

PODIPLOMSKI ŠTUDIJ GRADBENIŠTVA DOKTORSKI ŠTUDIJ

Kandidat:

MATEJ URŠIČ, univ. dipl. inž. vod. in kom. inž.

PRISPEVEK K ANALIZI HIDRAVLIČNIH TRENJSKIH IZGUB ZA TOK POD TLAKOM V CEVEH KROŽNEGA PREREZA

Doktorska disertacija štev.: 193

CONTRIBUTION TO THE ANALYSIS OF THE HYDRAULIC FRICTION LOSSES FOR PRESSURISED FLOW IN ROUND PIPES

Doctoral thesis No.: 193

Temo doktorske disertacije je odobril Senat Univerze v Ljubljani na svoji 7. seji dne 27. junija 2006 in imenoval mentorja prof.dr. Borisa Kompareta in somentorja prof.dr. Franca Steinmana

Ljubljana, 8. maj 2009

Komisijo za oceno ustreznosti teme doktorske disertacije v sestavi prof.dr. Boris Kompare, prof.dr. Franc Steinman, prof.dr. Matjaž Četina, doc.dr. Anton Bergant, Litostroj E.I. in UL FS,

je imenoval Senat Fakultete za gradbeništvo in geodezijo na 9. redni seji dne 19. aprila 2006.

> Komisijo za oceno doktorske disertacije v sestavi prof.dr. Boris Kompare, prof.dr. Franc Steinman, prof.dr. Matjaž Četina, doc.dr. Anton Bergant, Litostroj E.I. in UL FS, izr.prof.dr. Roman Klasinc, TU Graz, Avstrija,

je imenoval Senat Fakultete za gradbeništvo in geodezijo na 26. redni seji dne 25. marca 2009.

Komisijo za zagovor doktorske disertacije v sestavi prof. dr. Bojan Majes, dekan, predsednik prof.dr. Boris Kompare, prof.dr. Franc Steinman, prof.dr. Matjaž Četina, doc.dr. Anton Bergant, Litostroj E.I. in UL FS, izr.prof.dr. Roman Klasinc, TU Graz, Avstrija,

je imenoval Senat Fakultete za gradbeništvo in geodezijo na 27. redni seji dne 22. aprila 2009.

IZJAVA O AVTORSTVU

Podpisani MATEJ URŠIČ, univ. dipl. inž. vod. in kom. inž. izjavljam, da sem avtor doktorske disertacije z naslovom: »PRISPEVEK K ANALIZI HIDRAVLIČNIH TRENJSKIH IZGUB ZA TOK POD TLAKOM V CEVEH KROŽNEGA PREREZA«.

Ljubljana, 08. maj 2009

(podpis)

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK:	532.5:626/628.2(043.3)
Avtor:	Matej Uršič, univ. dipl. inž. vod. in kom. inž.
Mentor:	prof. dr. Boris Kompare
Somentor:	prof. dr. Franc Steinman
Naslov:	Prispevek k analizi hidravličnih trenjskih izgub za tok pod tlakom v ceveh
	krožnega prereza
Obseg in oprema:	130 str., 15 pregl., 86 sl., 96 en.
Ključne besede:	hidravlične izgube, koeficient trenja, relativna hrapavost, Reynoldsovo
	število hrap, Reynoldsovo število, Nikuradse, Colebrook-White, Moody,
	teorija mejne plasti

Izvleček

Po poskusih Nikuradseja in konstrukciji Moodyjevega diagrama je izraz za hidravlične izgube v cevovodih dobil svojo dokončno obliko v Colebrook-Whitovi formuli. Potrebno se je zavedati, da je ta formula sestavljena le za območje razvite turbulence, a se jo še vedno uporablja tudi za prehodno in laminarno območje. V sklopu raziskav je bil izveden obsežen pregled obstoječih izrazov, ki imajo veljavnost v različnih režimih toka. Pridobljeni in preverjeni so bili podatki do sedaj opravljenega eksperimentalnega dela, ki smo jih dopolnili z lastnimi meritvami v hidravlično gladkem režimu toka. Meritve so bile izvedene v hidravlično gladkem režimu toka v obsegu Reynoldsovih števil od 144 do 1,21×105. V prispevku je prikazana izdelava dveh možnih oblik univerzalnega izraza koeficienta trenja, ki združuje teoretično ozadje in empirične rezultate. S tem izrazom določeni koeficienti trenja se skoraj popolnoma prilegajo izmerjenim in vsekakor bistveno bolje kot koeficienti, določeni s klasičnimi (že poznanimi) metodami. Omenjeni izraz postavlja temelje potrebnim poskusom, ki bodo omogočili nadaljnji razvoj enačbe za nestacionarne razmere toka. Poleg univerzalnega izraza koeficienta trenja je bila razvita nova oblika enačbe koeficienta trenja za tok v hidravlično gladkih ceveh, ki se popolnoma ujema s Prandtlovim univerzalnim zakonom v gladkih ceveh. Glede na to da univerzalna enačba koeficienta trenja temelji na teoriji mejne plasti, je bila podana funkcijska odvisnost mejnega Reynoldsovega števila hrap, ko se prehod iz hidravlično gladkega v hidravlično hrapav režim prične.

BIBLIOGRAPHIC-DOCUMENTALISTIC INFORMATION

UDC:	532.5:626/628.2(043.3)
Author:	Matej Uršič, univ. dipl. inž. vod. in kom. inž.
Supervisor:	prof. dr. Boris Kompare
Co-advisor:	prof. dr. Franc Steinman
Title:	Contribution to the analysis of the hydraulic friction losses for pressurised flow in
	round pipes
Notes:	130 p., 15 tab., 86 fig., 96 eq.
Key words:	hydraulic losses, friction factor, relative roughness, steady flow, Colebrook-White,
	Nikuradse, Moody, Reynolds number, Reynolds roughness number, boundary
	layer theory

Abstract

Following the experiments of Nikuradse and construction of the Moody's diagram the term for hydraulic losses in pipes got its final form in the Colebrook-White's formula. Despite the fact that the formula is constructed only for the fully turbulent flow it is used also for the transition and laminar flow. An extensive review of many existing friction factor equation has bee made. Data form many of the previously performed measurements has been collected and analysed. Measurements of mean flow and pressure drop were performed in a laminar and fully developed smooth pipe flow for Reynolds numbers from 144 to $1,21 \times 10^5$. A construction of two different structures of a universal formula for the friction factor, which successfully combines theoretical background and empirical knowledge, is shown. This formula gives better fit to the measured friction factor than the results of classical (already known) formulas. This formula is setting basis for further experiments to improve the friction factor formula in unsteady flow conditions. Beside the universal friction factor formulation a new explicit term for the smooth pipe flow has been developed which has the same agreement with the measured data like the Prandtl's relation. Since the universal friction factor equation is based on the boundary layer theory, a new function for the critical Reynolds roughness number, when the transition from the hydraulically smooth to the hydraulically rough flow starts, has been developed.

Zahvala

Iskrena zahvala mentorju, prof. dr. Borisu Kompare, in somentorju, prof. dr. Francu Steinmanu, za razpoložljivost in strokovno svetovanje pri vseh dvomih ter težavah, ki so se pojavljali med nastajanjem doktorske disertacije.

Prisrčna zahvala tudi Lojzetu Jagodicu za pomoč pri raziskovalnem delu v laboratoriju, saj sva skupaj preživela ogromno časa in udejanjila marsikatero zamisel.

Še posebno se zahvaljujem Zvonku Mozetiču, ki je opravil in oblikoval fotografije laboratorijske opreme ter za mnoge nasvete iz elektrotehnične stroke.

Za posojeno tehnično opremo, brez katere meritve ne bi mogle biti opravljene, se zahvaljujem podjetjem Vodovodi in Kanalizacija Nova Gorica d.d., JP Vodovod - Kanalizacija d.o.o., Endress + Hauser d.o.o. Slovenija, Irio d.o.o. in Univerzi v Ljubljani – Fakulteta za strojništvo.

Doc. dr. Nataši Atanasovi, ki me je v zadnjih letih nadomestila pri pedagoškem delu, namenjam zahvalo, saj mi je tako omogočila, da sem se bolj temeljito posvečal raziskavi in pisanju pričujoče disertacije.

Nenazadnje bi se zahvalil še družini, predvsem pa mami Mojci, ki me je spodbujala in podpirala od začetkov študija in med njim. Veliko potrpežljivosti, razumevanja, predvsem pa neskončno ljubezni mi je nudila moja nenadomestljiva žena Martina. Naloga je posvečena njima.

KAZALO VSEBINE

1 UVOD	1
1.1 Hipoteza disertacije	1
1.2 Cilji disertacije	
2 OSNOVNI POJMI DINAMIKE REALNE TEKOČINE	
2.1 Kontinuitetna enačba (zakon o ohranitvi mase)	
2.2 Energijska enačba	
2.3 Energijske izgube	
2.4 Režim toka in Reynoldsovo število	
3 PREGLED LITERATURE	9
3.1 Kronološki potek eksperimentalnega dela	9
3.2 Nikuradsejevo raziskovalno delo – meritev koeficienta trenja	
3.2.1 Eksperimentalna shema in oprema	
3.2.2 Merilna oprema	
3.2.3 Merjene količine	
3.2.4 Meritve hidravlično gladkih cevi	
3.2.5 Meritve hidravlično hrapavih cevi	
3.2.6 Pregled objavljenih meritev	
3.3 Raziskovalno delo Colebrooka in Whita	
3.3.1 Pregled objavljenih meritev	
3.4 Raziskave na univerzi Oregon in Princeton	
4 TEORETIČNE OSNOVE	
4.1 Laminarni tok	
4.2 Turbulentni tok	
4.2.1 Profil hitrosti	
4.2.2 Ekvivalentna hrapavost	
4.2.3 Zakon upora	
4.2.1 Hidravlično gladek režim toka	
4.2.2 Hidravlično hrapav režim toka	
4.2.3 Prehodno območje	57

5 EKSPERIMENTALNI DEL RAZISKAVE	61
5.1 Merilna proga	61
5.2 Zajem in obdelava podatkov	
5.3 Merjene količine in merilni inštrumenti	67
5.3.1 Hrapavost in premer cevi	
5.3.2 Meritve tlaka	
5.3.2.1 Diferenčna tlačna sonda Deltabar PMD75	71
5.3.2.2 Vodni manometer	75
5.3.3 Meritve pretoka	77
5.3.3.1 Induktivni merilec pretoka Endress & Hauser Promag 30F	77
5.3.3.2 Volumetrična meritev pretoka	
5.3.4 Merjenje temperature	
5.4 Postopek meritev	
6 FILTRIRANJE IN INTERPRETACIJA PODATKOV	
6.1 Filtriranje podatkov	
6.2 Ovrednotenje merilne negotovosti	
7 PREDLOG NOVEGA OBRAZCA KOEFICIENTA TRENJA	
7.1 Hidravlično gladek režim toka	
7.2 Hidravlično hrapav režim toka	
7.3 Enačbe koeficienta trenja	
8 DISKUSIJA REZULTATOV	
9 ZAKLJUČEK	
10 SUMMARY	121
LITERATURA IN VIRI	123
Uporabljena literatura in viri	
Ostala literatura	

KAZALO AVTORSKIH SLIK

2 OSNOVNI POJMI DINAMIKE REALNE TEKOČINE

Slika 2.1:	Reynoldsova eksperimentalna naprava	5
Figure 2.1:	Reynolds experimental facility	5
Slika 2.2:	Primer laminarnega in turbulentnega režima toka	6
Figure 2.2:	An example of laminar and turbulent flow	6
Slika 2.3:	Razmere na ostenju v turbulentnem toku	7
Figure 2.3:	Conditions near the pipe wall for turbulent flow	7
Slika 2.4:	Določanje režima toka	8
Figure 2.4:	Definition of the flow regime	8

3 PREGLED LITERATURE

Slika 3.1:	Primerjava Nikuradsejevih objavljenih meritev v hidravlično gladkih ceveh	27
Figure 3.1:	Comparison of Nikuradse's published measured data in smooth pipes	27
Slika 3.2:	Primerjava Nikuradsejevih objavljenih meritev v hidravlično hrapavih ceveh	28
Figure 3.2:	Comparison of Nikuradse's published measured data in rough pipes	28
Slika 3.3:	Popravljene Nikuradsejeve meritve v hidravlično hrapavih ceveh	29
Figure 3.3:	Refitted Nikuradse's measured data in rough pipes	29
Slika 3.4:	Sinteza Nikuradsejevih meritev uporabljenih za nadaljnje raziskave	30
Figure 3.4:	Synthesis of Nikuradse's measured data used for further research	30
Slika 3.5:	Objavljene meritve Colebrook-Whita	35
Figure 3.5:	Colebrook-White's published measured data	35
Slika 3.6:	Meritve univerze Oregon in Princeton	38
Figure 3.6:	Oregon's and Princeton's measured data	38

4 TEORETIČNE OSNOVE

Slika 4.1:	Laminarni tok v cevi krožnega preseka	39
Figure 4.1:	Laminar flow in round pipes	39
Slika 4.2:	Hiperbolična porazdelitev koeficienta trenja λ v laminarnem režimu toka	41
Figure 4.2:	A hyperbolic distribution of the Friction factor in laminar flow	41
Slika 4.3:	Porazdelitev hitrosti v bližini stene	43
Figure 4.3:	Velocity distribution near the pipe wall	43
Slika 4.4:	Cilindrične koordinate v ceveh	49
Figure 4.4:	Cylindrical coordinates in pipes	49

Slika 4.5:	Primerjava izrazov koeficienta trenja λ v hidravlično gladkem režimu toka	55
Figure 4.5:	Comparison of some friction factor equations for hydraulically smooth flow	55
Slika 4.6:	Zakon popolne hrapavosti (enačba 4.48) v hidravlično hrapavem režimu toka	57
Figure 4.6:	Friction factor equation 4.48 in fully rough regime	57
Slika 4.7:	Primerjava Colebrook-Whitove enačbe z meritvami Nikuradseja	58
Figure 4.7:	Comparison of the Colebrook-White equation with Nikuradse's measured data	58

5 EKSPERIMENTALNI DEL RAZISKAVE

Slika 5.1:	Merilna proga v laboratoriju Katedre za mehaniko tekočin (UL-FGG)	. 61
Figure 5.1:	The experimental facility for pressure, flow and temperature measurements at UL-FGG	. 61
Slika 5.2:	Shema merilne proge	. 62
Figure 5.2:	Scheme of the experimental facility	. 62
Slika 5.3:	Umirjevalni bazen s prelivom	. 63
Figure 5.3:	Settling tank with overflow	. 63
Slika 5.4:	Umirjevalni del na vtoku v preizkuševalno cev	. 64
Figure 5.4:	Flow conditioning section at inlet of the pipe	. 64
Slika 5.5:	Primer namestitve merilnega prereza	. 64
Figure 5.5:	Pressure taps at measuring section	. 64
Slika 5.6:	Umirjevalni del z induktivnim merilcem pretoka na iztoku preizkuševalne cevi	. 65
Figure 5.6:	Flow conditioning section at the outflow of the pipe with the magneto-inductive flow meter	. 65
Slika 5.7:	Regulacijski ventil z elektromotorjem in zaporni kroglični ventil	. 65
Figure 5.7:	Regulation valve with actuator and stop valve	. 65
Slika 5.8:	Merilna posoda s potopno črpalko	. 66
Figure 5.8:	Volumetric flow measuring system with a recirculation pump	. 66
Slika 5.9:	Primerjava P in R profila hrapavosti	. 68
Figure 5.9:	P and R profile of the surface roughness	. 68
Slika 5.10:	Postopek določitve povprečne linije profila hrapavosti (»nošenje profila«)	. 68
Figure 5.10:	Handling of the surface roughness measurements	. 68
Slika 5.11:	Sistem preklapljanja in odzračevanja med 6 merilnimi prerezi na cevi	. 71
Figure 5.11:	Switching and aeration valves for 6 pressure measuring sections	. 71
Slika 5.12:	Diferenčna tlačna sonda Endress & Hauser Deltabar PMD75	. 71
Figure 5.12:	Differential pressure sensor Endress & Hauser Deltabar PMD75	. 71
Slika 5.13:	Umerjevalni posodi	. 72
Figure 5.13:	Calibration facility	. 72
Slika 5.14:	Kalibracijske krivulje Deltabar PMD75	. 73

Figure 5.14:	Calibration lines for Deltabar PMD75	73
Slika 5.15:	Vodni manometer	75
Figure 5.15:	Water manometer	75
Slika 5.16:	Meritev tlaka z vodnim manometrom	76
Figure 5.16:	Pressure measurement with the water manometer	76
Slika 5.17:	Induktivni merilec pretoka Endress & Hauser Promag 30F	77
Figure 5.17:	The magneto-inductive flow meter Endress & Hauser Promag 30F	77
Slika 5.18:	Relativna napaka induktivnega merilca pretoka Promag 30F	78
Figure 5.18:	Relative error of the read measurement for the flow measuring Promag 30F	78
Slika 5.19:	Kalibracijske premice posode za volumetrično merjenje pretoka	79
Figure 5.19:	Calibration lines for the flow container	79
Slika 5.20:	Tlačna sonda Endress & Hauser Deltapilot DB50	80
Figure 5.20:	Water level measuring sensor Endress & Hauser Deltapilot DB50	80
Slika 5.21:	Kalibracijske premice tlačne sonde Deltapilot DB50	81
Figure 5.21:	Calibration lines for the water lever pressure sensor Deltapilot DB50	81
Slika 5.22:	Temperaturni pretvornik Weidmuller WAS5 pro thermo	82
Figure 5.22:	Temperature analogue conditioner Weidmuller WAS5 pro thermo	82
Slika 5.23:	Kalibracija temperaturnega pretvornika	83
Figure 5.23:	Calibration lines used with the temperature analogue conditioner	83
Slika 5.24:	Shema ventilov ob tlačni sondi Deltabar PMD75	85
Figure 5.24:	Switching valve system for Deltabar PMD75	85

6 FILTRIRANJE IN INTERPRETACIJA PODATKOV

Slika 6.1:	Rezultati filtriranja grobih pogreškov induktivnega merilca Promag 30F	89
Figure 6.1:	Filtered data for Promag 30F	89
Slika 6.2:	Rezultati filtriranja grobih pogreškov temperaturnega pretvornika	90
Figure 6.2:	Filtered data for the temperature conditioner	90
Slika 6.3:	Primerjava izmerjenih pretokov induktivnega merilca pretoka z volumetričn merjenjem pretokov	im 93
Figure 6.3:	Flow measurements comparison of the magneto-inductive flow meter with to volumetric flow measuring facility	the 93
Slika 6.4:	Meritve koeficienta trenja λ v odvisnosti od Reynoldsovega števila <i>Re</i>	95
Figure 6.4:	Dependence of the friction factor measured data on Reynolds numbers	95
Slika 6.5:	Primerjava meritev koeficienta trenja λ z meritvami Nikuradseja, univerze Oregon	in
	Princeton	96

Figure 6.5:	Friction factor measured data compared with Nikuradse's, Oregon's and Princeton	ı's
	measurements	96
Slika 6.6:	Tokovnice pri karakterističnih Reynoldsovih številih	97
Figure 6.6:	Stream lines at characteristic Reynolds numbers	97
7 PREDLO	G NOVEGA OBRAZCA KOEFICIENTA TRENJA	
Slika 7.1:	Podatkovna baza uporabljenih meritev	99
Figure 7.1:	Measurements database	99
Slika 7.2:	$Re \cdot \sqrt{\lambda}$ izražen kot funkcija $f(Re)$	00
Figure 7.2:	$Re \cdot \sqrt{\lambda}$ expressed as $f(Re)$	00
Slika 7.3:	Primerjava univerzalnega zakona gladkih cevi (enačba 4.44) z enačbo 7.3 10	01
Figure 7.3:	Comparison of the Prandtl's equation 4.44 for smooth pipes with equation 7.3 10	01
Slika 7.4:	Prehod iz hidravlično gladkega v hidravlično hrapav režim toka10	02
Figure 7.4:	Transition from hydraulically smooth to hydraulically rough regime	02
Slika 7.5:	Primerjava Reynoldsovih števil hrap na intervalu $4 \le k_s^+ \le 15$ z enačbo 7.5 10	04
Figure 7.5:	Comparison of roughness Reynolds numbers in the range $4 \le k_s^+ \le 15$ with the equation 7.5 10	04
Slika 7.6:	Primeri preklopnih funkcij	06
Figure 7.6:	Examples of switching functions	06
Slika 7.7:	Primerjava univerzalne enačbe trenja (enačba 7.10) z meritvami	09
Figure 7.7:	Comparison of the universal friction factor equation (equation 7.10) with measured data 10	09
Slika 7.8:	Primerjava univerzalne enačbe trenja (enačba 7.11) z meritvami	10
Figure 7.8:	Comparison of the universal friction factor equation (equation 7.11) with measured data 1.	10

8 DISKUSIJA REZULTATOV

Slika 8.1:	Primerjava univerzalne enačbe trenja (enačba 7.10) z meritvami 111
Figure 8.1:	Comparison of the universal friction factor equation (equation 7.10) with measured data 111
Slika 8.2:	Primerjava univerzalne enačbe trenja (enačba 7.11) z meritvami 112
Figure 8.2:	Comparison of the universal friction factor equation (equation 7.11) with measured data 112
Slika 8.3:	Rezidual napake univerzalne enačbe koeficienta trenja v primerjavi z izmerjenimi vrednostmi 113
Figure 8.3:	Error residual of the universal friction factor equation compared with measured data 113
Slika 8.4:	Rezidual napake Colebrook-Whitovega izraza za prehodno območje v primerjavi z
	meritvami
Figure 8.4:	Error residual of the Colebrook-White equation for transitional flow compared with
	measured data114
Slika 8.5:	Ekstrapolirane vrednosti koeficienta trenja z enačbo 7.10 do Reynoldsovega števila 10 ¹² 115

Extrapolated values of the friction factor with the equation 7.10 up to Reynolds numbers 10^{12} 115
Ekstrapolirane vrednosti koeficienta trenja z enačbo 7.11 do Reynoldsovega števila 10^{12} 116
Extrapolated values of the friction factor with the equation 7.11 up to Reynolds numbers 10^{12} 116
Primerjava reziduala napake univerzalnega zakona gladkih cevi (enačba 4.44) in novega
predloga (enačba 7.3) za tok v hidravlično gladkem režimu 117
Error residual comparison for the Prandtl's equation in smooth pipes with the new
equation 7.3 for hydraulically smooth regime of flow
Rezidual napake Reynoldsovega števila hrap k_s^+ (enačba 7.5) v primerjavi z meritvami v
hidravlično hrapavem režimu toka
Error residual for the roughness Reynolds number k_s^+ (equation 7.5) compared with
measured data in hydraulically rough flow regime

KAZALO PRIVZETIH SLIK

3 PREGLED LITERATURE

Privzeta slika 3.1:	Moodyjev diagram (Streeter, 1951)
Adopted Figure 3.1:	Moody's chart (Streeter, 1951)
Privzeta slika 3.2:	Meritve koeficienta trenja v laboratoriju Dauphinoise v Grenoblu (Barbe,
	1947 cit. po Kirschmer, 1952)
Adopted Figure 3.2:	Experimental results of the measured friction factor in the laboratory
	Dauphinoise in Grenoble (Barbe, 1947 cite from Kirschmer, 1952)
Privzeta slika 3.3:	Meritve koeficienta trenja na hidroelektrarni Cavaglia v Švici (Kirschmer, 1952) 14
Adopted Figure 3.3:	Experimental results of the measured friction factor on the Cavaglia
	(Switzerland) hydroelectric power station (Kirschmer, 1952)
Privzeta slika 3.4:	Shema Nikuradsejeve eksperimentalne naprave (Nikuradse, 1932) 17
Adopted Figure 3.4:	Nikuradse's experimental facility scheme (Nikuradse, 1932)
Privzeta slika 3.5:	Shema Nikuradsejevega volumetričnega merilca pretoka (Nikuradse, 1932) 18
Adopted Figure 3.5:	Nikuradse's volumetric flow measuring facility scheme (Nikuradse, 1932) 18
Privzeta slika 3.6:	Merilnik profila hitrosti (Nikuradse, 1932)
Adopted Figure 3.6:	Flow profile measuring device (Nikuradse, 1932)
Privzeta slika 3.7:	Mikromanometer (Nikuradse, 1932)
Adopted Figure 3.7:	Micromanometer (Nikuradse, 1932)
Privzeta slika 3.8:	Nastavek za izvedbo meritve statičnega tlaka (Nikuradse, 1932)22
Adopted Figure 3.8:	Pressure taps (Nikuradse, 1932)
Privzeta slika 3.9:	Odvisnost koeficienta trenja λ od Reynoldsovega števila <i>Re</i> (Nikuradse, 1932)23
Adopted Figure 3.9:	The friction factor λ dependence on the Reynolds number Re (Nikuradse, 1932) 23
Privzeta slika 3.10:	Razmerje $\frac{1}{\sqrt{\lambda}}$ v odvisnosti od produkta $Re \cdot \sqrt{\lambda}$ (Nikuradse, 1932) 24
Adopted Figure 3.10:	Relation $\frac{1}{\sqrt{\lambda}}$ compared to the values of $Re \cdot \sqrt{\lambda}$ (Nikuradse, 1932) 24
Privzeta slika 3.11:	Nikuradsejevi rezultati za cevi z umetno hrapavostjo (Streeter, 1951)25
Adopted Figure 3.11:	Nikuradse's measured data in artificially roughened pipes (Streeter, 1951) 25
Privzeta slika 3.12:	Eksperimentalna naprava Colebrook-White (Colebrook in White, 1937) 31
Adopted Figure 3.12:	Colebrook-White's experimental facility (Colebrook and White, 1937)31
Privzeta slika 3.13:	Površine, uporabljene v preizkusih Colebrook-White (Colebrook in White, 1937) 31
Adopted Figure 3.13:	Colebrook-White's artificially roughened surfaces (Colebrook and White, 1937) 31
Privzeta slika 3.14:	Rezultati prve skupine (I, II, III) površin (Colebrook in White, 1937)

Adopted Figure 3.14:	Results for the first group (I, II, III) of surfaces (Colebrook and White, 1937) 32
Privzeta slika 3.15:	Rezultati druge skupine (III, IV, V) površin (Colebrook in White, 1937) 32
Adopted Figure 3.15:	Results for the second group (III, IV, V) of surfaces (Colebrook and White, 1937) 32
Privzeta slika 3.16:	Odklon od hidravlično hrapavega zakona (Colebrook in White, 1937) 33
Adopted Figure 3.16:	Deviation from the "rough" law (Colebrook and White, 1937)
Privzeta slika 3.17:	Odklon od hidravlično hrapavega zakona izražen z maksimalnim zrnom
	(Colebrook in White, 1937)
Adopted Figure 3.17:	Deviation from the "rough" law as a function of the largest grain (Colebrook
	and White, 1937)
Privzeta slika 3.18:	Eksperimentalna naprava »Princeton Superpipe« (Zagarola in Smits, 1998) 36
Adopted Figure 3.18:	The "Princeton Superpipe" experimental facility (Zagarola and Smits, 1998) 36
Privzeta slika 3.19:	Eksperimentalna naprava univerze Oregon (Swanson et al., 2002) 37
Adopted Figure 3.19:	Schematic diagram of the Oregon's experimental facility (Swanson et al., 2002) 37

4 TEORETIČNE OSNOVE

Privzeta slika 4.1:	Standardna »peščena« hrapavost k _s (Schlichting et al., 2000) 44
Adopted Figure 4.1:	Sand roughness height k _s (Schlichting et al., 2000)
Privzeta slika 4.2:	Funkciji $C_r^+(k_s^+)$ in $C^+(k_s^+)$ (Schlichting et al., 2000)
Adopted Figure 4.2:	Functions $C_r^+(k_s^+)$ and $C^+(k_s^+)$ (Schlichting et al., 2000)
Privzeta slika 4.3:	Vpliv hrapavosti na režim turbulentnega toka (Webber, 1971) 46
Adopted Figure 4.3:	Effect of roughness on the turbulent flow regime (Webber, 1971)
Privzeta slika 4.4:	Univerzalna porazdelitev hitrosti $u^+(y^+)$ in strižne napetosti $\tau_t^+(y^+)$ za
	hidravlično gladke cevi (Schlichting et al., 2000) 51
Adopted Figure 4.4:	Universal distribution of velocity $u^+(y^+)$ and shear stress $\tau_t^+(y^+)$ for
	hydraulically smooth pipes (Schlichting et al., 2000) 51

KAZALO AVTORSKIH PREGLEDNIC

4 TEORETIČNE OSNOVE

Preglednica 4.1:	Ekvivalentna »peščena« hrapavost $k_{s,eq}$ za industrijsko izdelane cevi	47
Table 4.1:	Equivalent sand roughness $k_{s,eq}$ for commercial pipes	47
Preglednica 4.2:	Izrazi koeficienta trenja v hidravlično gladkem režimu toka	54
Table 4.2:	Different friction factor equations for hydraulically smooth flow	54
Preglednica 4.3:	Izrazi koeficienta trenja v prehodnem režimu toka	59
Table 4.3:	Different friction factor equations for hydraulically smooth flow	59

5 EKSPERIMENTALNI DEL RAZISKAVE

Preglednica 5.1:	Parametri hrapavosti po standardu ISO 4287:1997	69
Table 5.1:	Definition of the roughness parameters according to ISO 4287:1997	69
Preglednica 5.2:	Izmerjena hrapavost po standardu ISO 4287:1997	69
Table 5.2:	Measured values according to ISO 4287:1997	69
Preglednica 5.3:	Relativne napake kalibracijskih krivulj Deltabar PMD75	74
Table 5.3:	Relative error for calibration lines used with pressure sensor Deltabar PMD75	74
Preglednica 5.4:	Relativne napake kalibracijske krivulje posode za volumetrično merjenje pretoka	79
Table 5.4:	Relative error for calibration lines used with the flow container	79
Preglednica 5.5:	Relativne napake kalibracijskih krivulj Deltapilot DB50	81
Table 5.5:	Relative error for calibration lines used with pressure sensor Deltapilot DB50	81
Preglednica 5.6:	Relativne napake kalibracije temperaturnega pretvornika	83
Table 5.6:	Relative error for calibration lines used with the temperature analogue conditione	83

6 FILTRIRANJE IN INTERPRETACIJA PODATKOV

Preglednica 6.1:	Povzetek merilne negotovosti	. 92
Table 6.1:	Summary of the measuring uncertainty	. 92
Preglednica 6.2:	Povzetek negotovosti izračunanih količin	. 92
Table 6.2:	Summary of the measuring uncertainty for calculated quantities	. 92

7 PREDLOG NOVEGA OBRAZCA KOEFICIENTA TRENJA

Preglednica 7.1:	Vrednosti parametrov preklopnih funkcij	108
Table 7.1:	Evaluated parameters for switching functions	108

KAZALO PRIVZETIH PREGLEDNIC

3 PREGLED LITERATURE

Privzeta preglednica 3.1:	Dimenzije poskusnih cevi – hidravlično gladke cevi (Nikuradse, 1932) 23
Adopted Table 3.1:	Dimensions of measured pipes – hydraulically smooth pipes (Nikuradse,
	1932)
Privzeta preglednica 3.2:	Dimenzije poskusnih cevi - hidravlično hrapav režim toka (Nikuradse,
	1933)
Adopted Table 3.2:	Dimensions of measured pipes - hydraulically rough flow (Nikuradse,
	1932)

4 TEORETIČNE OSNOVE

Privzeta preglednica 4.1:	Ekvivalentna	»pe	ščena«	hrap	avost	t $k_{s,eq}$	za	enako	omerno	ustvarjeno
	tehnično hrap	avost	k_{teh} pod	llage (Schl	ichting	g et al	., 200	0)	
Adopted Table 4.1:	Equivalent s	sand	roughn	ess	k _{s,eq}	for	artifi	cially	formed	technical
	roughness k _{tek}	h (Sch	lichting	et al.	, 200	0)				

POGOSTO UPORABLJENI SIMBOLI

A	 delo
A_m	 mehansko delo
A_p	 delo normalnih tlakov
A_{tr}	 delo strižnih sil
C^+ , C_r^+	 univerzalne konstante turbulentne mejne plasti
D	 premer cevi
Ε	 celotna energija sistema
ΔE_{lok}	 lokalne izgube energije
ΔE_t	 linijske izgube energije oziroma izgube zaradi trenja
ΔE_{tot}	 celotne izgube energije
e_i	 notranja energija na enoto mase
g	 gravitacijski pospešek
h	 geodetska višina
k	 geometrijska višina hrap
k_s	 Standardna peščena hrapavost (višina)
k_s^+	 Reynoldsovo število hrap
k _{s, eq}	 ekvivalentna peščena hrapavost (višina)
<i>k</i> _{teh}	 tehnična hrapavost (višina)
ΔL	 dolžina primerjalnega odseka
l	 mešalna dolžina
р	 tlak
$p_{ heta}$	 tlak ob ostenju
Q	 pretok
R	 polmer cevi
r	 radialna koordinata
Re	 Reynoldsovo število
Re_{krit}	 kritično Reynoldsovo število prehoda iz laminarnega v turbulenten režim tok
Re_{τ}	 »strižno« Reynoldsovo število
S	 površina tokovnice
S	 smer naravne koordinate tokovnice
t	 čas
u, v, w	 komponenta hitrosti v smeri x, y in z
u_{δ}	 hitrost na stiku med turbulentno mejno plastjo in osrednjim tokom
u_{max}	maksimalna hitrost
$\mathcal{V}*$	 strižna hitrost
V , u_m	 povprečna hitrost pretočnega prereza
v_s	 hitrost v smeri tokovnice
x	 koordinata v smeri vzdolž toka
У	 koordinata v smeri prečno na tok

δ	 debelina mejne plasti
δ_L	 debelina laminarne mejne plasti
κ	 von Kàrmànova konstanta
λ	 koeficient trenja
μ	 dinamična viskoznost
v	 kinematična viskoznost
Ğlok	 koeficient lokalnih izgub
ρ	 gostota
τ	 strižna napetost
$ au_0$	 strižna napetost ob steni
$ au_{v}$	 strižna napetost zaradi viskoznosti
$ au_t$	 turbulentna strižna napetost

OSTALI SIMBOLI

'	 pulzacije hitrosti
-	

- _____ časovno povprečje količin
- + ... brezdimenzijska števila

1 UVOD

Cevi se pojavljajo v splošni uporabi vse od samih začetkov razvoja inženirske stroke. Vendar predstavlja še danes enega od odprtih problemov hidravlike določitev ustreznejšega izraza za opis hidravličnih izgub v cevovodih. Analitično je mogoče izpeljati izraza za laminarni tok in za popolnoma razvito turbulenco. Za prehodno območje to še ni bilo storjeno z zadovoljivo natančnostjo. V vsakdanji praksi se uporablja izraz, ki v argumentu logaritma združuje funkcijsko odvisnost hidravlično hrapavih in gladkih cevi. Zaradi narave logaritmov je rezultat pravzaprav kar »posrečen«. Tak inženirski »zmazek« se še danes uporablja kot najboljši izraz za določanje hidravličnih izgub oziroma koeficienta trenja λ v ceveh pri stalnem toku (Kompare, 1996).

Večina raziskav koeficienta trenja za cevovode je bila izvedena v hidravličnih laboratorijih in z eksperimentalnimi metodami. To pomeni, da so njihovi eksperimenti potekali v pogojih, ki jih v praksi praviloma težje srečujemo oziroma se pojavljajo le v izjemnih primerih. Zavedati se namreč moramo, da imamo v cevovodih opravka z Reynoldsovimi števili, ki določajo območje prehodnega režima toka oziroma, v primeru zelo nizkih hitrosti, laminarnega režima toka. Posebno to velja za pogoje obratovanja vodovodnih sistemov z zankastim in vejičastim vodovodnim omrežjem.

Kljub temu da so prve poskuse natančne določitve λ opravili že številni avtorji v začetku 20. stoletja, še danes ni pokazano z enako temeljitostjo, kakšen je dejanski koeficient λ za realne, industrijsko izdelane cevi in kakšen za vgrajene cevovode z vsemi spojnimi elementi, zasuni, odcepi, zavoji itd. Vpliv spojk, zasunov, odcepov, zavojev itd. po teoriji spada v lokalne izgube, medtem ko λ predstavlja linijske izgube. Iz praktičnih razlogov je smiselno pod obratovalno hrapavost upoštevati še ostale, izrazito lokalne izgube, ki jih večkrat ne poznamo dovolj natančno (pomanjkanje natančnih podatkov – vodovodna omrežja). S to problematiko se je ukvarjal poskus Petrešina (1987), ki je tudi podal nekatere smernice za njeno reševanje.

Pojavlja se tudi vprašanje veljavnosti koeficienta trenja v nestalnih pogojih. Dejstvo je, da so vse eksperimentalne raziskave potekale v razmerah stalnega toka. Pri nestalnem toku se tokovna slika namreč stalno spreminja, kar bi se moralo odraziti kot povečane izgube.

1.1 Hipoteza disertacije

Kot je bilo pokazano že v M. Uršič in B. Kompare (2003), je mogoče funkcijsko zvezo, ki opisuje koeficient trenja λ v odvisnosti od Reynoldsovega števila *Re* in relativne hrapavosti k_s/D^l , podati z eno eksplicitno izraženo funkcijo. Ključni parametri, ki nastopajo v tej enačbi in uravnavajo prehode med različnim režimi toka, v tej fazi še nimajo točne fizikalne razlage, saj so bili parametri umerjeni na digitalizirane Nikuradsejeve eksperimentalne rezultate. Vir podatkov je predstavljal digitaliziran

¹ Hrapavost k_s je definiran kot standardna »peščena« hrapavost. Natančna definicija je podana v poglavjih 4.2.1 in 4.2.2.

diagram, objavljen v literaturi (Streeter, 1951), ki ni originalen Nikuradsejev diagram oziroma ne predstavlja originala meritev. Izvirnik podatkov je objavljen v Nikuradse (1933).

Hipoteza te disertacije je, da se lahko funkcijo koeficienta trenja λ zapiše kot eno eksplicitno enačbo, kjer kot neodvisni spremenljivki nastopata Reynoldsovo število *Re* in relativne hrapavosti k_s/D . Ključni parametri, ki uravnavajo prehode med laminarnim, hidravlično gladkim in hidravlično hrapavim režimom toka, temeljijo na fizikalni razlagi z ustrezno teoretično osnovo. Tako določeno enačbo koeficienta trenja λ se nato preveri na eksperimentalnih podatkih, ki so bili pridobljeni z laboratorijskim poskusom v okviru te disertacije.

1.2 Cilji disertacije

Z namenom potrditve omenjene hipoteze, so bili v okviru raziskave zastavljeni sledeči cilji:

- 1. Pridobitev izvirnikov in obdelava podatkov predhodno izvedenih raziskav drugih avtorjev, s pomočjo katerih lahko kvantitativno določamo koeficient trenja.
- 2. Izvedba meritev tlačnih izgub v cevi krožnega preseka za tok pod tlakom ter ustrezna statistična obdelava in interpretacija rezultatov.
- 3. Opredelitev fizikalnih zakonitosti med prehodi v različne režime toka ter formalizacija le-teh z ustreznimi matematičnimi izrazi.
- 4. Izdelava obrazca koeficienta trenja λ v eksplicitni obliki s sintezo znanja iz točke 3.
- 5. Ekstrapolacija enačbe koeficienta trenja na višja Reynoldsova števila.

Preden preidemo na pregled obstoječe literature ter obravnavanje rezultatov raziskave, bodo predstavljene nekatere osnove hidravlike toka pod tlakom, ki omogočajo lažje razumevanje raziskovalnega obsega te disertacije.

2 OSNOVNI POJMI DINAMIKE REALNE TEKOČINE

2.1 Kontinuitetna enačba (zakon o ohranitvi mase)

Veljati mora osnovni pogoj, ki pravi, da je sprememba mase tekočine v nekem volumnu enaka razliki dotoka in iztoka na površini volumna (Rajar, 1986). Za enodimenzijski tok (npr. tok v cevi), kjer prevladuje le ena komponenta hitrosti (hitrost vzdolž osi cevovoda), lahko kontinuitetno enačbo zapišemo tako, da izberemo smer koordinatnega sistema kolinearno s smerjo toka. Tokovni volumen je tako del elementarne tokovnice cevi, zato ni pretoka skozi ostenje. Osnovna enačba se tako glasi (Steinman, 1999):

$$\frac{\partial(v_s \cdot S)}{\partial s} = 0.$$
 (2.1)

Oznaka »s« označuje smer naravne koordinate, kar predstavlja smer tokovnice.

Z integriranjem zgornje enačbe in ob dejstvu, da se gostota tekočine lahko spreminja $\rho = \rho(s,t)$, dobimo splošno kontinuitetno enačbo (Steinman, 1999):

$$\frac{\partial p}{\partial t} + \frac{\rho}{\nu} \left(\frac{\partial Q}{\partial s} + \frac{\partial v_s}{\partial t} \right) = 0.$$
(2.2)

Za stacionarni tok $\frac{\partial Q}{\partial s} = 0$ in nestisljivo tekočino $\rho = const.$ se izraz poenostavi v (Steinman, 1999):

$$v_{s,1} \cdot S_1 = v_{s,2} \cdot S_2 = \dots = v_{s,i} \cdot S_i \,. \tag{2.3}$$

2.2 Energijska enačba

Zakon o ohranitvi energije pove, da na spremembo celotne energije v sistemu vplivata dovedena oziroma odvedena toplota in sistemu odvzeta oziroma dodana energija zaradi dela, ki ga sistem opravi na okolico (Steinman, 1999):

$$\frac{\partial E}{\partial t} = \frac{\partial Q}{\partial t} - \frac{\partial A}{\partial t}.$$
(2.4)

Delo A lahko razdelimo na delo normalnih tlakov A_p , delo strižnih sil A_{tr} in mehansko delo A_m .

Z ustreznimi predpostavkami lahko za enodimenzijski tok privzamemo, da so parametri enakomerno razporejeni po prerezu. V tem primeru lahko računamo s povprečnimi količinami po prerezu (npr. po prerezu cevi krožnega preseka). Za poljubno izbrani kontrolni volumen dobimo (Steinman, 1999):

$$\frac{\partial Q}{\partial t} - \frac{\partial A}{\partial t} = \rho \cdot Q \left(e_i + \frac{p}{\rho} + g \cdot h + \frac{v_s^2}{2} \right)_{izstop} - \rho \cdot Q \left(e_i + \frac{p}{\rho} + g \cdot h + \frac{v_s^2}{2} \right)_{vztop}.$$
(2.5)

V večini praktičnih primerov velja, da sta obe količini na levi enaki nič. Upoštevamo lahko tudi, da je notranja energija na enoto mase e_i (povezana z lokalno temperaturo) nepovračljiva energija. Iz takšnih predpostavk dobimo znano energijsko (Bernulijevo) enačbo za realno tekočino, ki se glasi:

$$\frac{p_1}{\rho \cdot g} + h_1 + \frac{v_{s,1}^2}{2 \cdot g} = \frac{p_2}{\rho \cdot g} + h_2 + \frac{v_{s,2}^2}{2 \cdot g} + \sum nepov. energija.$$
(2.6)

Energijska enačba v takšnem zapisu nam pove, de se celotna energija ohranja. Kar dejansko ne drži, saj se pri toku realne tekočine sestava celotne energije spreminja, zato se vzdolž toka vedno večji del celotne energije spreminja v nepovračljivo obliko energije (npr. v toploto realne tekočine) (Steinman, 1999).

V praksi je pomembna obravnava tistega dela energije, ki se pretvori v nepovračljivo obliko energije zaradi trenja pri toku vode. Del celotne energije, ki se ob tem pretvori v nepovračljivo obliko, imenujemo energijske izgube. Energija je seveda neuničljiva in se ne izgublja, pretvori se le v nepovračljivo obliko. Izraz energijske izgube se je uveljavil, ker je nepovračljiv del energije neizkoristljiv v hidrotehnični praksi, torej za izrabo izgubljen (Steinman, 1999).

2.3 Energijske izgube

Izgube energije (oziroma pretvorba v nepovračljivo obliko energije) nastajajo pri premagovanju hidravličnih uporov zaradi toka tekočine.

Izgube energije zaradi premagovanja trenja vzdolž toka naraščajo proporcionalno z dolžino toka. Imenujemo jih trenjske ali linijske izgube in jih označujemo z ΔE_t , kjer indeks »*t*« pomeni oznako izgub zaradi trenja. V ceveh krožnega preseka se linijske izgube običajno določajo z znano Darcy-Weissbachovo enačbo:

$$\Delta E_t = \lambda \, \frac{\Delta L}{D} \cdot \frac{V^2}{2 \cdot g} \,. \tag{2.7}$$

Koeficient trenja λ predstavlja brezdimenzijsko število, ki je odvisno od režima toka, Reynoldsovega števila in relativne hrapavosti ostenja.

