from a compact space to the Hausdorff space Rm it
follows (by a well known result in topology) that it is a homeomorphism.

This result is related to the following result in [1] (see also [16]).

Theorem 4.3. If (X, d) is a compact, connected metric space with dim1(X) = 1 then X
is homeomorphic to [0, 1].

The compactness is essential here as there is an example in [1] of a connected, but not
arcwise connected, metric space X with dim1(X) = 1. As X is not arcwise connected, it
is not homeomorphic to [0, 1]. It is conjectured in [1] that if X is arcwise connected, and
dim1(X) = 1 then X is a Jordan arc (this means that X is homeomorphic to one of the
real intervals [0, 1] and [0,+∞)), and we can now show that this is so.
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Theorem 4.4. If X is an arcwise connected metric space with dim1(X) = 1, then X is a
Jordan arc.

Proof. As dim1(X) = 1, there is a metric basis, say {x0} for X , and every point x of X is
uniquely determined by its distance d(x, x0) from x0. Consider the map ∆: x 7→ d(x, x0)
of X into [0,+∞). This map is (uniformly) continuous because

|∆(x)−∆(y)| = |d(x, x0)− d(y, x0)| ≤ d(x, y),

and as X is arcwise connected (and therefore connected), so ∆(X) is connected. This
means that ∆ is an interval of the form [0, a], where a > 0, or [0, b), where 0 < b ≤ +∞.

Let us consider the case when ∆(X) = [0, a]. As ∆ is injective, we see that for every
r in the interval [0, a] there is some unique xr in X with d(xr, x0) = r. Thus X = {xr :
0 ≤ r ≤ a}. However, as X is arcwise connected, there is a curve, say γ : [0, 1]→ X with
γ(0) = x0 and γ(1) = xa. Now as γ is continuous, the set {d

(
γ(t), x0

)
: t ∈ [0, 1]} must

contain every real number in the interval [0, a], and it cannot contain any other numbers;
thus X = γ([0, 1]). Now γ([0, 1]) is compact for it is the continuous image of the compact
interval [0, 1]; thus X is compact and so, by Theorem 4.3, X is a Jordan arc.

The argument in the case when ∆(X) = [0, b) is similar. Indeed, the argument above
holds for every a with 0 < a < b, and it is easy to see that this implies that ∆ is a
homeomorphism from X to [0, b).

5 Some examples
In order to calculate the k-metric dimension of a metric space we need to understand the
geometric structure of its bisectors, and we now illustrate this with several examples. In
order to maintain the flow of ideas, the details of these examples will be given later.

Example 5.1. Let (X, d) be any one of the Euclidean, spherical and hyperbolic spaces Rn,
Sn and Hn, respectively, each with the standard metric of constant curvature 0, 1 and −1,
respectively. The bisectors are well understood in these spaces, and we shall show that any
non-empty open subset of X has k-metric dimension n + k. In particular, each of these
spaces has dimension sequence (n + 1, n + 2, n + 3, . . .). See [1, 13] for the 1-metric
dimensions of these spaces.

Example 5.2. Let X be any finite set with the discrete metric d (equivalently, X is the
vertex set of a complete, finite graph). For distinct u and v in X we have B(u|v) =
X\{u, v}, so that for any subset S of X , we have B(u|v)c ∩ S = {u, v} ∩ S. Thus if
|S∩Bc| ≥ 1 for all bisectors B, then S can omit at most one point of X . We conclude that
dim1(X) = |X|−1. If |Bc∩S| ≥ 2 for all bisectorsB then S = X , and dim2(X) = |X|.
We conclude that (X, d) has dimension sequence (|X| − 1, |X|,+∞,+∞, . . .).

Example 5.3. Let X be the real interval [0, 1], with the Euclidean metric. Then B is
a bisectors if and only if B = {x} for some x in (0, 1). Thus {0} is a 1-metric ba-
sis, and {0, 1} is a 2-metric basis, of [0, 1]. We leave the reader to show that if k ≥
3 then {0, 1k ,

2
k , . . . ,

k−1
k , 1} is a k-metric basis, so that [0, 1] has dimension sequence

(1, 2, 4, 5, 6, . . .). A similar argument shows that [0,+∞) has dimension sequence (1, 3, 4,
5, . . .), and that (−∞,+∞), which is R, has dimension sequence (2, 3, 4, . . .).