Izgube energije, ki se pojavijo zaradi lokalnih motenj, nastanejo ob vsaki spremembi smeri tokovnic (sprememba smeri toka, širjenje oziroma oženje toka, tok skozi zaporne organe, krivine ipd.). Izgube zaradi spremembe tokovne slike toka pogojujejo nastanek vrtinčenj v toku, ki odvzemajo del energije osnovnemu toku. Imenujemo jih lokalne izgube in jih označujemo z ΔE_{lok} , kjer običajno namesto

»lok« vpišemo okrajšavo za vzrok, zaradi katerega motnja nastane (npr. koleno, zasun ipd.). Enačba za določitev lokalnih izgub se glasi:

$$\Delta E_{lok} = \xi_{lok} \cdot \frac{V^2}{2 \cdot g} \,. \tag{2.8}$$

Koeficient ξ_{lok} predstavlja koeficient lokalne izgube in je odvisen od geometrijske karakteristike lokalne motnje tokovnic in je brezdimenzijski.

Celotne izgube energije ΔE_{tot} na določenem odseku toka izračunamo kot vsoto linijskih in lokalnih izgub vzdolž opazovanega odseka:

$$\Delta E_{tot} = \sum_{i=1}^{n} \Delta E_{t,i} + \sum_{j=1}^{m} \Delta E_{lok,j} .$$
(2.9)

2.4 Režim toka in Reynoldsovo število

Izpeljani so bili številni poizkusi, s pomočjo katerih naj bi določili splošne zakonitosti za določevanje hidravličnih izgub. Pokazalo se je, da so izgube energije odvisne od obnašanja dela tekočine v toku, ali povedano drugače, da sta lastnost in velikost hidravličnih izgub, ki se pojavljajo pri gibanju tekočin, odvisni od režima toka tekočine (Steinman, 1999).

Angleški fizik Osborne Reynolds je leta 1883 eksperimentalno določil fizikalne karakteristike oziroma pogoje, ki določajo režim toka. Shema eksperimentalne naprave, s katero ponazarjamo izvajanje Reynoldsovega eksperimenta, je prikazana na sliki 2.1.

Slika 2.1: Reynoldsova eksperimentalna naprava Figure 2.1: Reynolds experimental facility

S postopnim odpiranjem zasuna *B* se povečuje pretok in s tem hitrost vode v cevi (premera *D*). Tanek curek barvila, ki prihaja v cev iz posodice *A*, se bo pri majhnih hitrostih v cevi ohranjal kot raven, kompakten curek. Očitno je, da se v danih pogojih barvilo ohranja v sloju, v katerega je vstopilo, torej se plasti medsebojno ne mešajo (Steinman, 1999).

Z nadaljnjim odpiranjem zasuna *B* in s povečevanjem hitrosti v cevi prihaja pri neki hitrosti do pulzacij v okolici barvnega curka, kasneje pa do intenzivnega mešanja barvnega curka s tekočino. Curek barve se razprši po celotnem prerezu, saj se pojavi vrtinčenje po celotnem prečnem prerezu. Režim toka, pri katerem se tok giblje v vzporednih slojih, imenujemo laminarni tok, režim, pri katerem se pojavljajo pulzacije hitrosti in zaradi tega premešanje delcev tekočine v prečni smeri, pa imenujemo turbulentni tok (Steinman, 1999).

Na sliki 2.2 lahko na primeru »A« vidimo laminarni režim toka, na primeru »B« pa turbulentni režim. Slike so bile posnete med opravljanjem meritev tlačnih izgub v sklopu pričujoče raziskave.

A: Laminaren režim toka

B: Turbulenten režim toka

Slika 2.2: Primer laminarnega in turbulentnega režima toka Figure 2.2: An example of laminar and turbulent flow

Reynolds je na podlagi eksperimentov in poskusov, izvršenih z raznimi tekočinami in z raznimi premeri cevi, dokazal, da je režim toka odvisen od razmerja vztrajnostnih in strižnih sil (le-te so sorazmerne dinamični viskoznosti tekočine). Za tok v smeri koordinate x lahko iz Newtonovega zakona zapišemo strižne sile na enoto volumna kot (Schlichting et al., 2000):

$$\frac{\partial \tau}{\partial y} = \mu \cdot \frac{\partial^2 u}{\partial y^2} \tag{2.10}$$

ter vztrajnostne sile na enoto volumna:

$$\rho \cdot \frac{\partial u}{\partial t}.$$
 (2.11)

V stacionarnih razmerah se razmerje preoblikuje v:

$$\rho \cdot \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t} \to \rho \cdot u \cdot \frac{\partial u}{\partial x}.$$
(2.12)

Razmerje med vztrajnostnimi in strižnimi silami, ki ga po avtorju imenujemo Reynoldsovo število, je tedaj:

$$\frac{vztrajnostne sile}{strižne sile} = \frac{\rho \cdot u \cdot \partial u}{\mu \cdot \partial^2 u} \approx \frac{\rho \cdot V^2 / D}{\mu \cdot V / D^2} = \frac{V \cdot D}{v}.$$
(2.13)

Enačba 2.13 temelji na dejstvih, da je hitrosti *u* znotraj pretočnega prereza proporcionalna povprečni hitrosti pretoka *V*, gradient hitrosti $\frac{\partial u}{\partial x}$ je proporcionalen količniku $\frac{V}{D}$ ter $\frac{\partial^2 u}{\partial v^2}$ razmerju

 V/D^2 .

Z obsežnim eksperimentalnim delom so nekateri avtorji ugotovili, da se v primerih toka v cevovodih pri kritični vrednost Reynoldsovega števila $Re_{krit} \approx 2300$ pojavi sprememba režima toka iz laminarnega v turbulenten. Kritično Reynoldsovo število je odvisno tudi od izvedbe vtoka v cevi. Pri zelo pazljivo oblikovanih in obdelanih oblikah vtoka ima lahko kritično Reynoldsovo število večje vrednosti.

Pri analiziranju vzrokov za pojav turbulence je leta 1904 Ludwig Prandtl postavil hipotezo, da se turbulenca najprej pojavlja na ostenju cevi, od koder se razširi na celotno površino prečnega prereza toka. Vendar se tudi pri pogojih turbulentnega režima toka ob ostenju cevi ohranja tanek laminarni sloj (laminarna mejna plast), iz katerega se zaradi prisotnosti hrapavih izboklin oziroma hrap na ostenju odtrgajo vrtinčenja, ki v turbulentnem jedru toka izzivajo (ustvarjajo) prečno cirkulacijo (Schlichting et al., 2000). Mejna plast je prikazana na sliki 2.3.

Slika 2.3: Razmere na ostenju v turbulentnem toku Figure 2.3: Conditions near the pipe wall for turbulent flow

Spremembe v režimu toka neposredno vplivajo na faktorje, ki določajo hidravlične izgube. Rezultati eksperimentov, ki so shematizirano prikazani na sliki 2.4, kažejo dve območji z izrazito različnima zakonitostma, ki povezujeta srednjo hitrost toka in hidravlične izgube. Območje preloma med obema premicama je meja med območjema, kjer veljata dva različna zakona o linijskih izgubah. Položaj točke se ujema z izračunano kritično hitrostjo toka V_{kr} , ki ustreza kritičnemu Reynoldsovemu številu Re_{krit} . Raztros merskih točk v tem območju pa kaže, da med obema režimoma toka obstaja še prehodno območje (Steinman, 1999).

Slika 2.4: Določanje režima toka *Figure 2.4: Definition of the flow regime*

Na podlagi eksperimentalnih rezultatov je bilo ugotovljeno naslednje (Massey in Ward-Smith, 1998):

- 1. V laminarnem režimu toka velja linearna odvisnost med energijskimi izgubami zaradi trenja in srednjo hitrostjo toka.
- 2. V razvitem turbulentnem toku izgube energije naraščajo s kvadratom srednje hitrosti toka.
- 3. Med obema jasno izraženima režimoma toka se pojavlja prehodni režim. Po svojem značaju je turbulenten, vendar ima slabše izražene turbulentne karakteristike.

Reynoldsovo število ima dejansko bistveno večji pomen, kot le določitev prehod iz laminarnega v turbulenten režim toka. Dejansko je to število, ki postavlja kriterij za podobnost tokov v ceveh različnih dimenzij in različnih medijev (npr. voda, zrak, tekoči helij ...). Ker predstavlja Reynoldsovo število dejansko razmerje med vztrajnostnimi in viskoznimi (strižnimi) silami, je njegova uporaba bistveno širša kot le na področju krožnih cevi v toku pod tlakom.

3 PREGLED LITERATURE

Pregled eksperimentalnega dela različnih avtorjev, ki so se do danes ukvarjali s problematiko določitve koeficientov trenja λ v stalnem enakomernem toku, bo zaradi preglednosti razdeljen na tri ločena poglavja. V prvem sklopu (poglavje 3.1) bo predstavljen zgodovinski potek raziskav in razvoja teorije določitve koeficientov trenja λ . Ker so s svojim pionirskim delom bistven delež k preučevanju koeficienta trenja prispevali L. Prandtl, Th. v. Kàrmàn in J. Nikuradse ter C. F. Colebrook in C. M. White, bo v poglavjih 3.2 in 3.3 natančneje predstavljeno njihovo eksperimentalno delo. V zaključku tega poglavja bodo predstavljeni tudi podatki, ki so jih objavili McKeon in sodelavci (2004).

Enačbe, ki so nastale na podlagi bodisi empiričnih ali teoretičnih osnov, bodo prikazane v poglavju 4 (Teoretične osnove).

3.1 Kronološki potek eksperimentalnega dela

Prvi vidnejši rezultati na področju raziskav hidravličnih izgub v ceveh pod tlakom in kanalih so zasluga znanih avtorjev A. de Chezyja in H. Darcyja. Z raziskavami o turbulentnem toku v hrapavih ceveh se je prvi začel ukvarjati Darcy. Te raziskave je izvajal na ceveh različnih materialov. Testiral je 21 cevi, uporabljene pa so bile kovane, litoželezne, litoželezne cevi z bitumenskim premazom ter cevi iz pločevine in stekla. Vse preizkušene cevi razen steklenih so imele dolžino 100 m, profili teh cevi pa so imeli premer 1,2–50 cm. Na podlagi svojih eksperimentov je Darcy ugotovil, da je pri pretoku tekočine skozi cevovod poleg premera pomembna tudi notranja hrapavost ostenja (Darcy, 1858 cit. po Kirschmer, 1952). Če primerjamo njegove rezultate z današnjimi in pri tem upoštevamo odvisnost koeficienta trenja λ od Reynoldsovega števila *Re*, ugotovimo sledeče. Z naraščanjem vrednosti Reynoldsovega števila *Re* se koeficient trenja λ neodvisen od Reynoldsovega števila *Re*. Za konstantne vrednosti *Re* se λ spreminja, in sicer narašča z večanjem relativne hrapavosti.

Leta 1883 je angleški fizik O. Reynolds eksperimentalno določil fizikalne karakteristike oziroma pogoje, ki določajo režim toka. Uveljavi se brezdimenzijsko število (Reynoldsovo število *Re*). Prispevek Reynoldsa, ki je postavil temelje vsem naknadnim raziskavam, je opisan v poglavju 2.

Raziskave Darcyja je nadaljeval njegov učenec H. Bazin. Na podlagi lastnih eksperimentov na ceveh različnih materialov in ceveh, ki jih je dobil od Darcyja, je posrečeno izpeljal empirično formulo, ki jo poznamo še danes. Podaja nam medsebojno odvisnost pretoka, padca tlačne črte in premera cevovoda (Bazin, 1902, cit. po Nikuradse, 1933).

V. Saph in E. H. Schoder sta za v raziskovalnem delu uporabila vodo. Izmerila sta padec tlaka v 15 medeninastih ceveh s premeri od 2,77 do 53,1 mm, v obsegu Reynoldsovih števil med $Re = 1,4 \times 10^3$ in

 104×10^3 . Poskusi Sapha in Schoderja so nakazali, da se prehod laminarnega v turbulentni tok zgodi pri kritičnem Reynoldsovemu številu $Re_{krit} = 2000$. Prehodno območje leži med Reynoldsovima številoma Re = 2000 in Re = 3000 (Saph in Schoder, 1903, cit. po Kirschmer, 1953).

W. Nußelt je raziskoval tlačne izgube v toku stisnjenega zraka v cevi premera 2,201 cm. Ko iz teh poskusov izračunamo koeficient trenja v odvisnosti od Reynoldsovega števila, dobimo iste rezultate, kot sta jih iz poskusov ugotovila Saph in Schoder. Nußeltove vrednosti koeficienta trenja ležijo v območju Reynoldsovih števil $Re = 6 \times 10^3$ do 150×10^3 . S to raziskavo je bila podobnost za različne tekočine potrjena (Nußelt, 1910, cit. po Nikuradse, 1932).

Za prve uspešne poskuse o porazdelitvi hitrosti turbulentnega toka v krožnih ceveh veljajo meritve T. E. Stantona. Meritve so izvedene z zrakom v ceveh dolžine 500 cm ter premerom 4,93 cm in 7,4 cm in segajo v območje Reynoldsovega števila *Re* od 14×10^3 do 60×10^3 . Stanton dokaže tudi podobnostni zakon pri toku skozi hrapave cevi. Preiskoval je cevi dveh različnih premerov, v katerih so bili na notranji steni cevi vrezani križajoči se vijačni navoji. Geometrijska podobnost hrapavosti je bila dosežena s spremembo koraka (hoda) in globino vijačnega navoja v enakem razmerju do premera cevi (Stanton, 1911, cit. po Nikuradse, 1932).

H. Blasius je uspel z vidikov podobnosti interpretirati rezultate meritev po toku v gladkih ceveh. Dobil je empirično formulo, ki v območju Reynoldsovih števil do $Re = 100 \times 10^3$ precej natančno prikaže zakonitosti koeficienta trenja. Pri razvoju svojega obrazca koeficienta trenja je Blasius uporabil poskuse Sapha in Schoderja (Blasius, 1913, cit. po Hopf, 1923).

Po potrditvi podobnostnega zakona si je H. Ombeck zastavil nalogo, da s pomočjo poskusov z zrakom v velikem obsegu Reynoldsovih števil ugotovi odvisnost koeficienta upora od Reynoldsovega števila in s tem preveri Blasiusovo formulo. Poskusi so bili izvedeni v krožnih ceveh iz različnih materialov in premerov (od 2 do 10 cm). Vrednosti Reynoldsovega števila pa so segale do $Re = 450 \times 10^3$. Iz teh poskusov je Ombeck dobil podobno formulo kot Blasius, z zanemarljivim odstopanjem (Ombeck, 1914, cit. po Hopf, 1923).

Leta 1914 je R. V. Mises združil vse dotedanje rezultate izvedenih eksperimentov in jih klasificiral s stališča podobnostne teorije. Tako je dobil koeficient trenja λ za okrogle cevi v odvisnosti od relativne hrapavosti k_s/D in Reynoldsovega števila *Re*. Mises je med prvimi definiral pojem relativne hrapavosti (Mises, 1914).

Stanton in J. R. Pannell sta za preverjanje podobnostnega zakona opravila obsežne poskuse z vodo in zrakom pri različnih temperaturah. Uporabljene so bile krožne cevi različnih premerov (od 0,36 do 12,62 cm). Poskusi so obsegali Reynoldsa števila $2,2 \times 10^3$ do 430×10^3 . Rezultati teh poskusov so potrdili podobnostni zakon. Do Reynoldsovega števila 100×10^3 ležijo točke poskusov na premici po Blasiusu. Od tu dalje pa je z naraščajočim Reynoldsovim številom opaziti vse večje odstopanje od Blasiusove premice (Stanton in Pannell, 1914, cit. po Nikuradse, 1932).

Delo Misesa je nadaljeval L. Schiller. Raziskave, ki jih je izvajal, potrjujejo odvisnost koeficienta trenja λ od Reynoldsovega števila *Re* in hrapavosti ostenja. Uporabljene so bile cevi iz vlečene medenine. Schiller je povzročal hrapavost z vrezanimi navoji različnih globin. Premere cevi je spreminjal od 8–21 mm. Na podlagi meritev je ugotovil, da kritično Reynoldsovo število *Re* ni odvisno od kvalitete stene cevi ter da v primeru velike hrapavosti in turbulentnega toka velja kvadratni zakon upornosti. Med pomembnejše ugotovitve lahko štejemo tudi dejstvo, da pri konstantni vrednosti Reynoldsovega števila *Re* prihaja do povečanja koeficienta trenja z večanjem relativne hrapavosti (Schiller, 1923, cit. po Hopf, 1923).

V skoraj istem času kot Schiller je L. Hopf napravil nadaljnje poskuse. Opravil je sistematične meritve v pravokotnih kanalih raznih višin pri različnih hrapavostih (žične mreže, nazobčana cinkova pločevina, dvovrstna valovita pločevina). Pri tem je izbral pravokoten prerez, da bi lahko pri enaki kakovosti stene skozi spreminjanje višine prereza ugotavljal vpliv hidravličnega radija (Hopf, 1923).

Na pobudo Hopfa je K. Fromm nadaljeval z njegovimi poizkusi. Iz svojih in Frommovih rezultatov meritev ter do tedaj znanih rezultatov eksperimentalnega dela je Hopf zaključil, da je potrebno pri turbulentnem toku v hrapavih ceveh ločiti med dvema vrstama hrapavosti. Ti dve se ravnata po dveh različnih zakonih podobnosti, označil ju je kot hrapavost stene in valovitost cevi. Za hrapavost stene je Hopf ugotovil, da je koeficient trenja neodvisen od Reynoldsovega števila, odvisen je le od hrapavosti ostenja (kvadratni zakon upora). Valovitost cevi po Hopfu postane odločujoča, ko je koeficient trenja odvisen od Reynoldsovega števila kot tudi od kakovosti stene (Fromm, 1923).

F. Heywood (1924) objavi meritve porazdelitve hitrosti in koeficienta trenja na pocinkanih železnih ceveh krožnega prereza. Uporabljene so bile cevi premera 2" (50,80 mm) in 4" (101,60 mm). Gradienti tlaka so izmerjeni na dolžini 9,77 m (2" cev) oziroma 9,59 m (4" cev) z vrtinami premera 2,57 mm. Pretoki so bili izmerjeni volumetrično s posodo volumna 33,98 m³.

M. Jakob in S. Erk sta leta 1924 izvajala poskuse z vodo in merila tlačne izgube v odvisnosti od količine pretoka v medeninastih ceveh s premerom 7 cm in 10 cm. Meritve so obsegale Reynoldsova števila od 86×10^3 do 462×10^3 . V okviru ± 1 % odstopanja se njune meritve ujemajo z eksperimentalnim delom Stantona in Pannella (Nikuradse, 1932).

Nikuradse izvede leta 1926 meritve porazdelitve hitrosti v turbulentnem toku. Uporabljene so krožne cevi premera 2,8 cm z Reynoldsovimi števili okoli 180×10^3 (Nikuradse, 1932).

Na pobudo v. Kàrmàna je leta 1928 W. Fritsch ponovil vse meritvene postopke, kot pred tem Hopf in Fromm. Poizkusni kanal je meril 200 cm, širine 15 cm in višine med 1,0 in 3,5 cm, tako da je vzdolž krajše simetrijske osi prisoten dvodimenzijski tok. Opazoval je porazdelitev hitrosti pri gladkem, valovitem, hrapavem (valovito steklo, rebrasto steklo) ter nazobčanem ostenju. Zaključil je lahko, da je razporeditev hitrosti pri isti višini kanala, razen pri neposredni bližini stene, pri vseh tipih ostenja enaka, kakor so enake tudi tlačne izgube (Prandtl, 1933).

M. F. Treer je opravil poskuse z ekstremno visokimi hrapavostmi v kanalu, pri čemer je tako izmeril koeficient trenja in porazdelitev hitrosti. Iz njegovih in iz podobnih poskusov drugih raziskovalcev je ugotovil, da je porazdelitev hitrosti odvisna le od tlaka, ne glede na to ali je ta nastala skozi razliko v hrapavosti ali z različnim Reynoldsovim številom (Treer, 1929).

Leta 1932 je Nikuradse objavil rezultate svojih raziskav o koeficientu trenja λ za hidravlično gladek režim toka (Nikuradse, 1932).

Nikuradse objavi rezultate raziskav o koeficientu trenja v ceveh, kjer nastopa enotna hrapavost. Eksperimenti, ki so bili izvedeni na krožnih ceveh z enakomerno, umetno prirejeno hrapavostjo za tok pod tlakom, so omogočili določitev zveze med koeficientom trenja λ in Reynoldsovim številom *Re* (Nikuradse, 1933).

Prandtl je eden izmed najpomembnejših raziskovalcev na področju hidromehanike in hidravlike. Med prvimi je definiral mnoga vprašanja v zvezi s turbulentnim tokom. Natančno je definiral, v kakšnih razmerah nastane turbulentni tok, kakšen je vpliv viskoznosti tekočine z ozirom na velikost Reynoldsovega števila *Re*, prav tako je definiral spremembo profila hitrosti kot enega najboljših pokazateljev obstoja turbulentnega toka. Za eksperimentalni model je uporabil kanal z dolžino 6 m in višino 20 cm. Spremembe v toku je povzročal na dva načina. V prvem primeru je dodal ob steni manjšo količino vode, ki je zatem povzročila spremembo pretoka in turbulenco. V drugem primeru je določeno količino vode izsesal. Takšna motnja pretoka je zadostovala, da je postal tok turbulenten. Pomembno področje Prandtlovih raziskav predstavlja obnašanje koeficienta trenja λ v nastalem turbulentnem toku. Podal je več enačb, ki še danes veljajo za popolni in nepopolni turbulentni tok (Prandtl, 1933).

H. Schlichting (1936) opravi eksperimentalno delo na ceveh pravokotnega prereza s pritrjeno umetno hrapavostjo različnih oblik in velikosti. Kasneje (med leti 1937 in 1939) sta analogno preiskavo opravila Colebrook in White, vendar na ceveh krožnega preseka.

Obdobje med leti 1936 in 1939 je obdobje, v katerem izrazito izstopata profesor Colebrook in njegov asistent White. V tem obdobju je nastala znamenita enačba za koeficient trenja λ , ki jo je leta 1939 objavil Colebrook. Znanstvenika sta pri svojih raziskavah upoštevala rezultate svojih predhodnikov, jih delno preverila in praktično privzela kot svoja izhodišča. Svoje raziskave sta v osnovi usmerjala k definiranju zakonitosti vpliva različnih hrapavosti na prehod. Logično je bila prevzeta predpostavka, da hrapavost začne vplivati na upor takrat, ko lokalna hitrost v cevi doseže dovolj visoko vrednost, da se ob hrapavi površini začnejo formirati vrtinci (Colebrook in White, 1937).

Podobne eksperimentalne poizkuse je izvajal tudi Zegžda (leta 1938) za tok v odprtih vodotokih (v pravokotnih kanalih z umetno hrapavostjo). Primerjava Nikuradsejevega diagrama in diagrama Zagžde pokaže, da so rezultati, ki se nanašajo na odprte tokove, praktično identični rezultatom za cevi pod tlakom. Poleg kakovostnega in kvantitativnega ujemanja rezultatov, je s tem dokazano tudi

ujemanje uporabljenih analiz in enačb za hidravlične račune. Torej lahko z istimi enačbami računamo tako zaprte kot odprte sisteme (Steinman, 1999).

Na osnovi eksperimentov, ki sta jih izvajala Colebrook in White, je Colebrook leta 1939 podal enačbo, ki velja tudi za prehodno območje (Colebrook, 1939).

Za praktično uporabo Colebrookove enačbe in hitrejšo oceno vrednosti koeficienta trenja je L. F. Moody leta 1944 pripravil diagram, ki ga prikazuje privzeta slika 3.1. Diagram je poznan kot Moodyjev diagram (Moody, 1944), ki ga je V. L. Streeter leta 1951 do potankosti izpopolnil. Zaradi tega dejstva je v začetnem obdobju, pred večjo uporabo računalnikov, Moodyjev diagram imel večjo praktično uporabo kot analitična oblika Colebrookove enačbe, ki za rešitev zahteva postopek iteracije.

Privzeta slika 3.1: Moodyjev diagram (Streeter, 1951) Adopted Figure 3.1: Moody's chart (Streeter, 1951)

R. Barbe objavi leta 1947 rezultate meritev koeficienta trenja na industrijskih ceveh krožnega preseka dimenzije približno 800 mm. Raziskava je bila izvedena v hidravličnem laboratoriju Dauphinoise v Grenoblu (Barbe, 1947 cit. po Kirschmer, 1952). Rezultate prikazuje privzeta slika 3.2.

Privzeta slika 3.2: Meritve koeficienta trenja v laboratoriju Dauphinoise v Grenoblu (Barbe, 1947 cit. po Kirschmer, 1952)

Adopted Figure 3.2: Experimental results of the measured friction factor in the laboratory Dauphinoise in Grenoble (Barbe, 1947 cite from Kirschmer, 1952)

O. Kirschmer (1952) navaja rezultate meritev koeficienta trenja, ki so bile med leti 1940 in 1950 izvedene na nekaterih hidroelektrarnah v Švici in Nemčiji. Na hidroelektrarni Cavaglia v Švici so bile meritve izvedene na očiščenih in neočiščenih (rjastih) tlačnih ceveh. Spoji na ceveh so bili izvedeni z zakovicami. Očiščene cevi (odstranjena plast rje) so bile premazane z 1 cm debelo plastjo bitumna. Neočiščene cevi so bile puščene v obstoječem stanju, torej s plastjo rje, ki se je v obdobju obratovanja nabrala na ostenju cevi (Kirschmer, 1952). Meritve so se izvajale za Reynoldsova števila večja kot 10⁵ in so prikazane na privzeti sliki 3.3.

a ... hidravlično gladke cevi b ... neočiščene cevi - $k_s/D = 2,7 \cdot 10^{-3}, k_s = 3 \text{ mm}$ c ... očiščene cevi - $k_s/D = 2,5 \cdot 10^{-5}, k_s = 0,03 \text{ mm}$

Privzeta slika 3.3: Meritve koeficienta trenja na hidroelektrarni Cavaglia v Švici (Kirschmer, 1952) Adopted Figure 3.3: Experimental results of the measured friction factor on the Cavaglia (Switzerland) hydroelectric power station (Kirschmer, 1952)
M. D. Millionshchikov s sodelavci opravijo meritve koeficienta trenja za cevi z umetno pritrjeno neenakomerno hrapavostjo. Meritve opravijo do Reynoldsovega števila $Re \approx 10^6$. Umetna hrapavost je bila izvedena z lepljenjem peščenih zrn na ostenje cevi (Millionshchikov et al., 1973).

I. J. Wygnanski s sodelavci opravi meritve v prehodnem režimu toka. V prehodnem območju se pojavita dve tvorbi vrtinčenja, ki ju poimenujejo »puffs« (»pihljaj«) in »slugs« (»močan udarec«). Ugotovijo, da se prvi (»puffs«) pojavijo pri Reynoldsovih številih Re < 2800 ter razpadejo v območju $Re \approx 2200$, drugi (»slugs«) se pojavijo pri Reynoldsovih številih $Re \ge 3000$. Poizkusi so bili izvedeni pri pretoku, ki ga ja določal konstanten gradient tlaka (Wygnanski et al., 1975, Wygnanski et al., 1973, Rubin et al., 1980).

A. G. Darbyshire in G. Mullin sta razširila eksperimentalno delo Wygnanskija na pretoke s konstantnim masnim pretokom. Zaključili so, da se pri Re < 1760 ne pojavijo nikakršne oblike turbulence oziroma vrtinčenja (Darbyshire in Mullin, 1995).

A. A. Draad, G. D. C. Kuiken in F. T. M. Nieuwstadt opravijo raziskave v prehodnem območju režima toka. Eksperiment obsega tako meritve na Newtonskih (voda) kot ne-Newtonskih tekočinah (Newtonsko topilo z nizko koncentracijo raztopljenega polimera velike molekularne mase). Meritve so opravljene na cevi iz pleksi stekla premera 40 mm in celotne dolžine 32 m. Stiki med odseki dolžine 2 m so izvedeni s pazljivo izvedenimi spojnimi elementi (konci cevi so bili izvedeni z rahlim konusom $2^{\circ}-3^{\circ}$). Ker so preučevali nadziran (nenaraven) prehod v prehodno območje, je na vstopu v merilno cev nameščena umirjevalna komora, kar omogoči izločitev vsakršne motnje pri vstopu v merilni odsek. Izhod iz usedalne komore je urejen preko blage zožitve, ki usmeri tok v merilno cev. Vpliv temperature je omejen z ustrezno izolacijo. Eksperiment obsega meritve profila (z laserskim Dopplerjevim merilcem) hitrosti, pretoka (induktivni merilec pretoka) in tlaka. Tako nadzorovan prehod je dosežen pri $Re \approx 60 \times 10^3$. Raziskava je obsegala tudi meritve prisiljenega prehoda z dodajanjem motenj (Draad et al., 1998).

M. V. Zagarola in A. J. Smits (1998) objavita rezultate meritev porazdelitve hitrosti in koeficienta trenja na merilni stezi »Princeton Superpipe«. Kot medij je v raziskavi uporabljen stisnjen zrak. Opis eksperimenta in rezultati so podani v poglavju 3.4.

C. J. Swanson, B. Julian, G. G. Ihas in R. J. Donnelly objavijo rezultate raziskave koeficienta trenja za tok pod tlakom v krožnih ceveh v območju Reynoldsovih števil od 10 do 10⁶. Kot medij v raziskavi so uporabljeni tekoči helij in nekateri plini pri sobni temperaturi. Meritve so bile opravljene v hidravlično gladkih ceveh na univerzi v Oregonu (Swanson et al., 2002).

B. J. McKeon s sodelavci objavijo sintezo rezultatov meritev univerze Oregon in Princeton (McKeon et al., 2004).

M. Nishi, B. Ünsal, F. Durst in G. Biswas opravijo meritve nastajanja turbulentnih tvorb (»puffs« in »slugs«) v prehodnem režimu toka (Nishi et al., 2008).

3.2 Nikuradsejevo raziskovalno delo – meritev koeficienta trenja

Kot že omenjeno v poglavju 3.1, je Nikuradsejevo delo potekalo v dveh delih. Leta 1932 so bili objavljeni rezultati hidravlično gladkega režima toka. Leto kasneje je objavil še rezultate hidravlično hrapavih cevi. Ker so Nikuradsejeve meritve v stroki obravnavane kot referenčne in so za potrditev hipoteze in dosego ciljev te disertacije bistvenega pomena, bosta njegova eksperimenta obdelana nekoliko podrobneje.

3.2.1 Eksperimentalna shema in oprema

Za raziskave turbulentnih tokovnih procesov v krožnih ceveh so bile uporabljene različne poskusne priprave. Vse oznake v opisih se nanašajo na shemo eksperimenta, ki je prikazana privzeti sliki 3.4. Za doseganje ustreznih Reynoldsovih števil so bili uporabljeni naslednji postopki (Nikuradse, 1932):

1. Za majhna Reynoldsova števila $(3 \times 10^3 \text{ do } 60 \times 10^3)$ je služil umirjevalni kotel, ki se je napajal iz vodovodnega omrežja. Ker je bilo povsem konstantno gladino vodnega stolpca težko doseči, je bila uporabljena naslednja izvedba. Čez dovod *zl* (privzeta slika 3.4) teče voda iz vodovoda v odprt kotel *wk*. Pri odprtem odtočnem ventilu *ah* voda v dvižni cevi *str* narašča prav tako visoko kot v kotlu. Ko skozi dovod priteče večja količina vode, kot jo izteče skozi poskusno cev *vr*, se presežna voda odvaja po dvižni cevi v lovilni kotel *ft*, kjer se jo izpusti skozi izpustno cev *fr*. S tem se ohranja enakomerna višina vodne gladine. Za doseganje enakomernega vodnega toka v poskusni cevi je v cilindričnem delu iztoka kotla *wk* vgrajen usmernik *gl*. To je odpravilo velike vrtince, ki jih v kotlu povzroča dotekajoča voda. Skozi stožčasti del iztoka dobi voda pospešek, ki pozneje pojenja. Vodo se je nato skozi cev *zr*, premera 25 cm ter dolžine 250 cm, pripeljalo do poskusne cevi.

Enakomeren dotok v poskusni cevi je dosežen z enakomernim prehodom skozi cev *zr* do premera poskusne cevi. Nekoliko pred zoženim delom je na najvišji točki dovodne cevi nameščen odzračevalni ventil *eh*. Poskusna cev z merilnikom hitrosti je bila nameščena na dveh vozičkih, ki sta dopuščala enostaven premik med predelavo. Vozička sta postavljena na tirnicah, ki so omogočale postavitev poskusne cevi v vodoravni smeri. Na koncu poskusne cevi je nameščen merilnik profila hitrosti. Pod merilnikom hitrosti je v kanalu *vk* nameščen volumetrični merilnik pretoka *mb*, ki je prikazan na privzeti sliki 3.5.

2. Za večja Reynoldsova števila (do približno 1400×10^3) je pretok omogočila centrifugalna črpalka. Centrifugalna črpalka *kp* je prečrpala vodo iz kanala *vk* v umirjevalni kotel *wk*. Za grobo regulacijo je služil zaganjalnik pogonskega motorja in ventil *sb1*, ki je nameščen med centrifugalno črpalko

kp in kotlom za vodo *wk*. Precizna regulacija je potekala preko ventila *dv*, nameščenega v merilniku hitrosti. Centrifugalna črpalka je lahko ohranjala v kotlu *wk* nadtlak do 2 bara. Nadtlak se je ustvaril tako, da je naraščajoča gladina vode stisnila zrak v kotlu *wk*. V splošnem je bila v kotlu *wk* vzpostavljena gladina vode na višini 5 m.

- 3. Za doseganje še večjih Reynoldsovih števil (do približno 2500×10³) se je s stisnjenim zrakom v umirjevalnem kotlu ustvarjal nadtlak. Nadtlak v kotlu *dk* je ustvarjal kompresor, ki je lahko dosegel tlak 10 barov. Kotel za stisnjen zrak *dk* je preko Arca-Regulatorja povezan s kotlom za vodo *wk*. Regulator je uravnaval tlak pri iztoku vode iz kotla *wk*. Ker je čas iztoka omejen na 45 s, je hitro-zaporni ventil *sh*, ki je nameščena med kotlom *wk* ter poskusno cevjo, skrbel za hipno odpiranje in zapiranje poskusne proge. Da se je preprečil nastanek podtlaka v merilni cevi (zaradi hipnega izpiranja), je bil na najvišji legi dovodne cevi *zr* med hitro-zapornim ventilom in poskusno cevjo nameščen odzračevalni ventil *sv*, ki je skrbel za izravnavanje tlaka z okolico.
- 4. Najvišja Reynoldsova števila so se dosegla z višanjem temperature vode, s čimer je bilo doseženo Reynoldsovo števila $Re = 3300 \times 10^3$. Tako je bila kinematična viskoznost vode zaradi povišanja temperature zmanjšana. Voda se je segrevala v kotlu s paro. Kotel je omogočal pretok 1,1 l/s vode pri 40°C. Z zmanjšanjem pretoka je temperatura lahko narasla do 95°C, kar je zaradi ohlajevanja v poskusni progi pomenilo temperaturo približno 40°C. Parni kotel se je nahajal na steni laboratorija, od koder se je preko cevi *zf* voda izlivala v kanal *vk*. Od tu jo je centrifugalna črpalka prečrpala v merilni tokokrog (opis v točki 3).

Privzeta slika 3.4: Shema Nikuradsejeve eksperimentalne naprave (Nikuradse, 1932) Adopted Figure 3.4: Nikuradse's experimental facility scheme (Nikuradse, 1932)

Privzeta slika 3.5: Shema Nikuradsejevega volumetričnega merilca pretoka (Nikuradse, 1932) *Adopted Figure 3.5:* Nikuradse's volumetric flow measuring facility scheme (Nikuradse, 1932)

3.2.2 Merilna oprema

Poskusna oprema in poskusni aparati so bili izdelani v delavnicah Inštituta za raziskovanje tokov Kaiser Wilhelm. Na razpolago je bila sledeča merilna oprema:

1. Merilnik hitrosti z dušenjem in premičnim iztokom

Merilnik hitrosti, ki je prikazan na privzeti sliki 3.6, sestavljajo ohišje *m*, pokrov *d*, vijaka *sp* in *su*, drsnik *schl* in premična Pitotova cev *pt*. Ohišje ima na obeh straneh odprtine *f* za opazovanje. Za odzračevanje je na pokrovu pritrjen odzračevalni ventil *e* (Nikuradse, 1932).

Privzeta slika 3.6: Merilnik profila hitrosti (Nikuradse, 1932) Adopted Figure 3.6: Flow profile measuring device (Nikuradse, 1932)

Za premikanje Pitotove cevi sta predvidena vijaka *sp* in *su*, ki istočasno nosita drsnik *schl*. Vijak *sp* ima milimetrski navoj in potiska drsnik v vodoravni smeri. Vijak *sp* se prenaša na števec *zw1*. S takšnim sistemom se lahko brez težav odčita premik velikosti 0,1 mm. S premikom drsnika se istočasno giba v isti smeri tudi Pitotova cev (Nikuradse, 1932).

Vertikalni premik Pitotove cevi *ph* poteka čez vijak *su*, ki nima navoja, ampak utor. Vijačni zobnik ima milimetrski navoj in privija in odvija Pitotove cevi, ki so proti zasuku zavarovane z bočnimi vodili *fl*. Natančnost vertikalnega premika je reda velikosti 0,1 mm cev (Nikuradse, 1932).

Merjen tlak je prinesen paralelno s smerjo toka skozi ročaj Pitotove cevi *ph* na Pitotovo cev *pt* različnih premerov in nato skozi cev speljan navzven. Profil hitrosti bo dejansko izmerjen 0,1 do 0,2 mm za izstopom poskusne cevi. Zaradi tega mora biti na tem mestu izmerjen tudi statični tlak. V ta namen je na robu poskusne cevi narejena vrtina *scht* premera približno 0,8 mm, ki dejansko izmeri statični tlak v merjenem prerezu (Nikuradse, 1932).

Premični iztok *sch* služi za hiter premik pretoka v merilno posodo. Merilnik hitrosti, regulacijski ventil in premični iztok so postavljeni na voziček *wg*, ki omogoča vzdolžne premike (Nikuradse, 1932).

2. Volumetrično merjenje pretoka - merilna posoda

Za volumetrično merjenje pretokov (glej privzeto sliko 3.5) je služila cilindrična merilna posoda *mb* s kapaciteto 700 l pri premeru 1000 mm in višine 900 mm. Posoda je nameščena pod premični iztok *sch*. Opremljena je z odtočnim ventilom *ab* ter manometrom *ws* z milimetrsko skalo, ki služi merjenju vodostaja v posodi. Posoda je stala na štirih vijačnih nogah *sf*, ki so omogočile vodoravno umerjanje. Na gladini je plavala preluknjana lesena deska, ki je dušila valovanja vodne gladine, s čimer se je skrajšal čas odčitavanja. Za merjenje manjših količin je bila uporabljena podobna merilna posoda s premerom 178 mm in višino 700 mm. Za natančno določanje volumna merilne kadi sta bili posodi predhodno umerjeni z dolivanjem natančno znane količine vode (10 kg) (Nikuradse, 1932).

3. Mikromanometer

Za minimalne meritve diferenčnega tlaka natančnost običajnih manometrov ni bila več zadostna. Meritve zajemajo območje tlačnih diferenc od 0,02 do 500 mm vodnega stolpca. Takšne tlačne razlike so bile izmerjene z mikromanometrom, prikazanim na privzeti sliki 3.7 (Nikuradse, 1932).

Privzeta slika 3.7: Mikromanometer (Nikuradse, 1932) Adopted Figure 3.7: Micromanometer (Nikuradse, 1932)

Na vodoravno stekleno cev s tremi ventili h1, h2 in h3 sta bili med dvema ventiloma pritrjeni dve stekleni cevi. Med obema prostima zgornjima krakoma teh cevi je postavljen T-kos s 120° kotom tako, da je bil en krak navpičen in zaprt z ventilom h5. Ventil h4 na drugem kraku T-kosa je dovoljeval prekinitev povezave med obema steklenima cevema. Prosta konca a3 in a4 steklenih cevi sta bila zaprta s privijali za cevi (Nikuradse, 1932).

Ko se kot medij v manometru uporablja voda, se priključi obe tlačni cevi pri a1 in a2 ter odpre ventila h1, h2 in h4. Ob uporabi živega srebra pa se priključi tlačne cevi pri a3 in a4 ter odpre ventil h3. Za kontrolo ničle med meritvami se odpre ventil h3 v primeru vodnega manometra oziroma h4 pri živosrebrnem manometru. Skala manometra ima dolžino 500 mm. Povečanje merske natančnosti se je doseglo z uporabo mikroskopov mi. Spodnji drsnik nosi merilo m z milimetrsko razdelitvijo, zgornji pa nonij n, razdeljen na petdesetine. Pred nonijem je nameščeno premično povečevalno steklo lu. Osvetlitev se vrši skozi svetilko la, ki je nameščena premično za mlečnim steklom mg. Z nastavljivimi zaslonkami b1 se opazovana meniskusa zatemni, tako da črnina izstopa od razsvetljenega mlečnega stekla. Z vijaki za nastavljanje in libelo se manometer postavi natančno navpično (Nikuradse, 1932).

3.2.3 Merjene količine

Meritve pretoka do Reynoldsovega števila $Re = 300 \times 10^3$ so izvedene volumetrično, z merilno posodo. Umerjanje obeh posod je pokazalo, da je premer po celotni višini enak. Prerez največje merilne kadi je znašal 7850 cm², manjše pa 248 cm². Pri vsaki meritvi je predhodno odčitan najnižji vodostaj in nato še najvišji. V izogib paralaksi so se odčitki vodostaja izvajali pri popolnoma mirni vodni gladini. Tako se je doseglo natančnost od 0,1 do 0,2 mm. S pomočjo premičnega iztoka je bila voda v približno 0,1 do 0,2 s izpuščena v merilno posodo. Čas dotoka v merilno posodo je bil merjen z ročno štoparico. Štoparica je bila za svoj ciklus preskušena in je imela 1/10 sekundno razdelitev. Premični iztok je bil nato z enako zakasnitvijo odmaknjen iz posode. Trajanje dotoka je znašalo med 100 in 600 s. V najslabšem primeru, to je pri časovnem intervalu 100 s, izmerjenim z natančnostjo 0,2 s, in odčitku gladine vode na 0,2 mm natančno, znaša napaka $\pm 0,3$ %. Te napake so bile pri intervalu merjenja 600 s reda velikosti $\pm 0,05$ %. Največja napaka merjenja količin je bila za srednjo hitrost, in sicer $\pm 0,13$ %. Količina je bila ugotovljena kot povprečje več opazovanj (4 do 6) (Nikuradse, 1932).

Temperatura je bila merjena s termometrom na iztoku. Z meritvami temperature iztekajoče vode iz odzračevalnega ventila je bilo preverjeno, če ima tudi voda v cevi identično temperaturo. Izkazalo se je, da se meritve ujemajo. Termometer je bil umerjen in razdeljen na desetinko stopinje. Potemtakem je bila lahko ocenjena približno 1/20 do 1/30°, s čimer je bila pogojena napaka kinematične viskoznosti od $\pm 0,05$ do $\pm 0,08$ %. Pri višjih temperaturah je napaka kinematične viskoznosti še manjša. Meritve so bile izvedene pri temperaturah od 9 do 38°C. Pri sobni temperaturi je konstantnost temperature lahko doseči, pri višjih pa se pojavijo težave. Kakor omenjeno, so bile višje temperature dosežene tako, da je od 80 do 90°C vroča voda tekla iz parnega kotla v iztočni kanal (od 500 do 800 cm³/s). Iz predhodnih poskusov je bilo ugotovljeno, kakšen pretok in temperatura vode je bila potrebna, da se je ohranila konstantna temperatura v poskusni cevi (Nikuradse, 1932).

Iz mase vode, ki je popolnoma zapolnila poskusno cev, in dolžine cevi je bil določen polmer cevi. Natančnost določitev mase je bila $\pm 0,01$ %, dolžina pa je bila lahko izmerjena na 0,2 mm natančno, kar je znaša $\pm 0,007$ %. V najbolj neugodnem primeru znaša napaka pri določitvi polmera cevi $\pm 0,01$ % (Nikuradse, 1932).

Meritev statičnega tlaka je bila narejena pod predpostavko, da je statični tlak enak po celem merilnem prerezu. V vsakem merilnem prerezu so bile v poskusni cevi narejene 4 vrtine, ki so bile v povezavi z obročasto izravnalno komoro *ak* (Nikuradse, 1932). Nastavek je prikazan na privzeti sliki 3.8.

Privzeta slika 3.8: Nastavek za izvedbo meritve statičnega tlaka (Nikuradse, 1932) Adopted Figure 3.8: Pressure taps (Nikuradse, 1932)

S pomočjo nastavka *tü* in gibke cevi je bila lahko narejena povezava z manometrom. Prosti krak manometra je bil povezan z naslednjim merilnim prerezom. Tako je bil izmerjen diferenčni tlak med dvema prerezoma. V cev so bile navrtane ostrorobe vrtine (izkazale so se za hidravlično najugodnejše) s premerom 1,2 mm (Nikuradse, 1932).

Za doseganje večje natančnosti gradienta tlaka, ki je nujen za vrednotenje koeficienta trenja, so bila vselej vzeta čim daljša merilna območja. Dolžina merilnih območij je bila določena na 0,2 mm natančno. Tlačne razlike do 50 cm vodnega stolpca oziroma premera so bile merjene z opisanim mikromanometrom. Večje tlačne razlike so bile ugotovljene z normalnim živosrebrnim-U-manometrom, višine 250 cm (Nikuradse, 1932).

Meritve hitrosti so bile izvedene tako, da je bil zastojni tlak Pitotove cevi priklopljen do statičnega tlaka vrtine, ki je bil v merilnem prerezu, tako da je manometer direktno kazal dinamični tlak (Nikuradse, 1932).

3.2.4 Meritve hidravlično gladkih cevi

Cilj eksperimenta je obsegal dve nalogi: (1) na eni strani razširiti področje meritev koeficienta trenja na zelo velika Reynoldsova števila in (2) podati povezavo med porazdelitvijo hitrosti in Reynoldsovim številom na turbulentni tok v hidravlično gladkem režimu toka (Nikuradse, 1932).

Poskusi so bili izvedeni med leti 1928 in 1929 na Inštitutu za raziskovanje tokov Kaiser Wilhelm, ki ga je vodil prof. dr. Prandtl. Teoretična obdelava rezultatov poskusov se je zaključila poleti leta 1931. Uporabljene poskusne cevi so prikazane v spodnji preglednici.

DN	l _e	lı	l _{II}	la	X	x/DN	DN
[mm]	mm	[mm]	[mm]	[mm]	[mm]	[-]	l _e 1.
10	550	500	500	450	2000	200	l_{II}
20	1330	500	500	170	2500	125	l _a x
30	4960	500	500	40	3000	100	x/DN
50	3300	1000	1000	70	6000	120	
100	4000	1500	1000	550	7050	70,5]

Privzeta preglednica 3.1: Dimenzije poskusnih cevi – hidravlično gladke cevi (Nikuradse, 1932) *Adopted Table 3.1:* Dimensions of measured pipes – hydraulically smooth pipes (Nikuradse, 1932)

> notranji premer cevi dolžina dotoka merilno območje I merilno območje II dolžina iztoka skupna dolžina relativna skupna dolžina

...

...

•••

...

Rezultati eksperimentalnega dela so prikazani na privzeti sliki 3.9 in 3.10.

Privzeta slika 3.9: Odvisnost koeficienta trenja λ od Reynoldsovega števila *Re* (Nikuradse, 1932) *Adopted Figure 3.9: The friction factor* λ *dependence on the Reynolds number Re* (*Nikuradse, 1932*)

Privzeta slika 3.10: Razmerje $\frac{1}{\sqrt{\lambda}}$ v odvisnosti od produkta $Re \cdot \sqrt{\lambda}$ (Nikuradse, 1932) *Adopted Figure 3.10:* Relation $\frac{1}{\sqrt{\lambda}}$ compared to the values of $Re \cdot \sqrt{\lambda}$ (Nikuradse, 1932)

Zaključki te raziskave so predstavljeni v poglavju 4 (Teoretične osnove).

3.2.5 Meritve hidravlično hrapavih cevi

Cilj raziskave je obsegal 2 nalogi: (1) ugotoviti funkcijsko odvisnost med Reynoldsovim število Re, koeficientom trenja λ in relativno hrapavostjo k_s/r ter (2) preveriti, ali je porazdelitev hitrosti za relativno hrapavost k_s/r konstantna in kako je odvisna od Reynoldsovega števila (Nikuradse, 1933).

Raziskava se ukvarja s turbulentnim tokom v hrapavih ceveh pri različnih relativnih hrapavostih k_s/r , kjer je k_s srednja velikost hrapavosti in r polmer cevi. Da je izpolnjena predpostavka podobnostne mehanike, so kot poskusne cevi izbrane take, ki imajo izključno tako hrapavost, ki zagotavlja geometrijsko podobne oblike. Prvi pogoj je izpolnjen že s tem, da so izbrane cevi krožnega preseka. Drugi pogoj je izpolnjen tedaj, ko je razmerje polmera cevi r in velikosti hrapavosti k_s konstantno. Hrapavost je umetno ustvarjena z lepljenjem zrn peska, ki ima sam približno geometrijsko podobno strukturo. Tako so dobljene geometrijsko podobne cevi z geometrijsko podobno kvaliteto stene, ki imajo konstantno razmerje relativne hrapavosti (Nikuradse, 1933).

Enako hrapavost v ceveh se doseže z zrni enakih velikosti. V ta namen je uporabljen presejani pesek. Srednja velikost zrn premera 0,8 mm je bila dosežena s sejanjem na sitih 0,82 mm in 0,78 mm gostote. Povprečna velikost zrn je bila preverjena z merjenjem nekaj sto zrn. Z Zeißovim merilcem, ki je imel natančnost 0,001 mm, je bila ugotovljena povprečna debelina zrna 0,8 mm (Nikuradse, 1933).

Meritve so bile opravljene pri šestih različnih relativnih hrapavostih v območju Reynoldsovih števil od Re = 600 do $Re = 10^6$. Uporabljene poskusne cevi so prikazane v privzeti preglednici 3.2.

Privzeta preglednica 3.2: Dimenzije poskusnih cevi – hidravlično hrapav režim toka (Nikuradse, 1933) Adopted Table 3.2: Dimensions of measured pipes – hydraulically rough flow (Nikuradse, 1932)

DN [mm]	l _e mm]	l _I [mm]	l _{II} [mm]	l _a [mm]	x [mm]	x/DN [-]	DN l _e	 notranji premer cevi dolžina dotoka merilno območie I
25	750	500	500	50	1800	72		 merilno območje II
50	1495	1000	1000	75	3570	71,4	l _a x	 dolžina iztoka skupna dolžina
100	4000	1500	1000	550	7050	70,5	x/DN	 relativna skupna dolžina

Rezultati eksperimenta (privzeta slika 3.11) so prikazani na znanem Nikurdsejevi »harfi«, ki prikazuje vrednost koeficienta trenja λ v odvisnosti od Reynoldsovega števila *Re* in relativne hrapavosti k_s/D .

Privzeta slika 3.11: Nikuradsejevi rezultati za cevi z umetno hrapavostjo (Streeter, 1951) Adopted Figure 3.11: Nikuradse's measured data in artificially roughened pipes (Streeter, 1951)

Zakonitosti, ki so bile ovrednotene na podlagi teh raziskav, so prikazane v poglavju 4 (Teoretične osnove).

3.2.6 Pregled objavljenih meritev

Iz objavljene literature so bili prepisani in preverjeni rezultati meritev v hidravlično gladkih in hidravlično hrapavih (Nikuradse, 1933, preglednice 2 do 7) ceveh. Pokazala so se določena odstopanja, ki bodo v tem poglavju predstavljena. Meritve so priložene v prilogi 1. Ker podatkov o merjeni temperaturi ni na voljo, je le-ta preračunana iz izmerjene kinematične viskoznosti ter rešitvijo spodnjega sistema enačb.

$$v = \frac{\mu}{\rho} \tag{3.1}$$

$$\mu(T) = 2.414 \cdot 10^{-5} \cdot 10^{\frac{247.8 \,\mathrm{K}}{\mathrm{T} \cdot 140 \,\mathrm{K}}} \tag{3.2}$$

$$\rho(T) = 1000 \cdot \left(1 - \frac{(T + 288.9414)}{(508929.2 \cdot (T + 68.12963)) \cdot (T - 3.9863)^2}\right).$$
(3.3)

Na intervalu od 0 do 370° C je rezultat dinamične viskoznosti natančen na ±2,50 % (Seeton, 2006). Rezultati gostote izkazujejo enako natančnost (McCutcheon et al., 1993).

Za meritve hidravlično gladkih cevi so poleg ostalih podatkov iz dela Nikuradseja (1932, preglednica 9) podane meritve o povprečni hitrosti, kinematični viskoznosti, Reynoldsovemu številu, tlačnih izgubah in koeficientu trenja λ . Ne v tekstu kot v nobeni tabeli ni navedeno, kakšna je dejanska hrapavost uporabljenih cevi. Čeprav so meritve potekale v hidravlično gladkem režimu, je ta podatek pomemben, ker nam lahko pove, pri katerem Reynoldsovem številu hrap (ko je $\frac{v_* \cdot k}{v} > 4$) bi tok prešel v hidravlično hrapav režim.

Slika 3.1 prikazuje koeficient trenja λ , kot je prikazan v izvirni tabeli. Diagram prikazuje tudi iz naše strani ponovno preračunane vrednosti Reynoldsovega števila in koeficienta trenja λ . Preračun je izveden iz enačbe:

$$\lambda = \frac{\partial p}{\partial x} \cdot \frac{2 \cdot D}{\rho \cdot V^2} \tag{3.4}$$

in

$$Re = \frac{V \cdot D}{V}.$$
(3.5)

Slika 3.1: Primerjava Nikuradsejevih objavljenih meritev v hidravlično gladkih ceveh *Figure 3.1: Comparison of Nikuradse's published measured data in smooth pipes*

Iz diagrama na sliki 3.1 lahko vidimo, da se rezultati skoraj popolnoma ujemajo. Izjemo predstavlja le 7 meritev. Ena meritev močno odstopa po Reynoldsovem številu *Re* (25,43 %), druga pa po koeficientu trenja λ (6,10 %). Če meritve, ki imajo napako večjo od 5 % v izračunu napake ne upoštevamo (4 meritve *Re* in 3 meritve λ), je ujemanje skoraj popolno. Maksimalna napaka znaša tako ±0,98 % za Reynoldsova števila oziroma ±3,40 % za koeficient trenja.

V Nikuradse (1933, preglednice od 2 do 7) so za meritve hidravlično hrapavega režima toka podane meritve o povprečni hitrosti, kinematični viskoznosti, tlačnih izgubah, logaritmu (desetiška osnova) Reynoldsovega števila, logaritmu koeficienta trenja λ oziroma 100 λ ter premeru cevi, absolutni in relativni hrapavosti. Diagram na sliki 3.2 prikazuje koeficient trenja λ , kot je prikazan v izvirni tabeli ter iz naše strani ponovno preračunane vrednosti Reynoldsovega števila in koeficienta trenja λ .

Opozoriti je potrebno, da so v objavljenih podatkih tlačnih izgub v glavah preglednicah od 2 do 7 očitno pozabili pripisati faktor 1000, saj se v nasprotnem primeru preračunani koeficienti trenja ne ujemajo s tabeliranimi (objavljenimi kot $log(100\lambda)$).

Slika 3.2: Primerjava Nikuradsejevih objavljenih meritev v hidravlično hrapavih ceveh *Figure 3.2: Comparison of Nikuradse's published measured data in rough pipes*

Meritve zadnje absolutne hrapavosti ($k_s = 0,16$ cm) v preglednici 7 pa popolnoma odstopajo od preostalih meritev pri enaki relativni hrapavosti ($r/k_s = 15$ oziroma $k_s/D = 1/30$). Na sliki 3.2 so vrednosti teh tlačnih izgub pomnožene z vrednostjo 100, da so sploh lahko prikazane na diagramu (linija rdečih zvezdic). Če pomnožimo vrednost objavljenih tlačnih izgub za omenjeno hrapavost s faktorjem 125, dobimo dejansko ujemanje z objavljeno vrednostjo koeficienta trenja λ . Popravek je prikazan na sliki 3.3.

Slika 3.3: Popravljene Nikuradsejeve meritve v hidravlično hrapavih ceveh *Figure 3.3: Refitted Nikuradse's measured data in rough pipes*

Maksimalna odstopanja Reynoldsovih števil znašajo $\pm 37,00$ %, največje odstopanje koeficienta trenja znaša $\pm 20,58$ %. Če podatke, ki odstopajo več kot ± 5 % izločimo iz računa napake (7 meritev *Re* in 4 meritve λ), lahko ugotovimo, da znaša odstopanje Reynoldsovega števila $\pm 3,85$ %, koeficienta trenja pa $\pm 4,87$ %.

Ugotovimo lahko tudi, da del meritev (500 < Re < 6000), ki seže v laminarno območje v preglednicah ni objavljen, ampak je prikazan samo grafično. Manjkajoči podatki so bili digitalizirani iz diagrama na sliki 9 v Nikuradse (1933). Slika 3.4 prikazuje podatke Nikuradsejevih meritev, ki bodo v tej disertaciji uporabljene za nadaljnje raziskave.

Slika 3.4: Sinteza Nikuradsejevih meritev uporabljenih za nadaljnje raziskave *Figure 3.4: Synthesis of Nikuradse's measured data used for further research*

3.3 Raziskovalno delo Colebrooka in Whita

Eksperimenti so bili izvajani v cevi premera 5,35 cm in približno 6,0 m dolžine ob uporabi zraka. Cev je bila vzdolžno razrezana na dva dela zaradi nanašanja zrn za obravnavane karakteristične površine. Vsa zrna so bila fiksirana v cevi z bitumenskim premazom ali s Chattertonovo zmesjo. Količina zraka je bila izmerjena s pomočjo nemške merske šobe V.D.I. Normaldüse, za katero navajajo, da dosega natančnost ± 1 % (Colebrook in White, 1937). Eksperimentalna naprava je prikazana na privzeti sliki 3.12.

Privzeta slika 3.12: Eksperimentalna naprava Colebrook-White (Colebrook in White, 1937) *Adopted Figure 3.12:* Colebrook-White's experimental facility (Colebrook and White, 1937)

Eksperiment je izveden na šestih različnih tipih hrapavosti površine, ki je bila izdelana kot kombinacija dveh velikosti peščenih zrn. Manjši premer zrna je znašal 0,035 cm, večji pa 0,35 cm (Colebrook in White, 1937).

Na privzeti sliki 3.13 so prikazane posamezne karakteristike površin. Šest površin je bilo razdeljenih v dve skupini. Prvo skupino so sestavljale površine 0, I, II in III, drugo pa površine III, IV in V. Površina 0 je prikazana z zakonom hidravlično gladkih cevi. Prva skupina predstavlja dejansko površine, pri katerih so velika zrna konstantna, površina finih zrn pa se spreminja (Colebrook in White, 1937).

Privzeta slika 3.13: Površine, uporabljene v preizkusih Colebrook-White (Colebrook in White, 1937) *Adopted Figure 3.13:* Colebrook-White's artificially roughened surfaces (Colebrook and White, 1937)

Privzeti sliki 3.14 in 3.15 prikazujeta rezultate meritev. Za vrednost $Re < 20 \times 10^3$ ni razlike med površinami, eksperimentalne točke ležijo na eni krivulji.

Privzeta slika 3.14: Rezultati prve skupine (I, II, III) površin (Colebrook in White, 1937) Adopted Figure 3.14: Results for the first group (I, II, III) of surfaces (Colebrook and White, 1937)

Privzeta slika 3.15: Rezultati druge skupine (III, IV, V) površin (Colebrook in White, 1937) Adopted Figure 3.15: Results for the second group (III, IV, V) of surfaces (Colebrook and White, 1937)

V primeru, ko je prehod krivulje iz površine I na tip površine V funkcijsko izražen z Reynoldsovim številom hrap k_s^+ ($f(\rho \cdot v_* \cdot k_s / \mu)$), so krivulje videti kot ena sama sistematična družina (Colebrook in White, 1937). Razmerje prikazuje privzeta slika 3.16.

Privzeta slika 3.16: Odklon od hidravlično hrapavega zakona (Colebrook in White, 1937) Adopted Figure 3.16: Deviation from the "rough" law (Colebrook and White, 1937)

Začetni prehod je mogoče prikazati tudi kot funkcijo $f\left(\begin{array}{c} \rho \cdot v_* \cdot k_m \\ \mu \end{array}\right)$, pri čemer dobimo skupino krivulj, ki se širijo iz enega izhodišča na gladki krivulji v vrednosti $\begin{array}{c} \rho \cdot v_* \cdot k_m \\ \mu \end{array} \approx 5$. V tem primeru predstavlja vrednost k_m , velikost največjega zrna (Colebrook in White, 1937). Rezultate prikazuje privzeta slika 3.17.

Privzeta slika 3.17: Odklon od hidravlično hrapavega zakona izražen z maksimalnim zrnom (Colebrook in White, 1937)

Adopted Figure 3.17: Deviation from the "rough" law as a function of the largest grain (Colebrook and White, 1937)

Rezultati eksperimentov vodijo do prepričanja, da so velika zrna tista, ki kontrolirajo začetek prehoda. Na podlagi tega sta Colebrook in White ugotovila, da je pri neenotni hrapavosti prehod krivulj iz območja gladkosti v območje hrapavosti postopen (Colebrook in White, 1937).

Na osnovi eksperimentov, ki sta jih izvajala Colebrook in White, je Colebrook leta 1939 podal enačbo, ki »velja« tudi za prehodno območje (glej poglavje 4).

3.3.1 Pregled objavljenih meritev

V literaturi (Colebrook in White, 1937) so objavljeni podatki Colebrookove raziskave. Objavljeni so podatki o Reynoldsovem številu, koeficientu trenja λ , relativni hrapavosti ter ostali geometrijski podatki cevi. Podatke prikazuje diagram na sliki 3.5.

Slika 3.5: Objavljene meritve Colebrook-Whita Figure 3.5: Colebrook-White's published measured data

3.4 Raziskave na univerzi Oregon in Princeton

Zagarola in Smits sta leta 1998 objavila rezultate meritev porazdelitve hitrosti in koeficienta trenja na merilni stezi »Princeton Superpipe«. Merilna steza omogoča razvoj turbulentnega režima toka. Razmerje dolžine in premera cevi znaša L/D = 200, z notranjim premerom 129,286 mm (5,09"). Izmerjena hrapavost, definirano kot standardna deviacija hrapavosti (R_q – »root-mean-squared rougness«), znaša $R_q = 0,15 \mu$ m. Na podlagi eksperimenta, s katerim so določili profil hitrosti, je predpostavljena maksimalna možna ekvivalentna »peščena« hrapavost $k_s \approx 3R_q = 0,45 \mu$ m.

Kot medij je v eksperimentu uporabljen zrak pod tlakom. Omogočene so bile natančne meritve od $Re \approx 5 \times 10^3$ do $Re \approx 38 \times 10^6$. »Princeton Superpipe«, prikazan na privzeti sliki 3.18, omogoča meritve za red velikosti več kot meritve Nikuradseja v hidravlično gladkem režimu toka (Zagarola in Smits, 1998).

Privzeta slika 3.18: Eksperimentalna naprava »Princeton Superpipe« (Zagarola in Smits, 1998) Adopted Figure 3.18: The "Princeton Superpipe" experimental facility (Zagarola and Smits, 1998)

Na univerzi v Oregonu so Swanson in sodelavci leta 2002 opravili meritve toka pod tlakom v krožnih ceveh v območju Reynoldsovih števil od 10 do 10^6 . Pri nižjih Reynoldsovih številih so bili kot medij uporabljeni plini (helij, kisik, dušik, ogljikov dioksid in žveplov heksafuorid) pri sobni temperaturi. Uporabljena je bila cev dolžine 28 cm in premera 0,467 cm. Eksperimentalno napravo prikazuje privzeta slika 3.19. Za višja Reynoldsova števila so v raziskavi uporabili tekoči helij. Meritve so bile opravljene na hidravlično gladkih ceveh s predpostavljeno maksimalno možno »peščeno« hrapavostjo 0,05 µm (Swanson et al., 2002).

Privzeta slika 3.19: Eksperimentalna naprava univerze Oregon (Swanson et al., 2002) Adopted Figure 3.19: Schematic diagram of the Oregon's experimental facility (Swanson et al., 2002)

McKeon in sodelavci leta 2004 objavijo sintezo meritev, ki so bile do tedaj opravljene na univerzi Oregon in Princeton. Ugotovijo, da se na območju, kjer se eksperimenta prekrivata, meritve ujemajo z odstopanjem ±1,7 %. Ugotovljena eksperimentalna negotovost meritev univerze Oregon znaša od ±2 do ±4 %. Meritve, opravljene na merilni opremi »Princeton Superpipe«, izkazujejo napako ±1,1 %. Z združitvijo obeh podatkovnih baz lahko ugotovimo, da se je interval meritev koeficienta trenja λ razširil od do tedaj znanih meritev na območju $10^3 < Re < 3,2 \times 10^6$ na območje $10 < Re < 35,7 \times 10^6$ (McKeon et al., 2004). Meritve so priložene v prilogi 1 in prikazane na sliki 3.6.

Ne v delu Zagarola in Smitsa (1998) kot v delu Swansona in sodelavcev (2002) ni objavljenih rezultatov meritev. Zato so uporabljene vrednosti iz dela McKeon in sodelavcev (2004), kjer so nekoliko popravljene meritve, ki sta jih objavila Zagarola in Smits v članku iz leta 1998. Zaradi tega se v tej disertaciji sklicevanje na meritve univerze Princeton nanaša na letnico 2004 in ne 1998.

Potrebno je poudariti, da so v obeh eksperimentih ekvivalentne peščene hrapavosti določene kot maksimalne možne »peščene« hrapavosti, pri čemer hrapavost še nima vpliva na koeficient trenja (Reynoldsovo število hrap je manjše od 4). Torej to ne predstavlja dejansko določene vrednosti,

ampak le hipotezo o maksimalni vrednosti ekvivalentne »peščene« hrapavosti. Točno vrednost bi bilo mogoče določiti samo tedaj, ko bi se prehod v hidravlično hrapav režim toka dejansko zgodil, to pa je pri ustrezno visokem Reynoldsovem številu.

V delu Zagarola in Smits (1998) ter članku Swansona in sodelavcev (2002) je vrednost maksimalne možne »peščene« hrapavosti določena na podlagi predpostavke, da bi pri naslednjem večjem Reynoldsovem številu, kot je bilo največje izmerjeno, meritev presegla vrednost Reynoldsovega število hrap 4 ($k_s^+ > 4$). Poudariti je potrebno, da je to le hipotetična vrednost in predstavlja največjo možno ekvivalentno »peščeno« hrapavost. Meritve se namreč do najvišjih izmerjenih Reynoldsovih števil niso odklonile od zakona hidravlično gladkih cevi.

Slika 3.6: Meritve univerze Oregon in Princeton *Figure 3.6: Oregon's and Princeton's measured data*

Kot zanimivost lahko povemo, da znaša skupna masa eksperimentalne opreme »Princeton Superpipe« 25 ton, masa opreme na univerzi Oregon pa le 28,35 g (McKeon et al., 2004).

4 TEORETIČNE OSNOVE

Poglavje obravnava teoretične in delno empirične osnove teorije, ki je pripeljala do ustreznih fizikalnih zaključkov, na katerih temeljijo obrazci za določitev koeficienta trenja λ . Poglavje je razdeljeno na tri podpoglavja, ki obravnavajo teoretične osnove laminarnega in turbulentnega režima toka ter prehodnega območja.

Veliko avtorjev je preučevalo koeficient trenja, zato obstaja veliko število izrazov, ki so v nadaljevanju podani v karakterističnih skupinah. Pri tem je potrebno opozoriti, da veliko avtorjev navaja svoje izraze brez omejitev, kar ni popolnoma pravilno.

4.1 Laminarni tok

Za laminarni tok velja po Osbornu Reynoldsu in po Hagen-Poisseuillu zakonitost, da so v ravnotežju samo strižne in tlačne sile, medtem ko so vztrajnostne sile zanemarljive. Na podlagi sike 4.1 lahko zapišemo ravnotežje sil, ki se glasi:

$$p \cdot \pi r^2 - (p - \Delta p) \cdot \pi r^2 - \tau \cdot 2\pi r \cdot \Delta x = 0.$$
(4.1)

Slika 4.1: Laminarni tok v cevi krožnega preseka *Figure 4.1: Laminar flow in round pipes*

Iz enačbe 4.1 sledi:

$$\tau = \frac{\Delta p}{\Delta x} \cdot \frac{r}{2}.$$
(4.2)

Če v enačbo 4.2 vstavimo Newtnovo zakonitost $\tau = -\mu \cdot \frac{\partial u}{\partial r}$, kjer je μ dinamična viskoznost, negativni predznak pa je uporabljen, ker ima strižna napetost ravno nasprotno smer hitrosti, dobimo:

$$\partial u = -\frac{\Delta p}{\Delta x} \cdot \frac{r}{2 \cdot \mu} \cdot \partial r \,. \tag{4.3}$$

Enačbo 4.3 integriramo po celotnem prerezu in upoštevamo, da je na ostenju hitrost enaka 0 in dobimo:

$$\int_{u}^{0} \partial u = -\frac{\Delta p}{\Delta x \cdot 2 \cdot \mu} \cdot \int_{r}^{D/2} r \cdot \partial r \to u = \frac{\Delta p}{\Delta x \cdot 4 \cdot \mu} \cdot \left(\frac{D^{2}}{4} - r^{2}\right).$$
(4.4)

Enačba 4.4 je dejansko enačba parabole. Maksimalna hitrost se očitno pojavi v osi (r = 0) in znaša:

$$u_{max} = \frac{\Delta p \cdot D^2}{\Delta x \cdot 16 \cdot \mu} \,. \tag{4.5}$$

Pretok v cevi dobimo z integriranjem enačbe 4.6 po celotnem prerezu

$$Q = \int_{0}^{D/2} u \cdot 2\pi r \cdot \partial r = \frac{\Delta p \cdot \pi}{\Delta x \cdot 2 \cdot \mu} \cdot \int_{0}^{D/2} \left(\frac{D^2}{4} - r^2\right) \cdot r \cdot \partial r = \frac{\Delta p \cdot \pi \cdot D^4}{\Delta x \cdot 128 \cdot \mu}.$$
(4.6)

Iz enačbe 4.6 sledi, da znaša povprečna hitrost:

$$V = \frac{4 \cdot Q}{\pi \cdot D^2} = \frac{\Delta p \cdot D^2}{\Delta x \cdot 32 \cdot \mu} = \frac{u_{max}}{2}.$$
(4.7)

V enačbi 4.7 zamenjamo člen $\frac{\Delta p}{\Delta x}$ z izrazom v enačbi 4.2 in dobimo:

$$V = \frac{2 \cdot \tau \cdot D^2}{r \cdot 32 \cdot \mu} \to \tau = \frac{16 \cdot \mu \cdot V \cdot r}{D^2}.$$
(4.8)

Enačba 4.8 nam pokaže, da je strižna napetost linearno porazdeljena z razdaljo *r* od osi. Tik ob steni je strižna napetost največja ($\tau = \tau_{max} = \tau_0$), v osi pa je enaka nič ($\tau = 0$).

Če v enačbo 4.7 vpeljemo kinematično viskoznost $v = \frac{\mu}{\rho}$ in jo delimo z gravitacijskim pospeškom g, dobimo enačbo, ki opisuje tlačne (energijske) izgube:

$$\frac{V}{g} = \frac{\Delta p \cdot D^2}{\Delta x \cdot 32 \cdot v \cdot \rho \cdot g} \to \frac{\Delta p}{\rho g} = h = \frac{32 \cdot v \cdot V}{g \cdot D^2} \cdot \Delta x \,. \tag{4.9}$$

Enačba 4.9 je poznana kot Poiseuillusova enačba, ki so jo številni eksperimenti tudi potrdili.

Ker tudi Darcy-Weissbachova enačba 2.7 opisuje tlačne (energijske) izgube, mora veljati enakost:

$$\lambda \frac{\Delta x}{D} \cdot \frac{V^2}{2 \cdot g} = \frac{32 \cdot v \cdot V}{g \cdot D^2} \cdot \Delta x \to \lambda = \frac{64 \cdot v}{V \cdot D}.$$
(4.10)

V enačbo 4.10 vpeljemo še Reynoldsovo število $Re = \frac{V \cdot D}{V}$ in dobimo funkcijsko povezavo koeficienta trenja λ z Reynoldsovim številom *Re*:

$$\lambda = \frac{64}{Re}.$$
(4.11)

Na sliki 4.2 je prikazano ujemanje enačbe 4.11 z meritvami, ki so jih objavili Swanson in sodelavci (2002) (glej poglavje 3.4), ter meritvami, opravljenimi v sklopu pričujoče disertacije v hidravličnem laboratoriju UL-FGG (glej poglavje 6). Iz razlogov, navedenih v poglavju 3.2.6 (digitalizacija podatkov), meritve, ki jih je objavil Nikuradse (1932 in 1933), niso bile uporabljene. Upoštevane so samo meritve, izmerjene pod kritično mejo Reynoldsovega števila ($Re_{krit} \approx 2300$).

Slika 4.2: Hiperbolična porazdelitev koeficienta trenja λ v laminarnem režimu toka *Figure 4.2: A hyperbolic distribution of the Friction factor in laminar flow*

4.2 Turbulentni tok

Kot že omenjeno v poglavju 2, se v ceveh krožnega preseka linijske izgube običajno določajo z znanim Darcy-Weissbachovim izrazom (enačba 2.7). Iz ravnotežnega pogoja sil lahko zapišemo enačbo 4.1, ki mora veljati v vseh režimih toka (bodisi turbulentnem bodisi laminarnem). Če v enačbo 4.1 vpeljemo kinematično viskoznost $v = \frac{\mu}{\rho}$ in jo delimo z gravitacijskim pospeškom g, dobimo enačbo:

$$\frac{\Delta p}{\rho \cdot g} = \frac{4 \cdot \bar{\tau}_0 \cdot \Delta x}{\rho \cdot g \cdot D}.$$
(4.12)

V enačbi 4.12 predstavlja $\overline{\tau}_0$ strižno napetost ob steni in ima zaradi smeri koordinatnega sistema oziroma dejstva, da deluje v smeri nasprotni hitrosti, negativno vrednost². Zaradi pulzacije hitrosti v turbulentnem toku so pri nadaljnjih izpeljavah upoštevana časovna povprečja hitrosti \overline{u} in strižnih napetosti $\overline{\tau}_0$.

Eksperimenti, ki jih je izvajal Darcy v sredini 19. stoletja, so pokazali, da so tlačne izgube proporcionalne povprečni hitrosti V, dano na potenco reda velikosti 2. Ob predpostavki, da velja $\bar{\tau}_0 = c \cdot V^2$, se enačba 4.12 spremeni v:

$$\frac{\Delta p}{\rho \cdot g} = \frac{4 \cdot c \cdot V^2 \cdot \Delta x}{\rho \cdot g \cdot D}.$$
(4.13)

Z nastavkom $\lambda = \frac{8 \cdot c}{\rho}$ in integriranjem vzdolž cevi dobimo poznano Darcyjevo enačbo 2.7. Iz enačbe 4.12 in 2.7 tako sledi:

$$\overline{\tau}_{0} = \frac{\lambda \cdot \rho \cdot V^{2}}{8} \to V = \sqrt{\frac{\overline{\tau}_{0}}{\rho}} \cdot \sqrt{\frac{8}{\lambda}} = v_{*} \cdot \sqrt{\frac{8}{\lambda}}.$$
(4.14)

V zgornji enačbi predstavlja v. strižno hitrost ob steni.

Iz enačbe 4.14 je očitno, da sta koeficient trenja λ in strižna napetost ob steni $\overline{\tau}_0$ v medsebojni povezavi. Funkcijska odvisnost povezuje tudi strižno napetost ob steni $\overline{\tau}_0$ in profil hitrosti. Iz tega vidika je potrebno preučiti tudi profil hitrosti, ki je opisan v naslednjem poglavju.

² Glej sliko 4.4.

4.2.1 Profil hitrosti

Poglavje obravnava samo porazdelitev hitrosti na stiku med zunanjim slojem mejne plasti in osrednjim tokom (»Overlap Layer«), ki je pomembna za določitev koeficienta trenja λ .

Pri analitični rešitvi porazdelitve hitrosti na stiku (»Overlap Layer«) med zunanjim slojem mejne plasti in osrednjim tokom je Prandtl (1933) uporabil sledeči nastavek:

$$\tau_t = \rho \cdot l^2 \cdot \left| \frac{\delta \overline{u}}{\delta y} \right| \cdot \frac{\delta \overline{u}}{\delta y} \to \tau_t = \rho \cdot \kappa^2 \cdot y^2 \left(\frac{\delta \overline{u}}{\delta y} \right)^2 = \overline{\tau}_0.$$
(4.15)

Mešalno dolžino *l* je v enačbi 4.15 zamenjal z razdaljo *y* od ostenja in v. Kàrmànovo konstanto κ ter predpostavil, da je strižna napetost zaradi turbulence τ_t konstantna z vrednostjo $\overline{\tau}_0$ (vrednost strižne napetosti ob steni). Slednjo predpostavko je utemeljil z dejstvom, da se v turbulentnem režimu toka največja sprememba hitrosti zgodi v tanki laminarni mejni plasti δ_L . Anomalijo v predpostavki predstavlja dejstvo, da bi morala biti glede na enačbo 4.2 strižna napetost v osi cevi enaka nič. Potek hitrosti v bližini stene je prikazan na sliki 4.3.

Slika 4.3: Porazdelitev hitrosti v bližini stene Figure 4.3: Velocity distribution near the pipe wall

Po ureditvi enačbe 4.15 dobimo izraz:

$$\frac{\delta \overline{u}}{\delta y} = \frac{1}{\kappa} \cdot \sqrt{\frac{\overline{\tau}_0}{\rho} \cdot \frac{1}{y}} = \frac{v_*}{\kappa} \cdot \frac{1}{y}, \qquad (4.16)$$

ki ga integriramo in dobimo

$$\overline{u} = \frac{v_*}{\kappa} \cdot \ln(y) + const.$$
(4.17)

Zaradi praktičnosti je smiselno enačbo 4.17 izraziti v brezdimenzijski obliki. Uporabljeni so sledeči nastavki: $u^+ = \frac{\overline{u}}{v_*}$ in $y^+ = \frac{y}{\delta_L}$, kjer je $\delta_L = \frac{v}{v_*}$ debelina laminarne mejne plasti. Tako lahko v limiti, ko gre $y^+ \rightarrow \infty$, enačbo 4.17 zapišemo v sledeči obliki (Schlichting et al., 2000):

$$\lim_{y^+ \to \infty} \left(u^+ \left(y^+ \right) \right) = \frac{1}{\kappa} \cdot \ln(y^+) + C^+.$$
(4.18)

Z meritvami je bilo dokazano, da je konstanta C^+ v veliki meri odvisna od hrapavosti ostenja. V literaturi je enačba 4.18 poznana kot »logaritemski zakon ostenja« (v izvirniku »Logarithmic Law of the Wall«), kar dejansko ne drži. V nadaljevanju bo pokazano, da enačba opisuje dogajanje na stiku (»Overlap Layer«) med zunanjim slojem mejne plasti in osrednjim tokom.

Do sedaj je bilo predpostavljeno, da je ostenje popolnoma gladko, brez hrap. Dejansko pa v realnem svetu ni tako. Vpeljati je potrebno pojem standardne »peščene« hrapavosti k_s , ki jo prikazuje privzeta slika 4.1. Standardna hrapavost je definirana s premerom zrna peska. Vsakršna tehnična hrapavost je lahko izražena z ekvivalentno standardno »peščeno« hrapavostjo.

Privzeta slika 4.1: Standardna »peščena« hrapavost k_s (Schlichting et al., 2000) Adopted Figure 4.1: Sand roughness height k_s (Schlichting et al., 2000)

Konstanta C^+ v enačbi 4.18 postane tako funkcija hrapavosti oziroma brezdimenzijskega števila $k_s^+ = \frac{k_s}{\delta_L} = \frac{k_s \cdot v_*}{v}$ (Reynoldsovo število hrap). Asimptoti, ko gre $k_s^+ \to 0$ in $k_s^+ \to \infty$, se lahko

zapišejo kot funkcijo $C^+(k_s^+)$. Za hidravlično gladke površine velja:

$$\lim_{k_s^+ \to 0} \left(C^+ \left(k_s^+ \right) \right) = 5 \,. \tag{4.19}$$

Enačbo 4.18 lahko tedaj zapišemo:

$$\lim_{y^+ \to \infty} \left(u^+(y^+) \right) = \frac{1}{\kappa} \cdot \ln(y^+) + C^+(k_s^+) \to \lim_{y \to 0} \left(u^+(y) \right) = \frac{1}{\kappa} \cdot \ln\left(\frac{y}{k_s}\right) + C_r^+(k_s^+).$$
(4.20)

Funkcijo $C_r^+(k_s^+)$ se zapiše kot:

$$C_{r}^{+}(k_{s}^{+}) = C^{+}(k_{s}^{+}) + \frac{1}{\kappa} \ln(k_{s}^{+}).$$
(4.21)

Iz zgornjih enačb lahko zaključimo sledeče, da v primeru, ko je velikost hrap k_s bistveno večja od debeline mejne plasti δ_L ($k_s >> \delta_L$), postane vpliv viskoznosti zanemarljiv. Funkcija $C_r^+(k_s^+)$ postane tedaj konstanta (Schlichting et al., 2000).

Schlichting s sodelavci (2000) na podlagi eksperimentov za turbulentno hrapav režim toka navajajo:

$$\lim_{k_{s}^{+} \to \infty} C_{r}^{+} \left(k_{s}^{+} \right) = \lim_{k_{s}^{+} \to \infty} \left(C^{+} \left(k_{s}^{+} \right) + \frac{1}{\kappa} \ln \left(k_{s}^{+} \right) \right) = 8.$$
(4.22)

Funkciji $C_r^+(k_s^+)$ in $C^+(k_s^+)$ je na podlagi meritev določil I. Tani (Schlichting et al., 2000) in ju objavil leta 1987. Funkciji sta prikazani na privzeti sliki 4.2. Funkciji veljata za vrednosti $\kappa = 0,41$.

Privzeta slika 4.2: Funkciji $C_r^+(k_s^+)$ in $C^+(k_s^+)$ (Schlichting et al., 2000) *Adopted Figure 4.2:* Functions $C_r^+(k_s^+)$ and $C^+(k_s^+)$ (Schlichting et al., 2000)

4.2.2 Ekvivalentna hrapavost

Vsaki tehnični hrapavosti k_{teh} je mogoče prirediti ekvivalentno standardno »peščeno« hrapavost $k_{s,eq}$. Eksperimentalno je potrebno določiti profil hitrosti $u^+(y)$ na stiku (»Overlap Layer«) mejne plasti in osrednjega toka. Iz enačbe 4.20 in 4.22 lahko zapišemo:

$$k_{s,eq} = \exp\left(\kappa \lim_{y \to 0} \left(8,0 + \frac{1}{\kappa} \ln(y) - u^+(y) \right) \right).$$
(4.23)

Nato je potrebno preveriti, če je zadovoljeno pogoju $k_{s,eq}^{+} = \frac{k_{s,eq} \cdot v_{*}}{v} > 70$, saj je na podlagi eksperimentov ugotovljeno, da se funkciji $C_r^+(k_s^+)$ in $C^+(k_s^+)$ za tehnično hrapavost na intervalu $5 < k_s^+ < 70$ razlikujeta od tistih za standardno hrapavost (Schlichting et al., 2000). Colebrook je leta 1938 podal funkcijo $C^+(k_{teh}^+)$ ter posledično $C_r^+(k_{teh}^+)$, ki se glasi:

$$C^{+}(k_{teh}^{+}) = 8,0 - \frac{1}{\kappa} \ln(3,4 + k_{teh}^{+}) = 5,0 - \frac{1}{\kappa} \ln\left(1 + \frac{k_{teh}^{+}}{3,4}\right).$$
(4.24)

Funkcija je prikazana na privzeti sliki 4.2.

Po Schlichtingu in sodelavci (2000) lahko hrapavost razdelimo na tri hidravlične režime toka:

- $0 \le k_s^+ \le 5 \qquad \rightarrow C^+ \approx 5,0$ $5 \le k_s^+ \le 70 \qquad \rightarrow C^+(k_s^+)$ $70 \le k_s^+ \qquad \rightarrow C_r^+ \approx 8,0$ 1. Hidravlično gladke cevi:
- 2. Prehodno območje:
- 3. Hidravlično hrapave cevi:

Privzeta slika 4.3 prikazuje vpliv hrapavosti ostenja na debelino mejne plasti ter posledično na režim toka.

(a) Turbulentno: hidravlično gladko

ゴンクトリートレート

(b) Turbulentno: prehodno območje

(b) Turbulentno: hidravlično hrapavo

Privzeta slika 4.3: Vpliv hrapavosti na režim turbulentnega toka (Webber, 1971) Adopted Figure 4.3: Effect of roughness on the turbulent flow regime (Webber, 1971)

Dokler so hrape popolnoma znotraj laminarnega dela mejne plasti ($k < 5\delta_L$), se površina obnaša kot popolnoma gladka (hidravlično gladek režim toka). Ko je velikost hrap večja od debeline popolnoma laminarnega dela mejne plasti, postane vpliv hrapavosti pomemben (prehodno območje). V primeru,

ko sežejo hrape v stično območje (»Overlap Layer«), vpliv viskoznosti postane zanemarljiv (hidravlični hrapav režim toka).

V preglednici 4.1 so prikazane nekatere vrednosti ekvivalentne »peščene« hrapavosti $k_{s,eq}$ za tehnično hrapavost tipičnih industrijsko izdelanih cevi. Podatki so povzeti po Schlichtingu s sodelavci (2000) in Krautovem strojniškem priročniku (2007).

Material cevi	Stanje cevi	k _{s,eq} [mm] ³	k _{s,eq} [mm] ⁴
baker, medenina, bron, aluminij, steklo, umetne snovi	nove, brez usedlin	0,002	< 0,03
	nove, brezšivne, hladno vlečene	0,02 - 0,10	< 0,03
	nove, brezšivne, toplo vlečene	0,02 - 0,10	0,05 - 0,10
	nove, brezšivne, valjane		0,05 - 0,10
vlečene jeklene cevi	rahlo zarjavele		0,10 - 0,20
	zarjavele, po dolgoletni rabi		0,20 - 0,30
	zarjavele	0,40	0,50 - 2
	močno zarjavele	3	> 2
	nove, vzdolžno varjene	0,04 - 0,10	0,05 - 0,10
	nove, spiralno varjene	0,04 - 0,10	0,10
varjene jeklene cevi	nove, prevlečene z bitumnom	0,05	0,03 - 0,05
	normalne, prevlečene z bitumnom		0,10 - 0,20
	enakomerno zarjavele	0,15	0,10 - 0,20
	zarjavele, po dolgoletni rabi	0,50	0,20 - 0, 30
	zarjavele	1,50	0,50 - 2
	močno zarjavele	2 - 4	> 2
pocinkane jeklene cevi	nove	0,07 - 0,15	0,13
	nove	0,25 - 1	0,25
cive liting	nove, prevlečene z bitumnom	0,10 - 0,15	0,03 - 0,05
siva intilia	rabljene, rahlo zarjavele	1 - 1,5	1 - 1,5
	zarjavele	1,5 - 4	> 1,5
hotonsko ogvi	surove, neobdelane	1 - 3	
betoliske cevi	zglajene	0,3 - 0,8	
azhastaamant	nove oziroma prevlečene		< 0,03
azbestcement	rabljene oziroma neprevlečene		0,05

Preglednica 4.1: Ekvivalentna »peščena« hrapavost $k_{s,eq}$ za industrijsko izdelane cevi *Table 4.1:* Equivalent sand roughness $k_{s,eq}$ for commercial pipes

Ker se danes množično uporabljajo cevi iz duktilne litine z notranjo cementno oblogo, je smiselno podati tudi ekvivalentno »peščeno« hrapavost za te cevi. Na podlagi ustreznih raziskav, ki jih je opravil eden izmed vodilnih proizvajalec takšnih cevi, je podana vrednost za nove cevi $k_{s,eq} = 0,03$ mm (Saint-Gobain PAM, 2001).

³ Richterjeva absolutna višina hrapavosti (Kraut, 2007).

⁴ Enakovredna »peščena« hrapavosti $k_{s,eq}$ po DIN 1952 (Schlichting et al., 2000).