Example 5.4. The Petersen graph, which is illustrated in Figure 1, has dimension sequence
(3, 4, 7, 8, 9, 10,+∞, . . .). The (finite) values dimk(X) for k = 1, . . . , 6 come from a
computer search, and as dim6(X) = 10 = |X|, we have dim7(X) = +∞.
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Figure 1: The Petersen graph.

Example 5.5. Let G be a group with a given set of generators, let V be the vertex set of
the associated Cayley graph of G, and let d be its graph metric.

(i) If G is an infinite cyclic group then (V, d) has dimension sequence (2, 3, 4, . . .).

(ii) IfG is a free group on p generators, where p ≥ 2, then (V, d) has dimension sequence
(+∞,+∞,+∞, . . .).

(iii) Let G be an abelian group on p generators, where p ≥ 2, and where each generator
has infinite order. Then (V, d) has dimension sequence (+∞,+∞,+∞, . . .).

6 Three geometries of constant curvature
In this section we give the details of Example 5.1. It is shown in [1] that if U is any
non-empty, open subset of any one of the three classical geometries Rn, Sn and Hn, then
dim1(U) = n+ 1. Here we show that if X is any of these spaces then dimk(X) = n+ k
for k = 1, 2, . . .. The same result holds for non-empty open subsets of these spaces, and
we leave the reader to make the appropriate changes to the proofs.

The proof that dimk(X) = n+k whenX is one of the three geometries Rn, Sn and Hn,
is largely independent of the choice of X , and depends only on the nature of the bisectors
in these geometries. Each of these three geometries has the following properties:

(P1) dim1(X) = n+ 1;

(P2) there exists x1, x2, . . . in X such that if j1 < j2 < · · · < jn then {xj1 , . . . , xjn} lies
on a unique bisector B, and no other xi lies on B.

Now (P1) and (P2) imply that dimk(X) = n+k for k = 1, 2, . . .. Indeed, (P2) implies that
for any bisector B, |B ∩ {x1, . . . , xn+k}| ≤ n, so that |Bc ∩ {x1, . . . , xn+k}| ≥ k. This
implies that dimk(X) ≤ n + k. However, (P1) and Theorem 3.1 show that dimk(X) ≥
n+k. Since we know that each of Rn, Sn and Hn has the property (P1), it remains to show
that they have the property (P2), and this depends on the nature of the bisectors in these
geometries. We consider each in turn.

6.1 Euclidean space Rn

Each bisector in Rn is a hyperplane (that is, the translation of an (n − 1)-dimensional
subspace of Rn), and each hyperplane is a bisector. Any set of n points lies on a bisector,
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and there exists sets of n+ 1 points that do not lie on any single bisector. The appropriate
geometry here is the affine geometry of Rn, but we shall take a more informal view. First,
we choose n points x1, . . . , xn that lie on a unique hyperplane H . Next, we select a point
xn+1 not on H . Then any n points chosen from {x1, . . . , xn+1} lie on some hyperplane
H ′, and the remaining point does not lie on H ′. Now suppose that we have constructed
the set {x1, . . . , xn+p} with the property that any set of n points chosen from this lie on a
unique hyperplane, say Hα, and that no other xi lies on Hα. Then we can choose a point
xn+p+1 that is not on any of the

(
n+p
n

)
hyperplanes Hα, and it is then easy to check that

the sequence x1, x2, . . . has the property (P2).
Although we have not used it, we mention that there is a formula for the n-dimensional

volume V of the Euclidean simplex whose vertices are the n + 1 points x1, . . . , xn+1 in
Rn, namely

V 2 =
(−1)n+1

2n(n !)2
∆,

where ∆ is the Cayley-Menger determinant given by

∆ =

∣∣∣∣∣∣∣∣∣
0 1 · · · 1
1 d21,1 · · · d21,n+1
...

...
. . .