Poleg tega Schlichting in sodelavci (2000) povzemajo nekaj vrednosti ekvivalentne »peščene« hrapavosti za enakomerno ustvarjeno hrapavost podlage. Vrednosti so prikazane v privzeti preglednici 4.1 in povzemajo rezultate raziskave objavljene v Schlichting (1936).

Privzeta preglednica 4.1: Ekvivalentna »peščena« hrapavost $k_{s,eq}$ za enakomerno ustvarjeno tehnično hrapavost k_{teh} podlage (Schlichting et al., 2000)

Adopted Table 4.1: Equivalent sand roughness $k_{s,eq}$ for artificially formed technical roughness k_{teh} (Schlichting et al., 2000)

Št.	Tip	Dimenzije	D [cm]	d [cm]	k [cm] ⁵	k _{s,eq} [cm]
1	-	Krogle $\begin{pmatrix} d & & k \\ & & & & \\ & & &$	4	0.41	0.410	0.093
2			2	0.41	0.410	0.344
3			1	0.41	0.410	1.26
4	Krogle		0.6	0.41	0.410	1.56
5			Se stikajo	0.41	0.410	0.257
6			1	0.21	0.210	0.172
7		0 0	0.5	0.21	0.210	0.759
8	- Polkrogle	$-\frac{d}{d} = \frac{1}{k}$	4	0.80	0.260	0.031
9			3	0.80	0.260	0.049
10			2	0.80	0.260	0.149
11			Se stikajo	0.80	0.260	0.365
12	Konusi	0 0	4	0.80	0.375	0.059
13		$\begin{bmatrix} 0 & 0 \end{bmatrix}$	3	0.80	0.375	0.164
14			2	0.80	0.375	0.374
15	"L" profili	- Amarkan Aris	4	0.80	0.300	0.291
16			3	0.80	0.300	0.619
17			2	0.80	0.300	1.47

⁵ Geometrijska višina hrap.

4.2.3 Zakon upora

Ko je porazdelitev hitrosti na stiku mejne plasti in osrednjega toka poznana (enačba 4.18), je potrebno določiti še porazdelitev hitrosti v osrednjem toku. V ta namen uvedemo cilindrične koordinate x, r in φ , ki jih prikazuje slika 4.4 ter hitrosti u, v in w.

Slika 4.4: Cilindrične koordinate v ceveh Figure 4.4: Cylindrical coordinates in pipes

Energijska enačba v cilindričnih koordinatah se glasi:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\cdot\bar{\tau}\right) = \frac{\partial\bar{p}_{0}}{\partial x}.$$
(4.25)

 $\overline{\tau}$ zapišemo kot:

$$\overline{\tau} = \overline{\tau}_{v} + \tau_{t} = \rho \cdot v \frac{\partial \overline{u}}{\partial r} - \rho \cdot \overline{u}' \cdot \overline{v}'.$$
(4.26)

Pulzacije hitrosti $\rho \cdot \overline{u}' \cdot \overline{v}'$, ki nastanejo zaradi turbulence, nadomestimo s strižno napetostjo τ_t . Z integriranjem enačbe 4.25 po polmeru *R* in nastavkom $\overline{\tau}_0 = \frac{\partial \overline{p}_0}{\partial x} \cdot \frac{1}{2}$ dobimo:

$$\overline{\tau} = \frac{\partial \overline{p}_0}{\partial x} \frac{r}{2} = \frac{r}{R} \cdot \overline{\tau}_0.$$
(4.27)

Uvedemo brezdimenzijska števila in nastavke $\eta = \frac{r}{R}$, $u^+ = \frac{\overline{u}}{v_*}$, $\tau_t^+ = \frac{\overline{\tau}_t}{\overline{\tau}_0}$, $v_* = \sqrt{\frac{-\overline{\tau}_0}{\rho}}$ in

 $Re_{\tau} = \frac{v_* \cdot R}{v}$ ter jih ustavimo v enačbe 4.25 do 4.27 in dobimo:

$$-\frac{1}{Re_{\tau}} \cdot \frac{\partial u^{+}}{\partial \eta} + \tau_{\iota}^{+} = \eta .$$
(4.28)

Potrebno je poiskati funkcijo $u^+(\eta, Re_\tau)$, ko gre $Re_\tau \to \infty$ za mejno plast in za osrednji tok, saj se mora hitrost \overline{u}_{δ} (glej sliko 4.3) na stiku obeh plasti ujemati.

V prvem primeru (mejna plast) uvedemo koordinato mejne plasti $y^+ = (1 - \eta) \cdot Re_{\tau}$ in dobimo rešitev enačbe 4.28 v obliki $\frac{\partial u^+}{\partial y^+} + \tau_t^+ = 1$, ki jo pogosto imenujemo univerzalni zakon ostenja (v izvirniku »Universal Law of the Wall«) in velja le v laminarnem delu mejne plasti. Tik ob steni $(y^+ = 0)$ mora v laminarni mejni plasti veljati robni pogoj $\frac{\partial u^+}{\partial y^+} = 1$. Univerzalni zakon ostenja je veljaven tako v hidravlično gladkem kot hidravlično hrapavem režimu toka, saj ne glede na režim turbulentnega toka, v limiti $Re \rightarrow \infty$ in ob končno veliki strižni napetosti, razporeditev hitrosti v laminarni mejni plasti δ_L sledi omenjeni porazdelitvi (Schlichting et al., 2000). Kontinuitetna enačba

in »No-Slip« pogoj ob ostenju narekujeta asimptoto oblike $\frac{\partial u^+}{\partial y^+} = 1 - Ay^{+3} + \dots$, ko gre $y^+ \to 0$

oziroma enačbo 4.18, ko gre ($y^+ \rightarrow \infty$). Z upoštevnajmem indirektnega modela turbulence dobimo rešitev (Schlichting et al., 2000):

$$\frac{\partial u^{+}}{\partial y^{+}} = \frac{1}{1 + (A + B)y^{+3}} + \frac{B \cdot y^{+3}}{1 + \kappa \cdot B \cdot y^{+4}}$$
(4.29)

$$u^{+} = \frac{1}{\Phi} \left(\frac{1}{3} \ln \left(\frac{\Phi \cdot y^{+} + 1}{\sqrt{(\Phi \cdot y^{+})^{2} - \Phi \cdot y^{+} + 1}} \right) + \frac{1}{\sqrt{3}} \left(\arctan \left(\frac{2\Phi \cdot y^{+} - 1}{\sqrt{3}} \right) + \frac{\pi}{6} \right) \right) + \frac{1}{4\kappa} \ln \left(1 + \kappa \cdot B \cdot y^{+4} \right).$$
(4.30)

Poleg tega velja $\Phi = (A+B)^{\frac{1}{3}}$ in $C^+ = \frac{2\pi}{3\sqrt{3}\cdot\Phi} + \frac{1}{4\kappa}\ln(\kappa\cdot B)$. Tedaj enačbi 4.29 in 4.30 ustrezata robnima pogojema $y^+ \to 0$ in $y^+ \to \infty$.

Privzeta slika 4.4 prikazuje porazdelitev hitrosti kot funkcijo $u^+(y^+)$ in porazdelitev strižne napetosti kot $\tau_t^+(y^+)$ ter asimptoti $y^+ \to 0$ in $y^+ \to \infty$.

Privzeta slika 4.4: Univerzalna porazdelitev hitrosti $u^+(y^+)$ in strižne napetosti $\tau_t^+(y^+)$ za hidravlično gladke cevi (Schlichting et al., 2000)

Adopted Figure 4.4: Universal distribution of velocity $u^+(y^+)$ and shear stress $\tau_t^+(y^+)$ for hydraulically smooth pipes (Schlichting et al., 2000)

Glede na privzeto sliko 4.4 ločimo tri območja, ki so po Schlichtingu s sodelavci (2000):

1.	Laminarni del mejne plasti:	$0 \le y^+ < 5$	$u^+ = y^+$
2.	Prehodno območje mejne plasti:	$5 \le y^+ < 70$	enačba 4.30
3.	»Overlap Layer«:	$70 \leq y^+$	enačba 4.18

V drugem primeru (osrednji tok) pa nam enačba 4.28 poda rešitev $\tau_t^+ = \eta$. Funkcijsko odvisnost $u^+(\eta)$ je potrebno določiti z modeli turbulence oziroma, če je hitrostni gradient $\frac{\partial u^+}{\partial \eta}$ poznan, se z integriranjem od osi proti steni dobi:

$$u^{+}(\eta) - u_{max}^{+} = \int_{0}^{\eta} \frac{\partial u^{+}}{\partial \eta} \,\partial \eta \,. \tag{4.31}$$

Enačba je poznana kot »Velocity-Deficiency Distribution« in dejansko podaja razliko hitrosti do vrednosti maksimalne hitrosti u_{max}^+ v osi cevi. Z obsežnim eksperimentalnim delom je bilo dokazano, da je osrednji del toka (imenovan tudi »Defect Layer«) neodvisen od mejne plasti in od Reynoldsovega števila (Schlichting et al., 2000).

Ker mora biti hitrost \overline{u}_{δ} na stiku med mejno plastjo in osrednjim tokom enaka, lahko zapišemo:

$$\lim_{\eta \to 1} (u^{+}(\eta)) = \lim_{y^{+} \to \infty} (u^{+}(y^{+})) = \frac{1}{\kappa} \cdot \ln(y^{+}) + C^{+}.$$
(4.32)

Robna pogoja na stiku med mejno plastjo in osrednjim tokom sta naslednja:

Osrednji tok:

$$\lim_{\eta \to 1} \left(\frac{\partial u^{+}}{\partial \eta} \right) = -\frac{1}{\kappa(1-\eta)}$$
(4.33)

Mejna plast:

$$\lim_{y^+ \to \infty} \left(\frac{\partial u}{\partial y^+} \right) = \frac{1}{\kappa y^+}$$
(4.34)

V enačbo 4.30 vstavimo $y^+ = (1 - \eta) \cdot Re_{\tau}$, robna pogoja 4.33 in 4.34 ter dobimo:

$$u_{max}^{+} + \lim_{\eta \to 1} \left(\int_{0}^{\eta} \frac{\partial u^{+}}{\partial \eta} \cdot \partial \eta \right) = \frac{1}{\kappa} \ln(Re_{\tau}) + C^{+} - \lim_{\eta \to 1} \int_{0}^{\eta} \left(\frac{1}{\kappa \cdot (1-\eta)} \right) \cdot \partial \eta \,. \tag{4.35}$$

S preureditvijo dobimo končni zapis analitične rešitve maksimalne hitrosti v ceveh krožnega preseka pri visokih Reynoldsovih številih, brez uporabe modelov turbulence.

$$u_{max}^{+} = \frac{1}{\kappa} \ln(Re_{\tau}) + C^{+} + \overline{C} . \qquad (4.36)$$

Konstanta \overline{C} se zapiše kot:

$$\overline{C} = -\lim_{\eta \to 1} \int_{0}^{\eta} \left(\frac{\partial u^{+}}{\partial \eta} + \frac{1}{\kappa \cdot (1 - \eta)} \right) \cdot \partial \eta$$
(4.37)

Ker sta κ in C^+ univerzalni konstanti, je potrebno z modelom turbulence določiti samo konstanto \overline{C} .

Povprečno hitrost po prerezu cevi lahko zapišemo kot:

$$u_m^{+} = \frac{u_m}{v_*} = \frac{2}{v_* R^2} \int_0^R \overline{u} \cdot r \partial r = 2 \int_0^1 u^+ \cdot \eta \partial \eta = u_{max}^{+} + \overline{\overline{C}} .$$
(4.38)

Konstanta $\overline{\overline{C}}$ se zapiše kot:

$$\overline{\overline{C}} = -2 \lim_{\eta \to 1} \int_{0}^{\eta} \left(u_{max}^{+} - u^{+} \right) \cdot \eta \partial \eta .$$
(4.39)

Zakon upora se torej glasi:

$$u_m^{+} = \frac{1}{\kappa} \ln(Re_{\tau}) + C^{+} + \overline{C} + \overline{\overline{C}} . \qquad (4.40)$$

Iz obsežnih raziskav in meritev hitrostnih profilov je bilo ugotovljeno, da znaša $\overline{\overline{C}} + \overline{C} = -3,04$ (Schlichting et al., 2000).

Iz enačbe 4.40 lahko izrazimo koeficient trenja λ kot:

$$\lambda = -\frac{8 \cdot \overline{\tau}_0}{\rho \cdot u_m^2} = \frac{8}{\left(u_m^+\right)^2} = 32 \left(\frac{Re_\tau}{Re}\right)^2. \tag{4.41}$$

Iz enačbe 4.41 sledi, da je brezdimenzijsko število Re_{τ} funkcija Reynoldsovega števila in koeficienta trenja λ , kar ima za posledico, da enačba 4.41 ni izražena v eksplicitni obliki (koeficient trenja λ ni eksplicitno izražen). Eksplicitna oblika enačbe se lahko zapiše kot:

$$\lambda = 8 \cdot \left(\frac{\kappa}{\ln(Re)} \cdot G(\Lambda, \Theta) \right). \tag{4.42}$$

V enačbi 4.42 so $\kappa = 0,41$, $\Theta = -0,17$ in $\Lambda = 2 \ln(Re)$ ter funkcija G, ki se izrazi kot:

$$\frac{\Lambda}{G} + 2\ln\left(\frac{\Lambda}{G}\right) - \Theta = \Lambda . \tag{4.43}$$

Funkcija je tabelirana v Gersten in Herwig (Schlichting et al., 2000) in izpolnjuje pogoj $\lim_{\Lambda \to \infty} G(\Lambda, \Theta) = 1$.

Odprto ostaja še vprašanje popravka profila hitrosti zaradi odmika osrednjega toka od ostenja. Tema je podrobno obravnavana v delu McKeon in sodelavcev (2005). Izraz 4.18 se tako dopolni v obliko:

$$\lim_{y^+ \to \infty} \left(u^+ \left(y^+ \right) \right) = \frac{1}{\kappa} \cdot \ln \left(y^+ + a^+ \right) + C^+, \qquad (4.44)$$

kjer je $a^+ = \frac{a \cdot v_*}{v}$ brezdimenzijsko število zamika. Zamik je potrebno upoštevati na stiku zunanjega sloja mejne plasti in osrednjega toka (»Overlap Layer«), ko je disipacija energije dovolj velika, da v zunanjem sloju mejne plasti ni turbulence oziroma ta nima obstoja (Wosnik et al., 2000). V takšnem primeru postane izraz za določitev koeficienta trenja še zahtevnejši. Pri razvoju izraza koeficienta trenja λ v poglavju 7 bo zaradi pragmatičnosti privzeta vrednost $a^+ = 0$, kar ustreza raziskavam Nikuradseja, Prandtla, Schlichtinga in drugih.

Zaradi kompleksnosti določitev koeficienta trenja λ , so se številni avtorji spopadali s problematiko določitve čim natančnejše enačbe, ki opisuje koeficient trenja tako v hidravlično gladkem kot hidravlično hrapavem režimu turbulentnega toka. Rezultati so podani v naslednjih treh poglavjih.

4.2.1 Hidravlično gladek režim toka

V hidravlično gladkem režimu toka imajo viskozne sile bistveno večji in odločujoči vpliv kot hrapavost ostenja. Koeficient trenja je v tem območju odvisen samo od Reynoldsovega števila $(\lambda = f(Re))$.

Leta 1913 je H. Blasius med prvimi obravnaval hidravlično gladke cevi in turbulentni tok. Rezultate je prikazal v empirični formuli:

$$\lambda = \frac{0.3164}{Re^{\frac{1}{4}}}.$$
(4.45)

Avtor navaja veljavnosti izraza na intervalu Reynoldsovih števil $2320 \le Re \le 10^5$ (Blasius, 1913, cit. po Hopf, 1923).

Na podlagi obsežnih raziskav je Schlichting (1936) zaključil, da je v hidravlično gladkem režimu funkcija $C^+(k_s^+)$ dejansko konstantna z vrednostjo $C^+ = 5$. Na podlagi te vrednosti sledi iz enačbe 4.38 znan Prandtlov oziroma Nikuradsejev (1932) izraz, ki ga imenujemo tudi univerzalni zakon gladkih cevi:

$$\frac{1}{\sqrt{\lambda}} = 2\log\left(Re\sqrt{\lambda}\right) - 0,80 = 2,0 \cdot \log\left(\frac{Re\sqrt{\lambda}}{2,51}\right).$$
(4.46)

Opozoriti je potrebno na dejstvo, da sta Nikuradse (1932) in Prandtl izpeljala enačbo 4.41 z vrednostjo v. Kàrmànove konstante $\kappa = 0,40$, ki je bila določena na podlagi njunih meritev hitrostnega profila. Schlichting (1936) je v svojih zaključkih uporabil vrednost $\kappa = 0,41$.

Poleg zgoraj navedenih izrazov obstaja še mnogo drugih izrazov, ki ohranjajo enako funkcijsko odvisnost kot izraz 4.45 ali sledijo nastavku $\lambda = a + \frac{b}{Re^n}$, oziroma izrazi oblike funkcije 4.46. Nekaj teh izrazov je prikazanih v preglednici 4.2.

Izraz	Avtor
$\lambda = 0,00714 + \frac{0.6104}{Re^{0.35}}$	T. E. Stanton in J. R. Pannell (1914), cit. po Nikuradse (1932)
$\lambda = 0,0054 + \frac{0,396}{Re^{0,3}}$	L. Schiller (1930), cit. po Nikuradse (1932)
$\frac{1}{\sqrt{\lambda}} = 1,95 \log \left(Re \sqrt{\lambda} \right) - 0,55$	J. Nikuradse (1932)
$\lambda = 0,0032 + \frac{0,221}{Re^{0,237}}$	J. Nikuradse (1932)
$\frac{1}{\sqrt{\lambda}} = 1.8 \cdot \log\left(\frac{Re}{7}\right)$	C. F. Colebrook (1939)
$\frac{1}{\sqrt{\lambda}} = 4,13 \cdot \log(Re \cdot \lambda)$	v. Kàrmàn (1921), cit. po Kirschmer (1951)
$\frac{1}{\sqrt{\lambda}} = 1.8 \cdot \log(Re) - 1.5$	P. K. Konakov (1980), cit. po Kiselev (1980)
$\lambda = \left(0,55 \cdot \left(\log \frac{Re}{8}\right)^{-1}\right)^2$	G. F. Filonenko (1946), cit. po Petrešin (1987)
$\frac{1}{\sqrt{\lambda}} = \overline{1,884 \log(Re\sqrt{\lambda})} - 0,331$	M. V. Zagarola in A. J. Smits (1998)

Preglednica 4.2: Izrazi koeficienta trenja v hidravlično gladkem režimu toka *Table 4.2:* Different friction factor equations for hydraulically smooth flow

V današnjih dneh so McKeon in sodelavci (2005) na podlagi svojih meritev podali nekoliko »popravljeno« izvedbo enačbe 4.44 ($\kappa = 0.423$), ki se zapiše:

$$\frac{1}{\sqrt{\lambda}} = 1,930 \log\left(Re\sqrt{\lambda}\right) - 0,537 . \tag{4.47}$$

Na diagramu, ki ga prikazuje slika 4.5, je prikazan potek izrazov Blasiusa (enačba 4.45), univerzalnega zakona gladkih cevi (enačba 4.46) in izraza Zagarole (enačba 4.47). Rezultati so primerjani z meritvami v hidravlično gladkih ceveh Nikuradseja (1932), Swansona in sodelavcev (2002), McKeona in sodelavcev (2004) ter meritvami, opravljenimi v sklopu pričujoče disertacije v hidravličnem laboratoriju UL-FGG.

Slika 4.5: Primerjava izrazov koeficienta trenja λ v hidravlično gladkem režimu toka *Figure 4.5:* Comparison of some friction factor equations for hydraulically smooth flow

4.2.2 Hidravlično hrapav režim toka

V hidravlično hrapavem režimu toka ima na vrednost koeficienta trenja λ izključno vpliv hrapavosti ostenja. Viskozne sile so v primerjavi z izgubami, ki nastanejo zaradi pulzacij hitrosti (turbulence), zanemarljive. Koeficient trenja je v tem območju odvisen samo od relativne hrapavosti k_s/D . Strižna napetost τ_t in s tem koeficient trenja λ postaneta odvisna od kvadrata hitrosti.

V hidravlično hrapavem režimu toka iz izrazov 4.20 in 4.39 sledi:

$$\sqrt{\frac{8}{\lambda}} = \frac{1}{\kappa} \cdot \ln\left(\frac{R}{k_s}\right) + C_r^+ \left(k_s^+\right). \tag{4.48}$$

Kot že pokazano, za hidravlično hrapav režim velja $C_r^+ = 8$ (Schlichting et al., 2000). Ko pretvorimo naravni logaritem v logaritem z desetiško osnovo in polmer cevi zamenjamo s premerom ter upoštevamo $\kappa = 0,41$, dobimo:

$$\frac{1}{\sqrt{\lambda}} = \frac{\ln(10)}{\kappa \cdot \sqrt{8}} \cdot \log\left(\frac{D}{2 \cdot k_s}\right) + \frac{8}{\sqrt{8}} = 1,986 \cdot \log\left(\frac{D}{2 \cdot k_s}\right) + 2,828.$$
(4.49)

Nikuradse, Prandtl in v. Kàrmàn so na podlagi svojih meritev in vrednosti $\kappa = 0,40$ podali nekoliko spremenjeno enačbo 4.48. Zaključili so, da se najbolj prilega meritvam izraz, ki ga imenujemo tudi zakon popolne hrapavosti:

$$\frac{1}{\sqrt{\lambda}} = 2 \cdot \log\left(\frac{D}{2 \cdot k_s}\right) + 1,74 = 2 \cdot \log\left(\frac{3,7 \cdot D}{k_s}\right). \tag{4.50}$$

V primeru, da standardna »peščena« hrapavost ni poznana, se lahko v izrazu 4.49 oziroma 4.50 uporabi pretvorba tehnične hrapavosti z izrazom 4.23 ali 4.24 oziroma vrednosti iz preglednice 4.1 ali privzete preglednice 4.1. Diagram na sliki 4.6 prikazuje primerjavo enačbe 4.50 z Nikuradsejevimi meritvami hidravlično hrapavih cevi.

Slika 4.6: Zakon popolne hrapavosti (enačba 4.48) v hidravlično hrapavem režimu toka Figure 4.6: Friction factor equation 4.48 in fully rough regime

Obstaja še nekaj empiričnih izrazov koeficienta trenja λ za hidravlično hrapav režim toka, ki pa niso imeli vidnejšega pomena. Širšo uporabo je doživela le izpeljava Manningove enačbe v zapisu:

$$\lambda = 124 \frac{n_g^2}{D^{\frac{1}{3}}}.$$
(4.51)

4.2.3 Prehodno območje

Raziskave vzrokov prehoda iz laminarnega v turbulenten tok so segala v začetke 30. let prejšnjega stoletja. Teorija predpostavlja, da se tudi v laminarnem režimu toka pojavljajo motnje, ki nastajajo kot posledica vtoka v cev, hrapavosti ostenja oziroma kot motnje v samem dotoku. Po načelu superpozicije se te motnje dodajo osnovnemu laminarnemu toku.

Ključni element, ki nadzira prehod v turbulentni tok, je obstojnost takšnih motenj v času in vzdolž toka. Tok se obravnava kot stabilen, če takšne motnje vzdolž toka oziroma s časom »ugasnejo«,

oziroma nestabilen, če se takšne motnje s časom in vzdolž toka povečujejo. To problematiko obravnava teorija stabilnosti laminarnega toka, ki ima kot cilj določitev kritičnega Reynoldsovega števila, pri katerem se prehod iz laminarnega v turbulenten režim dejansko zgodi. Modeliranje takšnih pojavov pa ne obsega več enodimenzionalnega toka, ampak vključuje reševanje Navier-Stokesove v dveh ali treh dimenzijah ob uporabi ustreznih modelov turbulence, kar ni tema pričujoče raziskave.

Na osnovi eksperimentov, ki sta jih izvajala Colebrook in White, je Colebrook leta 1939 podal enačbo, ki velja tudi za prehodno območje:

$$\frac{1}{\sqrt{\lambda}} = -2.0 \cdot \log\left(\frac{k_s}{3.7D} + \frac{2.51}{Re\sqrt{\lambda}}\right). \tag{4.52}$$

Diagram na sliki 4.7 prikazuje Colebrook-Whitovo enačbe v primerjavi z Nikuradsejevimi meritvami.

Slika 4.7: Primerjava Colebrook-Whitove enačbe z meritvami Nikuradseja Figure 4.7: Comparison of the Colebrook-White equation with Nikuradse's measured data

Opis eksperimenta je podan v poglavju 3. Rezultati eksperimentov vodijo do prepričanja, da so velika zrna tista, ki kontrolirajo začetek prehoda. Na podlagi tega sta Colebrook in White ugotovila, da je pri neenotni hrapavosti prehod krivulj iz območja gladkosti v območje hrapavosti postopen (Colebrook in White, 1937).

Colebrook-Whitov izraz (enačba 4.52) je primeren za uporabo na območju veljavnosti Reynoldsovega števila med $4.10^3 < Re < 10^8$. Sam Colebrook eksplicitno tega ne navaja, kljub temu da gre za empirično in ne analitično izpeljano zakonitost.

Mnogi avtorji so objavili številne enačbe, ki »naj bi« veljale v prehodnem območju. Nekaj jih je prikazanih v preglednici 4.3.

Izraz	Avtor
$\lambda = 0,0055 \cdot \left(1 + \left(20000 \frac{k_s}{D} + \frac{10^6}{Re} \right)^{\frac{1}{3}} \right)$	L. F. Moody (1944)
$\lambda = 0,1 \cdot \left(\frac{1,46 \cdot k_s}{D} + \frac{100}{Re}\right)^{\frac{1}{4}}$	A. D. Altšulj (1952), cit. po Petrešin (1987)
$\lambda = \frac{0.25}{\left(\log 3.715 \frac{k_s}{D}\right)^2} \left(1 + \frac{4.3}{Re \frac{k_s}{D}}\right)^2$	D. Citrini (1962)
$\frac{1}{\sqrt{\lambda}} = -2,0 \cdot \log \left(\frac{k_s}{3,7D} + \frac{5,1286}{Re^{0,9}}\right)$	D. H. I. Barr (1975), cit. po Featherstone in Nalluri (1982)
$\frac{1}{\sqrt{\lambda}} = 1,14 - 2,0 \cdot \log\left(\frac{k_s}{D} + \frac{9,35}{Re\sqrt{\lambda}}\right)$	R. W. Jeppson (1976)
$\lambda = \frac{1,325}{\ln^2 \left(\frac{k_s}{3,7D} + \frac{5,74}{Re^{0.9}}\right)}$	P. K. Swamee in A. K. Jain (1976)
$\frac{1}{\sqrt{\lambda}} = -1,80 \cdot \log\left(\left(\frac{k_s}{3,7 \cdot D}\right)^{1,11} + \frac{6,9}{Re}\right)$	S. E. Haaland (1983)
$\lambda = \frac{R_7}{\ln^2 \left(R_1 + \frac{R_6}{Re^{0.9}}\right)}$	V. L. Streeter in E. B. Wylie (1985)

Preglednica 4.3: Izrazi koeficienta trenja v prehodnem režimu toka **Table 4.3:** Different friction factor equations for hydraulically smooth flow

V današnjih dneh sta P. K. Swamee in P. N. Rathie (2007) podala funkcijo enačbe koeficienta trenja λ , ki velja tudi v prehodnem območju. Z uporabo Lagrangevega teorema je funkcija zapisana v obliki:

$$\frac{1}{\sqrt{\lambda}} = \sum_{n=1}^{\infty} \frac{(-0.8687)^n}{n!} \cdot \frac{d^{n-1}}{dx^{n-1}} \times \left\{ \left[\ln \left(\frac{k_s}{3.7 \cdot D} + \frac{2.51}{Re} \cdot x \right) \right]^n \right\}_{x=0}.$$
(4.53)

Avtorja navajata, da s seštevkom prvih treh členov vrste dosežemo za inženirsko prakso zadovoljivo natančnost.

Tukaj velja omeniti tudi prispevek Uršiča in Kompare (2003), ki sta nakazala pot, kako uspešno združiti tri ločene člene koeficienta trenja (laminarno, hidravlično gladko in hidravlično hrapavo območje) ter tako dobiti izraz, ki opisuje celotno območje Reynoldsovih števil z upoštevanjem dogajanja v prehodnem režimu toka. Izraz ima obliko:

$$\lambda = \frac{a}{Re} \cdot (1 - y_1) + \frac{b}{Re^{\beta}} \cdot (y_1 - y_3) + \frac{c}{\log^2\left(\frac{k_s}{k_s \cdot D}\right)} \cdot y_2.$$
(4.54)

V enačbi 4.54 so »preklopne« funkcije zapisane kot:

$$y_1 = e^{-e^{-(\gamma \cdot Re + \delta)}} \tag{4.55}$$

$$y_2 = e^{-e^{-\left(\left(\Psi_2 \cdot \frac{s}{D} + \Omega_2\right) \cdot Re + \left(\Psi_2 \cdot \frac{s}{D} + \omega_2\right)\right)}}$$
(4.56)

$$y_3 = e^{-e^{-\left(\left(\Psi_3 \cdot \frac{\varepsilon}{D} + \Omega_3\right) \cdot Re + \left(\psi_3 \cdot \frac{\varepsilon}{D} + \omega_3\right)\right)}}.$$
(4.57)

Vrednosti parametrov so na razpolago v Uršič in Kompare (2003).

Pri uporabi enačb, ki veljajo v prehodnem in hidravlično hrapavem območju, je potrebno posebno pozornost nameniti vrednosti parametra standardne »peščene« hrapavosti k_s . Številni avtorji v svojih enačbah uporabljajo različne oznake parametra hrapavosti (npr. k, ε , ipd). Ker so dejansko vse enačbe izpeljane na podlagi Nikuradsejevih ali Colebrook-Whiteovih meritev, je potrebno kot parameter hrapavosti uporabljati vrednost standardne »peščene« hrapavosti k_s . Iz tega razloga so enačbe v tabeli 4.3 zapisane z vrednostjo k_s , čeprav so v izvirni literaturi uporabljene različne oznake. Ekvivalentne vrednost parametra »peščene« hrapavosti so za različne materiale in stanja cevi podane v preglednici 4.1 in privzeti preglednici 4.1. Možna je tudi pretvorba na podlagi meritev porazdelitve hitrosti $u^+(y)$ in uporabe enačbe 4.23 ali 4.24.

5 EKSPERIMENTALNI DEL RAZISKAVE

Eksperimentalni del raziskave je potekal v hidravličnem laboratoriju Katedre za mehaniko tekočin na Univerzi v Ljubljani, Fakulteti za gradbeništvo in geodezijo (UL-FGG). Osnovni namen raziskave je bil ponoviti meritve, ki jih je Nikuradse izvajal v 30. letih prejšnjega stoletja. Meritve so se izvajale na polietilenski cevi (PE 100) PN16, dolžine 6 m in nominalnega premera DN 63 mm oziroma z notranjim premerom 50,83 mm (glej poglavje 5.3). Preiskano je bilo območje Reynoldsovih števil $141 < Re < 1,21 \times 10^5$ v laminarnem in hidravlično gladkemu režimu toka. Cev je izdelana skladno s standardom SIST EN 12201. Vse meritve so potekale v stacionarnih razmerah.

5.1 Merilna proga

Merilna proga je bila izdelana izključno za namen te raziskave in je prikazana na sliki 5.1 oziroma shematsko na sliki 5.2. Med eksperimentom so potekale meritve diferencialnega tlaka, pretoka in temperatura vode.

Slika 5.1: Merilna proga v laboratoriju Katedre za mehaniko tekočin (UL-FGG) Figure 5.1: The experimental facility for pressure, flow and temperature measurements at UL-FGG

Slika 5.2: Shema merilne proge Figure 5.2: Scheme of the experimental facility

Umirjevalni bazen s prelivom, ki je prikazan na sliki 5.3, zagotavlja konstantno tlačno razliko približno 5,5 m nad iztokom preizkuševalne cevi. Od tu se je voda spuščala preko gibke cevi notranjega premera 125 mm do preizkuševalne cevi.

Slika 5.3: Umirjevalni bazen s prelivom *Figure 5.3: Settling tank with overflow*

Pred vtokom v umirjevalni odsek sta nameščena 90° lok z oporo (N kos) in glavna zaporna loputa. Predhodno je bilo preverjeno, da loputa in lok (oba dimenzije 125 mm) ne povzročata motenj v toku, oziroma se te motnje na zagotovljeni umirjevalni dolžini izničijo. Prehod iz nominalne dimenzije 125 mm na premer 50 mm je urejen preko prehodnega kosa (FFR 125/50 mm), ki ima kot prehajanja manjši od 4°, tako da ne povzroča neželenih motenj v toku.

Nastajanje morebitnih motenj pri vtoku v merilno cev se je preprečilo z namestitvijo umirjevalnega odseka. Na vtoku je pred prvim merilnim prerezom (merilno mesto 1) postavljen umirjevalni odsek dolžine 1,20 m, ki ga prikazuje slika 5.4. Razmerje med premerom preizkusne cevi in dolžino umirjevalnega odseka znaša $\frac{1200 \text{ mm}}{50,83 \text{ mm}} = 23,61$.

Slika 5.4: Umirjevalni del na vtoku v preizkuševalno cev *Figure 5.4: Flow conditioning section at inlet of the pipe*

Del umirjevalne dolžine je sestavljen iz pleksi cevi premera 50 mm, tako da je bilo mogoče v cev izpustiti barvilo za sledenje tokovnic.

Meritve tlaka so se izvajale na 6 merilnih prerezih z oznakami od 1 do 6. Le-ti so na cev nameščeni tako, da so bile v vsakem prerezu navrtane 4 merilne luknjice s premerom 2 mm, ki so bile nato natančno obrušene. Primer nastavka za merjenje tlaka prikazuje slika 5.5.

Slika 5.5: Primer namestitve merilnega prereza *Figure 5.5: Pressure taps at measuring section*

Iz merilnega prereza so do diferenčne tlačne sonde oziroma do vodnega manometra potekale plastične cevke notranjega premera 4 mm.

Tako kot na vtoku je tudi na iztoku (slika 5.6) preizkusne cevi, tik pred induktivnim merilcem pretoka, nameščen umirjevalni odseki dolžine 1,20 m. Ravno tako je bila tudi tukaj nameščena možnost dodajanja barvila za sledenje tokovnic.

Slika 5.6: Umirjevalni del z induktivnim merilcem pretoka na iztoku preizkuševalne cevi *Figure 5.6: Flow conditioning section at the outflow of the pipe with the magneto-inductive flow meter*

Na razdalji 0,5 m od induktivnega merilca je nameščen regulacijski ventil z elektromotorjem, ki se krmili s pomočjo digitalno-analognega konverterja ter osebnega računalnika. Za regulacijskim ventilom je nameščen še kroglični ventil, ki omogoča popolno zaporo pretoka. Regulacijski in zaporni ventil sta prikazana na sliki 5.7.

Slika 5.7: Regulacijski ventil z elektromotorjem in zaporni kroglični ventil *Figure 5.7: Regulation valve with actuator and stop valve*

Na iztoku iz preizkusne cevi je nameščena posoda, ki omogoča volumetrično merjenje pretoka. V posodi je nameščen tudi termočlen (tip K), ki meri temperaturo vode. Iz posode se nato voda prečrpa v bližnji bazen, od koder se s pomočjo črpalke vrne v umirjevalni bazen. Posoda s črpalko je prikazana na sliki 5.8.

Slika 5.8: Merilna posoda s potopno črpalko Figure 5.8: Volumetric flow measuring system with a recirculation pump

Ker so meritve potekale tako v laminarnem kot turbulentnem režimu toka, je bilo potrebno zagotoviti pogoje, ki so zagotavljali ustrezen režim toka (predvsem laminarnega toka). Za laminarni režim toka Christiansen in Lemmon (1965) navajata, da je dolžina, pri kateri se hitrost v osi cevovoda odmakne za manj kot ± 1 % od teoretično določene parabole (enačba 4.4), določena kot:

$$\frac{L_{99\%}}{D} = 0,056 \cdot Re \tag{5.1}$$

Iz sheme 5.2 lahko razberemo, da je celotna dolžina merilne cevi in umirjavalnih delov na vtoku in iztoku L = 7,40 m. Pri premeru 50,83 mm lahko iz enačbe 5.1 določimo mejno Reynoldsovo število, ki znaša $Re_{krit} \approx 2600$. Glede na to, da je naravni prehod iz laminarnega v turbulentni režim pričakovati pri $Re_{krit} \approx 2300$, lahko ugotovimo, da je dolžina preizkusne cevi z umirjavalnimi odseki ustrezna.

5.2 Zajem in obdelava podatkov

Krmiljenje in zajem podatkov je bil opravljen preko digitalno-analognega konverterja podjetja National Instruments. Uporabljen je bil konverter NI DAQCard-6036E, ki omogoča zajem podatkov v 16 bitni resoluciji s hitrostjo 200 kS/s (200000 vzorcev v sekundi) pri nazivni napetosti ± 10 V. Relativna napaka pretvornika na vhodnih kanalih pri maksimalni obremenitvi (± 10 V) in povprečenju 1000 vzorcev znaša 0,0855 % (8,55 µV), brez povprečenja pa 0,1326 % (13,26 µV). Vrednosti veljajo v primeru, če pretvornik ni kalibriran v obdobju enega leta. Napaka je še nižja, če se dnevno opravi kalibracija. Tedaj je relativna napaka pri polni obremenitvi in povprečenju 1000 vzorcev 0,0813 % (8,13 µV) oziroma 0,1284 % (12,84 µV). Nazivno napetost 10 V je dejansko potreboval samo temperaturni senzor, ostale sonde imajo tokovni izhod 20 mA, kar pri uporu 250 Ω znaša 5 V. Vse meritve so bile opravljene z dnevno kalibracijo digitalno-analognega konverterja (postopek je samodejen in traja 15 minut) in s povprečenjem 1000 vzorcev. Relativna napaka analogno-digitalnega konverterja pri obremenitvi ±5 V in povprečenju 1000 vzorcev znaša 0,0458 % oziroma 4,58 μ V.

S povprečenjem 1000 meritev je bila dosežena boljša natančnost, posledično pa se je znižala hitrost vzorčenja, ki je iz nastavljenih 10 kS/s dejansko znašala 10 S/s (10 vzorcev v sekundi). Ker so meritve potekale v stacionarnih razmerah, je takšna hitrost več kot zadovoljiva.

Priklop merilnih inštrumentov na analogno-digitalni konverter je izveden posredno preko blok konektorja CB-68LPR I/O podjetja National Instruments. Uporabljeni so oklepljeni signalni kabli, ki zmanjšajo induciran šum iz okolice. Vsi inštrumenti so bili ozemljeni v isti točki tako, da so imeli identičen električni potencial. Digitalno-analogni konverter je preko SCH68-68-EP oklepljenega kabla (proizvajalec National Instruments) neposredno priklopljen na prenosni računalnik.

Krmiljenje analogno-digitalnega konverterja oziroma shranjevanje in delna obdelava signala je izvedeno preko programskega okolja LabVIEW 8.5, proizvajalca National Instruments. LabVIEW predstavlja grafični programski jezik, ki omogoča programiranje in avtomatiziranje merilnih in kontrolnih sistemov ter sistemov zajemanja podatkov. Klasično programiranje z besednimi ukazi je zamenjano z ikonami ter tokom podatkov, ki nadomešča klasično zaporedje tekstualne programske kode. Pred pričetkom meritev je bilo potrebno izdelati uporabniški vmesnik oziroma tako imenovani »virtualni inštrument«. Izdelana sta bila dva »virtualna inštrumenta«, prvi za umerjanje sond in drugi za izvedbo meritev.

5.3 Merjene količine in merilni inštrumenti

Za uspešno izvedbo meritev je bilo potrebno za preizkusno cev poznati naslednje količine:

- 1. hrapavost in premer,
- 2. diferenčni tlak med merjenimi prerezi,
- 3. pretok oziroma povprečno hitrost,
- 4. temperaturo oziroma kinematično viskoznost in gostoto vode.

V nadaljevanju bodo podrobneje predstavljeni postopki merjenja omenjenih količin.

5.3.1 Hrapavost in premer cevi

Hrapavost cevi je bila izmerjena z inštrumentom za merjenje hrapavosti podlage Mitutoyo SJ-301. Nominalna merilna dolžina inštrumenta znaša 0-12,5 mm ob resoluciji 0,25-5 µm oziroma nominalna višina hrapavosti znaša 0-350 µm z resolucijo 0,01-0,4 µm. Rezultat meritev predstavlja R-profil hrapavosti, ki ga opisujejo parametri R_a , R_q , R_z in R_p . Parameter R_q , definiran kot standardna deviacija hrapavosti profila (»root mean squared roughness«), je merodajen za definiranje hrapavosti površin. R-profil hrapavosti predstavlja dejanski profil hrapavosti, imenovan kot P-profil, z odstranjeno »valovitostjo« merjenca (cevi). Valovitost je odstranjena z dolgovalovnim filtriranjem P-profila. Primerjava je prikazana na sliki 5.9.

Povprečje vseh meritev določa povprečno linijo ostenja oziroma »nošenje profila«. Za prvi približek povprečja so upoštevane vse meritve, vključno z vsemi maksimumi in minimumi. Iz meritev se nato odstranijo vsa »groba« dostopanja, kar določi drugi približek povprečne linije. Dokončna povprečna linija (»nošenje profila«) hrapavosti se dobi s kompenzacijo vseh meritev in združitvijo z vsemi meritvami. Postopek je prikazan na sliki 5.10.

Slika 5.10: Postopek določitve povprečne linije profila hrapavosti (»nošenje profila«) Figure 5.10: Handling of the surface roughness measurements

Definicija merjenih parametrov skladno s standardom ISO 4287:1997 je podana v preglednici 5.1.

		C
$R_a = \frac{1}{N} \sum_{i=1}^{N} Y_i $	Aritmetično povprečje odstopanja od linije »nošenja profila«	
$R_q = \sqrt{\frac{1}{N}\sum_{i=1}^N Y_i^2}$	Standardna deviacija hrapavosti profila	
$R_z = \frac{\sum_{i=1}^{5} Z_i}{5}$	Maksimalna višina med konkavno in konveksno hrapavostjo	
$R_p = \frac{\sum_{i=1}^{5} P_i}{5}$	Maksimalna višina profila hrapavosti (konveksne hrapavosti)	$V_i \int V_i = V_i + Z_i - Z_i $

Preglednica 5.1: Parametri hrapavosti po standardu ISO 4287:1997 **Table 5.1:** Definition of the roughness parameters according to ISO 4287:1997

Meritve so se izvajale na 10 kosih polietilenske cevi (PE 100) DN 63 mm, dolžine 1,5 cm. Odseki so bili pridobljeni iz različnih ostankov neuporabljenih (novih) cevi, ki niso bili uporabljeni pri meritvah tlačnih izgub. Vsak odsek je bil izmerjen na 10 različnih mestih, in sicer 10 krat prečno ter 10 krat v vzdolžni smeri obravnavanega odseka. Izmerjeno je bilo 100 vzorcev prečne kot vzdolžne hrapavosti ostenja.

Meritve so bile opravljene na vzročni dolžini $\lambda_c = 8,00 \text{ mm z resolucijo razdalje na 5 µm. Resolucija merjenja višine hrapavosti je prikazana v preglednici 5.2. Izkazalo se je, da se vzorec profila hrapavosti ponavlja tako v prečni kot v vzdolžni smeri cevi. Povprečje vseh rezultatov je podano v preglednici 5.2. Podatki meritev so priloženi v prilogi 1.$

		Resolucija [µm]	Absolutna napaka [µm]	Interval zaupanja 95 % [µm]	Relativna napaka [%]	Maksimalna relativna napaka [%]
R _a [μm]	2,77	0,01	0,04	0,01	1,45	3,80
R _q [μm]	3,39	0,01	0,06	0,01	1,63	5,12
R _z [µm]	14,77	0,05	0,25	0,05	1,72	4,67
$R_p [\mu m]$	9,47	0,01	0,09	0,02	0,91	2,60

95 % interval zaupanja povprečne vrednosti:

Preglednica 5.2: Izmerjena hrapavost po standardu ISO 4287:1997 Table 5.2: Measured values according to ISO 4287:1997

Napake v preglednici 5.2 imajo naslednjo definicijo:

Relativna napaka: Maksimalna relativna napaka:

$$\pm \frac{\sigma}{\overline{x}} \cdot 100 \qquad \pm \max\left(\frac{|x-\overline{x}|}{\overline{x}}\right) \cdot 100 \qquad \pm 2 \cdot \frac{\sigma}{\sqrt{n}}$$

kjer je σ standardna deviacija oziroma absolutna napaka meritev, x opravljena meritev, \overline{x} povprečna vrednost meritev ter *n* število meritev.