...
1 d2n+1,1 · · · d2n+1,n+1

∣∣∣∣∣∣∣∣∣ ,
and di,j = ‖xi − xj‖. As V = 0 precisely when the points xj lie on a hyperplane, we
see that this condition could be used to provide an algebraic background to the discussion
above. For more details, see [3, 4] and [5]. We also mention that there are versions of the
Cayley-Menger determinant that are applicable to spherical, and to hyperbolic, spaces.

6.2 Spherical space Sn

Spherical space (Sn, d) is the space {x ∈ Rn+1 : ‖x‖ = 1} with the path metric d induced
on Sn by the Euclidean metric on Rn+1. Explicitly, cos d(x, y) = x·y, where x·y is the
usual scalar product in Rn+1. If u and v are distinct points of Sn, we let BE(u|v) be the
Euclidean bisector (in Rn+1) of u and v, and BS(u|v) the spherical bisector in the space
(Sn, d). Then BE(u|v) is a hyperplane that passes through the origin in Rn+1, and

BS(u|v) = Sn ∩BE(u|v). (6.1)

The bisectors BS(u|v) are the great circles (of the appropriate dimension) on Sn.
The equation (6.1) implies that the k-metric dimension of the spherical spaces is the

same as for Euclidean spaces. Indeed, our proof for Euclidean spaces depended on con-
structing a sequence x1, x2, . . . with the property (P2), and it is clear that this construction
could be carried out in such a way that each xj lies on Sn.

6.3 Hyperbolic space Hn

Our model of hyperbolic n-dimensional space is Poincare’s half-space model

Hn = {(x1, . . . , xn) ∈ Rn : xn > 0}

equipped with the hyperbolic distance dwhich is derived from Riemannian metric |dx|/xn.
For more details, see for example, [2, 17]. Our argument for Hn is essentially the same as
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for Rn and Sn because if u and v are distinct points in Hn, then the hyperbolic bisector
B(u|v) is the set S ∩ Hn, where S is some Euclidean sphere whose centre lies on the
hyperplane xn = 0. We omit the details.

7 The metric dimensions of graphs
The vertex set V of a graph G supports a natural graph metric d, where d(u, v) is the
smallest number of edges that can be used to join u to v. Some basic results on the k-
metric dimension of a graph have recently been obtained in [7, 8, 9, 10, 11]. Moreover,
it was shown in [19] that the problem of computing the k-metric dimension of a graph
is NP-hard. A natural problem in the study of the k-metric dimension of a metric space
(X, d) consists of finding the largest integer k such that there exists a k-metric generator
forX . For instance, for the graph shown in Figure 2 the maximum value of k is four. It was
shown in [7, 10] that for any graph of order n this problem has time complexity of order
O(n3). If we consider the discrete metric space (X, d0) (equivalently, a compete graph),
then dim1(X) = |X| − 1 and dim2(X) = |X|. Furthermore, for k ≥ 3 there are no
k-metric generators for X . In general, for any metric space (X, d), the whole space X is
a 2-metric generator, as two vertices are distinguished by themselves. As we have already
seen, there are metric spaces, like the Euclidean space Rn, where for any positive integer
k, there exist at least one k-metric generator.

We shall now discuss the dimension sequences of the simplest connected graphs, that
is paths and cycles (and we omit the elementary details).

A finite path Pn is a graph with vertices v1, . . . , vn, edges {v1, v2}, . . . , {vn−1, vn},
and bisectors {v2}, . . . , {vn−1}. We leave the reader to show that Pn has dimension se-
quence {

(1, 2,+∞, . . .) if n = 2, 3;
(1, 2, 4, 5, . . . , n,+∞, . . .) if n ≥ 4.

A semi-infinite path PN is a graph with vertices v1, v2 . . ., edges {v1, v2}, {v2, v3}, . . ., and
bisectors {v2}, . . .. Thus PN has dimension sequence (1, 3, 4, 5, . . .). A doubly-infinite
path PZ is the graph with vertices . . . , v−1, v0, v1, . . ., edges . . . , {v−1, v0}, {v0, v1}, . . .,
and bisectors . . . , {v−1}, {v0}, {v1}, . . .. Thus PZ has dimension sequence (2, 3, 4, 5, . . .).
We note that a graph G has 1-metric dimension 1 if and only it is Pn or PN [6, 14]. This,
together with the results just stated, show that if G is a graph of order two or more, and
k ≥ 2, then dimk(G) = k if and only if G is Pn and k = 2 (see also [8]).

We now consider cycles. A cycle Cn is a graph with vertices v1, . . . , vn, and edges
{v1, v2}, . . . , {vn−1, vn}, {vn, v1}. We must distinguish between the cases where n is
even, and where n is odd (which is the easier of the two cases) and, as typical examples,
we mention that C7 has dimension sequence (2, 3, . . . , 7,+∞, . . .), and C8 has dimension
sequence (2, 3, 4, 6, 7, 8,+∞, . . .). Suppose that n is odd; then the bisectors are the single-
tons {v}. Thus if S is a set of k+ 1 vertices, where k+ 1 ≤ n, then |Bc∩S| ≥ k for every
bisector B. Thus if n is odd, then dimk(Cn) = k + 1, and Cn has dimension sequence
(2, 3, . . . , n,+∞, . . .).

We now show that C2q has dimension sequence

(2, 3, . . . , q, q + 2, q + 3, . . . , q + q,+∞, . . .).

To see this, label the vertices as vj , where j ∈ Z, and where vi = vj if and only if i ≡ j
(mod n). The vertices vi and vj are antipodal vertices if and only if i− j ≡ q (mod 2q);
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thus vj and vj+q are antipodal vertices. The class of bisectors is the class of sets {v, v∗},
where v is a vertex, and v∗ is the vertex that is antipodal to v. For k = 1, . . . , q − 1 we
can take a set of k + 1 points, no two of which are antipodal, as a k-metric basis, so that
dimk(C2q) = k + 1 for k = 1, . . . , q − 1. To find dimq(C2q), we need to take (for a
q-metric basis) a set S which contains two pairs of antipodal points, and one more point
from each pair of the remining antipodal pairs. We leave the details to the reader.

v1
v2

v3
v4

u1 u2 u3
. . .

ut

Figure 2: For k ∈ {1, 2, 3, 4}, dimk(G) = k + 1.

As an example which joins a path to a cycle, consider the graphG illustrated in Figure 2
which is obtained from the cycle graph C5 and the path Pt, by identifying one of the
vertices of the cycle, say u1, and one of the end vertices of Pt. Let S1 = {v1, v2}, S2 =
{v1, v2, ut}, S3 = {v1, v2, v3, ut} and S4 = {v1, v2, v3, v4, ut}. Then, for k = 1, 2, 3, 4,
the set Sk is k-metric basis of G.

The following lemma is useful when discussing examples in graph theory.

Lemma 7.1. Suppose that a graph G does not have any cycles of odd length. Then
B(u|v) = ∅ when d(u, v) is odd.

The proof is trivial for if x ∈ B(u|v) then there is a cycle of odd length (from u to x,
then to v, and then back to u). This lemma applies, for example, to the usual grid (or graph)
in Rn whose vertex set is Zn. A bipartite graph is a graph G whose vertex set V splits into
complementary sets V1 and V2 such that each of the edges of G join a point of V1 to a point
of V2. As a graph is bipartite if and only if it has no cycles of an odd length, this lemma is
about bipartite graphs.

Example 7.2. Let us now consider a graph G that is an infinite tree in which every vertex
has degree at least three. Now let v be any vertex, select three edges from v, say {v, a},
{v, b} and {v, c}. As G is a tree, if we remove one edge the remaining graph is discon-
nected. Now let Gc be the subgraph of G that would be the component containing c if
we were to remove the edge {v, c} from G. It is clear that if u is a vertex in Gc, then
d(a, u) = d(b, u) since any path from a (or b) to u must pass through the edge {v, c}.
We conclude that Gc ⊂ B(a|b). It is now clear from Theorem 4.1 that G has dimension
sequence (+∞,+∞, . . .).