Interpretacija rezultatov v smislu standardne »peščene« hrapavosti je sledeča. Parameter R_q predstavlja standardno deviacijo (σ) od linije »nošenja profila«. Ob upoštevanju 95 % intervala zaupanja izračunane povprečne vrednosti parametra R_q znaša povprečna hrapavost $R_q = (3,39 \pm 0,01) \mu$ m. Glede na definicijo standardne »peščene« hrapavosti (hrapavost predstavlja premer peščenega zrna) ne moremo trditi, da predstavlja ta vrednost naš izmerjen ekvivalent hrapavosti. Zaključimo lahko le, da znaša tehnična hrapavost merjene cevi $k_{teh} = R_q = 3,39 \mu$ m, višina maksimalne hrapavosti pa $k_{max} = R_p = 9,47 \mu$ m. Standardno peščeno hrapavost je mogoče določiti samo na podlagi izmerjenega profila hitrosti $u^+(y)$ v mejni plasti ob ostenju (glej poglavje 4.2.2).

Izmerjene tlačne izgube kažejo, da so meritve koeficienta trenja λ opravljene v hidravlično gladkem režimu toka. Prehod v hidravlično hrapav režim ni dosežen, kar pomeni, da je vrednost Reynoldsovega števila hrapavosti (k_s^+) manjša od 4. Na podlagi tega dejstva in ob predpostavki, da bi pri naslednjem večjem Reynoldsovem številu, kot je bilo največje izmerjeno, meritev presegla $k_s^+ > 4$ lahko analogno kot Swanson s sodelavci (2002) ter Zagarola in Smits (1998) določimo maksimalno ekvivalentno »peščeno« hrapavost, ki za naš primer znaša $k_s = 35,59 \mu m$. Poudariti je potrebno, da je to le hipoteza, ker se meritve dejansko niso odklonile od linije hidravlično gladkih cevi.

Notranji premer cevi je bil izmerjen z digitalnim kljunastim merilom z nominalno merilno razdaljo 150 mm in resolucijo 0,01 mm. Meritve so bile opravljene na 10 kosih polietilenske cevi, na katerih se je merila tudi hrapavost. Premer cevi je bil izmerjen iz obeh strani obravnavanega odseka, in sicer na vsaki strani 10 krat. Skupno je bilo opravljenih 200 meritev, ki izkazujejo standardno deviacijo $\sigma = \pm 0,61$ mm. Z upoštevanjem 95 % intervala zaupanja znaša premer cevi D = (50,83 ± 0,09) mm.

5.3.2 Meritve tlaka

Kot je prikazano na sliki 5.2, so diferenčni tlaki merjeni na 6 merilnih prerezih. Meritve tlaka so potekale z dvema inštrumentoma:

- 1. Diferenčna tlačna sonda Endress & Hauser Deltabar PMD75 s kovinsko membrano in nazivnim tlakom 100 mbar.
- 2. Vodni manometer z optičnim zaznavanjem.

Inštrumenta sta delovala istočasno, tako da smo v vsakem trenutku imeli primerjavo opravljenih meritev. Z merilnimi prerezi na cevi sta inštrumenta povezana s plastičnimi cevkami premera 4 mm. Ker sta za sondo Deltabar PMD75 predvidena le dva tlačna priključka, je bilo potrebno pripraviti sistem ventilov, ki omogoča enostavno preklapljanje med različnimi merilnimi prerezi. Na tem mestu je omogočeno tudi prezračevanje merilnih prerezov oziroma preizkusne cevi. Sistem ventilov prikazuje slika 5.11.

Slika 5.11: Sistem preklapljanja in odzračevanja med 6 merilnimi prerezi na cevi *Figure 5.11: Switching and aeration valves for 6 pressure measuring sections*

5.3.2.1 Diferenčna tlačna sonda Deltabar PMD75

Tlačna sonda Deltabar PMD75 s kovinsko membrano omogoča merjenje diferencialnih tlakov do nazivne razlike 100 mbar z maksimalno preobremenitvijo 160 bar. Izhodni signal inštrumenta predstavlja tokovni izhod od 4 do 20 mA, z resolucijo 1 μA. Sonda je prikazana na sliki 5.12. Za potrebe pričujoče raziskave nam je bila sonda posojena s strani Fakultete za strojništvo Univerze v Ljubljani.

Slika 5.12: Diferenčna tlačna sonda Endress & Hauser Deltabar PMD75 Figure 5.12: Differential pressure sensor Endress & Hauser Deltabar PMD75

Merilno območje se lahko zniža, kar izboljša resolucijo in absolutno napako sonde v smislu izmerjenih tlakov do vrednosti 1 mbar. Na podlagi predhodnih analiz je bilo ugotovljeno, da bo potrebno sondo uporabljati pri nastavitvi merilnega območja 0–1 mbar, 0–25 mbar in 0–100 mbar. Za vsako merilno območje je bila pred pričetkom eksperimenta in po zaključku le-tega izvedena kalibracija. Na podlagi kalibracijskih točk so bile določene dve umirjevalni premici. Prva premica predstavlja idealno ravno linijo (»Best Straight Line⁶« ali »BSL«), ki jo dobimo z minimiziranjem kvadrata napake. Druga premica predstavlja ravno linijo, ki povezuje nominalno najnižjo in najvišjo vrednost izhodnega kanala (»Terminal Straight Line« ali »TSL«). Kalibracijske krivulje so prikazane na sliki 5.14. Po vsaki izmerjeni kalibracijski točki se je tlak postavil na izhodiščno vrednost 0 mbar in če je bilo potrebno, se je ponovno kalibriralo izhodišče inštrumenta ter opravilo meritev ničle. S takšnim postopkom umerjena ter izvajanja samih meritev, se je izničilo vpliv histereze ter temperature in dolgoročne stabilnosti inštrumenta.

Tlačno višino pri umerjanju sonde se je določilo s pomočjo dveh posod, ki sta bili pritrjeni vsaka na svojem drsnem noniju s skalo, razdeljeno na 0,1 mm. Posodi sta bili med seboj povezani, tako da je bilo mogoče vzpostaviti identično tlačno višino, kar je določilo izhodiščno točko inštrumenta. Ko je bilo izhodišče določeno, se je povezava preko ventila prekinila. Želeno tlačno višino se je vzpostavilo s premikom drsnika nonija, na katerega je bila pritrjena ena od posod. Umerjevalni posodi sta prikazani na sliki 5.13.

Slika 5.13: Umerjevalni posodi Figure 5.13: Calibration facility

⁶ http://www.sensorsone.co.uk/news/63/What-is-the-BSL-and-TSL-accuracy-of-a-pressure-sensor.html

Relativne napake kalibracijskih krivulj so prikazane v preglednici 5.3.

	Po eksperimentu				Pred eksperimentom							
		»BSL« »TSL«			»BSL«			»TSL«				
Merilno območje [mbar]	1	25	100	1	25	100	1	25	100	1	25	100
Št. kalibracijskih točk [-] ⁷	30	24	21	30	24	21	30	24	21	30	24	21
Resolucija [µbar]	0,0625	1,5625	6,25	0,0625	1,5625	6,25	0,0625	1,5625	6,25	0,0625	1,5625	6,25
Absolutna napaka [mbar]	0,003	0,016	0,018	0,006	0,018	0,091	0,001	0,025	0,015	0,007	0,026	0,114
Relativna napaka [%]	0,258	0,063	0,018	0,578	0,070	0,091	0,077	0,101	0,015	0,688	0,102	0,114
Maksimalna absolutna napaka [mbar]	0,005	0,027	0,046	0,017	0,057	0,309	0,002	0,051	0,032	0,016	0,065	0,416
Maksimalna relativna napaka [%]	0,510	0,108	0,046	1,673	0,227	0,309	0,174	0,205	0,032	1,586	0,262	0,416

Preglednica 5.3: Relativne napake kalibracijskih krivulj Deltabar PMD75 **Table 5.3:** Relative error for calibration lines used with pressure sensor Deltabar PMD75

Iz slike 5.14 lahko vidimo, da se koeficientu kalibracijskih krivulj v primeru »BSL« premic nekoliko spremenijo pred in po opravljenem eksperimentom. Napake zaradi nelinearnosti so zelo majhne (preglednica 5.3), postavlja pa se vprašanje ponovljivosti oziroma napake v naklonu kalibracijske premice. Če bi umerjanje s tolikšnim številom točk ponovili še »n krat«, bi dobili »n« različnih umerjevalnih premic. Iz tega razloga so bile za meritve uporabljene »TSL« umirjevalne premice, ki izkazujejo sicer nekoliko višjo napako, so pa enolično določene.

Skladno z definicijo proizvajalca in običaji pri podajanju napake tlačnih sond (maksimalna relativna napaka) imajo izrazi v preglednici 5.3 naslednjo definicijo:

Relativna napaka: Maksimalna relativna napaka:

$$\pm \frac{\sigma}{P_{max}} \cdot 100 \qquad \pm \max\left(\frac{|x-P|}{P_{max}}\right) \cdot 100$$

kjer je σ standardna deviacija oziroma absolutna napaka meritev, *x* opravljena meritev, *P* vrednost, dobljena z umerjevalno premice, ter P_{max} merilno območje inštrumenta.

Merodajne nazivne napake (maksimalna relativna napaka) so zaradi nelinearnosti inštrumenta v tabeli 5.3 odebeljene. Pri propagaciji napake v nadaljnjih izračunih so merodajne absolutne napake in bodo v

⁷ Dejansko je število kalibracijskih točk dvakrat večje, ker je bilo pred vsako meritvijo ponovno izmerjeno izhodišče (ničla) inštrumenta.

nadaljevanju predpostavljene kot dejanska napaka sonde zaradi nelinearnosti (odebeljene vrednosti absolutnih napak v preglednici 5.3).

Gradient tlačne črte vsebuje tudi napako pri meritvi razdalje med referenčnim prerezom (merilno mesto 1) in prerezom, v katerem se vrši meritev. Prerezi so postavljeni na medsebojni razdalji 1000 mm z napako \pm 0,5 mm.

5.3.2.2 Vodni manometer

Vzporedno s tlačno sondo Deltabar PMD75 so potekale meritve z vodnim manometrom. Manometer je sestavljen iz pleksi cevi notranjega premera 40 mm in dolžine 1 m. Vpliva kapilarnega dviga v manometru ni, ker je premer večji od 12 mm (Steinman, 1999). Manometer je prikazan na sliki 5.15. Ker je manometer postavljen ob merilni cevi, je tlačna oziroma energijska linija postavljena bistveno više. Iz tega razloga je manometer zaprt, vse cevi so na zgornjem robu povezane med seboj, v manometru pa je s tlačilko vzpostavljen nadtlak. Z dodajanjem in odvzemanjem zraka se lahko uravnava položaj vodne gladine.

Slika 5.15: Vodni manometer *Figure 5.15: Water manometer*

Zajem podatkov je potekal samodejno, s pomočjo fotografskega aparata z resolucijo 10 milijonov pikslov. Fotografski aparat je postavljen na fiksnem stojalu na oddaljenosti 4 m, z nastavitvijo maksimalne optične povečave slike. Tako je efekt paralakse minimalen. Pod manometrom je

postavljena osvetlitev tako, da se na vodni gladini vzpostavi kontrast. Osvetlitev ni trajna, ampak se vključi po potrebi, sicer bi prišlo do segrevanja vode v manometru. Primer zajete meritve je prikazan na sliki 5.16.

Slika 5.16: Meritev tlaka z vodnim manometrom *Figure 5.16: Pressure measurement with the water manometer*

Položaj vodne gladine se s programom za obdelavo slik, ki lahko približa sliko do piksla natančno, odčita na stiku merila in vodne gladine, ki se nato horizontalno prenese na skupno (prvo) merilo, kar predstavlja razliko v tlakih, izraženo z višino vodnega stolpca.

Resolucija tako sestavljenega manometra znaša 67,08 μ m oziroma približno 6,58 μ bar. Podatek je določen na podlagi površine zajete slike (600 cm²), števila osnovnih pikslov fotografskega aparata (10⁷) ter razmerja stranic fotografije (4:3). Iz tega se izračunajo dimenzije piksla, ki znašajo $a \times h = 89,44 \ \mu\text{m} \times 67,80 \ \mu\text{m}$, kjer je h višina piksla. Zaradi nenatančnosti pri določitvi gravitacijskega pospeška, paralakse in šuma tipala fotografskega aparata lahko predpostavimo, da je napaka takšnega odčitka reda velikost $2 \times h = 134,16 \ \mu\text{m}$ oziroma 13,16 μ bar, kar predstavlja enak red velikosti kot tlačna sodna Deltabar PMD75 z merilnim območjem 1 mbar. Vodni manometer se je uporabil predvsem zaradi vidne kontrole nad dejanskimi tlačnimi razmerami v cevi.

Natančnost meritev smo skušali izboljšati tudi z izdelavo poševnega diferenčnega manometra, kar omogoča povečavo odčitkov tudi za več redov velikosti (10–100 krat). Izdelanih je bilo več poševnih manometrov s kapilarami premera od 1,2 mm do 4 mm in različnimi mediji (voda, kerozin, heksan in alkohol). Izkazalo se je, da je želeno povečavo možno doseči, sistem pa je zaradi vpliva kapilarnih in viskoznih sil zelo nestabilen ter posledično so tudi rezultati nezanesljivi.

5.3.3 Meritve pretoka

Tako kot meritve tlaka so tudi meritve pretoka izvedene z dvema inštrumentoma:

- 1. induktivni merilec pretoka Endress & Hauser Promag 30F,
- 2. posoda za volumetrično merjenje pretoka.

Pri pretokih manjših od 0,039 l/s (v < 0,02 m/s) je omogočeno samo volumetrično merjenje pretoka, ker se induktivni merilec pretoka pri tako nizkih hitrostih izklopi.

5.3.3.1 Induktivni merilec pretoka Endress & Hauser Promag 30F

Induktivni merilec pretoka Promag 30F, nominalnega premera 50 mm, omogoča merjenje pretokov, ki imajo hitrosti večje kot 0,02 m/s oziroma manjše od 10 m/s. Izhodni signal inštrumenta predstavlja tokovni izhod od 4 do 20 mA, z resolucijo 10 μ A. Merilec, ki nam ga je v namen te raziskave posodilo podjetje Vodovodi in kanalizacija Nova Gorica d. d., je prikazan na sliki 5.17.

Slika 5.17: Induktivni merilec pretoka Endress & Hauser Promag 30F Figure 5.17: The magneto-inductive flow meter Endress & Hauser Promag 30F

Merilno območje inštrumenta se lahko nastavi za 8 različnih maksimalnih hitrosti (0,5 m/s, 1 m/s, 1,5 m/s, 2 m/s, 2,5 m/s, 5 m/s, 8 m/s in 10 m/s). S predhodnim poizkusom je bilo preverjeno, da maksimalna hitrost, ki se doseže v cevi pri popolnoma odprtem regulacijskem ventilu (glej shemo 5.2), ne preseže 5 m/s. Maksimalen pretok, ki ga lahko dosežemo s to preizkusno progo, znaša Q = 5,67 l/s pri hitrosti skozi induktivni merilec v = 2,89 m/s. Merilno območje merilca je torej nastavljeno na maksimalno hitrost 5 m/s oziroma pretok 9,82 l/s.

Napaka meritve na analognem izhodu (4–20 mA) znaša $\pm 0,1$ % izmerjene vrednosti in dodatnih $\pm 0,005$ % celotnega merilnega območja. Relativna napaka, ki se nanaša na merjen vzorec (ne na

maksimalno merljivo vrednost), je podana na sliki 5.18. Podatke navaja proizvajalec v uporabniškem priročniku merilca.

Slika 5.18: Relativna napaka induktivnega merilca pretoka Promag 30F Figure 5.18: Relative error of the read measurement for the flow measuring Promag 30F

Glede na podatke iz diagrama na sliki 5.18 lahko zaključimo, da znaša maksimalna relativna napaka inštrumenta (glede na merjeno vrednost) $\pm 2,5$ %. Iz podatkov na diagramu na sliki 5.8 lahko ugotovimo, da ima napaka hiperbolično obliko, ki se asimptotično približuje 0,5 %. Relativno napako (izražena v odstotkih) v odvisnosti od merjene hitrosti lahko pri nadaljnjih izračunih aproksimiramo z izrazom

$$\left(\frac{2,80\cdot10^{-13}}{v^{6,388}}+0,005\right)\cdot100.$$
 (5.2)

V našem primeru, ko je merilno območje nastavljeno na hitrost 5 m/s, velja naslednja linearna odvisnost med pretokom in induciranim električnim tokom: $Q = 2.5 \times I - 10$. Rezultat je izražen v m³/h.

5.3.3.2 Volumetrična meritev pretoka

Pretoki, ki so manjši kot 0,039 l/s, so bili merjeni volumetrično. Pretok se je izpuščal v posodo iz nerjavečega jekla z višino 0,5 m in povprečno površino 0,60 m². Posoda je bila umerjena tako, da se je v posodo vlivalo natanko 2 kg vode. Masa vode je bila izmerjena s tehtnico z natančnostjo $\pm 1 \mu g$. Relativna napak je torej 5×10^{-5} %. Po vsakem vlitju je bila z nonijem, s skalo razdeljena na 0,1 mm, izmerjena gladina vode. Razlike v gladinah so bile reda velikosti 3 mm. Istočasno je bila merjena tudi temperatura vode. Tako je bila določena kalibracijska premica posode, ki opsuje spremembo volumna z višino. Posoda s potopno črpalko je prikazana na sliki 5.8. Na vtiku v posodo je pritrjena potopna stena, ki zmanjšuje negativne posledice nihanja gladine na meritev hidrostatičnega tlaka. Posoda je umerjena brez potopne črpalke, saj se ta vstavi v posodo samo tedaj, ko doseže gladina v posodi maksmalni nivo in se volumetrična meritev pretoka preneha.

Premica oziroma premice V(h) so bile določene s pomočjo algoritma M5 (Quinlan, 1992), ki omogoča izgradnjo regresijskih dreves. Algoritem je vgrajen v programsko orodje WEKA (Hall et al., 1999, Wang in Witten, 1997, Witten in Frank, 2005), ki je prosto dostopno na spletu. Kalibracijske točke z umerjevalnimi premicami so prikazane na sliki 5.19.

Slika 5.19: Kalibracijske premice posode za volumetrično merjenje pretoka Figure 5.19: Calibration lines for the flow container

Relativna napaka, ki nastane zaradi nelinearnosti, je prikazana v preglednici 5.4. Definicija izrazov je analogna definiciji v poglavju 5.3.2. Relativne vrednosti se nanašajo na merilno območje posode z maksimalno prostornino 268,27 l.

Preglednica 5.4: Relativne napake kalibracijske krivulje posode za volumetrično merjenje pret	oka
Table 5.4: Relative error for calibration lines used with the flow container	

Merilno območje [l]	268,27
Št. kalibracijskih točk [-]	145
Resolucija umerjanja posode [mm]	3
Absolutna napaka [l]	0,123
Relativna napaka [%]	0,046
Maksimalna absolutna napaka [l]	0,399
Maksimalna relativna napaka [%]	0,149

Gladina v posodi je merjena s tlačno sondo Endress & Hauser Deltapilot DB50. Sonda omogoča meritve hidrostatičnih tlakov do 100 mbar. Izhodni signal inštrumenta predstavlja tokovni izhod od 4

do 20 mA, z resolucijo 16 μ A. Sonda je prikazana na sliki 5.20 in je bila posojena s strani podjetja Endress + Hauser d. o. o. Slovenija.

Slika 5.20: Tlačna sonda Endress & Hauser Deltapilot DB50 Figure 5.20: Water level measuring sensor Endress & Hauser Deltapilot DB50

Maksimalna gladina, ki se je v posodi lahko pojavila, preden smo meritev pretoka prekinili in se je v posodo vstavilo potopno črpalko, znaša 488 mm nad dnom posode. Ker mora biti tlačna sonda konstantno pod tlakom, je bila postavljena v najnižjo točko, to je tik pod dno posode. Priklop sonde na posodo je izveden na eni izmed stranic s plastično cevko (premer 4 mm). Ob priklopu je nameščena tudi cevka za odzračenje. Zaradi takšne izvedbe spodnjih 43,30 mm posode ni bilo mogoče izprazniti. Tako je bilo na razpolago za meritve pretoka 444,70 mm vodnega stolpca. Merilno območje inštrumenta je tako nastavljeno na 45 mbar.

Postopek umerjanja je enak kot za tlačno sondo Deltabar PMD75 in je opisan v poglavju 5.3.2.1. Razlika je le v tem, da je v tem primeru uporabljena samo ena umerjevalna posoda (sonda meri hidrostatični tlak), izhodišče pa se nastavi samo enkrat, in sicer ob pričetku meritve prve kalibracijske točke. Takšen princip umerjanja narekuje način merjenja višine vodne gladine v posodi, ki je kontinuiran, brez prekinitev, dokler posoda ni polna oziroma se pretok ne ustavi. V takšnem primeru naknadno nastavljanje izhodiščne točke ni mogoče. Možna je le nastavitev pred pričetkom vsakokratne meritve. Kalibracijske premice, ki so bile določene pred in po eksperimentu, so prikazane na sliki 5.21.

Slika 5.21: Kalibracijske premice tlačne sonde Deltapilot DB50 Figure 5.21: Calibration lines for the water lever pressure sensor Deltapilot DB50

Relativne napake kalibracijskih krivulj so prikazane v preglednici 5.5. Definicija izrazov je razložena v poglavju 5.3.2.

	Po ekspe	rimentu	Pred eksperimentom		
	»BSL«	»TSL «	»BSL«	»TSL «	
Merilno območje [mbar]	45	5	45		
Št. kalibracijskih točk [-]	27	7	47		
Resolucija [µbar]	28,1	25	28,125		
Absolutna napaka [mbar]	0,088	0,169	0,019	0,019	
Relativna napaka [%]	0,195	0,376	0,043	0,043	
Maksimalna absolutna napaka [mbar]	0,207	0,515	0,047	0,056	
Maksimalna relativna napaka [%]	0,461	1,145	0,105	0,125	

Preglednica 5.5: Relativne napake kalibracijskih krivulj Deltapilot DB50 *Table 5.5:* Relative error for calibration lines used with pressure sensor Deltapilot DB50

Tudi v tem primeru »BSL« premice izkazujejo boljšo natančnost, a je razlika med premicama pred in po eksperimentu očitna (enačbi na sliki 5.19). Iz tega razloga je bila uporabljena »TSL« premica, ki izkazuje maksimalno relativno napako zaradi nelinearnosti $\pm 1,145$ %. Merodajna napaka za propagacijo napake v nadaljnjih izračunih znaša $\pm 0,169$ mbar.

Izhodiščna točka gladine v posodi je določena z nonijem, ki je pritrjen na drsnik. Nonij ima skalo razdeljeno na 0,1 mm. Z uporabo lupe je mogoče odčitke opraviti z natančnostjo ±0,025 mm.

Pretok se določi na podlagi celotnega časa meritve, ki je zabeležena na 0,1 s z natančnostjo $\pm 0,001$ s⁸ ter iz razlike začetnega in končnega volumna vode v posodi.

5.3.4 Merjenje temperature

Temperatura vode je merjena s pomočjo termočlena tipa »K« in pretvornika Weidmuller WAS5 pro thermo. Pretvornik omogoča meritve temperature od -200 do $+1820^{\circ}$ C, z izhodnim signalom od 0 do 10 V in resolucijo 2,439 mV. Pretvornik je prikazan na sliki 5.22.

Slika 5.22: Temperaturni pretvornik Weidmuller WAS5 pro thermo Figure 5.22: Temperature analogue conditioner Weidmuller WAS5 pro thermo

Ker so pričakovane temperature vode reda velikosti 13°C, je merilno območje pretvornika zmanjšano na vrednosti od 0 do $\pm 100^{\circ}$ C. Proizvajalec zagotavlja za takšno merilno območje, v kombinaciji s termočlenom tipa »K«, napako ± 3 K z dodatkom 0,1 % širine merilnega območja. V našem primeru bi znašala absolutna napaka $\pm 3,1$ K oziroma $\pm 3,1^{\circ}$ C, kar je seveda za pričakovane vrednosti 13°C nedopustno (relativna napaka 24,08 %). Iz tega razloga je bila merilna oprema kalibrirana z digitalnim laboratorijskim termometrom z natančnostjo 0,1°C in merilnim območjem od 0 do ± 50 °C. Kalibracija je potekala tako, da se je voda, ki je bila natočena v posodo volumna 2 l, segrela na temperaturo približno 20°C in se pustila ohlajati do temperature 5°C ⁹. Za vsako spremembo reda velikosti 0,5°C je bila zabeležena temperatura iz referenčnega termometra ter iz temperaturnega pretvornika. Rezultate kalibracije prikazuje diagram na sliki 5.23. Postopek je opravljen pred in po eksperimentu.

⁸ Ker se meritev časa in meritev hidrostatičnega tlaka upravljata preko računalnika, se v trenutku, ko se prekine meritev tlačne višine, ustavi tudi meritev časa.

⁹ Umerjanje je potekalo v zimskem času, ko se bile zunanje temperature pod ničlo.

Figure 5.23: Calibration lines used with the temperature analogue conditioner

Relativne napake kalibracijskih krivulj so prikazane v preglednici 5.6. Definicija izrazov je razložena v poglavju 5.3.2.

	Po ekspe	rimentu	Pred eksperimentom		
	»BSL«	»TSL «	»BSL«	»TSL «	
Merilno območje [°C]	10	0	100)	
Št. kalibracijskih točk [-]	31	l	31		
Resolucija [°C]	0,02	24	0,024		
Absolutna napaka [°C]	0,208	0,210	0,195	0,191	
Relativna napaka [%]	0,208	0,210	0,195	0,191	
Maksimalna absolutna napaka [°C]	0,497	0,506	0,384	0,475	
Maksimalna relativna napaka [%]	0,497	0,506	0,384	0,475	

Preglednica 5.6: Relativne napake kalibracije temperaturnega pretvornika *Table 5.6: Relative error for calibration lines used with the temperature analogue conditioner*

Tudi v tem primeru se je izkazalo, da je napako v naklonu »BSL« premice težko ovrednotiti. Uporabljena je torej »TSL« premica linearne odvisnosti. Absolutna napaka meritev znaša $\pm 0,210^{\circ}$ C.

5.4 Postopek meritev

Pred pričetkom postopka merjenja na preizkusni cevi so bili vsi merilni inštrumenti ter analognodigitalni konverter z računalnikom vključeni tako, da se je vzpostavila ustrezna delovna temperatura. Preverjene oziroma nastavljene so bile vse izhodiščne vrednosti. Tako na začetku kot na koncu dnevnih meritev so bile v petih točkah (na 0 %, 25 %, 50 %, 75 % in 100 % merilnega območja) preverjene kalibracijske premice tlačnih sond.

Postopek meritev je potekal v sledečem vrstnem redu¹⁰:

- 1. Z zaprtim krogličnim ventilom na iztoku se prezrači vsa merilna mesta na preizkusni cevi ter tlačni sondi Deltabar PMD75.
- 2. Nastavitev ustreznega pretoka z regulacijskim ventilom.
 - a. Volumetrično merjenje pretoka
 - i. Zapre se kroglični ventil ob iztoku v posodo.
 - ii. Nastavi se izhodišče tlačne sonde Deltapilot DB50.
 - iii. Z nonijem na drsniku se odčita začetna gladina v posodi.
 - iv. Regulacijski ventil se nastavi v želen položaj.
 - v. Kroglični ventil na iztoku se popolnoma odpre.
 - vi. Po potrebi se položaj regulacijskega ventila prilagodi.
 - vii. Ko se pretok ustali, se prične z zajemom in vizualizacijo podatkov na računalniku.
 - viii. Ko se posoda napolni, se zajem podatkov prekine, v posodo se vstavi potopna črpalka, ki volumen izčrpa.
 - b. Meritev z induktivnim merilcem pretoka
 - i. Zapre se kroglični ventil ob iztoku v posodo.
 - ii. Nastavi se izhodišče induktivnega merilca pretoka Promag 30F.
 - iii. Regulacijski ventil se nastavi v želen položaj.
 - iv. Kroglični ventil na iztoku se popolnoma odpre.
 - v. Po potrebi se položaj regulacijskega ventila prilagodi.
 - vi. Ko se pretok ustali, se prične z zajemom in vizualizacijo podatkov na računalniku.
 - vii. Ko doseže gladina v posodi kritično mejo, se vklopi preko plovnega ventila potopna črpalka, ki je ves čas meritev prisotna v posodi.
 - c. Meritev pretoka z induktivnim merilcem in volumetričnim zajemom
 - i. Zapre se kroglični ventil ob iztoku v posodo.
 - ii. Nastavi se izhodišče tlačne sonde Deltapilot DB50.
 - iii. Z nonijem na drsniku se odčita začetna gladina v posodi.
 - iv. Nastavi se izhodišče induktivnega merilca pretoka Promag 30F.
 - v. Regulacijski ventil se nastavi v želen položaj.
 - vi. Kroglični ventil na iztoku se popolnoma odpre.

¹⁰ Meritev temperature se prične, ko se kroglični ventil na iztoku odpre, in zaključi, ko se ventil na iztoku zapre.

- vii. Po potrebi se položaj regulacijskega ventila prilagodi.
- viii. Ko se pretok ustali, se prične z zajemom in vizualizacijo podatkov na računalniku.
- ix. Ko se posoda napolni, se zajem podatkov tlačne sonde Deltapilot DB50 prekine, v posodo se vstavi potopna črpalka, ki volumen izčrpa.
- x. Meritev z induktivnim merilcem pretoka se nadaljuje.
- d. Pri vsakem izmerjenem pretoku se posname tokovnice na vtoku in iztoku preizkusne cevi.
- 3. Meritev tlačnih izgub.
 - Kot primerjalni tlak služi merilno mesto z oznako 1, ki je povezano na pozitivni (višji) priključek na tlačni sondi Deltabar PMD75 (glej shemo na sliki 5.24)
 - b. Nastavitev izhodišča tlačne sonde Deltabar PMD75
 - i. Ventili od 2 do 6 so zaprti, ventila 0 in 1 pa odprta. Tlačna sonda meri diferenčni tlak iz istega primerjalnega prereza (1), ki je 0 mbar.
 - ii. Na sondi se ponastavi merjeno vrednost na vrednost 0 mbar.

- c. Tlačne izgube med primerjalnim (1) in merjenim prerezom
 - Pred pričetkom vsake meritve se opravi nastavitev izhodiščne točke tako, kot je opisano v alineji »b«.
 - ii. Ventil 0 se zapre.
 - iii. Ventila z ustrezno oznako prereza se odpre.
 - iv. Z vizualizacijo na računalniku se preveri, če so se tlačne razmere v sondi ustalile.
 - v. Prične se z zajemom meritev, ki traja med 30 s in 60 s.
 - vi. Po končni meritvi se ventil z ustrezno oznako prereza zapre.
 - vii. Odpre se ventil 0.
 - viii. S postopkom iz alineje »b« se ponovno preveri izhodiščno točko inštrumenta.
- d. Zajem meritev iz vodnega manometra
 - i. Ko so se tlačne razmere v cevi ustalile, se vklopi osvetljava manometra.
 - ii. S fotografskim aparatom na stojalu se preko računalnika zajame slika gladine v manometru.

¹¹ Oznaka ventila ustreza oznaki prereza na preizkusni cevi.

Da bi se izognili morebitnim sistemskim napakam, je odpiranje ventilov oziroma zaporedje meritev med 5¹² različnimi prerezi na cevi potekalo naključno. Vsak niz meritev (meritev 5 različnih prerezov, z merjenjem oziroma preverjanjem izhodiščne točke inštrumenta) je bil pri istem pretoku ponovljen 3 krat. Pri enem pretoku je bilo torej opravljenih $6 \times 2 \times 3 = 36$ meritev oziroma, če ne upoštevamo meritev izhodiščnih točk, 15^{13} meritev. Skupno je bilo izmerjenih 85 različnih pretokov, kar predstavlja $15 \times 85 = 1275$ meritev. Po statistični analizi in odpravi grobih pogreškov se je dejansko število uporabnih meritev zmanjšalo na 1270.

¹² Odpirajo in zapirajo se samo ventili z oznako od 2 do 6. 1. ventil je vedno odprt, ker predstavlja primerjalni prerez.

¹³ Izhodišče je bilo v vsakem nizu izmerjeno 7 krat. 5 krat za vsak merilni prerez ter enkrat na začetku in koncu merilnega niza.
6 FILTRIRANJE IN INTERPRETACIJA PODATKOV

Tekoča kontrola podatkov je potekala že med procesom merjenja. Podatki so bili delno statistično ovrednoteni in vizualizirani med samim zajemom, da so bile grobe napake odpravljene že med eksperimentalnim delom. Naknadno so bili »surovi« podatki podrobno preverjeni in filtrirani.

Ovrednotiti je potrebno tudi celotno merilno negotovost pri izračunu koeficienta trenja λ . V poglavju 5 so podane zgolj negotovosti posameznih inštrumentov, ki jih lahko pričakujemo v fazi meritev.

6.1 Filtriranje podatkov

Zaradi velike količine izmerjenih podatkov je bilo odstranjevanje grobih pogreškov (»outliers«) avtomatizirano. Kot grobi pogreški so se obravnavali vsi podatki, ki ležijo izven območja, ki ga določa 1,5-kratnik interkvartilne razdalje od 25 oziroma 75 percentila (»whiskers«) (McGill et al., 1978).

Zaradi nihanja napetosti v električnem omrežju so se pri meritvah temperaturnega pretvornika¹⁴ pojavila nenadna nihanja vrednosti temperature. Te motnje so bile izločene s testiranjem simetričnosti meritev glede na 50. percentil (mediano). Mediana je bila uporabljena, ker je skoraj neobčutljiva na grobe pogreške (Conover, 1999). Iz baze meritev so bile tako izločene vse meritve, ki so se nahajale izven območja $\pm 1,5\sigma$ od vrednosti mediane.

Po odstranitvi grobih pogreškov so se vse karakteristične količine ponovno določile. Zaradi spremembe povprečne vrednosti in delno mediane se je lahko zgodilo, da so se pojavile nove meritve, ki so ustrezale kriteriju grobih pogreškov. Postopek filtriranja se je ponovil tolikokrat, dokler se vse meritve niso nahajale znotraj predvidenega intervala.

Ker se vsa statistika določitve napake meritev zanaša na hipotezo, da so podatki normalno porazdeljeni, je bila ta hipoteza tudi preverjena. Normalno porazdeljeni podatki tudi kažejo, da v vzorcu ni prisotnih sistemskih napak ampak le »beli šum«, ki se ga odstrani s filtriranjem.

»Normalnost« porazdelitve je bila preverjena tako pred kot po odstranitvi grobih pogreškov. Ker se pri uporabi avtomatizmov lahko pojavijo določene napake, so bili v tem primeru uporabljeni 3 testi porazdelitve:

- Lilliefors test (Lilliefors, 1967),
- Hi-kvadrat test (Plackett, 1983),
- Jarque-Bera test (Jarque in Bera, 1987).

¹⁴ Samo temperaturni pretvornik ni bil vezan na usmernik enosmernega toka, ampak na 24 V transformator izmeničnega toka.

Vsi uporabljeni testi predpostavljajo, da sta srednja vrednost in standardna deviacija nepoznani in se ocenita na podlagi vzorca. Merodajen je 95 % interval zaupanja. Hipotezo o normalni porazdeljenosti meritev ni bilo mogoče zanikati, če sta bila vsaj 2 od 3 testov negativna.

Diagrami na sliki 6.1 prikazujejo rezultat filtriranja meritve izhodiščnega položaja induktivnega merilca pretoka Promag 30F, diagrami na sliki 6.2 pa rezultat filtriranja motenj temperaturnega pretvornika.

Slika 6.1: Rezultati filtriranja grobih pogreškov induktivnega merilca Promag 30F Figure 6.1: Filtered data for Promag 30F

Slika 6.2: Rezultati filtriranja grobih pogreškov temperaturnega pretvornika *Figure 6.2: Filtered data for the temperature conditioner*

Po opravljenem filtriranju in statistični analizi so bile surove meritve z ustreznimi kalibracijskimi premicami pretvorjene v končne rezultate.

6.2 Ovrednotenje merilne negotovosti

Ovrednotenje merilne negotovosti merjenih in izračunanih količin je bilo izvedeno po metodi, ki je opisana v Holman (1989). Vse vrednosti količin so določene s 95 % intervalom zaupanja.

Končni rezultat meritev so vrednosti Reynoldsovih števil ter vrednosti koeficienta trenja λ . Obe količini nista neposredno merjeni, ampak se določita na podlagi drugih, merjenih oziroma preračunanih parametrov, ki so:

$$\operatorname{Re} = \frac{4 \cdot Q}{\pi \cdot D \cdot \nu} \tag{6.1}$$

in

$$\lambda = \frac{\partial p}{\partial x} \cdot \frac{D}{V_2^2 \cdot \rho}$$
(6.2)

Iz enačbe 6.1 in 6.2 lahko razberemo, da se količine, ki vsebujejo merilno negotovost, med seboj množijo, delijo ali potencirajo. Ob predpostavki, da so količine med seboj neodvisne (Turk, 2008), je vrednost kovariance enaka nič in lahko za poljubno obliko funkcije z = f(x, y, z, ...) podamo sledečo zakonitost propagacije merilne negotovosti (Bevington in Robinson, 2002):

$$\sigma_{z} = \sqrt{\left(\frac{\partial f}{\partial x}\sigma_{x}\right)^{2} + \left(\frac{\partial f}{\partial y}\sigma_{y}\right)^{2} + \left(\frac{\partial f}{\partial z}\sigma_{z}\right)^{2} + \dots}$$
(6.3)

Iz enačbe 6.3^{15} sledi, da se pri seštevanju in odštevanju neodvisnih spremenljivk med seboj seštevajo absolutne napake, pri množenju in deljenju pa relativne napake. Poseben primer predstavlja množenje in deljenje s konstanto (npr. z = 2x) in potenciranje (npr. $z = x^2$), ker neodvisnost iste spremenljivke ne drži. Tako se v prvem primeru absolutna napaka pomnoži z vrednostjo konstante, v drugem pa se množi relativna napaka.

Povzetek merodajnih absolutnih napak posameznih merjenih količin je prikazan v preglednici 6.1.

¹⁵ σ_x , σ_y oziroma σ_z predstavljajo standardno deviacijo.

	Inštrument/Količina	Enote	Napaka		
Meritev tlačnih izgub med v cevi	Deltabar PMD75 1 mbar – P :	[mbar]	$\pm 0,007$		
	Deltabar PMD75 25 mbar – P :	[mbar]	$\pm 0,026$		
	Deltabar PMD75 100 mbar – P:	[mbar]	±0,114		
	Razdalja med prerezi – ∂x :	[mm]	±0,5		
Meritev pretoka	Promag 30F – Q: [%] $\pm \left(\frac{2,80 \cdot 10^{-13}}{v^{6,388}} + 0,00\right)$				
Volumetrična meritev pretoka	Volumen posode – V:	[1]	±0,123		
	Začetna gladina v posodi – h_0 :	[mm]	±0,025		
	Deltapilot DB50 – P:	[mbar]	±0,169		
	$\check{C}as - t$:	[s]	$\pm 0,001$		
Splošni podatki	Temperatura vode – T :	[°C]	±0,210		
	Napake obrazca za izračun gostote – ρ :	[%]	±2,50		
	Napake obrazca za izračun dinamične viskoznosti – μ :	[%]	±2,50		
	Premer cevi – D :	[mm]	±0,61		
	Hrapavost – R_q :	[µm]	±0,01		

Preglednica 6.1: Povzetek merilne negotovosti *Table 6.1: Summary of the measuring uncertainty*

Na podlagi vrednosti merilne negotovosti iz tabele 6.1 je potrebno na osnovi obrazca 6.3 določiti napake preračunanih količin. Pri izračunu napak je upoštevana tudi napaka digitalno-analognega konverterja, ki se je izkazala kot zanemarljiva. Rezultati so podani v preglednici 6.2.

Inštrument/Količina	Min [%]	Max [%]		
Gostota – ρ :	2,50	2,50		
Kinematična viskoznost – v	2,56	2,57		
Volumetrični pretok – Q_{ν} :	0,138	1,196		
Promag 30F – <i>Q</i> :	0,500	0,861		
Diferencialni tlak – ∂p :	0,116	1400,043		
Reynoldsovo število – Re:	0,731	0,896		
Koeficient trenja – λ :	1,692	194,452		

Preglednica 6.2: Povzetek negotovosti izračunanih količin *Table 6.2: Summary of the measuring uncertainty for calculated quantities*

Na podlagi vrednosti iz tabele 6.2 lahko zaključimo sledeče:

1. Negotovost meritev temperature ima zanemarljiv vpliv pri določitvi gostote in kinematične viskoznosti vode. Skoraj celotni del merilne negotovosti se pojavi zaradi netočnosti sistema enačb 3.1–3.3 (2,5 %).

2. Pretoki so izmerjeni z natančnostjo od 0,138 do 1,196 %. Primerjava merjenih pretokov z induktivnim merilcem in volumetrično meritvijo nam pokaže, da je pri nižjih pretokih natančnejša volumetrična meritev. Pri večjih pretokih postane gladina v posodi nemirna, zaradi česar postane induktivni merilec pretoka natančnejši. Primerjava je prikazana na sliki 6.3. Slika prikazuje relativno razliko med izmerjenimi pretoki. Maksimalno odstopanje med izmerjenima pretokoma znaša 6,89 %, to je pri hitrostih, ko induktivni merilec prične z delovanjem. Pri pretokih večjih od 0,4 l/s je odstopanje manjše od 2 %.

Slika 6.3: Primerjava izmerjenih pretokov induktivnega merilca pretoka z volumetričnim merjenjem pretokov

Figure 6.3: Flow measurements comparison of the magneto-inductive flow meter with the volumetric *flow measuring facility*

3. V laminarnem območju je merilna negotovost zaradi relativno visokih odstopanj, ki nastanejo predvsem zaradi nestabilnosti¹⁶ izhodnega signala inštrumenta pri merilnem intervalu 1 mbar, večja. Dejstvo je, da so pri tako nizkih pretokih tlačne izgube (0,5 μbar) le za red velikosti večje od resolucije inštrumenta (0,0625 μbar). Napaka zaradi nelinearnosti in nestabilnosti pa znaša ±7 μbar oziroma 1400 %. Kot je razvidno iz slike 6.5, ki prikazuje primerjavo teh meritev z meritvami različnih avtorjev, se pojavi vprašanje natančnosti (»accuracy«) in

¹⁶ Nestabilnost se pojavi zaradi sistemske napake inštrumenta pri uporabi merilnega območja do 1 mbar.

točnosti (»precision«). V laminarnem območju je bilo z ustrezno večjim številom meritev dejansko mogoče izmeriti natančno meritev z relativno slabo točnostjo¹⁷.

Rezultat meritev predstavlja 1270 izmerjenih oziroma preračunanih točk koeficienta trenja λ v odvisnosti od Reynoldsovega števila. Točke so bile dejansko izmerjene pri 85 različnih pretokih, temperatura pa se tekom meritev skoraj da ni spremenila¹⁸. Pri vsakem pretoku je bila vrednost gradienta tlaka (*dP/dx*) določena s premico, ki se je najbolje prilegala (optimizacija kvadrata napake) vsem 5 meritvam diferencialnega tlaka. Natančnost tako določenega Reynoldsovega števila znaša med ±0,738 in ±0,896 %, natančnost koeficienta trenja λ pa med ±1,692 in ±194,452 %¹⁹. Rezultati so prikazani na diagramu slike 6.4. Diagram prikazuje izmerjene (preračunane) vrednosti koeficienta trenja λ ter 95 % interval zaupanja.

Primerjava meritve z raziskavo Nikuradseja v hidravlično gladkih ceveh ter meritvami univerze Oregon (2002) in Princeton (2004) je prikazana na sliki 6.5.

¹⁷ Izmerjene vrednosti na merilnem območju tlačne sonde do 1 mbar so imele bistveno večjo standardno deviacijo, kot meritve na merilnem intervalu 25 in 100 mbar.

¹⁸ V celotnem dnevu meritev se je temperatura vode spremenila zgolj za 1 °C.

¹⁹ Višja negotovost se pojavi v laminarnem režimu toka, ko so tlačne izgube zelo majhne v primerjavi z merilno negotovostjo inštrumenta.