For the rest of this section we shall consider the Cayley graph of a group with a given
set of generators as a metric space. Let G be a group and let G0 a set of generators of
G. We shall always assume that if g ∈ G0 then g−1 ∈ G0 also. Then the Cayley graph
of the pair (G,G0) is a graph whose vertex set is G, and such that the pair (g1, g2) is an
edge if and only if g2 = g0g1 for some g0 in G0. Thus, for example, PZ is the Cayley
graph of an infinite cyclic group (on one generator), and Cn is the Cayley graph of an finite
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cyclic group (on one generator). We shall always assume that the set G0 of generators of
G is finite; then the Cayley graph is locally finite (that is, each vertex is the endpoint of
only finitely many edges). Note also that if a generator g0 has order two then g−10 = g0 so
this only provides one edge (not two edges) from each vertex. The following result, which
characterises Cayley graphs within the class of all graphs, is well known.

Theorem 7.3. A graph is a Cayley graph of a group G if and only if it admits a simply
transitive action of G by graph automorphisms.

Theorem 7.3 suggests that if we use the homogeneity implied by this result there is a
reasonable chance of finding the dimension sequence of a Cayley graph. However, for a
graph that is not the Cayley graph of a group, it seems that we are reduced to finding its
metric dimensions by a case by case analysis.

We shall now verify the claims made in Example 5.5. First, suppose that G is a free
group on p generators. Then the Cayley graph of G is a tree in which every vertex has
degree 2p; thus, using Example 7.2, we see that G has dimension sequence (+∞,+∞,
+∞, . . .).

Next, we consider an abelian group G on two generators of infinite order (the proof for
p generators is entirely similar). The Cayley graph of G has Z2 as its vertex set and (if we
identify the lattice point (m,n) with the Gaussian integer m+ in) edges {m+ in,m+ 1 +
in} and {m+ in,m+ i(n+ 1)}, where m,n ∈ Z. It is (geometrically) clear that for any
m ∈ Z we have, with ζ = m+ im,

B(ζ + 1|ζ + i) ⊃ {p+ iq : p ≥ m+ 1, q ≥ m+ 1}.

It now follows from Theorem 4.1 (by taking |m| large and m negative) that G has dimen-
sion sequence (+∞,+∞, . . .).

In contrast to Example 5.5 we have the following result for the infinite dihedral group
whose Cayley graph is an infinite ladder; for example we can take the group generated by
the two Euclidean isometries which, in complex terms, are z 7→ z + 1 and z 7→ z̄.

Theorem 7.4. The infinite dihedral group has dimension sequence (3, 4, 6, 8, . . .).

Proof. We may assume that (in complex terms) the vertices of the ladder graph are the
points m + in, where m ∈ Z and n = 0, 1. The key to computing the metric dimensions
of the ladder graph is the observation that

B(0|1 + i) = {1, 2, 3, . . .} ∪ {i, i− 1, i− 2, . . .}.

Of course, similar bisectors arise at other pairs of similarly located points; equivalently,
each automorphism of the graph maps a bisector to a bisector. All other bisectors are either
empty or of cardinality two. We claim that {0, 1, i} is a 1-metric basis for the graph so that
dim1(G) = 3. Next, it is easy to see that {0, 1, i, 1 + i} is a 2-metric basis for X so that
dim2(X) = 4. The set {0, 1, 2, i, 1 + i, 2 + i} is a 3-metric basis so that dim3(X) = 6.
We leave the details, and the remainder of the proof to the reader.

8 The join of metric spaces
The k-metric dimension of the join G1 + G2 of two finite graphs G1 and G2 was studied
in [7]. Let us briefly recall the notion of the join of two graphs G1 and G2 with disjoint
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vertex sets V1 and V2, respectively. The join G1 + G2 of G1 and G2 is the graph whose
vertex set is V1 ∪ V2, and whose edges are the edges in G1, the edges in G2, together with
all edges obtained by joining each point in V1 to each point in V2. Let d1, d2 and d be the
graph metrics of G1, G2 and G1 +G2, respectively; then

d(u, v) =


min{d1(u, v), 2} if u, v ∈ V1;

min{d2(u, v), 2} if u, v ∈ V2;

1 if u ∈ Vi, v ∈ Vj , where i 6= j,

because if u, v ∈ V1, say, then for w in V2, we have d(u, v) ≤ d(u,w) + d(w, v) = 2.
The join of two metric spaces is defined in a similar way, but before we do this we recall

that if (X, d) is a metric space, and t > 0, then dt, defined by

dt(x, y) = min{d(x, y), 2t},

is a metric on X . If d(x, y) < 2t then dt(x, y) = d(x, y), so that the dt-metric topology
coincides with the d-metric topology on X . As the metric dt will appear in our definition
of the join, we first show how the metric dimension of a single metric space varies when we
distort the metric from d to dt as above. From now on, the k-metric dimension of (X, dt)
will be denoted by dimt

k(X).

Theorem 8.1. Let (X, d) be a metric space, and k a positive integer, and suppose that
0 < s < t. Then dims

k(X) ≥ dimt
k(X) ≥ dimk(X). However, it can happen that

lim
t→+∞

dimt
k(X) > dimk(X). (8.1)

The join of two metric spaces is defined in a similar way to the join of two graphs, and
to motivate this, suppose that (X, d) is a metric space, and that X1 and X2 are bounded
subsetsX whose distance apart is very large compared with their diameters. Then, in some
sense, we can approximate the metric space (X1∪X2, d) by replacing all values d(x1, x2),
where xj ∈ Xj , by t, where t is some sort of average of the values d(x1, x2). We shall now
define the join, so suppose that (X1, d1) and (X2, d2) are metric spaces, withX1∩X2 = ∅,
and t > 0. Then the join of (X1, d1) and (X2, d2) (relative to the parameter t) is the metric
space (X1 ∪X2, d

t), where

dt(u, v) =


dt1(u, v) if u, v ∈ X1;

dt2(u, v) if u, v ∈ X2;

t if u ∈ Xi and v ∈ Xj , where i 6= j.

As with graphs, X1 +X2 always represents the metric space (X1 ∪X2, d
t), where in this

case t will be understood from the context.
We might hope that the metric dimension is additive with respect to the join, but unfor-

tunately it is not. Let X1 = {1, 3} and X2 = {2, 4}, each with the Euclidean metric, and
let t = 1. Then X1 ∪X2 = {1, 2, 3, 4} with the metric d1, where d1(1, 3) = d1(2, 4) = 2
and, for all other x and y, d1(x, y) = 1. The bisectors in X1 +X2 are X1, X2 and ∅, and
from this we conclude that dim1

1(X1 +X2) = 3. Obviously, dim1(X1) = dim1(X2) = 1,
so that in this case, dim1(X1) + dim1(X2) < dim1

1(X1 +X2).
We now give some inequalities which hold for the join of two metric spaces.
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Theorem 8.2. Let (Xj , dj), j = 1, 2, be metric spaces with X1 ∩X2 = ∅, and consider
the join (X1 ∪X2, d

t). Then, for any positive integer k, we have

dimk(X1) + dimk(X2) ≤ dimt
k(X1) + dimt

k(X2) ≤ dimt
k(X1 +X2). (8.2)

We shall now give an example which shows that (8.1) can hold; then we end with the
proofs of Theorems 8.1 and 8.2, and stating a consequence of Theorem 8.2.

Example 8.3. Let X = R and d(x, y) = |x − y|, so that dim1(X) = 2. We shall now
show that if t > 0 then dimt

1(X) = +∞, so that (8.1) can hold. Suppose that a < b,
and consider the bisector Bt(a|b). If x ≤ a − 2t, then dt(x, a) = dt(x, b) = 2t so that
x ∈ Bt(a|b). Thus Bt(a|b) ⊃ (−∞, a − 2t]. Now let S be any finite set, and let s be the
largest element in S. Then Bt(s+ 2t, s+ 3t) ⊃ (−∞, s] ⊃ S, so that dimt

1(X) = +∞.