Slika 6.4: Meritve koeficienta trenja λ v odvisnosti od Reynoldsovega števila Re^{20} *Figure 6.4:* Dependence of the friction factor measured data on Reynolds numbers

²⁰ Spodnja vrednost intervala zaupanja prvih šestih točk ni prikazana, ker predstavlja negativno vrednost in se je

v logaritemskem merilu ne da prikazati.

Slika 6.5: Primerjava meritev koeficienta trenja λ z meritvami Nikuradseja, univerze Oregon in Princeton Figure 6.5: Friction factor measured data compared with Nikuradse's, Oregon's and Princeton's measurements

Čeprav je pri najnižjih Reynoldsovih številih 95 % interval zaupanja zelo širok, iz slike 6.5 lahko vidimo, da se meritve popolnoma ujemajo s predhodno opravljenimi raziskavami. Na podlagi teh dejstev lahko trdimo, da so meritve zanesljive.

Natančnejša raziskava dogajanja v tokovni sliki pri različnih Reynoldsovih številih nam pokaže, da se prvi znaki turbulence oziroma nestabilnosti pojavijo že pri Reynoldsovem številu $Re \approx 1113$. Preskok v prehodni režim toka se zgodi pri $Re_{krit} \approx 2724$. Maksimalna vrednost koeficienta trenja λ v turbulentnem režimu toka (hidravlično gladke cevi) je dosežena pri $Re \approx 3339$. Tokovnice pri teh karakterističnih Reynoldsovih številih so prikazane na sliki 6.6.

Slika 6.6: Tokovnice pri karakterističnih Reynoldsovih številih *Figure 6.6: Stream lines at characteristic Reynolds numbers*

7 PREDLOG NOVEGA OBRAZCA KOEFICIENTA TRENJA

Iz pregleda do sedaj objavljene literature in na podlagi teoretičnih osnov lahko ugotovimo, da je število enačb, primernih za določanje koeficienta trenja v prehodnem območju, zelo omejeno oziroma obstoječi izrazi so dokaj nenatančni. Najbolj je v uporabi Colebrook-Whitova enačba in Moodyjev diagram. Colebrook-Whitovemu izrazu lahko pripišemo tudi nekoliko daljšo pot do končnega rezultata, predvsem zaradi postopka iteracij, ki ga za rešitev ta izraz zahteva.

Zaradi tega smo po pregledu dostopnih izrazov za koeficient trenja želeli podati univerzalno enačbo, s katero bi lahko dobili realnejši koeficient trenja, predvsem v prehodnem območju. Predlog novega izraza predstavlja dejansko nadaljevanje dela, objavljenega v Uršič in Kompare (2003).

Kot je bilo v poglavju 4 (Teoretične osnove) pokazano, je v laminarnem toku funkcijska odvisnost koeficienta trenja λ od Reynoldsovega števila *Re* izpeljana popolnoma na analitični osnovi, brez vsakršne povezave z eksperimentalnim delom. Ta obrazec lahko privzamemo kot dokončen in neizpodbiten.

V nasprotnem primeru pa so enačbe koeficienta trenja λ v turbulentnem toku izpeljane na podlagi tako analitičnih kot empiričnih zakonitosti (Nikuradse 1932 in 1933, Prandtl 1933). V tem območju so možne še dodatne izboljšave obrazcev, ki bodo, preden se posvetimo funkcijski odvisnosti koeficienta trenja λ za celoten spekter Reynoldsovih števil, podrobneje obdelane.

Pri razvoju novih obrazcev bodo uporabljeni podatki Nikuradseja (1932 in 1933), meritve objavljene v McKeon in sodelavci (2004) in rezultati pričujoče raziskave. Meritve so prikazane na sliki 7.1.

Slika 7.1: Podatkovna baza uporabljenih meritev Figure 7.1: Measurements database

7.1 Hidravlično gladek režim toka

V hidravlično gladkem režimu toka velja zakon upora (enačba 4.38). V enačbi 4.38 se lahko Re_{τ} nadomesti z izrazom $Re_{\tau} = \frac{v_* \cdot D}{2 \cdot \nu} = \frac{Re}{2} \cdot \sqrt{\frac{\lambda}{8}}$. Ker lahko konstanti izrazimo izven argumenta logaritma, dobimo univerzalni zakon gladkih cevi (enačba 4.44).

Do sedaj so vsi avtorji preverjali odvisnost $\frac{1}{\sqrt{\lambda}} = f(Re \cdot \sqrt{\lambda})$. Tukaj želimo preveriti možnost zapisa koeficienta trenja λ v eksplicitni obliki. Če izrišemo Re $\cdot \sqrt{\lambda} = f(Re)$, dobimo rezultat, ki je prikazan na sliki 7.2.

Slika 7.2: $Re \cdot \sqrt{\lambda}$ izražen kot funkcija f(Re)Figure 7.2: $Re \cdot \sqrt{\lambda}$ expressed as f(Re)

Funkcije, ki imajo v logaritemskem merilu obliko premice, je mogoče opisati z enačbo oblike $Re\sqrt{\lambda} = x_1 \cdot Re^{x_2}$, kjer sta x_1 in x_2 neznani konstanti. Po umerjanju²¹ s podatki meritev v hidravlično gladkem režimu toka²² dobimo manjkajoča parametra in enačbo zapišemo:

$$Re\sqrt{\lambda} = 2,756 \cdot 10^{-1} \cdot Re^{9,316 \cdot 10^{-1}} \to Re_{\tau} = \frac{2,756 \cdot 10^{-1}}{2 \cdot \sqrt{8}} \cdot Re^{9,316 \cdot 10^{-1}}.$$
(7.1)

Pri nižjih vrednostih Reynoldsovega števila ($Re < 7,6 \times 10^4$) so odstopanja tako zastavljene funkcije sicer večja od ±5 %. Pri izračunu koeficienta trenja se ta funkcijska zveza nahaja v argumentu logaritma, kar daje slutiti, da bo napaka lahko le manjša.

²¹ Reševanje nelinearnega sistema enačb z uporabo »Interior-Reflective« Newtnove metode, ki optimizira kvadrat napake (Coleman in Li, 1996).

²² Nikuradse (1932), Swanson et al. (2002), McKeon et al. (2004).

Enačbo 7.1 ustavimo v izraz univerzalnega zakona gladkih cevi in dobimo koeficient trenja λ , izražen v eksplicitni obliki kot funkcija $\lambda = f(Re)$:

$$\lambda = \left(\frac{x_3}{x_4 \log(2,756 \cdot 10^{-1} \cdot Re^{9,316 \cdot 10^{-1}}) - x_5}\right)^2.$$
(7.2)

Z umerjanjem dobimo vrednosti manjkajočih konstant, tako da se enačba glasi:

$$\lambda = \left(\frac{5,776}{10,882 \cdot \log(2,756 \cdot 10^{-1} \cdot Re^{9,316 \cdot 10^{-1}}) - 1,592}\right)^2.$$
(7.3)

Primerjava enačbe 7.3 z univerzalnim zakonom gladkih cevi je prikazana na sliki 7.3.

Slika 7.3: Primerjava univerzalnega zakona gladkih cevi (enačba 4.44) z enačbo 7.3 *Figure 7.3: Comparison of the Prandtl's equation 4.44 for smooth pipes with equation 7.3*

7.2 Hidravlično hrapav režim toka

Za hidravlično hrapav režim toka velja enačba 4.46 oziroma zakon popolne hrapavosti (enačba 4.48), ki se v tem območju zelo dobro prilega meritvam Nikuradseja (1933). V tem primeru je enačba koeficienta trenja λ izražena eksplicitno in ne predstavlja težav pri uporabi. Težave se pojavijo pri območju uporabe oziroma pojavi se vprašanje, kdaj postane turbulentni tok hidravlično hrapav.

Na vprašanje so odgovorili že številni avtorji. Na podlagi slike 7.4 lahko ugotovimo, da postanejo cevi hidravlično hrapave oziroma hrapavost vpliva na hidravlične izgube, ko postane Reynoldsovo število hrap (k_s^+) večje od 4 (Nikuradse 1933). Schlichting s sodelavci (2000) navaja nekoliko višjo vrednost, in sicer $k_s^+ \ge 5$, oziroma tok se nahaja v prehodnem območju, ko velja $5 \le k_s^+ \le 70$. Za Reynoldsova števila hrap manjša od 4 oziroma 5, se tok nahaja v hidravlično gladkem režimu.

Slika 7.4: Prehod iz hidravlično gladkega v hidravlično hrapav režim toka²³ *Figure 7.4: Transition from hydraulically smooth to hydraulically rough regime*

²³ Nikuradsejeve meritve v hidravlično gladkih ceveh niso uporabljene, ker ni podatka o hrapavosti cevi.

Iz slike 7.4 lahko vidimo, da Nikuradsejeve meritve v hidravlično hrapavih ceveh konvergirajo k enaki vrednosti, ko presežejo mejno Reynoldsovo število hrapavosti k_s^+ . Mejnega Reynoldsovega števila hrap k_s^+ meritve iz Princetona (2002) in Oregona (2004) ne dosežejo.

Ekvivalentna peščena hrapavost meritev univerze Oregon in Princeton ni točno določena, ampak je le hipotetično predpostavljena. Hipoteza temelji na predpostavki, da se prehod prične ravno pri naslednjem večjem Reynoldsovem številu, kot je bilo največje izmerjeno, tedaj pa znaša $k_s^+ = 4$. Za meritve univerze Princeton znaša ta vrednost približno 3 kratno vrednost izmerjene hrapavosti R_a . V pričujočem primeru je ta hipotetična ekvivalentna »peščena« hrapavost približno 10 krat večja od izmerjene (glej poglavje 3.4 in 5.3.1). Ne prvi in ne drugi rezultat nista pravilna, saj se prehod v hidravlično hrapav režim toka ne prične v nobenem primeru.

Točno ekvivalentno standardno hrapavost bi lahko določil le, če bi bila izmerjena Reynoldsova števila dovolj visoka, da bi mejno vrednost Reynoldsovega števila hrap presegla in prešla v hidravlično hrapav režim toka. Z višanjem Reynoldsovega števila se namreč mejna plast tanjša, tako da lahko tudi teoretično še najmanjša relativna hrapavost postane večja od debeline mejne plasti.

Pri razvoju univerzalne enačbe koeficienta trenja nas zanima, kdaj bo prišlo do prehoda iz hidravlično gladkega v hidravlično hrapav režim. Interval prehoda je določen med vrednostmi $4 \le k_s^+ \le 70^{24}$. Ker nas zanimajo vrednosti pričetka prehoda, bomo interval še zožili na $4 \le k_s^+ \le 15$. Znotraj tega intervala

bo poiskana funkcijska zveza $k_s^+ = f\left(Re, \frac{k_s}{D}\right)$.

Ker meritve, opravljene v pričujoči raziskavi, nimajo točno določene vrednosti enakovredne »peščene« hrapavosti, bodo uporabljene zgolj meritve Nikuradseja v hidravlično hrapavem režimu toka (1933)²⁵ ter meritve univerze Oregon in Princeton s predpostavljenimi »peščenimi« hrapavostmi, kot je opisano v poglavju 3.4.

Težave ne predstavljajo meje, ki so bolj ali manj točno določene, ampak uporabnost teh vrednosti.

Reynoldsovo število hrap je namreč definirano kot $k_s^+ = \frac{k_s}{\delta_t} = \frac{k_s \cdot v_*}{v} = Re \sqrt{\frac{\lambda}{8} \cdot \frac{k_s}{D}}$. Pri vsakodnevni

inženirski praksi pa strižna hitrost oziroma koeficient trenja λ praviloma nista poznana. Smiselno je torej dobiti eksplicitno povezavo med k_s^+ , Reynoldsovim številom in relativno hrapavostjo.

²⁴ Izbran je najširši interval. Nikuradse (1933) navaja vrednosti $4 \le k_s^+ \le 60$, Schlichting s sodelavci (2000) pa

 $^{5 \}le k_s^+ \le 70$ ²⁵ Meritve v hidravlično gladkih ceveh (Nikuradse, 1932) nimajo podane vrednosti ekvivalentne »peščene«

Diagram na sliki 7.5 prikazuje odvisnost k_s^+ od Reynoldsovega števila. Iz definicije $Re_{\tau} = \frac{v_* \cdot D}{2 \cdot v} = \frac{Re}{2} \cdot \sqrt{\frac{\lambda}{8}}$ in $k_s^+ = Re_{\sqrt{\frac{\lambda}{8}}} \cdot \frac{k_s}{D}$ lahko izpeljemo $k_s^+ = 2 \cdot Re_{\tau} \cdot \frac{k_s}{D}$. Z uporabo enačbe

7.1 za izraz Re_{τ} in optimizacijo parametrov dobimo rezultate, ki jih prikazuje diagram na sliki 7.5.

Slika 7.5: Primerjava Reynoldsovih števil hrap na intervalu $4 \le k_s^+ \le 15$ z enačbo 7.5 Figure 7.5: Comparison of roughness Reynolds numbers in the range $4 \le k_s^+ \le 15$ with the equation 7.5

Reynoldsovo število hrap lahko zapišemo v obliki:²⁶

$$k_{s}^{+} = 2 \cdot Re_{\tau} \cdot \frac{k_{s}}{D} = 2 \cdot \frac{x_{6} \cdot Re^{x_{7}}}{2 \cdot \sqrt{8}} = \frac{x_{6} \cdot Re^{x_{7}}}{\sqrt{8}}.$$
(7.4)

Po optimizaciji parametrov za vrednosti na intervalu $4 \le k_s^+ \le 15$ dobimo:

²⁶ V funkciji nastopa tudi konstanta $\sqrt{8}$. Nekateri avtorji podajajo kot vrednost Reynoldsovega števila hrap funkcijo $\sqrt{8} \cdot k_s^+$. Meja za hidravlično hrapav režim toka se tako premakne na $\sqrt{8} \cdot 70 \approx 200$.

$$k_{s}^{+} = 2 \cdot Re_{\tau} \cdot \frac{k_{s}}{D} = 2 \cdot \frac{x_{6} \cdot Re^{x_{7}}}{2 \cdot \sqrt{8}} \cdot \frac{k_{s}}{D} = \frac{4,963 \cdot 10^{-1} \cdot Re^{8,939 \cdot 10^{-1}}}{\sqrt{8}} \cdot \frac{k_{s}}{D}.$$
(7.5)

Primerjava enačbe 7.5 z meritvami je prikazana na diagramu, ki ga prikazuje slika 7.5. Pričakovano se vrednosti parametrov nekoliko razlikujejo od enačbe 7.1, ki ima pri nižjih Reynoldsovih številih nekoliko večje odstopanje. Izraz 7.5 je uporaben samo za določitev začetka prehoda iz hidravlično gladkega v hidravlično hrapav režim toka na intervalu $4 \le k_s^+ \le 15$.

Funkcija 7.5 ima tudi fizikalno smiselno obliko, saj ko gre $\lim_{k_s \to 0} k_s^+ = 0$ oziroma če znaša »peščena« hrapavost $k_s = 0$, je mejno Reynoldsovo število prehoda $Re = \infty$. Prehod se torej ne zgodi.

7.3 Enačbe koeficienta trenja

Očitno je, da se obnašanje koeficienta (funkcije) trenja spreminja z režimom toka. Moody (1944) je to na svojem diagramu tudi jasno poudaril. Kot je v Uršič in Kompare (2003) pokazano, je mogoče uporabiti karakteristične izraze za posamezne režime toka ter jih sešteti z uporabo ustreznih »preklopnih« funkcij, ki »vklapljajo« in »izklapljajo« posamičen opis, ko je to potrebno. Stopenjske Dirac-delta funkcije ne pridejo v poštev, saj so prehodi v pričujočem primeru gladki in zvezni. Lahko bi uporabili linearne (ramp) funkcije, ki bi zagotovile zveznost, ne pa dovolj gladkosti. Gladkost in zveznost najbolje zagotavljajo večkrat odvedljive funkcije. Očitno je, da mora funkcija ustrezati sledečim lastnostim:

- $\lim_{x \to \infty} f(x) = 0$ in $\lim_{x \to 0} f(x) = 1$ ali,
- $\lim_{x \to \infty} f(x) = 1$ in $\lim_{x \to -\infty} f(x) = 0$,
- za zagotovitev zveznosti se mora prehod iz $\lim_{x\to\infty} f(x) = 0$ do $\lim_{x\to0} f(x) = 1^{27}$ »zgoditi« na ustreznem intervalu, tj. z ustreznim začetkom in koncem preklopa,
- za zagotovitev gladkosti mora imeti iskana funkcija ustrezno število odvodov (npr. vsaj 2).

Kot najprimernejše so se izkazale sledeče funkcije, ki so tudi prikazane na sliki 7.6:

$$y = e^{-e^{-x}}$$
 (7.6)

$$y = \left(1 + x^{\beta} \cdot X_{krit}^{-\beta}\right)^{-1}.$$
 (7.7)

²⁷ Oziroma kombinacija ostalih pogojev limite.

Slika 7.6: Primeri preklopnih funkcij Figure 7.6: Examples of switching functions

Dolžina in mesto intervala preklopa se določi z množenjem/deljenjem oziroma prištevanjem/odštevanjem ustrezne konstante k argumentu preklopne funkcije.

Enačba koeficienta trenja, ki je veljavna za celotno območje Reynoldsovih števil in zajema tako hidravlično gladke kot hidravlično hrapave cevi, ima dve možni obliki:

$$\lambda = f(\lambda_{laminaren}, (1 - \chi_1)) + f(\lambda_{hidravlicno gladek}, (\chi_1 - \chi_2)) + f(\lambda_{hidravlicno hrapav}, \chi_2)$$
(7.8)

ali

$$\lambda = f(\lambda_{laminaren}, \theta_1) \times f(\lambda_{hidravlicno gladek}, (1 - \theta_1), \theta_2) \times f(\lambda_{hidravlicno hrapav}, (1 - \theta_1), (1 - \theta_2)), \quad (7.9)$$

kjer so χ_1, χ_2 , in θ_1 ter θ_2 preklopne funkcije.

V enačbi ustavimo še $\lambda_{laminaren}$, $\lambda_{hidravlično gladek}$, $\lambda_{hidravlično hrapav}$ in dobimo:

$$\lambda = \frac{64}{Re} \cdot (1 - \chi_1) + \left(\frac{5,776}{10,882 \cdot \log\left(\frac{2,756 \cdot 10^{-1}}{Re^{-9,316 \cdot 10^{-1}}}\right) - 1,592}\right) \cdot (\chi_1 - \chi_2) + \left(2 \cdot \log\left(\frac{3.706 \cdot D}{k_s}\right)\right)^{-2} \cdot \chi_2 \quad (7.10)$$

 $\backslash 2$

$$\lambda = \left(\frac{64}{Re}\right)^{\theta_1} \cdot \left(\frac{5,776}{10,882 \cdot \log\left(\frac{2,756 \cdot 10^{-1}}{Re^{-9,316 \cdot 10^{-1}}}\right) - 1,592}\right)^{2 \cdot (1-\theta_1) \cdot \theta_2} \cdot \left(2 \cdot \log\left(\frac{3.706 \cdot D}{k_s}\right)\right)^{-2 \cdot (1-\theta_1) \cdot (1-\theta_2)}.$$
 (7.11)

V izrazu 7.10 so uporabljene preklopne funkcije iz enačbe 7.6, v obrazcu 7.11 pa preklopne funkcije iz enačbe 7.7. Potrebno je določiti še vrednosti parametrov v preklopnih funkcijah.

Že iz definicije sledi, da bodo parametri v preklopnih funkcijah, ki uravnavajo prehod iz laminarnega v turbulenten režim toka, odvisne samo od Reynoldsovega števila. Nastavka argumentov v preklopnih funkcijah χ_1 in θ_1 sta torej:

$$\chi_1 = e^{-e^{-x_1}} \to x_1 = \alpha_1 \cdot \left(Re - Re_{krit}\right) \tag{7.12}$$

$$\theta_{1} = \left(1 + Re^{\beta_{1}} \cdot Re_{krit}^{-\beta_{1}}\right)^{-1}.$$
(7.13)

V enačbah 7.12 in 7.13 predstavlja Re_{krit} Reynoldsovo število, pri katerem se zgodi prehod iz laminarnega v turbulentni režim toka.

Prehod iz hidravlično gladkega v hidravlično hrapav režim je odvisen od mejnega Reynoldsovega števila hrap $k_{s}^{+}_{krit}$, pri katerem se »zgodi« prehod. Glede na enačbo 7.5 lahko zapišemo nastavek za argumente preklopnih funkcij χ_2 in θ_2 na sledeči način:

$$\chi_2 = e^{-e^{-x_2}} \to x_2 = \left(\alpha_2 \cdot \frac{k_s}{D} + \alpha_3\right) \cdot \left(Re - Re_{k_s^+ krit}\right)$$
(7.14)

$$\theta_{2} = \left(1 + Re^{\beta_{2}} \cdot Re_{k_{s}^{+}krit}^{-\beta_{2}}\right)^{-1}.$$
(7.15)

Iz enačbe 7.5 lahko izrazimo $Re_{k_{s}^{+}krit}$ kot:

$$Re_{k_{s}^{+}krit} = \left(\sqrt{8} \cdot k_{s}^{+}krit \cdot \left(4,963 \cdot 10^{-1} \cdot \frac{k_{s}}{D}\right)^{-1}\right)^{\frac{1}{8,939 \cdot 10^{-1}}}$$
(7.16)

Za enačbo koeficienta trenja λ , izraženo kot prikazuje enačba 7.10, je potrebno določiti 3 parametre (α_1 , α_2 , α_3) ter kritično Reynoldsovo število Re_{krit} prehoda laminarnega toka in mejno Reynoldsovo število hrap $k_s^+_{krit}$, ko preide turbulentni tok iz hidravlično gladkega v hidravlično hrapav režim. Medtem ko so parametri α popolna neznanka in bodo določeni s postopkom optimizacije parametrov²⁸, je interval vrednosti R_{krit} in $k_s^+_{krit}$ poznan. Interval prehoda laminarnega toka se nahaja od $R_{krit} \approx 2300$ do $R_{krit} \approx 2800$. Mejna vrednost Reynoldsovega števila hrap pa se nahaja na intervalu od $k_s^+_{krit} = 4$ do $k_s^+_{krit} \approx 5$. Zaradi zveznega prehoda preklopnih funkcij je pričakovana vrednost prehoda nekje na intervalu od $k_s^+_{krit} \approx 4$ do $k_s^+_{krit} \approx 15^{29}$. V primeru enačbe 7.11 je potrebno poleg mejnega in kritičnega Reynoldsovega števila določiti še 2 neznana parametra (β_1 , β_2).

²⁸ Reševanje nelinearnega sistema enačb z uporabo »Interior-Reflective« Newtnove metode, ki optimizira kvadrat napeke (Coleman in Li, 1996).

²⁹ Interval sovpada z območjem veljavnosti enačbe 7.5.

Po končani optimizaciji dobimo vrednosti parametrov, ki jih prikazuje preglednica 7.1. Optimizacija sledi podatkom Nikuradseja (1932 in 1933), univerze Oregon (2002) in Princeton (2004) ter meritvam pričujoče raziskave. Ekvivalentna »peščena« hrapavost za meritve univerze Oregon in Princeton je predpostavljena, kot opisuje poglavje 3.4. Za meritve, opravljene v sklopu te raziskave, je ekvivalentna »peščena« hrapavost predpostavljena kot $k_s = 35,59 \,\mu\text{m}$. Te predpostavke ne spreminjajo vrednosti umerjenih parametrov, ker so dejansko potekale v hidravlično gladkem režimu toka. Izmerjena Reynoldsova števila so nižja od tistega potrebnega, da se prehod v hidravlično hrapav režim zgodi. Napaka se pojavi lahko samo pri »lokaciji« prehoda v hidravlično hrapav režim toka, ko se z univerzalno enačbo koeficienta trenja λ (enačbi 7.10 ali 7.11) simulira višja Reynoldsova števila³⁰, kot so bila dejansko izmerjena. Natančno »lokacijo« prehoda bi bilo mogoče določiti samo takrat, ko bi bila točna vrednosti »peščenih« hrapavosti poznana.

Preglednica 7.1: Vrednosti parametrov preklopnih funkcij
Table 7.1: Evaluated parameters for switching functions

Enačba 7.10				Enačba 7.11				
χ1		χ2			θ_1		θ_2	
α_1	Rekrit	α_2	α3	k ⁺ _{s krit}	β1	R e _{krit}	β2	k ⁺ _{s krit}
2,095 ×10 ⁻³	2587	7,551×10 ⁻³	1,000×10 ⁻⁷	10,275	9,654	2713	2,306	11,350

Diagrama na slikah 7.7 in 7.8 prikazujeta primerjavo novih, generaliziranih enačb koeficienta trenja. Diagrami prikazujejo tudi meritve Nikuradseja (1932 in 1933), univerze Oregon (2002) in Princeton (2004) ter meritve opravljene v tej raziskavi.

³⁰ Za meritve v hidravlično gladkem režimu toka.

Slika 7.7: Primerjava univerzalne enačbe trenja (enačba 7.10) z meritvami Figure 7.7: Comparison of the universal friction factor equation (equation 7.10) with measured data

log(1000).

2.75

3.75

3.5

3.25

2.5

N

<u>.</u>5

1.5

1.25-

1.75

Slika 7.8: Primerjava univerzalne enačbe trenja (enačba 7.11) z meritvami Figure 7.8: Comparison of the universal friction factor equation (equation 7.11) with measured data

8 DISKUSIJA REZULTATOV

Iz končnega predloga za izraz koeficienta (funkcije) trenja lahko ugotovimo, da so prvotno zastavljeni cilji in želje po izgradnji enačbe, ki bi se popolnoma prilagajala do sedaj opravljenim meritvam Nikuradseja (1932 in 1933), univerze Oregon (Swanson et al., 2002) in Princeton (Zagarola in Smits, 1998 ter McKeon et al., 2004) ter meritvam izvedenih v sklopu pričujoče raziskave, bili doseženi. Ugotovljeni sta bili dve možni strukturi odsekoma spremenljive enačbe in določene so bile vrednosti parametrov ter funkcijska povezava med relativno hrapavostjo in parametri enačbe. Enačbi v območju Reynoldsovih števil od 10^{2,5} do 10^{7,5} sta prikazani na sliki 8.1 in 8.2.

Slika 8.1: Primerjava univerzalne enačbe trenja (enačba 7.10) z meritvami Figure 8.1: Comparison of the universal friction factor equation (equation 7.10) with measured data

Slika 8.2: Primerjava univerzalne enačbe trenja (enačba 7.11) z meritvami Figure 8.2: Comparison of the universal friction factor equation (equation 7.11) with measured data

Enačbi 7.10 in 7.11 se na vseh območjih režima toka skoraj popolnoma prilegata Nikuradsejevim meritvam, kar dokazujejo tudi minimalne napake. Največja odstopanja se pojavijo v območju prehoda laminarnega toka v turbulenten režimu. V tem območju se maksimalna odstopanja nahajajo na intervalu med -25 in +14 % (enačba 7.10) oziroma -23,05 in +14 % v primeru enačbe 7.11. Izven tega območja se rezultati in meritve ujemajo z natančnostjo ± 5 % ali bolje. Rezidual napake je prikazan na sliki 8.3. Za primerjavo je na sliki 8.4 prikazana napaka Colebrook-Whitove enačbe, ki velja v prehodnem režimu toka (enačba 4.50) in nam pokaže, da so največja odstopanja v intervalu med -100 in +85 %. Boljši rezultati so doseženi, ko preide tok v hidravlično hrapav režim. Takrat so odstopanja znotraj natančnosti ± 5 %.

Slika 8.3: Rezidual napake univerzalne enačbe koeficienta trenja v primerjavi z izmerjenimi vrednostmi *Figure 8.3: Error residual of the universal friction factor equation compared with measured data*

Slika 8.4: Rezidual napake Colebrook-Whitovega izraza za prehodno območje v primerjavi z meritvami *Figure 8.4: Error residual of the Colebrook-White equation for transitional flow compared with measured data*

Poleg tega sta univerzalni enačbi koeficienta trenja 7.10 in 7.11 podani v eksplicitni obliki, kar je velika pridobitev glede na implicitno obliko Colebrook-Whitove enačbe. To pride do veljave še posebej pri hidravličnem preračunu vodovodnega sistema zaradi enostavnejše rešitve enačbe brez iteracij.

Veljavnost eksplicitnih izrazov koeficienta trenja 7.10 in 7.11 lahko enačimo z veljavnostjo izrazov za laminarni, hidravlično gladki in hidralično hrapav režim toka. Ekstrapolirane vrednosti do Reynoldsovega števila 10¹² so prikazane na slikah 8.5 (enačba 7.10) in 8.6 (enačba 7.11).

Slika 8.5: Ekstrapolirane vrednosti koeficienta trenja z enačbo 7.10 do Reynoldsovega števila 10^{12} *Figure 8.5: Extrapolated values of the friction factor with the equation 7.10 up to Reynolds numbers 10^{12}*

Slika 8.6: Ekstrapolirane vrednosti koeficienta trenja z enačbo 7.11 do Reynoldsovega števila 10^{12} *Figure 8.6: Extrapolated values of the friction factor with the equation 7.11 up to Reynolds numbers* 10^{12}

Kot je iz diagramov na slikah 8.5 in 8.6 razvidno, se od mejnega Reynoldsovega števila hrap dalje, ko postanejo cevi hidravlično hrapave, obnašata enačbi po zakonu popolne hrapavosti (enačba 4.48). Za hidravlično toretično popolnoma gladke cevi ($k_s/D = 0$) se enačbi ravnata po obrazcu 7.3, ki nadomešča univerzalni zakon gladkih cevi. Na slikah 8.5 in 8.6 so prehodi iz hidravlično gladkega v hidravlično hrapav režim za meritve univerze Oregon ($D/k_s = 93440$) in Princeton ($D/k_s = 287302$) ter meritev pričujoče raziskave ($D/k_s = 1428$) podvrženi oceni ekvivalentne »peščene« hrapavosti, ki za te podatke ni točno določena. Podana je le kot maksimalna možna »peščena« hrapavost³¹.

Poleg univerzalne enačbe koeficienta trenja λ je bila podana tudi nova oblika enačbe (enačba 7.3), ki velja v hidravlično gladkem režimu toka za Reynoldsova števila, večja od 10^{3,5}. Primerjava enačb 7.3 in univerzalnega zakona gladkih cevi je prikazana na sliki 7.3. Odstopanja obeh enačb od meritev Nikuradseja (1932) v hidravlično gladkih ceveh, meritev univerze Oregon (Swanson et al., 2002) in

³¹ Za pojasnilo glej poglavja 3.4, 5.3.1 in 7.2.

Princeton (Zagarola in Smits, 1998 ter McKeon et al., 2004) ter meritev, izvedenih v sklopu pričujoče raziskave, so prikazana na sliki 8.7.

Slika 8.7: Primerjava reziduala napake univerzalnega zakona gladkih cevi (enačba 4.44) in novega predloga (enačba 7.3) za tok v hidravlično gladkem režimu
Figure 8.7: Error residual comparison for the Prandtl's equation in smooth pipes (equation 4.44) with the new equation 7.3 for hydraulically smooth regime of flow

Iz diagrama na sliki 8.7 lahko zaključimo, da sta si z vidika natančnosti enačbi enakovredni. Relativne napake enačbe 7.3 se nahajajo na intervalu med -3,27 in +7,26%, napaka univerzalnega zakona gladkih cevi pa med vrednostmi -4,05 in +6,40%. Prednost enačbe 7.3 je, da je izražena v eksplicitni obliki, saj je s predlogom nove enačbe koeficienta trenja v hidravlično gladkem režimu toka bila podana tudi eksplicitna povezava med Reynoldsovim številom *Re* in »strižnim« Reynoldsovim številom *Re_t*, ki nastopa v argumentu logaritma univerzalnega zakona gladkih cevi. Do sedaj je funkcijska zveza med *Re_t* in *Re* vsebovala tudi koeficient trenja λ (enačba 4.39). Z novim predlogom v enačbi 7.1 pa se *Re_t* lahko izrazi samo z Reynoldsovim številom *Re*, kar omogoča eksplicitno obliko koeficienta trenja v hidravlično gladkem režimu toka (enačba 7.3). Na podlagi odličnega ujemanja trdimo, da se brez večjih napak lahko univerzalni zakon gladkih cevi nadomesti z izrazom v enačbi 7.3. Celo nasprotno, pri višjih Reynoldsovih številih je ujemanje z izmerjenimi točkami boljše.

Univerzalna oblika enačbe koeficienta trenja λ temelji na teoriji mejne plasti, kjer je potrebno določiti prehod iz hidravlično gladkega v hidravlično hrapav režim toka. Do sedaj je bilo Reynoldsovo številom hrap k_s^+ podano kot funkcija Reynoldsovega števila *Re*, relativne hrapavosti k_s/D in koeficienta trenja λ . Takšna zveza ni omogočila razvoja univerzalne enačbe trenja v eksplicitni obliki. Iz tega razloga je podan nov predlog izračuna Reynoldsovega števila hrap k_s^+ (enačba 7.5), ki je izražen le kot funkcija Reynoldsovega števila *Re* ter relativne hrapavosti k_s/D . Enačba 7.5 velja na intervalu $4 \le k_s^+ \le 15$ in služi izračunu začetka prehoda iz hidravlično gladkega v hidravlično hrapav režim toka. Primerjava enačbe 7.5 z meritvami Nikuradseja (1933) v hidravlično hrapavem režimu toka ter univerze Oregon in Princeton je prikazana na sliki 7.7. Odstopanja od izmerjenih vrednosti so prikazana na sliki 8.8.

Slika 8.8: Rezidual napake Reynoldsovega števila hrap k_s^+ (enačba 7.5) v primerjavi z meritvami v hidravlično hrapavem režimu toka

Figure 8.8: Error residual for the roughness Reynolds number k_s^+ (equation 7.5) compared with measured data in hydraulically rough flow regime

Iz diagrama na sliki 8.7 je razvidno, da se napaka enačbe 7.5 giblje med +15 in -6 %. Zaradi narave uporabljenih preklopnih funkcij v univerzalni enačbi koeficienta trenja (enačbi 7.10 in 7.11) se prehod prične pri Reynoldsovem številu hrap 10,275 (enačba 7.10) oziroma 11,350 (enačba 7.11). Kot se iz slike 8.8 lahko vidi, so na tem intervalu vrednosti Reynoldsovega števila hrap določene z natančnostjo ±5 %. Ker se obe vrednosti nahajata znotraj intervala, ki ga številni avtorji navajajo kot interval prehoda iz turbulentno gladkega v turbulentno hrapav režim toka, lahko brez večjih pomislekov

enačbo 7.5 uporabimo za izračun kritične vrednosti prehoda v univerzalni enačbi koeficienta trenja λ .

9 ZAKLJUČEK

Doktorska disertacija obravnava problematiko določitve univerzalne enačbe koeficienta trenja λ . V sklopu raziskave so bile na hidravlično gladki cevi izvedene meritve tlačnih izgub v obsegu Reynoldsovih številih od 141 do 1,21×10⁵. Meritve smo primerjali z meritvami Nikuradseja (1932) v hidravlično gladkih ceveh ter s podatki iz univerze Oregon (Swanson et al., 2002) in Princeton (Zagarola in Smits, 1998 ter McKeon et al., 2004) in ugotovili, da je ujemanje praktično popolno.

Na podlagi pridobljenih in pregledanih meritev ter rezultatov lastnih meritev so bile v fazi razvoja univerzalne enačbe trenja določene tri nove funkcije, ki opisujejo dogajanje v toku v ceveh pod tlakom. (1) Podana je nova funkcijska odvisnosti »strižnega« Reynoldsovega števila Re_{τ} , ki vključuje le Reynoldsovega števila Re, ne vključuje pa koeficienta trenja λ . (2) Na podlagi novo določene funkcijske oblike Re_{τ} je bila izpeljana eksplicitna oblika enačbe, ki nadomešča univerzalni zakon v gladkih ceveh. Enačba velja za Reynoldsova števila večja od $10^{3.5}$. (3) Določena je funkcija Reynoldsovega števila hrap k_s^+ , ki kot argumenta ne vključuje koeficienta trenja λ , ampak le Reynoldsovo število Re in relativno hrapavost k_s/D . Izraz služi izračunu mejne vrednosti k_s^+ , ko se prehod iz hidravlično gladkega v hidravlično hrapav režim toka ravno prične. Funkcija je uporabna na intervalu $4 \le k_s^+ \le 15$.

Z uporabo tako nastavljenih enačb sta bili določeni dve možni obliki univerzalne enačbe koeficienta trenja λ . Enačbi sta sestavljeni iz posameznih členov, ki opisujejo dogajanje v laminarnem, hidravlično gladkem in hidravlično hrapavem režimu toka. Med seboj jih povezujejo »preklopne« funkcije, ki omogočijo zvezne in gladke prehode med posameznimi režimi toka. Poleg tega, da veljata enačbi za celoten spekter Reynoldsovih števil, imata prednost, da sta izraženi v eksplicitni obliki. Vrednosti manjkajočih parametrov preklopnih funkcij so bile določene z umerjanjem na meritve Nikuradseja (1932 in 1933), univerze Oregon (Swanson et al., 2002) in Princeton (Zagarola in Smits, 1998 ter McKeon et al., 2004) ter lastnih meritev.

Zaključimo lahko, da je hipoteza te disertacije potrjena in vsi cilji doseženi. Funkcijo koeficienta trenja λ lahko zapišemo kot eno eksplicitno enačbo, kjer kot neodvisni spremenljivki nastopata Reynoldsovo število *Re* in relativna hrapavost k_s/D . Kot izvirni znanstveni prispevek pa lahko izpostavimo sledeče dosežke:

- 1. Izpeljava dveh oblik eksplicitne univerzalne enačbe koeficienta trenja λ .
- 2. Izpeljava eksplicitne oblike enačbe koeficienta trenja λ v hidravlično gladkem režimu toka. Enačba nadomešča univerzalni zakon v gladkih ceveh.
- 3. Funkcijske odvisnosti »strižnega« Reynoldsovega števila Re_{τ} , ki vključuje le Reynoldsovo števila Re, ne vključuje pa koeficienta trenja λ .
- 4. Določena je funkcija mejnega Reynoldsovega števila hrap k_s^+ , ki kot argumenta funkcije ne vključuje koeficienta trenja λ , ampak le Reynoldsovo število *Re* in relativno hrapavost k_s/D .

10 SUMMARY

One of the unsolved problems in hydraulic is the definition of a suitable term to determine the hydraulic friction losses in pipelines. Analytically, it is possible to determine the term of the firction function for a laminar flow and for a fully developed turbulent flow. For the transition zone this has not been done yet. The two formulas were probabbly just mechanically combined into one term (Colebrooke, 1939) and also in a pretty failing way. Instead of the logarithm of the sum of the arguments a sum of logarithms should be used. Let us state that the friction factor λ is actually a function and not a constant, as it is usually taken in hydraulics. In this thesis a construction of two different structures of a universal formula for the friction factor, which successfully combines theoretical background and empirical knowledge, is shown.

An extensive review of the experimental work of different authors, from H. Darcy in 1858 to M. Nishi et al. (2008), has been made. A more detailed analysis and description of the Nikuradse's (1932 and 1933), Colebrook-White's (1937), Oregon's (Swanson et al., 2002) and "Princeton superpipe" (Zagarola and Smits, 1998) experimental facility, with belonging measured data, has been made.

Experimental results of measurements in hydraulically smooth pipes from Nikuradse (1932), Swanson et al. (2002) and Zagarola and Smits (1998) were assumed as the reference data. In fact, measurements for the Oregon (Swanson et al., 2002) and Princeton (Zagarola and Smits, 1998) university were acquired from the publication McKeon et al. (2004) where some corrections of the Zagarola and Smits (1998) data have been made. Therefore, the reference to the Zagarola and Smits (1998) data is adopted as McKeon et al. (2004).

For hydraulically rough flow regime only measurements from Nikuradse (1933) have been adopted as the reference results. Foundation of this supposition is based on the fact that only Nikuradse's results (1933) have an exactly defined sand roughness.

The theoretical and "semi-empirical" background for laminar and turbulent flow regime is discussed. Since the friction factor terms in the turbulent flow are based on the logarithmic overlap law (Schlicting et al., 2000), and therefore on the boundary-layer theory, the basic concept of this theory is shown. A review of many existing friction factor equations for hydraulically smooth, rough and transitional flow regime has been made.

Our own measurements of mean flow and pressure drop were performed in the range from laminar to fully developed smooth pipe flow for Reynolds numbers from 144 to $1,21\cdot10^5$. The measurements were performed on 6,0 m long PEHD (polyethylene high density) pipe with a diameter of 50,83 mm and a root-mean-squared roughness of 3,39 µm. Based on the Zagarola and Smits (1998) assumption, that at the next highest measured Reynolds number the friction factor would deflect from the smooth flow regime, an equivalent sand roughness was determined as $k_s = 35,59$ µm.

Estimations for the uncertainties of the measured and derived quantities were calculated using the method outlined by Holman (1989). All values represent a 95% confidence interval. Although in the laminar zone the uncertainty is pretty high, the comparison with the Nikuradse's (1932), Oregon's (Swanson et al., 2002) and Princeton's (McKeon et al., 2004) measured data gives a nearly perfect match.

Based on the structure proposed in Uršič and Kompare (2003), with the application of the theoretical background of the boundary-layer and the use of the measured data, two different structures of a universal friction factor equation have been developed. These terms give better fit to the measured friction factor than the results of classical (already known) formulas. These formulas are setting basis for further experiments to improve the friction factor formula in unsteady flow conditions. Beside the universal friction factor formulation a new explicit term for the smooth pipe flow has been developed which has, compared with the Prandtl's relation, the same or even better agreement with the measured data. Since the universal friction factor equation is based on the boundary layer theory, a new function for the critical Reynolds roughness number, when the transition from the hydraulically smooth to the hydraulically rough flow starts, has been developed.
LITERATURA IN VIRI

Uporabljena literatura in viri

Bevington P. R., Robinson, D. K. 2002. Data Reduction and Error Analysis for the Physical Sciences, 3rd Edition. New York, McGraw-Hill: 336 str.

Christiansen, E. B., Lemmon, H. E. 1965. Entrance Region Flow. American Institute of Chemical Engineers Journal, 11: 995–999.

Citrini, D. 1962. Una formula semplice per il moto uniforme delle correnti fluide nella zona di Colebrook. L'energia elettrica, 10: 805–813.

Colebrook, C. F., White, C. M. 1937. Experiments with Fluid Friction in Roughened Pipes. Proceedings of the Royal Society, 161: 367–381.

Colebrook, C. F. 1939. Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws. Journal of the Institute of Civil Engineers, 11: 133–157.

Coleman, T. F, Li, Y. 1996. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization, 6: 418-445.

Conover, W. J. 1999. Practical Nonparametric Statistics - 3rd edition. New York, Wiley: 584 str.

Darbyshire, A. G., Mullin, T. 1995. Transition to Turbulence in Constant-mass-flux Pipe Flow. Journal of Fluid Mech., 289: 83–114.

Draad, A. A., Kuiken, G., Nieuwstadt, F. T. M. 1998. Laminar-turbulent Transition in Pipe Flow for Newtonian and non-Newtonian fluids. Journal of Fluid Mech., 377: 267–312.

Featherstone, R. E., Nalluri, C. 1982. Civil Engineering Hydraulics. Granada, HarperCollins: 371 str.

Fromm, K. 1923. Strömungswiderstand in rauhen Rohren. Zeitschrift für angewandte Mathematik und Mechanik, 3: 339–357.

Haaland S.E. 1983. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow. Journal of Fluids Engineering 105, 89: 89–90.

Hall, M., Holmes, G., Frank, E. 1999. Generating Rule Sets from Model Trees. Proceedings of the Twelfth Australian Joint Conference on Artificial Intelligence, Sydney, Australia. Springer-Verlag: 1–12.

Heywood, F. 1924. The flow of Water in Pipes and Channels. Proceedings of the Institution of Civil Engineers, 219: 174–191.

Holman, J. P. 1989. Experimental Methods For Engineers – 5th ed. New York, McGraw-Hill: 549 str.

Hopf, L. 1923. Die Messung der hydraulischen Rauhigkeit. Zeitschrift für angewandte Mathematik und Mechanik, 3: 329–338.

ISO 4287:1997. 1997. Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters: 25 str.

Jarque, C. M., A. K. Bera. 1987. A test for Normality of Observations and Regression Residuals. International Statistical Review, 55, 2: 163–172.

Jeppson, R. W. 1976. Analysis of Flow in Pipe Networks. Michigan, Ann Arbor Science: 164 str.

Kirschmer, O. 1951. Reibungsverluste in geraden Rohrleitungen. Sonderdruck aus dem M.A.N. – Forschungsheft. Gustabvurg, M.A.N.: 15 f.