This is a convenient place to describe the notation that will be used in the following two
proofs. We have metric spaces (X1, d1) and (X2, d2) with X1 ∩ X2 = ∅. For j = 1, 2
we use Bj(u|v) for the bisectors in Xj , and dimk(Xj) for their metric dimensions. Now
consider the join (X1 ∪ X2, d

t), and its metric subspaces (Xj , d
t). We use Bt(u|v) and

Btj(u|v) for the bisectors in these spaces, and dimt
k(X1 + X2) and dimt

k(Xj) for their
metric dimensions. In general, we write [B]c for the complement of a bisector B of any
type.

We shall need the following lemma in our proof of Theorem 8.1.

Lemma 8.4. Let (X, d) be a metric space, and suppose that 0 < s < t. Then B(u|v) ⊂
Bt(u|v) ⊂ Bs(u|v).

Proof. First, observe that for all real r, and all real, distinct α and β, we have min{α, r} =
min{β, r} if and only if (i) r ≤ min{α, β} or (ii) α = β. Now suppose that x ∈ Bt(u|v).
Then dt(x, u) = dt(x, v) so that min{d(x, u), t} = min{d(x, v), t}. This implies that
t ≤ min{d(x, u), d(x, v)} or d(x, u) = d(x, v), and (since s < t) in both cases we have
ds(x, u) = ds(x, v). Thus Bt(u|v) ⊂ Bs(u|v). The proof that B(u|v) ⊂ Bt(u|v) is
trivial: if x ∈ B(u|v) then d(x, u) = d(x, v) so that dt(x, u) = dt(x, v); hence x ∈
Bt(u|v).

The proof of Theorem 8.1. Let A be any finite subset of X . Then, by Lemma 8.4, for all u
and v in X with u 6= v, we have

|A ∩ [B(u|v)]c| ≥ |A ∩ [Bt(u|v)]c| ≥ |A ∩ [Bs(u|v)]c|.

It follows that if A is a k-metric generator for (X, ds) (that is, if, for all u and v, |A ∩
[Bs(u|v)]c| ≥ k), then it is also a k-metric generator for (X, dt). Thus the minimum of
|S| taken over all k-metric generators S of (X, dt) is less than or equal to the minimum
over all k-metric generators of (X, ds); hence dims

k(X) ≥ dimt
k(X). The proof that

dimt
k(X) ≥ dimk(X) is entirely similar.

The proof of Theorem 8.2. The first inequality follows from Theorem 8.1. The inequality
is trivially true if dimt

k(X1 +X2) = +∞, so we may assume that there is a k-metric basis,
say W , of X1 +X2. Thus |W | = dimt

k(X1 +X2). Now take any u and v in X1; then

Bt(u|v) = {x ∈ X1 ∪X2 : dt(x, u) = dt(x, v)} = Bt1(u|v) ∪X2,
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so that, from Lemma 8.4, [Bt(u|v)]c = [Bt1(u|v)]c ⊂ X1. We putWj = W ∩Xj , j = 1, 2.
Then, if we let u and v vary over X1, with u 6= v, we find that

k ≤ |[Bt(u|v)]c ∩W | = |[Bt1(u|v)]c ∩X1 ∩W | = |[Bt1(u|v)]c ∩W1|,

so that dimt
k(X1) ≤ |W1|. Similarly, dimt

k(X2) ≤ |W2|, so that

dimt
k(X1) + dimt

k(X2) ≤ |W1|+ |W2| = |W | = dimt
k(X1 +X2)

as required.

If (Xj , dj), j = 1, 2, are metric spaces, each with diameter less than t, such that
X1 ∩X2 = ∅, the for any k-metric basis Ai of (Xj , dj), A1 ∪ A2 is a k-metric generator
for the join (X1 ∪ X2, d

t). This shows that dimt
k(X1 + X2) ≤ dimk(X1) + dimk(X2),

and so Theorem 8.2 leads to the following corollary.

Corollary 8.5. Let (Xj , dj), j = 1, 2, be metric spaces, each with diameter less than t,
such that X1 ∩X2 = ∅. Then, for k = 1, 2, . . .,

dimt
k(X1 +X2) = dimk(X1) + dimk(X2).
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