Kirschmer, O. 1952. Kritische Betrachtungen zur Frage der Rohrreibung. Zeitschrift des Vereines Deutscher Ingenieure, 94, 24: 785–791.

Kirschmer, O. 1953. Der gegenwärtige Stand unserer Erkenntnisse über die Rohrreibung. Sonderdruck aus GWF "Das Gas- und Wasserfach", 94, 16/18: 13 f.

Kiselev, P. G. 1980. Gidravlika, Moskva, Strojizdat: 326 str.

Komapre, B. 1996. Odkritje novega izraza za hidravlične izgube v cevovodih. Acta hydrotechnica, 14/12: 102–103.

Kraut, B. 2007. Krautov strojniški priročnik. – 14. slovenska izdaja. Ljubljana, Littera picta: 817 str.

Lilliefors, H. W. 1967. On the Komogorov-Smirnov test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62: 399–402.

Massey, B. S., Ward-Smith, J. 1998. Mechanics of Fluid (7th edition), London, Stanley Thornes: 626 str.

McCutcheon, S. C., Martin, J. L, Barnwell, T. O. Jr. 1993. Water Quality in Maidment, D.R. (Editor). Handbook of Hydrology. New York, McGraw-Hill: 113 str.

McGill, R., J. W. Tukey, W. A. Larsen. 1978. Variations of Boxplots. The American Statistician, 32: 12–16.

McKeon, B. J., Swanson, C. J., Zagarola, M. V., Donnnelly, R. J., Smits A. J. 2004. Friction Factors for Smooth Pipe Flow. Journal of Fluid Mechanics, 511:41–44.

McKeon, B. J., Zagarola, M. V., Smits, A. J. 2005. A new Friction Factor Relationship for Turbulent Pipe Flow. Journal of Fluid Mechanics, 538: 429–443.

Millionshchikov, M. D., Subbotin, V. I., Ibragimov, M. Kh., Taranov, G. S., Gomonov, I. P. 1973. Hydraulic Drag in Tubes having Granular Roughness. Journal of Atomic Energy, 36, 3: 234-236.

Mises, R. v. 1914. Elemente der technischen Hydrodynamik. Leipzig, B.G. Tubner: str. 53-65.

Moody, L. F. 1944. Friction Factors for Pipe Flow. Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Industry: 671–684.

Nikuradse, J. 1933. Strömungsgesetze in Rauhen Rohren. Forschung auf dem Gebiete des Ingenieurwesens, Forschungsheft 361. Berlin, Zeitschrift des Vereines Deutscher Ingenieure Verlag: 22 str.

Nikuradse, J. 1932. Gesetzmäßigkeiten der turbulenten Strömung in glatten rohren. Forschung auf dem Gebiete des Ingenieurwesens, Forschungsheft 356. Berlin, Zeitschrift des Vereines Deutscher Ingenieure Verlag: 39 str.

Nishi, M., Ünsal, B., Durst, F., Biswas, G. 2008. Laminar-to-Turbulent Transition of Pipe Flows through Puffs and Slugs. Journal of Fluid Mechanics, 614: 425–446.

Petrešin, E. 1987. Analiza obstoječih izrazov koeficientov hrapavosti s predlogom za izboljšavo v vodovodnem omrežju. Acta hydrotechnica, 4/5: 3–111.

Plackett, R.L. 1983. Karl Pearson and the Chi-Squared Test. International Statistical Review 51: 59–72.

Prandtl, L. 1933. Neuere Ergebnisse der Turbulenzforschung. Zeitschrift des Vereines Deutscher Ingenieure, 77: 105–114.

Quinlan J. R. 1992. Learning with Continuous Classes, V: Proceedings of the Australian Joint Conference on Artificial Intelligence, Singapore, World Scientific: 343–348.

Rajar, R. 1986. Hidromehanika. Ljubljana, Fakulteta za arhitekturo, gradbeništvo in geodezijo: 235 str.

Rubin, Y., Wygnanski, I. J., Haritonidis, J. H. 1980. Further Observations on Transition in Pipe. Proceedings IUTAM Symposium Stuttgart, FRG: 19–26.

Saint-Gobain PAM, 2001. Water Mains. Ductile Iron Pipes and Fittings for Raw and Potable Water Supplies and Irrigation. Nancy, SAG: 447 str.

Schlichting, H. 1936. Ein neues Verfahren zur Messung des Strömungswiderstandes von rauhen Wänden. Werft Reederei Hafen, 8: 99–102.

Schlichting, H., Gersten, K., Krause, E., Oertel, H. 2000. Boundary-layer theory - 8th revised and enlarged edition. Berlin, Springer: 799 str.

Seeton, C. J. 2006. Viscosity–Temperature Correlation for Liquids. Tribology Letters, 22, 1: 67–78.

SIST EN 12201-2. 2003. Cevni sistemi iz polimernih materialov za oskrbo z vodo – Polietilen (PE) – 2. del: Cevi = Plastics piping systems for water supply – Polyethylene (PE) – Part 2: Pipes: 17 str.

Steinman, F. 1999. Hidravlika. Ljubljana, Fakulteta za gradbeništvo in geodezijo, Katedra za mehaniko tekočin z laboratorijem: 294 str.

Streeter, V. L. 1951. Fluid Mechanics. New York, McGraw-Hill: 366 str.

Streeter, V. L., Wylie, E. B. 1985. Fluid mechanics. Auckland, McGraw-Hill: 562 str.

Swamee, P. K., Jain, A.K. 1976. Explicit Equations for Pipe Flow Problems. Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Industry: 657–664.

Swamee, P. K., Rathie, P. N. 2007. Exact Equations for Pipe-Flow Problems. Journal of Hydraulic Research, 45, 1: 131–134.

Swanson, C. J., Julian, B., Ihas, G. G., Donnelly, R. J. 2002. Pipe Flow Measurements Over a Wide Range of Reynolds Numbers using Liquid Helium and Various Gases. Journal of Fluid Mechanics, 461: 51–60.

Treer, M. F. 1929. Der Widerstandsbeiwert bei turbulenten Strömungen durch rauche Kanäle. Physikalische Zeitschrift, 9: 539–542.

Turk, G. 2008. Verjetnostni račun in statistika. http://www.km.fgg.uni-lj.si/predmeti/sei/vrs1.pdf

Uršič, M., Kompare, B. 2003. Izboljšava obrazcev za račun hidravličnih trenjskih izgub za tok pod tlakom v ceveh krožnega prereza. = Improvement of the hydraulic friction losses equations for flow under pressure in circular pipes. Acta hydrotechnica, 21/34: 57–74. <u>ftp://ksh.fgg.uni-lj.si/acta/a34mu.pdf</u> Wang, Y., Witten, I. H. 1997. Induction of Model Trees for Predicting continuous classes. V: Proceedings of the Poster Papers of the European Conference on Machine Learning, Prague, University of Economics, Faculty of Informatics and Statistics.

Witten, I. H., Frank, E. 2005. Data Mining: Practical Machine Learning Tools and Techniques (Second edition), Morgan Kaufmann: 525 str.

Webber, N. B. 1971. Fluid Mechanics for Civil Engineers. S.I. Edition. London, Wiliam clows & sons: 340 str.

Wosnik, M., Castillo, L., George, W. K. 2000 A Theory for Turbulent Pipe and Channel Flows. Journal of Fluid Mechanics, 421: 115–145.

Wygnanski, I. J., Champagne, F. H. 1973. On Transition in a Pipe. Part 1. The Origin of Puffs and Slugs and the Flow in a Turbulent Slug. Journal of Fluid Mechanics, 59: 281–351.

Wygnanski, I. J., Sokolov, M., Friedman, D. 1975. On Transition in a Pipe. Part 2. The Equilibrium Puff. Journal of Fluid Mechanics, 69: 283–304.

Zagarola, M. V., Smits, A. J. 1998. Mean Flow Scaling in Turbulent Pipe Flow. Journal of Fluid Mechanics, 373: 33–79.

Ostala literatura

Abernethy, R. B., Benedict, R. P., Dowdell, R. B. 1985. ASME Measurement Uncertainty. American Society of Mechanical Engineers, Jornal of fluids engineering, 107: 161-164.

Adiutori, E. F. 2004. A Transformed Moody Chart that is Read Without Iterating. Proceedings of 2004 ASME International Mechanical Engineering Congress: 5 f.

Agroskin, I. I., Dmitrijev, G. T., Pikalov, F. I. 1973. Hidraulika. Zagreb, Tehnička knjiga: 331 str.

Bagarello, V., Ferro V., Provenzano G., Pumo D. 1995. Experimental Study on Flow-Resistance Law for Small-Diameter Plastic Pipes. Journal of Irrigation and Drainage Engineering, 121, 5: 313–316.

Bergant, A., Simpson, A. R., Vitkovsky, J. P. 2001. Developments in Unsteady Pipe Flow Friction Modelling. Journal of Hydraulic Research, 39, 3: 249–257.

Brandt, S. 1999. Data Analysis: Statistical and Computational Methods for Scientists and Engineers - 3rd edition. New York, Springer: 652 str.

Ceylan, K., Kelbaiyev, G. 2003. The Roughness Effects on Friction and Heat Transfer in the Fully Developed Turbulent Flow in Pipes. Applied Thermal Engineering, 23, 5: 557–570.

Cole, J. S., Donnelly, G. F., Spedding P. L. 2004. Friction Factors in Two Phase Horizontal Pipe Flow. International Communications in Heat and Mass Transfer, 31, 7: 909–917.

Coleman, H. W., Steele, W. G. 1999. Experimentation and Uncertainty Analysis for Engineers – 2nd edition. New York, John Wiley & Sons: 275 str.

Daugherty L. R., Franzini B. J., Finnemore J. E. 1985. Fluid Mechanics with Engineering Applications – Eighth Edition. Singapore, McGraw-Hill: 599 str.

Donoho, D. L. 1995. Wavelet De-noising by Means of Trimmed Thresholding. Institute of Electrical and Electronics Engineers, Transactions on Information Theory, 41, 3: 613–627.

Goudar, C. T., Sonnad, J. R. 2003. Explicit Friction Factor Correlation for Turbulent Flow in smooth Pipes. Industrial & Engineering Chemistry Research 42, 12: 2878–2880.

Hadživuković, S. 1977. Planiranje eksperimenta. Beograd, NIGP »Privredni pregled«: 283 str.

Haktanir, T., Ardiçlioglu, M. 2004. Numerical modelling of Darcy-Weisbach Friction Factor and Branching Pipes Problem. Advances in Engineering Software, 35: 773–779.

Harris, C. W. 1949. The Influence of Random Roughness on Flow in Pipes. University of Washington Engineering Experiment Station. Bull. No. 115.

International Symposium on Measuring Techniques in Hydraulic Research. 1987. Discharge and Velocity Measurements: proceedings of the Short Course on Discharge and Velocity Measurements, Zurich, 26-28th August 1987. Rotterdam, A. A. Balkema: 207 str.

John, V., Mark, S., Bergant, A., Lambert, M., Simpson, A. 2004. Efficient and Accurate Calculation of Zielke and Vardy-Brown Unsteady Friction in Pipe Transients. Proceedings of the 9th International Conference on Pressure Surges: 760 str.

Marchetti, M. 1950. Le Perdite di Carico Nelle Tubazioni Flessibili Corrugate e Liscie. Milano, Istituto di Idraulica e Costruzioni Idrauliche: 17 f.

Marchetti, A. 1953. Determinazione Sperimentale Delle Perdite di Carico in Tubi D'Acciaio Senza Saldatura Zincati a Fuoco. Milano, Istituto di Idraulica e Costruzioni Idrauliche: 15 f.

McKeon, B. J., Smits, A. J. 2002. Static Pressure Correction in High Reynolds Number Fully Developed Turbulent pipe Flow. Measurement Science and Technology, 13, 10: 1608–1614.

McKeon, B. J., Li, J., Jiang, W., Morrison, J. F., Smits, A. J. 2003. Pitot Probe Corrections in Fully Developed Turbulent Pipe Flow. Measurement Science and Technology, 14, 8: 1449–1458.

Ricco, G. 1963. Sull'impiego della formula Colebrook e White per il moto uniforme turbolento. L'energia elettrica, 12: 929–933.

Rood, P. E., Telionis, D. P. 1991. Journal of Fluids Engineering Policy on Reporting Uncertainties in Experimental Measurements and Results. Journal of Fluids Engineering, 113: 313–314.

Rouse, H. 1947. Elementary Mechanics of Fluids. New York, John Wiley & Sons Inc: 376 str.

Rouse, H. 1950. Engineering Hydraulics. New York, John Wiley & Sons Inc: 1039 str.

Sonnad, J. R., Goudar, C. T. 2004. Constraints for Using Lambert W Function-Based Explicit Colebrook-White Equation. Journal of Hydraulic Engineering, 130, 9: 929–931.

Sonnad, J. R., Goudar, C. T. 2007. Explicit Reformulation of the Colebrook–White Equation for Turbulent Flow Friction Factor Calculation. Industrial & Engineering Chemistry Research, 46, 8: 2593–2600.

Vardy, A. E., Brown, J. M. B. 2003. Transient Turbulent Friction in Smooth Pipe Flows. Journal of Sound and Vibration, 259, 5: 1011–1036.

Vardy, A. E., Brown, J. M. B. 2004. Transient Turbulent Friction in Fully Rough Pipe Flows. Journal of Sound and Vibration, 270, 1-2: 233–257.

Velleman, P. F., Hoaglin, D. C. 1981. Applications, Basics, and Computing of Exploratory Data Analysis. Boston, Duxbury Press: 354 str.

Wood, D. J. 1966. An Explicit Friction Factor Relationship. American Society of Civil engineers, Civil Engineering., 36, 21: 60–61.

PRILOGA 1: UPORABLJENE MERITVE V SKLOPU DISERTACIJE

Re [-]	λ[-]	k _s [mm]	D/k _s [-]	Re [-]	λ[-]	k _s [mm]	D/k _s [-]
5900	0.0363	0.48	110	26700	0.039	0.93	57
7510	0.034	0.48	110	40500	0.0397	0.93	57
10700	0.0316	0.48	110	55700	0.0422	0.93	57
16050	0.0294	0.48	110	82600	0.0443	0.93	57
22800	0.0285	0.48	110	127500	0.0462	0.93	57
36000	0.0303	0.48	110	3360	0.0545	0.66	80.6
53000	0.0331	0.48	110	4880	0.0515	0.66	80.6
67700	0.035	0.48	110	7700	0.0467	0.66	80.6
91500	0.0369	0.48	110	15650	0.0411	0.66	80.6
136000	0.0369	0.48	110	29600	0.0379	0.66	80.6
3580	0.0471	0.73	72.6	41800	0.0373	0.66	80.6
5580	0.0431	0.73	72.6	66500	0.0381	0.66	80.6
10400	0.0388	0.73	72.6	91200	0.0345	0.66	80.6
19000	0.0353	0.73	72.6	110000	0.0402	0.66	80.6
26800	0.0344	0.73	72.6	127500	0.0408	0.66	80.6
32600	0.0344	0.73	72.6	5100	0.0514	0.38	139.2
47100	0.0366	0.73	72.6	7400	0.0475	0.38	139.2
68500	0.0395	0.73	72.6	10750	0.0445	0.38	139.2
90000	0.0411	0.73	72.6	19300	0.0402	0.38	139.2
122000	0.0425	0.73	72.6	30600	0.0374	0.38	139.2
3700	0.0534	0.93	57	42000	0.0359	0.38	139.2
5070	0.0513	0.93	57	63500	0.0349	0.38	139.2
7060	0.0475	0.93	57	83000	0.0345	0.38	139.2
11800	0.0431	0.93	57	116000	0.034	0.38	139.2
18300	0.0405	0.93	57	127200	0.0341	0.38	139.2

Meritve Colebrook-White (Colebrook in White, 1937)

Nikuradsejeve meritve - hidravlično gladke cevi (Nikuradse, 1932)

Na podlagi izmerjenih količin v stolpcih 1, 2, 4 in 6 so bile preračunane količine v stolpcih 7, 8, 9 in 10. Primerjava med tabeliranimi podatki iz izvirne literature (Nikuradse, 1932), ki so prikazani v stolpcih 3 (Re) in 5 (λ), in preračunanimi količinami v stolpcih 9 (Re) in 10 (λ), je prikazana v stolpcih 11 in 12 kot:

$$\Delta \operatorname{Re} = \frac{\left(\operatorname{Re} - \operatorname{Re}_{izračzrač}\right)}{\operatorname{Re}} \cdot 100$$
$$\Delta \lambda = \frac{\left(\lambda - \lambda_{izračzrač}\right)}{\lambda} \cdot 100$$

1	2	3	4	5	6	7	8	9	10	11	12
	•	Merje	eno					Izračun	ano	•	
v [m/s]	v [m²/s]	Re [-]	dp/dx [Pa/m]	λ [-]	D [cm]	T [⁰C]	ρ [kg/m³]	Re _{izračunan} [-]	λizračunan [-]	∆Re [%]	Δλ [%]
0.428	1.400E-06	3070	398	0.04260	1	7.63	999.8977	3057.14	0.04346	0.42	-2.01
0.485	1.350E-06	3590	496	0.04140	1	8.88	999.8180	3592.59	0.04218	-0.07	-1.88
0.514	1.350E-06	3810	550	0.04080	1	8.88	999.8180	3807.41	0.04164	0.07	-2.07
0.576	1.350E-06	4270	676	0.03990	1	8.88	999.8180	4266.67	0.04076	0.08	-2.15
0.62	1.350E-06	4600	760	0.03880	1	8.88	999.8180	4592.59	0.03955	0.16	-1.93
0.702	1.350E-06	5200	936	0.03720	1	8.88	999.8180	5200.00	0.03799	0.00	-2.13
0.769	1.350E-06	5700	1100	0.03630	1	8.88	999.8180	5696.30	0.03721	0.06	-2.50
0.985	1.350E-06	7300	1700	0.03430	1	8.88	999.8180	7296.30	0.03505	0.05	-2.19
1.188	1.350E-06	8800	2380	0.03260	1	8.88	999.8180	8800.00	0.03373	0.00	-3.48
1.21	1.350E-06	8970	2450	0.03290	1	8.88	999.8180	8962.96	0.03347	0.08	-1.74
1.375	1.350E-06	10900	3012	0.03110	1	8.88	999.8180	10185.19	0.03187	6.56	-2.47
1.633	1.350E-06	12100	4000	0.02940	1	8.88	999.8180	12096.30	0.03001	0.03	-2.06
1.89	1.350E-06	14000	5200	0.02850	1	8.88	999.8180	14000.00	0.02912	0.00	-2.17
2.26	1.350E-06	16700	7230	0.02780	1	8.88	999.8180	16740.74	0.02832	-0.24	-1.86
3.11	1.360E-06	23000	12550	0.02540	1	8.63	999.8361	22867.65	0.02596	0.58	-2.19
1.146	1.350E-06	17000	920	0.02740	2	8.88	999.8180	16977.78	0.02803	0.13	-2.28
1.484	1.350E-06	22000	1420	0.02530	2	8.88	999.8180	21985.19	0.02580	0.07	-1.96
1.755	1.350E-06	26000	1966	0.02500	2	8.88	999.8180	26000.00	0.02554	0.00	-2.15
2.125	1.350E-06	31500	2740	0.02370	2	8.88	999.8180	31481.48	0.02428	0.06	-2.43
2.4	1.350E-06	35600	3290	0.02240	2	8.88	999.8180	35555.56	0.02285	0.12	-2.02
2.144	1.190E-06	36000	2640	0.02243	2	13.43	999.3497	36033.61	0.02299	-0.09	-2.49
2.336	1.190E-06	39200	3104	0.02230	2	13.43	999.3497	39260.50	0.02277	-0.15	-2.10
2.58	1.190E-06	43200	3680	0.02274	2	13.43	999.3497	43361.34	0.02213	-0.37	2.69
2.596	1.170E-06	44400	3720	0.02160	2	14.07	999.2628	44376.07	0.02210	0.05	-2.30
2.758	1.190E-06	46400	4140	0.02120	2	13.43	999.3497	46352.94	0.02178	0.10	-2.76
3.15	1.190E-06	53000	5140	0.01960	2	13.43	999.3497	52941.18	0.02073	0.11	-5.79
3.49	1.190E-06	58700	6220	0.02010	2	13.43	999.3497	58655.46	0.02044	0.08	-1.69
3.7	1.190E-06	62200	6800	0.01880	2	13.43	999.3497	62184.87	0.01988	0.02	-5.75

1	2	3	4	5	6	7	8	9	10	11	12
		Merje	eno		•			Izračun	ano	•	•
v	v	Re	dp/dx	λ	D	Т	ρ	Re izračunan	λ izračunan	ΔRe	Δλ
[m/s]	[m²/s]	[-]	[Pa/m]	[-]	[cm]	[°C]	[kg/m ³]	[•]	[•]	[%]	[%]
3.92	1.190E-06	66000	7580	0.01940	2	13.43	999.3497	65882.35	0.01974	0.18	-1.77
4.25	1.190E-06	71400	8740	0.01900	2	13.43	999.3497	71428.57	0.01937	-0.04	-1.93
4.54	1.190E-06	76200	9900	0.01885	2	13.43	999.3497	76302.52	0.01922	-0.13	-1.99
4.95	1.190E-06	83300	11600	0.01880	2	13.43	999.3497	83193.28	0.01895	0.13	-0.79
5.336	1.190E-06	89600	13240	0.01830	2	13.43	999.3497	89680.67	0.01861	-0.09	-1.71
6.38	1.190E-06	107300	18500	0.01780	2	13.43	999.3497	107226.89	0.01819	0.07	-2.20
6.87	1.190E-06	115200	20640	0.01720	2	13.43	999.3497	115462.18	0.01750	-0.23	-1.77
7.52	1.190E-06	126500	24050	0.01670	2	13.43	999.3497	126386.55	0.01702	0.09	-1.93
8.11	1.180E-06	137500	27830	0.01665	2	13.75	999.3072	137457.63	0.01694	0.03	-1.72
8.63	1.180E-06	146000	31600	0.01660	2	13.75	999.3072	146271.19	0.01698	-0.19	-2.31
9.72	1.160E-06	168000	38800	0.01614	2	14.40	999.2166	167586.21	0.01644	0.25	-1.86
10.53	1.160E-06	182000	44400	0.01570	2	14.40	999.2166	181551.72	0.01603	0.25	-2.10
4.02	1.140E-06	106000	4950	0.01800	3	15.07	999.1181	105789.47	0.01839	0.20	-2.19
4.39	1.140E-06	115500	5700	0.01740	3	15.07	999.1181	115526.32	0.01776	-0.02	-2.08
4.88	1.140E-06	128500	7000	0.01730	3	15.07	999.1181	128421.05	0.01765	0.06	-2.03
5.59	1.140E-06	147000	8700	0.01638	3	15.07	999.1181	147105.26	0.01672	-0.07	-2.07
6.27	1.140E-06	165000	10920	0.01638	3	15.07	999.1181	165000.00	0.01668	0.00	-1.84
6.88	1.140E-06	181000	12460	0.01549	3	15.07	999.1181	181052.63	0.01581	-0.03	-2.05
7.56	1.140E-06	199000	15200	0.01560	3	15.07	999.1181	198947.37	0.01597	0.03	-2.38
8.79	1.140E-06	231000	19700	0.01500	3	15.07	999.1181	231315.79	0.01531	-0.14	-2.08
10.1	1.150E-06	266000	25450	0.01470	3	14.73	999.1683	263478.26	0.01498	0.95	-1.92
11.06	1.150E-06	288000	29900	0.01435	3	14.73	999.1683	288521.74	0.01468	-0.18	-2.29
0.914	1.233E-06	37000	196	0.02300	5	12.12	999.5127	37064.07	0.02347	-0.17	-2.06
1.244	1.233E-06	50300	331	0.02104	5	12.12	999.5127	50446.07	0.02140	-0.29	-1.71
1.72	1.230E-06	70000	588	0.01950	5	12.21	999.5024	69918.70	0.01989	0.12	-1.98
2.035	1.230E-06	82600	787	0.01860	5	12.21	999.5024	82723.58	0.01901	-0.15	-2.22
2.37	1.230E-06	96400	1040	0.01811	5	12.21	999.5024	96341.46	0.01852	0.06	-2.29
0.712	1.214E-06	29300	121.5	0.02260	5	12.69	999.4445	29324.55	0.02398	-0.08	-6.11
0.908	1.214E-06	37400	190	0.02260	5	12.69	999.4445	37397.03	0.02306	0.01	-2.03
1.025	1.220E-06	42000	237	0.02200	5	12.51	999.4667	42008.20	0.02257	-0.02	-2.59
1.165	1.220E-06	47700	298	0.02146	5	12.51	999.4667	47745.90	0.02197	-0.10	-2.37
1.4	1.215E-06	57600	409	0.02042	5	12.66	999.4483	57613.17	0.02088	-0.02	-2.25
1.535	1.215E-06	63200	480	0.01990	5	12.66	999.4483	63168.72	0.02038	0.05	-2.43
1.795	1.215E-06	73800	630	0.01915	5	12.66	999.4483	73868.31	0.01956	-0.09	-2.16
2.144	1.214E-06	88300	860	0.01830	5	12.69	999.4445	88303.13	0.01872	0.00	-2.29
1.03	1.340E-06	38400	240	0.02220	5	9.14	999.7987	38432.84	0.02263	-0.09	-1.92
1.41	1.330E-06	53000	423	0.02085	5	9.40	999.7783	53007.52	0.02128	-0.01	-2.07
1.945	1.280E-06	76000	701	0.01820	5	10.76	999.6576	75976.56	0.01854	0.03	-1.85
4.235	1.235E-06	171500	2960	0.01617	5	12.06	999.5196	171457.49	0.01651	0.02	-2.11
3.95	9.250E-07	213400	2500	0.01567	5	23.70	997.4005	213513.51	0.01606	-0.05	-2.52
5.7	9.700E-07	294000	4880	0.01470	5	21.63	997.8825	293814.43	0.01505	0.06	-2.39
6.52	1.235E-06	264000	6400	0.01475	5	12.06	999.5196	263967.61	0.01506	0.01	-2.12
7.33	9.250E-07	396000	7570	0.01380	5	23.70	997.4005	396216.22	0.01413	-0.05	-2.36

1	2	3	4	5	6	7	8	9	10	11	12
		Merje	eno					Izračun	ano		
v	v	Re	dp/dx	λ	D	Т	ρ	Re izračunan	λ izračunan	ΔRe	Δλ
[m/s]	[m²/s]	[-]	[Pa/m]	[-]	[cm]	[ºC]	[kg/m ³]	[-]	[-]	[%]	[%]
/.4	9.250E-07	400000	/520	0.01344	5	23.70	997.4005	400000.00	0.01377	0.00	-2.44
9.128	9.250E-07	493400	11400	0.01325	5	23.70	997.4005	493405.41	0.013/2	0.00	-3.53
10.82	8.100E-07	670000	14700	0.01229	5	29.81	995.7343	667901.23	0.01261	0.31	-2.60
3.459	1.083E-06	318900	868	0.01421	10	17.08	998.7898	319390.58	0.01453	-0.15	-2.23
3.771	1.080E-06	348600	1008	0.01388	10	17.19	998.7704	349166.67	0.01419	-0.16	-2.26
3.927	1.083E-06	363000	1092	0.01390	10	17.08	998.7898	362603.88	0.01418	0.11	-2.01
4.663	1.080E-06	431500	1492	0.01342	10	17.19	998.7704	431/59.26	0.01374	-0.06	-2.39
4.828	1.079E-06	446800	1582	0.01334	10	17.23	998.7639	44/451.34	0.01359	-0.15	-1.88
5.1	1.079E-06	472000	1760	0.01328	10	17.23	998.7639	4/2659.8/	0.01355	-0.14	-2.03
5.332	1.080E-06	493700	1920	0.01324	10	17.19	998.7704	493/03./0	0.01352	0.00	-2.14
5.691	1.079E-06	562600	2175	0.01320	10	17.23	998.7639	52/432.81	0.01345	6.25	-1.88
6.02	1.0/2E-06	597000	2340	0.01277	10	17.49	998./1/6	561567.16	0.01293	5.94	-1.26
6.603	1.100E-06	600000	2840	0.01277	10	16.46	998.8956	600272.73	0.01304	-0.05	-2.13
7.04	1.110E-06	634000	3160	0.01250	10	16.11	998.9546	634234.23	0.01277	-0.04	-2.12
7.698	1.100E-06	700000	3870	0.01290	10	16.46	998.8956	699818.18	0.01308	0.03	-1.36
8.76	1.210E-06	725000	4800	0.01228	10	12.81	999.4294	723966.94	0.01252	0.14	-1.93
8.1	1.110E-06	737000	4220	0.01260	10	16.11	998.9546	729729.73	0.01288	0.99	-2.20
8.434	1.094E-06	771000	4440	0.01227	10	16.68	998.8591	770932.36	0.01250	0.01	-1.86
9.4	1.086E-06	865000	5360	0.01188	10	16.97	998.8090	865561.69	0.01215	-0.06	-2.24
7.9	7.700E-07	1025000	3720	0.01170	10	32.29	994.9651	1025974.03	0.01198	-0.10	-2.41
12.48	1.125E-06	1108000	9200	0.01159	10	15.58	999.0388	1109333.33	0.01183	-0.12	-2.03
8.82	7.700E-07	1148000	4550	0.01146	10	32.29	994.9651	1145454.55	0.01176	0.22	-2.59
9.44	7.700E-07	1225000	5220	0.01150	10	32.29	994.9651	1225974.03	0.01177	-0.08	-2.39
10.05	7.600E-07	1320000	5760	0.01118	10	32.94	994.7538	1322368.42	0.01147	-0.18	-2.56
9.82	7.200E-07	1364000	5400	0.01100	10	35.70	993.8216	1363888.89	0.01127	0.01	-2.45
10.2	7.100E-07	1438000	5960	0.01122	10	36.43	993.5649	1436619.72	0.01153	0.10	-2.77
9	7.000E-07	1285000	4710	0.01144	10	37.17	993.2977	1285714.29	0.01171	-0.06	-2.34
6.85	7.000E-07	979000	2780	0.01161	10	37.17	993.2977	978571.43	0.01193	0.04	-2.75
7.61	7.000E-07	1088000	3400	0.01150	10	37.17	993.2977	1087142.86	0.01182	0.08	-2.79
8.3	7.000E-07	1185000	4000	0.01140	10	37.17	993.2977	1185714.29	0.01169	-0.06	-2.55
9.58	7.000E-07	1368000	5220	0.01115	10	37.17	993.2977	1368571.43	0.01145	-0.04	-2.71
2.59	1.087E-06	238800	514	0.01500	10	16.93	998.8153	238270.47	0.01534	0.22	-2.29
2.868	1.083E-06	264400	612	0.01459	10	17.08	998.7898	264819.94	0.01490	-0.16	-2.12
3.095	1.083E-06	285400	708	0.01446	10	17.08	998.7898	285780.24	0.01480	-0.13	-2.35
3.254	1.083E-06	300000	788	0.01457	10	17.08	998.7898	300461.68	0.01490	-0.15	-2.28
7.26	1.220E-06	595000	3400	0.01265	10	12.51	999.4667	595081.97	0.01291	-0.01	-2.04
8.06	1.210E-06	666000	4160	0.01255	10	12.81	999.4294	666115.70	0.01281	-0.02	-2.11
10.13	1.125E-06	900000	6230	0.01190	10	15.58	999.0388	900444.44	0.01215	-0.05	-2.13
13.25	1.125E-06	1178000	10150	0.01130	10	15.58	999.0388	1177777.78	0.01157	0.02	-2.42
16.91	1.100E-06	1539000	16000	0.01098	10	16.46	998.8956	1537272.73	0.01120	0.11	-2.03
17.65	1.100E-06	1600000	16700	0.01050	10	16.46	998.8956	1604545.45	0.01073	-0.28	-2.22
14.1	8.300E-07	1700000	10700	0.01060	10	28.65	996.0775	1698795.18	0.01081	0.07	-1.95
19.26	8.300E-07	1850000	20000	0.01058	10	28.65	996.0775	2320481.93	0.01083	-25.43	-2.32

1	2	3	4	5	6	7	8	9	10	11	12
		Merje	eno					Izračun	ano		
v [m/s]	v [m²/s]	Re [-]	dp/dx [Pa/m]	λ [-]	D [cm]	T [⁰C]	ρ [kg/m³]	Re _{izračunan} [-]	λizračunan [-]	∆Re [%]	Δλ [%]
16.3	8.000E-07	2038000	14200	0.01043	10	30.41	995.5528	2037500.00	0.01074	0.02	-2.94
16.3	7.900E-07	2062000	14150	0.01045	10	31.03	995.3643	2063291.14	0.01070	-0.06	-2.40
17.58	8.250E-07	2130000	16150	0.01029	10	28.94	995.9941	2130909.09	0.01049	-0.04	-1.97
19.4	8.400E-07	2310000	19100	0.00995	10	28.09	996.2397	2309523.81	0.01019	0.02	-2.39
19.3	8.200E-07	2351000	19400	0.01021	10	29.23	995.9091	2353658.54	0.01046	-0.11	-2.44
21.5	1.100E-06	1964000	24990	0.01060	10	16.46	998.8956	1954545.45	0.01082	0.48	-2.12
20.1	7.800E-07	2580000	20500	0.00995	10	31.65	995.1685	2576923.08	0.01020	0.12	-2.49
21.5	7.900E-07	2722000	23170	0.00980	10	31.03	995.3643	2721518.99	0.01007	0.02	-2.77
21.62	7.700E-07	2810000	23450	0.00985	10	32.29	994.9651	2807792.21	0.01008	0.08	-2.38
22.2	7.400E-07	3000000	24700	0.00988	10	34.29	994.3058	300000.00	0.01008	0.00	-2.03
24.25	7.500E-07	3230000	28800	0.00960	10	33.61	994.5341	3233333.33	0.00985	-0.10	-2.59

Nikuradsejeve meritve - hidravlično hrapave cevi (Nikuradse, 1933)

Na podlagi izmerjenih količin v stolpcih 1, 3, 5 in 9 so bile preračunane količine v stolpcih 10, 11, 12 in 13. Primerjava med tabeliranimi podatki iz izvirne literature (Nikuradse, 1933), ki so prikazani v stolpcih 7 (Re) in 8 (λ), in preračunanimi količinami v stolpcih 12 (Re) in 13 (λ), je prikazana v stolpcih 11 in 12 kot:

$$\Delta \operatorname{Re} = \frac{\left(\operatorname{Re} - \operatorname{Re}_{izračzrač}\right)}{\operatorname{Re}} \cdot 100$$
$$\Delta \lambda = \frac{\left(\lambda - \lambda_{izračzrač}\right)}{\lambda} \cdot 100$$

Primerjava je narejena posredno, s pretvorbo izvirnih količin v stolpcih 7 in 8 v vrednosti v stolpcih 14 in 15. Razlika med podatki v stolpcu 2 in 3 je v tem, da so v stolpcu 3 upoštevane popravljene vrednosti (pomnožene s faktorjem 125) meritev zadnje absolutne hrapavosti $r/k_s = 15$ oziroma D = 4,82.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			М	erjeno								Izračur	nano			
v [m/s]	dp/dx [Pa/m]	dp/dx [Pa/m]	D/k _s [-]	D [cm]	k₅ [cm]	log(Re) [-]	log(100λ) [-]	v [m²/s]	T [ºC]	ρ [kg/m³]	Re _{izračunan} [-]	λ _{izračunan} [-]	Re [-]	λ [-]	∆Re [%]	Δλ [%]
0.1545	3.51	3.51	1014	9.94	0.01	4.114	0.456	1.18E-06	13.75	999.3072	13014.66	0.02925	13001.70	0.02858	-0.10	-2.37
0.2020	5.74	5.74	1014	9.94	0.01	4.23	0.438	1.18E-06	13.75	999.3072	17015.93	0.02799	16982.44	0.02742	-0.20	-2.08
0.2500	8.40	8.40	1014	9.94	0.01	4.322	0.417	1.18E-06	13.75	999.3072	21059.32	0.02674	20989.40	0.02612	-0.33	-2.36
0.2730	9.75	9.75	1014	9.94	0.01	4.362	0.407	1.18E-06	13.75	999.3072	22996.78	0.02603	23014.42	0.02553	0.08	-1.95
0.2730	9.66	9.66	1014	9.94	0.01	4.362	0.403	1.18E-06	13.75	999.3072	22996.78	0.02579	23014.42	0.02529	0.08	-1.95
0.3440	15.25	15.25	1014	9.94	0.01	4.462	0.381	1.18E-06	13.75	999.3072	28977.63	0.02564	28973.44	0.02404	-0.01	-6.63
0.3680	16.70	16.70	1014	9.94	0.01	4.491	0.38	1.18E-06	13.75	999.3072	30999.32	0.02453	30974.19	0.02399	-0.08	-2.27
0.4040	19.50	19.50	1014	9.94	0.01	4.532	0.366	1.18E-06	13.75	999.3072	34031.86	0.02377	34040.82	0.02323	0.03	-2.33
0.4400	23.00	23.00	1014	9.94	0.01	4.568	0.365	1.18E-06	13.75	999.3072	37064.41	0.02363	36982.82	0.02317	-0.22	-1.99
0.4640	25.10	25.10	1014	9.94	0.01	4.591	0.356	1.18E-06	13.75	999.3072	39086.10	0.02319	38994.20	0.02270	-0.24	-2.18
0.5000	28.50	28.50	1014	9.94	0.01	4.623	0.347	1.18E-06	13.75	999.3072	42118.64	0.02268	41975.90	0.02223	-0.34	-2.01
0.5590	34.70	34.70	1014	9.94	0.01	4.672	0.333	1.18E-06	13.75	999.3072	47088.64	0.02209	46989.41	0.02153	-0.21	-2.62
0.5850	37.20	37.20	1014	9.94	0.01	4.69	0.324	1.18E-06	13.75	999.3072	49278.81	0.02162	48977.88	0.02109	-0.61	-2.55
0.6180	41.00	41.00	1014	9.94	0.01	4.716	0.32	1.18E-06	13.75	999.3072	52058.64	0.02136	51999.60	0.02089	-0.11	-2.22
0.6900	49.60	49.60	1014	9.94	0.01	4.763	0.307	1.18E-06	13.75	999.3072	58123.73	0.02073	57942.87	0.02028	-0.31	-2.21
0.7600	59.70	59.70	1014	9.94	0.01	4.806	0.303	1.18E-06	13.75	999.3072	64020.34	0.02056	63973.48	0.02009	-0.07	-2.34
0.8440	71.80	71.80	1014	9.94	0.01	4.851	0.292	1.18E-06	13.75	999.3072	71096.27	0.02005	70957.78	0.01959	-0.20	-2.37
0.9400	87.80	87.80	1014	9.94	0.01	4.898	0.286	1.18E-06	13.75	999.3072	79183.05	0.01977	79067.86	0.01932	-0.15	-2.32
1.0350	108.70	108.70	1014	9.94	0.01	4.94	0.278	1.18E-06	13.75	999.3072	87185.59	0.02019	87096.36	0.01897	-0.10	-6.43
1.0600	108.50	108.50	1014	9.94	0.01	4.973	0.274	1.12E-06	15.76	999.0113	94075.00	0.01922	93972.33	0.01879	-0.11	-2.25
1.1400	125.50	125.50	1014	9.94	0.01	5.009	0.274	1.12E-06	15.76	999.0113	101175.00	0.01922	102093.95	0.01879	0.90	-2.25
1.1980	137.80	137.80	1014	9.94	0.01	5.025	0.272	1.12E-06	15.76	999.0113	106322.50	0.01911	105925.37	0.01871	-0.37	-2.14
1.2600	151.50	151.50	1014	9.94	0.01	5.049	0.27	1.12E-06	15.76	999.0113	111825.00	0.01899	111943.79	0.01862	0.11	-1.98

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			М	erjeno								Izračur	nano			-
v	dp/dx	dp/dx	D/ks	D	ks	log(Re)	log(100λ)	v	Т	ρ	Reizračunan	$\lambda_{izračunan}$	Re	λ	ΔRe	Δλ
[m/s]	[Pa/m]	[Pa/m]	[-]	[cm]	[cm]	[-]	[-]	[m²/s]	[°C]	[kg/m ³]	[-]	[-]	[-]	[-]	[%]	[%]
1.4700	202.00	202.00	1014	9.94	0.01	5.1	0.262	1.16E-06	14.40	999.2166	125963.79	0.01860	125892.54	0.01828	-0.06	-1./4
1.6200	245.00	245.00	1014	9.94	0.01	5.143	0.26	1.16E-06	14.40	999.2166	138817.24	0.01857	138995.26	0.01820	0.13	-2.07
1.8400	314.00	314.00	1014	9.94	0.01	5.199	0.255	1.16E-06	14.40	999.2166	15/668.9/	0.01845	158124.80	0.01799	0.29	-2.58
2.0100	372.00	372.00	1014	9.94	0.01	5.236	0.253	1.16E-06	14.40	999.2166	1/2236.21	0.01832	1/2186.86	0.01791	-0.03	-2.31
2.1700	435.00	435.00	1014	9.94	0.01	5.27	0.255	1.10E-U0	14.40	999.2166	185946.55	0.01838	186208.71	0.01799	0.14	-2.17
2.2300	458.00	458.00	1014	9.94	0.01	5.281	0.253	1.10E-U0	14.40	999.2166	191087.93	0.01832	190985.33	0.01770	-0.05	-2.33
2.3400	501.00	501.00	1014	9.94	0.01	5.303	0.25	1.10E-U0	14.40	999.2166	200513.79	0.01820	200909.28	0.0170	0.20	-2.37
2.4800	565.00	565.00	1014	9.94	0.01	5.320	0.252	1.10E-00	14.40	999.2166	212510.34	0.01828	211830.11	0.01700	-0.32	-2.31
2.8700	700.00	760.00	1014	9.94	0.01	5.377	0.200	1.20E-00	13.1Z	999.3904	23//31.0/	0.01035	238231.93	0.01799	0.21	-2.03
3.2500	975.00	975.00	1014	9.94	0.01	5.43 E 402	0.253	1.20E-00	13.1Z	999.3904	209208.33	0.01052	209103.48	0.01/91	-0.02	-2.55
3.7500	1510.00	1510.00	1014	9.94	0.01	5.493	0.258	1.20E-00	13.1Z	999.3904	310023.00	0.01053	3111/1.03	0.01011	0.18	-2.30
4.1200	1060.00	1060.00	1014	9.94	0.01	5.534	0.20	1.20E-00	13.1Z	999.3904	3412/3.33	0.01057	341979.44	0.01020	0.21	-2.07
4.4500	1850.00	1850.00	1014	9.94	0.01	5.574	0.202	1.18E-00	13.75	999.3072	3/4800.93	0.01859	3/49/3.00	0.01020	0.03	-1.00
4.0100 E 1400	2520.00	2520.00	1014	9.94	0.01	5.000	0.29	1.10E-00	13.70	999.3072	400101.00	0.01993	400000.04	0.01930	0.00	-2.31
5.1000	2000.00	2000.00	1014	9.94	0.01	D.03	0.272	1.20E-00	13.1Z	999.3904	427420.00	0.01913	420379.32	0.01071	-0.20	-2.24
5.5100	2920.00	2920.00	1014	9.94	0.01	5.000	0.272	1.10E-00	13.73	999.3072	404147.40 E11220.24	0.01913	400000.09	0.01071	0.31	-2.20
6.0700	3540.00	3540.00	1014	9.94	0.01	5.709	0.272	1.10E-00	10.70	999.3072	511520.54	0.01911	570164 27	0.01071	0.07	-2.17
6 5500	4100.00	4100.00	1014	9.94	0.01	5.750	0.270	1.05E-00	10.33	990.0000	620066.67	0.01934	610//1 00	0.01097	0.05	2.20
7 2000	4190.00 E100.00	4190.00 E100.00	1014	9.94	0.01	0.79Z	0.279	1.03E-00	10.33	990.0000 000 E424	620000.07	0.01944	400740.24	0.01901	-0.10	-2.20
7.2000	5100.00	5100.00	1014	9.94	0.01	5.035	0.203	0.10E-00	10.33	990.0000	001000.00	0.01939	000709.30	0.01919	-0.12	-2.00
7.9000	7100.00	7100.00	1014	9.94	0.01	5.94	0.200	9.10E-07	24.42	997.2212	071001.04	0.01900	070903.39	0.01932	-0.06	-2.73
0.4000	7100.00 E400.00	7100.00 E400.00	1014	9.94	0.01	5.905	0.288	9.10E-07	24.42	997.2212	923000.00	0.01982	922371.43	0.01941	-0.05	-2.13
0.3000	5400.00 40E0.00	5400.00 40E0.00	1014	9.94	0.01	0.929 E 0E4	0.209	0.00E-07	20.99	990.0400	900104.00	0.01040	049100.40	0.01943	-13.00	20.00
7.7900	7000.00	7000.00	1014	9.94	0.01	5.934	0.200	0.00E-07	20.99	990.0400	900379.07	0.01969	070500.07	0.01941	-0.10	-2.47
0.4000	55.00	55.00	504	7.74 1.01	0.01	1.907	0.200	0.00L-07	20.99	990.3400	970003.72	0.01979	16010 10	0.01932	-0.04	2.44
0.4340	72.00	72.00	504	4.94	0.01	4.21	0.4300	1.32L-00	9.07	999.7507	10242.12	0.02000	10210.10	0.02022	-0.15	-2.25
0.5100	152.00	152.00	504	4.94	0.01	4.279	0.4349	1.32L-00	9.07	999.7507	20265 76	0.02700	2017/ 27	0.02722	-0.40	2 40
0.7620	177.50	177.50	504	4.94	0.01	4.403	0.3000	1.32L-00	9.07	999.7507	29203.70	0.02403	27174.27	0.02403	-0.31	-2.40
0.0000	213.00	213.00	504	4.74	0.01	4.507	0.3030	1.32E-00	9.07	000 7567	25/78 18	0.02372	25200 72	0.02310	0.13	2.07
1.0400	215.00	215.00	504	4.74	0.01	4.547	0.3577	1.32E-00	7.07 10.21	000 7008	30520.00	0.02342	20526.66	0.02200	-0.22	2.74
1.0400	308.00	308.00	504	4.94	0.01	4.377	0.3302	1.30E-00	10.21	999 7098	44080.00	0.02330	44055.49	0.02271	-0.04	-2.00
1.1000	5/19.00	5/19 00	504	ч. 7ч Л QЛ	0.01	1 778	0.3434	1.30E-00	10.21	999 7098	60040.00	0.02202	50070 11	0.02203	-0.00	-2.57
1 7400	668.00	668.00	504	4.94	0.01	4.770	0.3287	1.30E-06	10.21	999 7098	66120.00	0.02173	66069 34	0.02117	-0.08	-2.07
2 1400	1000.00	1000.00	504	4 94	0.01	4 916	0.3202	1.00E 00	10.21	999 6576	82590.63	0.02158	82413.81	0.02127	-0.21	-2 77
2 5200	1375.00	1375.00	504	4 94	0.01	4 987	0.3197	1.28E-06	10.76	999 6576	97256.25	0.02140	97051.00	0.02088	-0.21	-2 50
2 9600	1900.00	1900.00	504	4 94	0.01	5.057	0.321	1.28E-06	10.76	999 6576	114237 50	0.02143	114024 98	0.02000	-0.19	-2.35
3 2200	2265.00	2265.00	504	4 94	0.01	5.007	0.3228	1.26E-06	11 33	999 6000	126244 44	0.02110	125892 54	0.02103	-0.28	-2.68
3 8200	3160.00	3160.00	504	4 94	0.01	5 173	0.3197	1.26E-06	11 33	999 6000	149768 25	0.02140	148936 11	0.02088	-0.56	-2.50
4,0700	3650.00	3650.00	504	4.94	0.01	5 21	0.3276	1.24F-06	11.91	999 5364	162143 55	0.02178	162181 01	0.02126	0.02	-2.44
4,6800	4900.00	4900.00	504	4.94	0.01	5,283	0.3322	1.20F-06	13 12	999.3904	192660.00	0.02212	191866.87	0.02149	-0.41	-2.93
5.5500	7020.00	7020.00	504	4.94	0.01	5.366	0.3416	1.18F-06	13 75	999.3072	232347 46	0.02253	232273.68	0.02196	-0.03	-2.61
7.3500	12570.00	12570.00	504	4.94	0.01	5.494	0.3504	1.16F-06	14 40	999,2166	313008.62	0.02301	311888.96	0.02241	-0.36	-2.67
6,6400	10370.00	10370.00	504	4.94	0.01	5.58	0.3562	8.60E-07	26.99	996.5466	381413.95	0.02332	380189 40	0.02271	-0.32	-2.68
7.3400	12800.00	12800.00	504	4,94	0.01	5.623	0.3602	8.60E-07	26.99	996,5466	421623.26	0.02355	419758.98	0.02292	-0.44	-2.77
8.7900	18500.00	18500.00	504	4.94	0.01	5.702	0.3636	8.60E-07	26.99	996.5466	504913.95	0.02374	503500.61	0.02310	-0.28	-2.77
			1	i	1							1				1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			М	erjeno								Izračur	nano			
v	dp/dx	dp/dx	D/ks	D	k₅	log(Re)	log(100λ)	v	Т	ρ	Re izračunan	$\lambda_{izračunan}$	Re	λ	∆Re	Δλ
[m/s]	[Pa/m]	[Pa/m]	[-]	[cm]	[cm]	[-]	[-]	[m ² /s]	[°C]	[kg/m ³]	[-]	[-]	[-]	[-]	[%]	[%]
1.2100	529.00	529.00	504	4.94	0.01	4.708	0.3371	1.1/E-00	14.07	999.2028	01088.89	0.02222	01000.00	0.02173	-0.08	-2.24
4.8000	5300.00	5300.00	504	4.94	0.01	5.305	0.3328	1.19E-00	13.43	999.3497	201/01.20	0.02218	201830.04	0.02152	0.04	-3.10
8.5400	17240.00	17240.00	504	4.94	0.01	5.544	0.3302	1.20E-00	13.12	999.3904	301003.33	0.02337	349943.17	0.02271	-0.40	-2.91
0 7020	29250.00	29250.00	504	4.94	0.01	5.787	0.3001	8.90E-07	20.42	990.9002	012/82.02	0.02378	012300.39	0.02323	-0.07	-2.37
0.7230	00.40	00.40	504	9.94	0.02	4.748	0.3335	1.28E-00	10.70	999.0070	74161 70	0.02207	339/3./0 720/0.F2	0.02100	-0.30	-2.38
0.9550	98.00	98.00	504	9.94	0.02	4.809	0.3228	1.28E-00	10.70	999.0070	/4101./2	0.02150	/ 3900.33	0.02103	-0.27	-2.24
1.1000	221.00	144.00	504	9.94	0.02	4.904 E 104	0.321	1.28E-00	10.70	999.0070	90081.25	0.02128	89949.70	0.02094	-0.15	-1.03
2 2200	531.00	531.00	504	9.94	0.02	5.134	0.321	1.20E-00	10.70	999.0070	100142 E0	0.02137	130144.47	0.02094	-0.10	-2.00
2.3200	1090.00	1090.00	504	9.94	0.02	0.200 E 41E	0.3294	1.20E-00	10.70	999.0070	100102.00	0.02170	1/900/.09 24001E 04	0.02133	-0.15	-1.93
3.0900	1000.00 227E 00	1060.00	504	9.94	0.02	5.415	0.3434	1.10E-00	13.73	999.3072	200293.22	0.02230	200013.90	0.02205	-0.11	-2.00
4.3200	2373.00	2373.00	504	9.94	0.02	5.00	0.3001	1.10E-00	13.73	999.3072	500752.54 E41020.24	0.02313	500109.40	0.02200	-0.10	-2.09
0.0000	0220.00	9220.00	504	9.94	0.02	0.740 E 04E	0.3000	1.10E-00	13.73	999.3072	701404 41	0.02341	400942.00	0.02290	-0.23	-2.01
6.3300	5830.00	5830.00	504	9.94	0.02	5.881	0.3000	0 10E 07	13.75	999.3072	761338 //6	0.02374	760326.28	0.02320	-0.27	-2.00
7 7000	7100.00	7100.00	504	9.94	0.02	5.001	0.3000	9.10L-07	24.42	777.2212 007 2212	041074 02	0.02392	0204E0.00	0.02330	-0.13	-2.34
9,5000	7190.00 9720.00	7190.00	504	9.94	0.02	5.924	0.3727	9.10E-07	24.42	997.2212	041070.92	0.02410	037437.77	0.02339	-0.19	-2.49
0.0000	0120.00	0120.00	504	9.94	0.02	5.907	0.3703	9.10L-07	24.42	997.2212	920401.34	0.02400	920029.02	0.02347	-0.10	-2.52
0.0000	42.20	12 20	252	2.74 2.77	0.02	3.771	0.5710	1.32E.06	0.67	990.9002	102031.40	0.02101	1265.80	0.02333	0.34	222
0.2200	42.20 50.60	42.20 50.60	252	2.474	0.01	3.05	0.599	1.32E-00	9.07	000 7567	4273.27	0.04010	4203.00	0.03720	0.10	1.92
0.2320	50.00	50.00	252	2.474	0.01	3.075	0.500	1.32E-00	9.07	000 7567	5101.65	0.03744	5188.00	0.03073	0.10	2 20
0.2770	71.50	71 50	252	2.474	0.01	2.710	0.570	1.32L-00	9.07	999.7507	5752.02	0.03057	5754.40	0.03707	-0.07	-2.39
0.3070	97.00	97.00	252	2.474	0.01	2 01	0.500	1.32L-00	9.07	999.7507	6447.20	0.03755	6456 54	0.03001	0.01	-1.77
0.3440	00.60	00.60	252	2.474	0.01	2 022	0.552	1.32L-00	9.07	999.7507	6002 50	0.03039	6907.60	0.03505	0.14	-2.00
0.3030	121.00	121.00	252	2.474	0.01	2 005	0.504	1.32L-00	9.07	999.7507	7024 22	0.03741	7052.26	0.03004	0.00	-2.09
0.4100	121.00	121.00	252	2.474	0.01	2 0 2 5	0.532	1.32L-00	9.07	999.7507	0206.61	0.03427	0/12.05	0.03404	0.23	-0.09
0.4400	1/12/00	1/12 00	252	2.474	0.01	3.725	0.513	1.32E-00	9.07	000 7567	8002.65	0.03341	0413.73 9012.51	0.03273	0.21	1.06
0.4730	140.00	140.00	252	2.474	0.01	3.75	0.303	1.32E-00	9.07	000 7567	0702.03	0.03240	0712.31	0.03104	0.11	1 08
0.4720	105.00	197.00	252	2.777	0.01	1 015	0.470	1.32E-00	9.67	000 7567	10345.82	0.03210	10351 //2	0.03140	0.05	-2.26
0.5520	289.00	280.00	252	2.777	0.01	1 111	0.471	1.32E-00	9.67	000 7567	1280/ 70	0.03107	12012 10	0.03077	0.03	-2.20
0.0000	408.00	408.00	252	2.474	0.01	4 196	0.471	1.32E-00	9.67	999 7567	15687.41	0.03022	15703.63	0.02730	0.13	-2.13
0.0370	532.00	532.00	252	2.777	0.01	4.170	0.431	1.32E-00	9.67	000 7567	18/05 06	0.02002	18/07 72	0.02023	0.10	-2.03
1 1400	713.00	713.00	252	2.474	0.01	4 33	0.433	1.32E-06	9.67	999 7567	21366 36	0.02730	21379.62	0.02723	0.01	-2.29
1 2950	900.00	900.00	252	2.474	0.01	4.386	0.415	1.32E-06	9.67	999 7567	24271 44	0.02656	24322.04	0.02600	0.21	-2.15
1.3650	990.00	990.00	252	2.474	0.01	4 425	0 412	1.32E-06	9.67	999 7567	25583 41	0.02630	26607.25	0.02582	3.85	-1.84
1.5750	1287.00	1287.00	252	2.474	0.01	4.47	0.4	1.32E-06	9.67	999.7567	29519.32	0.02568	29512.09	0.02512	-0.02	-2.22
1.6700	1432.00	1432.00	252	2.474	0.01	4.496	0.396	1.32E-06	9.67	999.7567	31299.85	0.02541	31332.86	0.02489	0.11	-2.10
1.7300	1550.00	1550.00	252	2.474	0.01	4.511	0.4	1.32E-06	9.67	999.7567	32424.39	0.02563	32433.96	0.02512	0.03	-2.04
1.8900	1823.00	1823.00	252	2.474	0.01	4.55	0.393	1.33E-06	9.40	999.7783	35156.84	0.02526	35481.34	0.02472	0.91	-2.19
2.2300	2530.00	2530.00	252	2.474	0.01	4.62	0.392	1.32E-06	9.67	999.7567	41795.61	0.02518	41686.94	0.02466	-0.26	-2.10
2.6600	3600.00	3600.00	252	2.474	0.01	4.697	0.391	1.32E-06	9.67	999.7567	49854.85	0.02518	49773.71	0.02460	-0.16	-2.35
3.0700	4880.00	4880.00	252	2.474	0.01	4.76	0.4	1.32E-06	9.67	999.7567	57539.24	0.02563	57543.99	0.02512	0.01	-2.02
3.5200	6460.00	6460.00	252	2.474	0.01	4.82	0.403	1.32E-06	9.67	999.7567	65973.33	0.02580	66069.34	0.02529	0.15	-2.02
4.2000	9300.00	9300.00	252	2.474	0.01	4.91	0.408	1.28E-06	10.76	999.6576	81178.13	0.02610	81283.05	0.02559	0.13	-1.99
5.0000	13350.00	13350.00	252	2.474	0.01	4.985	0.414	1.28E-06	10.76	999.6576	96640.63	0.02643	96605.09	0.02594	-0.04	-1.89
5.9000	18960.00	18960.00	252	2.474	0.01	5.057	0.422	1.28E-06	10.76	999.6576	114035.94	0.02696	114024.98	0.02642	-0.01	-2.03
6.8300	25550.00	25550.00	252	2.474	0.01	5.121	0.424	1.28E-06	10.76	999.6576	132011.09	0.02711	132129.56	0.02655	0.09	-2.12

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			М	erjeno								Izračur	nano			
v	dp/dx	dp/dx	D/ks	D	ks	log(Re)	log(100λ)	v	Т	ρ	Re izračunan	$\lambda_{izračunan}$	Re	λ	ΔRe	Δλ
[m/s]	[Pa/m]	[Pa/m]	[•]	[cm]	[cm]	[•]	[-]	[m²/s]	[°C]	[kg/m ³]	[•]	[-]	[•]	[•]	[%]	[%]
7.5500	31040.00	31640.00	252	2.474	0.01	5.164	0.43	1.28E-00	10.70	999.6576	145927.34	0.02747	145881.43	0.02092	-0.03	-2.08
3.5000	1/50.00	1750.00	252	9.92	0.04	5.591	0.45	8.90E-07	25.42	996.9662	390112.30	0.02843	389941.99	0.02818	-0.04	-0.87
3.7100	2010.00	2010.00	252	9.92	0.04	5.010	0.453	8.90E-07	25.42	996.9662	413519.10	0.02906	413047.50	0.02838	-0.11	-2.40
4.0600	2380.00	2380.00	252	9.92	0.04	5.055	0.447	8.90E-07	25.42	996.9662	452530.34	0.02873	451855.94	0.02799	-0.15	-2.00
4.2400	2010.00	2010.00	252	9.92	0.04	5.0/5	0.45	8.90E-07	25.42	996.9662	4/2593.20	0.02889	4/3151.20	0.02818	0.12	-2.51
4.5800	3010.00	3010.00	252	9.92	0.04	5.708	0.445	8.90E-07	25.42	996.9662	510489.89	0.02856	510505.00	0.02786	0.00	-2.49
4.8800	3470.00	3470.00	252	9.92	0.04	5./30	0.452	8.90E-07	25.42	996.9662	543928.09	0.02900	544502.65	0.02831	0.11	-2.41
5.1100	3740.00	3740.00	252	9.92	0.04	5./50	0.445	8.90E-07	25.42	996.9662	509504.04	0.02850	5/0164.2/	0.02780	0.11	-2.30
5.3500	4100.00	4100.00	252	9.92	0.04	5.775	0.445	8.90E-07	25.42	996.9662	596314.61	0.02851	595662.14	0.02786	-0.11	-2.31
5.3800	4200.00	4200.00	252	9.92	0.04	5.798	0.45	8.50E-07	27.53	996.3960	62/8/7.65	0.02889	628058.36	0.02818	0.03	-2.52
5.8100	4900.00	4900.00	252	9.92	0.04	5.831	0.45	8.50E-07	27.53	996.3960	6/8061.18	0.02890	6//641.51	0.02818	-0.06	-2.55
5.8600	4940.00	4940.00	252	9.92	0.04	5.835	0.446	8.50E-07	27.53	996.3960	683896.47	0.02864	683911.65	0.02793	0.00	-2.57
6.4200	5980.00	5980.00	252	9.92	0.04	5.874	0.45	8.50E-07	27.53	996.3960	749251.76	0.02889	748169.50	0.02818	-0.14	-2.50
6.7200	6500.00	6500.00	252	9.92	0.04	5.894	0.447	8.50E-07	27.53	996.3960	/84263.53	0.02866	/83429.64	0.02799	-0.11	-2.40
7.3800	/910.00	/910.00	252	9.92	0.04	5.935	0.45	8.50E-07	27.53	996.3960	861289.41	0.02892	860993.75	0.02818	-0.03	-2.61
7.8300	8770.00	8770.00	252	9.92	0.04	5.961	0.444	8.50E-07	27.53	996.3960	913807.06	0.02848	914113.24	0.02780	0.03	-2.47
8.0000	9270.00	9270.00	252	9.92	0.04	5.97	0.449	8.50E-07	27.53	996.3960	933647.06	0.02884	933254.30	0.02812	-0.04	-2.57
8.3200	10000.00	10000.00	252	9.92	0.04	5.987	0.447	1.35E-06	8.88	999.8180	611365.93	0.02867	970509.97	0.02799	37.01	-2.42
1.2100	200.00	200.00	252	9.92	0.04	4.95	0.43	1.17E-06	14.07	999.2628	102591.45	0.02712	89125.09	0.02692	-15.11	-0.77
1.3200	243.00	243.00	252	9.92	0.04	5.049	0.432	1.17E-06	14.07	999.2628	111917.95	0.02769	111943.79	0.02704	0.02	-2.40
1.2400	206.00	206.00	252	9.92	0.04	5.021	0.415	1.17E-06	14.07	999.2628	105135.04	0.02660	104954.24	0.02600	-0.17	-2.30
1.4900	302.00	302.00	252	9.92	0.04	5.1	0.422	1.17E-06	14.07	999.2628	126331.62	0.02701	125892.54	0.02642	-0.35	-2.21
1.5900	347.00	347.00	252	9.92	0.04	5.13	0.422	1.17E-06	14.07	999.2628	134810.26	0.02725	134896.29	0.02642	0.06	-3.13
1.7800	440.00	440.00	252	9.92	0.04	5.179	0.43	1.17E-06	14.07	999.2628	150919.66	0.02757	151008.02	0.02692	0.06	-2.44
1.8500	475.00	475.00	252	9.92	0.04	5.196	0.43	1.17E-06	14.07	999.2628	156854.70	0.02756	157036.28	0.02692	0.12	-2.38
1.9800	548.00	548.00	252	9.92	0.04	5.225	0.435	1.17E-06	14.07	999.2628	167876.92	0.02775	167880.40	0.02723	0.00	-1.93
1.9800	544.00	544.00	252	9.92	0.04	5.225	0.43	1.17E-06	14.07	999.2628	167876.92	0.02755	167880.40	0.02692	0.00	-2.36
2.1000	620.00	620.00	252	9.92	0.04	5.25	0.436	1.17E-06	14.07	999.2628	178051.28	0.02791	177827.94	0.02729	-0.13	-2.29
2.2200	696.00	696.00	252	9.92	0.04	5.274	0.438	1.17E-06	14.07	999.2628	188225.64	0.02804	187931.68	0.02742	-0.16	-2.27
2.3000	747.00	747.00	252	9.92	0.04	5.29	0.438	1.17E-06	14.07	999.2628	195008.55	0.02804	194984.46	0.02742	-0.01	-2.26
1.8100	460.00	460.00	252	9.92	0.04	5.31	0.436	8.80E-07	25.93	996.8315	204036.36	0.02795	204173.79	0.02729	0.07	-2.40
1.9000	510.00	510.00	252	9.92	0.04	5.33	0.439	8.80E-07	25.93	996.8315	214181.82	0.02812	213796.21	0.02748	-0.18	-2.33
1.9900	560.00	560.00	252	9.92	0.04	5.35	0.439	8.80E-07	25.93	996.8315	224327.27	0.02815	223872.11	0.02748	-0.20	-2.42
2.0600	609.00	609.00	252	9.92	0.04	5.366	0.444	8.80E-07	25.93	996.8315	232218.18	0.02856	232273.68	0.02780	0.02	-2.75
2.1900	687.00	687.00	252	9.92	0.04	5.393	0.444	8.80E-07	25.93	996.8315	246872.73	0.02851	247172.41	0.02780	0.12	-2.56
2.3500	794.00	794.00	252	9.92	0.04	5.423	0.446	8.80E-07	25.93	996.8315	264909.09	0.02862	264850.01	0.02793	-0.02	-2.47
2.4400	857.00	857.00	252	9.92	0.04	5.432	0.447	8.80E-07	25.93	996.8315	275054.55	0.02865	270395.84	0.02799	-1.72	-2.36
2.5300	930.00	930.00	252	9.92	0.04	5.455	0.45	8.80E-07	25.93	996.8315	285200.00	0.02892	285101.83	0.02818	-0.03	-2.60
2.6500	1025.00	1025.00	252	9.92	0.04	5.476	0.452	8.80E-07	25.93	996.8315	298727.27	0.02905	299226.46	0.02831	0.17	-2.60
2.8100	1140.00	1140.00	252	9.92	0.04	5.501	0.447	8.80E-07	25.93	996.8315	316763.64	0.02874	316956.75	0.02799	0.06	-2.66
3.0100	1300.00	1300.00	252	9.92	0.04	5.525	0.447	8.10E-07	29.81	995.7343	368632.10	0.02859	334965.44	0.02799	-10.05	-2.14
3.2600	1533.00	1533.00	252	9.92	0.04	5.56	0.45	8.10E-07	29.81	995.7343	399249.38	0.02874	363078.05	0.02818	-9.96	-1.98
0.2380	46.60	46.60	120	2.434	0.02	3.653	0.593	1.28E-06	10.76	999.6576	4525.72	0.04006	4497.80	0.03917	-0.62	-2.27
0.2630	54.80	54.80	120	2.434	0.02	3.7	0.577	1.28E-06	10.76	999.6576	5001.11	0.03858	5011.87	0.03776	0.21	-2.18
0.2890	65.00	65.00	120	2.434	0.02	3.74	0.571	1.28E-06	10.76	999.6576	5495.52	0.03790	5495.41	0.03724	0.00	-1.77
0.3200	78.00	78.00	120	2.434	0.02	3.785	0.56	1.28E-06	10.76	999.6576	6085.00	0.03709	6095.37	0.03631	0.17	-2.16

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			М	erjeno								Izračur	nano			
v	dp/dx	dp/dx	D/ks	D	ks	log(Re)	log(100λ)	v	Т	ρ	Reizračunan	$\lambda_{izračunan}$	Re	λ	ΔRe	Δλ
[m/s]	[Pa/m]	[Pa/m]	[•]	[cm]	[cm]	2 051	[-]	[m²/s]	[° C]	[kg/m ³]	7120.04	[-]	[•]	[-]	[%]	[%]
0.3750	103.00	103.00	120	2.434	0.02	2 940	0.544	1.20E-00	10.70	999.0070	7130.00	0.03507	7090.76	0.03499	-0.49	-1.92 2.10
0.3900	100.40	100.40	120	2.434	0.02	2,000	0.001	1.20E-00	10.70	999.0070	0110.09	0.03471	0100 41	0.03390	-0.27	-2.19
0.4270	124.00	124.00	120	2.434	0.02	2.909	0.012	1.20E-00	10.70	999.0070	0119.07	0.03312	0109.01	0.03231	-0.12	-1.07
0.4000	100.00	100.00	120	2.434	0.02	2.004	0.012	1.20E-00	10.70	999.0070	0099.31	0.03333	0092.01	0.03231	-0.00	-2.09
0.5200	102.00	102.00	120	2.434	0.02	3.990	0.307	1.20E-00	10.70	999.0070	9000.13	0.03270	9900.32 11402 E0	0.03214	0.20	-1.99
0.0000	230.00	230.00	120	2.434	0.02	4.007	0.494	1.20L-00	10.70	999.0370	17409.30	0.03192	12202.50	0.03119	-0.00	-2.33
0.0400	270.00	270.00	120	2.434	0.02	4.07	0.47	1.20L-00	10.70	000 6576	1//204.07	0.03131	12302.07	0.03030	0.13	1 01
0.7020	526.00	526.00	120	2.434	0.02	4.101	0.494	1.20L-00	10.70	999.0370	17100 13	0.03177	17218.60	0.03119	0.02	-1.71
1 0250	676.00	676.00	120	2.434	0.02	4 29	0.407	1.20E-00	10.70	999 6576	19491.02	0.03134	19498.45	0.03067	0.17	-2.13
1.0200	1055.00	1055.00	120	2.434	0.02	4 301	0.407	1.20E-00	10.76	999 6576	24530.16	0.03087	24603.68	0.03007	0.04	-1.99
1 3560	1190.00	1190.00	120	2.101	0.02	4 42	0.489	1.28E-06	10.76	999 6576	25785 19	0.03152	26302.68	0.03083	1 97	-2.22
1.7100	1890.00	1890.00	120	2.434	0.02	4.512	0.49	1.28E-06	10.76	999 6576	32516.72	0.03148	32508.73	0.03090	-0.02	-1.85
1.8250	2142.00	2142.00	120	2.434	0.02	4.54	0.487	1.28E-06	10.76	999.6576	34703.52	0.03132	34673.69	0.03069	-0.09	-2.05
1.8800	2334.00	2334.00	120	2.434	0.02	4.553	0.498	1.28E-06	10.76	999.6576	35749.38	0.03216	35727.28	0.03148	-0.06	-2.16
1.8700	2280.00	2280.00	120	2.434	0.02	4.58	0.493	1.20E-06	13.12	999.3904	37929.83	0.03176	38018.94	0.03112	0.23	-2.06
2.0000	2690.00	2690.00	120	2.434	0.02	4.609	0.507	1.20E-06	13.12	999.3904	40566.67	0.03276	40644.33	0.03214	0.19	-1.93
2.1400	3062.00	3062.00	120	2.434	0.02	4.654	0.504	1.18E-06	13.75	999.3072	44142.03	0.03257	45081.67	0.03192	2.08	-2.05
2.2400	3380.00	3380.00	120	2.434	0.02	4.665	0.507	1.18E-06	13.75	999.3072	46204.75	0.03281	46238.10	0.03214	0.07	-2.11
2.4200	3970.00	3970.00	120	2.434	0.02	4.699	0.509	1.18E-06	13.75	999.3072	49917.63	0.03302	50003.45	0.03228	0.17	-2.28
2.6200	4740.00	4740.00	120	2.434	0.02	4.74	0.517	1.16E-06	14.40	999.2166	54974.83	0.03364	54954.09	0.03289	-0.04	-2.30
2.8000	5440.00	5440.00	120	2.434	0.02	4.769	0.52	1.16E-06	14.40	999.2166	58751.72	0.03380	58748.94	0.03311	0.00	-2.09
3.0200	6450.00	6450.00	120	2.434	0.02	4.813	0.528	1.14E-06	15.07	999.1181	64479.65	0.03446	65012.97	0.03373	0.82	-2.16
3.3200	7770.00	7770.00	120	2.434	0.02	4.849	0.526	1.14E-06	15.07	999.1181	70884.91	0.03435	70631.76	0.03357	-0.36	-2.30
3.9900	11650.00	11650.00	120	2.434	0.02	4.93	0.543	1.14E-06	15.07	999.1181	85190.00	0.03565	85113.80	0.03491	-0.09	-2.12
4.2100	12700.00	12700.00	120	2.434	0.02	4.954	0.534	1.14E-06	15.07	999.1181	89887.19	0.03491	89949.76	0.03420	0.07	-2.09
5.0800	18900.00	18900.00	120	2.434	0.02	5.034	0.543	1.14E-06	15.07	999.1181	108462.46	0.03568	108143.40	0.03491	-0.30	-2.20
6.7100	33000.00	33000.00	120	2.434	0.02	5.155	0.543	1.14E-06	15.07	999.1181	143264.39	0.03571	142889.40	0.03491	-0.26	-2.28
5.6600	23600.00	23600.00	120	2.434	0.02	5.083	0.545	1.14E-06	15.07	999.1181	120845.96	0.03589	121059.81	0.03508	0.18	-2.33
7.1700	38300.00	38300.00	120	2.434	0.02	5.185	0.55	1.14E-06	15.07	999.1181	153085.79	0.03630	153108.75	0.03548	0.01	-2.30
7.9500	45700.00	45700.00	120	2.434	0.02	5.231	0.537	1.14E-06	15.07	999.1181	169739.47	0.03523	170215.85	0.03443	0.28	-2.31
1.0100	182.00	182.00	120	9.8	0.08	4.875	0.535	1.32E-06	9.67	999.7567	74984.85	0.03498	74989.42	0.03428	0.01	-2.04
1.1300	227.00	227.00	120	9.8	0.08	4.924	0.534	1.32E-06	9.67	999.7567	83893.94	0.03485	83946.00	0.03420	0.06	-1.91
1.2100	264.00	264.00	120	9.8	0.08	4.954	0.542	1.32E-06	9.67	999.7567	89833.33	0.03535	89949.76	0.03483	0.13	-1.48
1.3100	306.00	306.00	120	9.8	0.08	5.052	0.535	1.14E-06	15.07	999.1181	112614.04	0.03498	112719.75	0.03428	0.09	-2.05
1.4500	380.00	380.00	120	9.8	0.08	5.033	0.54	1.32E-06	9.67	999.7567	107651.52	0.03543	107894.67	0.03467	0.23	-2.19
1.5700	452.00	452.00	120	9.8	0.08	5.13	0.545	1.14E-06	15.07	999.1181	134964.91	0.03597	134896.29	0.03508	-0.05	-2.56
1.9200	681.00	681.00	120	9.8	0.08	5.17	0.55	1.27E-06	11.04	999.6295	148157.48	0.03622	147910.84	0.03548	-0.17	-2.08
2.0300	755.00	755.00	120	9.8	0.08	5.196	0.547	1.27E-06	11.04	999.6295	156645.67	0.03592	157036.28	0.03524	0.25	-1.95
2.2000	933.00	933.00	120	9.8	0.08	5.23	0.568	1.27E-06	11.04	999.6295	169763.78	0.03780	169824.37	0.03698	0.04	-2.20
2.3500	1024.00	1024.00	120	9.8	80.0	5.258	0.551	1.27E-06	11.04	999.6295	181338.58	0.03636	181134.01	0.03556	-0.11	-2.23
2.4900	1158.00	1158.00	120	9.8	80.0	5.283	0.555	1.27E-06	11.04	999.6295	192141.73	0.03662	191866.87	0.03589	-0.14	-2.03
2.6600	1310.00	1310.00	120	9.8	80.0	5.312	0.551	1.27E-06	11.04	999.6295	205259.84	0.03630	205116.22	0.03556	-0.07	-2.08
2.7200	1383.00	1383.00	120	9.8	80.0	5.35	0.555	1.19E-06	13.43	999.3497	224000.00	0.03666	223872.11	0.03589	-0.06	-2.15
3.1100	1786.00	1786.00	120	9.8	0.08	5.408	0.55	1.19E-06	13.43	999.3497	256117.65	0.03622	255858.59	0.03548	-0.10	-2.07
3.5800	2400.00	2400.00	120	9.8	0.08	5.47	0.555	1.19E-06	13.43	999.3497	294823.53	0.03673	295120.92	0.03589	0.10	-2.33

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			М	erjeno								Izračur	nano			
v	dp/dx	dp/dx	D/ks	D	ks	log(Re)	log(100λ)	v	Т	ρ	Reizračunan	λizračunan	Re	λ	ΔRe	Δλ
[m/s]	[Pa/m]	[Pa/m]	[-]	[cm]	[cm]	[•]	[-]	[m²/s]	[°C]	[kg/m ³]	[•]	[-]	[•]	[•]	[%]	[%]
3.7100	2500.00	2500.00	120	9.8	0.08	0.497 E E 1 E	0.543	1.10E-00	14.40	999.2100	313431.03	0.03503	314030.87	0.03491	0.20	-2.04
3.0700	2700.00	2760.00	120	9.0	0.00	5.515	0.001	1.10E-00	14.40	999.2100	320940.20	0.03041	327340.09	0.03000	0.12	-2.30
4.1000	3230.00	3230.00	120	9.0	0.00	0.049	0.00	1.10E-00	14.40	999.2100	250204.00	0.03020	250004 44	0.03040	0.24	-2.20
4.2400	3300.00	3360.00	120	9.0	0.00	5.554	0.000	1.10E-00	14.40	999.2100	275040.90	0.03000	275027 40	0.03014	-0.03	-2.04
4.4300	4110.00	4110.00	120	9.0	0.00	5.575	0.001	1.10E-00	14.40	999.2100	207012 70	0.03023	200107.17	0.03000	-0.05	-1.94
4.7100	4110.00	4110.00	120	9.0	0.00	0.0 E 401	0.55	1.10E-00	14.40	999.2100	J9/91J./9	0.03034	390107.17 417020.27	0.03040	0.00	-Z.4Z
4.9500	4040.00	4040.00	120	9.0	0.00	5.625	0.50	1.10L-00	14.40	999.2100	410109.00	0.03713	417030.37	0.03031	-0.09	-2.31
4.9900 5 1/00	4340.00	4340.00	120	9.0 0.0	0.08	5.6/1	0.543	1.10L-00	14.40	999.2100	421300.97	0.03570	421090.30	0.03491	0.03	-2.44 2.20
5 3100	5210.00	5210.00	120	9.0 0.0	0.00	5.655	0.545	1.15E-00	14.73	000 1683	450017.57	0.03625	457522.11	0.03471	0.14	-2.27
5 3500	5310.00	5210.00	120	0.8	0.00	5.659	0.55	1.15E-06	14.73	000 1683	455913.04	0.03023	456036.92	0.03556	0.03	-2.10
5 4800	5670.00	5670.00	120	9.8	0.00	5 668	0.551	1.15E-06	14.73	999 1683	466991 30	0.03704	465586.09	0.03631	-0.30	-2.03
5 7600	6170.00	6170.00	120	9.8	0.08	5 691	0.553	1.15E-06	14.73	999 1683	490852 17	0.03648	490907.88	0.03573	0.00	-2.01
6.0900	6890.00	6890.00	120	9.8	0.08	5.714	0.555	1.15E-06	14.73	999,1683	518973.91	0.03644	517606.83	0.03556	-0.26	-2.47
6 5600	8100.00	8100.00	120	9.8	0.08	5 748	0.558	1 15E-06	14 73	999 1683	559026.09	0.03692	559757.60	0.03614	0.13	-2.16
6.7000	8300.00	8300.00	120	9.8	0.08	5.757	0.55	1.15E-06	14.73	999.1683	570956.52	0.03627	571478.64	0.03548	0.09	-2.22
7.2100	9660.00	9660.00	120	9.8	0.08	5.789	0.551	1.15E-06	14.73	999.1683	614417.39	0.03645	615176.87	0.03556	0.12	-2.50
8.4000	12900.00	12900.00	120	9.8	0.08	5.836	0.547	1.20E-06	13.12	999.3904	686000.00	0.03586	685488.23	0.03524	-0.07	-1.75
8.9600	15050.00	15050.00	120	9.8	0.08	5.865	0.555	1.20E-06	13.12	999.3904	731733.33	0.03677	732824.53	0.03589	0.15	-2.43
7.7000	11000.00	11000.00	120	9.8	0.08	5.914	0.553	9.20E-07	23.94	997.3418	820217.39	0.03646	820351.54	0.03573	0.02	-2.05
7.7400	11050.00	11050.00	120	9.8	0.08	5.916	0.55	9.20E-07	23.94	997.3418	824478.26	0.03625	824138.12	0.03548	-0.04	-2.16
8.3600	12980.00	12980.00	120	9.8	0.08	5.945	0.551	9.20E-07	23.94	997.3418	890521.74	0.03650	881048.87	0.03556	-1.08	-2.63
8.6000	13800.00	13800.00	120	9.8	0.08	5.962	0.555	9.20E-07	23.94	997.3418	916086.96	0.03667	916220.49	0.03589	0.01	-2.16
0.2490	50.70	50.70	61.2	2.434	0.04	3.672	0.592	1.29E-06	10.48	999.6844	4698.19	0.03982	4698.94	0.03908	0.02	-1.88
0.2700	59.50	59.50	61.2	2.434	0.04	3.708	0.59	1.29E-06	10.48	999.6844	5094.42	0.03974	5105.05	0.03890	0.21	-2.16
0.2960	72.00	72.00	61.2	2.434	0.04	3.748	0.592	1.29E-06	10.48	999.6844	5584.99	0.04002	5597.58	0.03908	0.22	-2.39
0.3070	78.00	78.00	61.2	2.434	0.04	3.763	0.597	1.29E-06	10.48	999.6844	5792.54	0.04030	5794.29	0.03954	0.03	-1.93
0.3230	83.90	83.90	61.2	2.434	0.04	3.785	0.583	1.29E-06	10.48	999.6844	6094.43	0.03916	6095.37	0.03828	0.02	-2.29
0.3550	102.00	102.00	61.2	2.434	0.04	3.826	0.585	1.29E-06	10.48	999.6844	6698.22	0.03941	6698.85	0.03846	0.01	-2.48
0.3920	126.00	126.00	61.2	2.434	0.04	3.869	0.596	1.29E-06	10.48	999.6844	7396.34	0.03993	7396.05	0.03945	0.00	-1.22
0.4020	128.00	128.00	61.2	2.434	0.04	3.881	0.578	1.29E-06	10.48	999.6844	7585.02	0.03857	7603.26	0.03784	0.24	-1.92
0.4500	161.00	161.00	61.2	2.434	0.04	3.929	0.578	1.29E-06	10.48	999.6844	8490.70	0.03872	8491.80	0.03784	0.01	-2.30
0.4550	162.00	162.00	61.2	2.434	0.04	3.935	0.583	1.29E-06	10.48	999.6844	8585.04	0.03810	8609.94	0.03828	0.29	0.46
0.4800	183.50	183.50	61.2	2.434	0.04	3.978	0.578	1.23E-06	12.21	999.5024	9498.54	0.03879	9506.05	0.03784	0.08	-2.50
0.5160	214.00	214.00	61.2	2.434	0.04	4.009	0.585	1.23E-06	12.21	999.5024	10210.93	0.03915	10209.39	0.03846	-0.02	-1.78
0.5660	258.00	258.00	61.2	2.434	0.04	4.049	0.583	1.23E-06	12.21	999.5024	11200.36	0.03922	11194.38	0.03828	-0.05	-2.46
0.6080	303.00	303.00	61.2	2.434	0.04	4.079	0.592	1.23E-06	12.21	999.5024	12031.48	0.03992	11994.99	0.03908	-0.30	-2.14
0.6740	370.00	370.00	61.2	2.434	0.04	4.124	0.59	1.23E-06	12.21	999.5024	13337.53	0.03967	13304.54	0.03890	-0.25	-1.96
0.6840	390.00	390.00	61.2	2.434	0.04	4.13	0.599	1.23E-06	12.21	999.5024	13535.41	0.04060	13489.63	0.03972	-0.34	-2.22
0.7850	514.00	514.00	61.2	2.434	0.04	4.19	0.599	1.23E-06	12.21	999.5024	15534.07	0.04062	15488.17	0.03972	-0.30	-2.28
0.9420	756.00	756.00	61.2	2.434	0.04	4.27	0.609	1.23E-06	12.21	999.5024	18640.88	0.04149	18620.87	0.04064	-0.11	-2.09
0.9870	840.00	840.00	61.2	2.434	0.04	4.29	0.618	1.23E-06	12.21	999.5024	19531.37	0.04200	19498.45	0.04150	-0.17	-1.21
1.0300	912.00	912.00	61.2	2.434	0.04	4.309	0.612	1.23E-06	12.21	999.5024	20382.28	0.04187	20370.42	0.04093	-0.06	-2.30
2.0200	3720.00	3720.00	61.2	2.434	0.04	4.584	0.639	1.28E-06	10.76	999.6576	38411.56	0.04440	38370.72	0.04355	-0.11	-1.94
2.3700	5190.00	5190.00	61.2	2.434	0.04	4.653	0.644	1.28E-06	10.76	999.6576	45067.03	0.04500	44977.99	0.04406	-0.20	-2.13
3.0000	8400.00	8400.00	61.2	2.434	0.04	4.799	0.647	1.16E-06	14.40	999.2166	62948.28	0.04547	62950.62	0.04436	0.00	-2.50

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			M	erjeno						•		Izračur	nano			
v	dp/dx	dp/dx	D/ks	D	ks	log(Re)	log(100λ)	v	Т	ρ	Re izračunan	$\lambda_{izračunan}$	Re	λ	∆Re	Δλ
[m/s]	[Pa/m]	[Pa/m]	[-]	[cm]	[cm]	[-]	[-]	[m ² /s]	[°C]	[kg/m ³]	[-]	[-]	[-]	[-]	[%]	[%]
3.7900	13680.00	13680.00	61.2	2.434	0.04	4.9	0.656	1.16E-06	14.40	999.2166	79524.66	0.04640	/9432.82	0.04529	-0.12	-2.45
4.4000	18400.00	18400.00	61.2	2.434	0.04	4.965	0.656	1.16E-06	14.40	999.2166	92324.14	0.04630	92257.14	0.04529	-0.07	-2.24
4.7000	20800.00	20800.00	61.2	2.434	0.04	5.029	0.652	1.07E-06	17.57	998.7041	106914.02	0.04590	106905.49	0.04487	-0.01	-2.28
5.1500	24900.00	24900.00	61.2	2.434	0.04	5.068	0.65	1.07E-06	17.57	998.7041	11/150.4/	0.04576	116949.94	0.04467	-0.17	-2.45
5.9800	33500.00	33500.00	61.2	2.434	0.04	5.134	0.65	1.07E-06	17.57	998.7041	136031.03	0.04566	136144.47	0.04467	0.08	-2.22
6.6400	41400.00	41400.00	61.2	2.434	0.04	5.1/6	0.65	1.07E-06	17.57	998.7041	151044.49	0.04577	149968.48	0.04467	-0.72	-2.47
0.7000	222.00	222.00	61.2	4.87	0.08	4.425	0.637	1.28E-06	10.76	999.6576	26632.81	0.04414	26607.25	0.04335	-0.10	-1.83
0.7250	235.00	235.00	61.2	4.87	0.08	4.44	0.63	1.28E-06	10.76	999.6576	2/583.98	0.04356	2/542.29	0.04266	-0.15	-2.12
0.9540	413.00	413.00	61.2	4.87	0.08	4.56	0.637	1.28E-06	10.76	999.6576	36296.72	0.04421	36307.81	0.04335	0.03	-1.99
1.1320	595.00	595.00	61.2	4.87	0.08	4.636	0.647	1.28E-06	10.76	999.6576	43069.06	0.04524	43251.38	0.04436	0.42	-1.98
1.4400	983.00	983.00	61.2	4.87	0.08	4.74	0.654	1.28E-06	10.76	999.6576	54/8/.50	0.04619	54954.09	0.04508	0.30	-2.46
1.4600	1010.00	1010.00	61.2	4.87	0.08	4.83	0.654	1.05E-06	18.33	998.5636	6//16.19	0.04622	6/608.30	0.04508	-0.16	-2.52
1.5400	1135.00	1135.00	61.2	4.87	0.08	4.855	0.661	1.05E-06	18.33	998.5636	/1426.6/	0.04668	/1614.34	0.04581	0.26	-1.89
2.1100	2120.00	2120.00	61.2	4.87	0.08	4.99	0.657	1.05E-06	18.33	998.5636	9/863.81	0.04645	9//23.72	0.04539	-0.14	-2.32
2.7200	3480.00	3480.00	61.2	4.87	0.08	5.1	0.652	1.05E-06	18.33	998.5636	126156.19	0.04588	125892.54	0.04487	-0.21	-2.24
3.7400	6630.00	6630.00	61.2	4.87	0.08	5.24	0.657	1.05E-06	18.33	998.5636	1/3464./6	0.04623	1/3/80.08	0.04539	0.18	-1.85
4.0600	7840.00	7840.00	61.2	4.87	0.08	5.275	0.657	1.05E-06	18.33	998.5636	188306.67	0.04639	188364.91	0.04539	0.03	-2.20
4.5400	9580.00	9580.00	01.2	4.87	0.08	5.323	0.647	1.05E-06	18.33	998.5030	210569.52	0.04534	210377.84	0.04430	-0.09	-2.20
6.4000	19450.00	19450.00	61.2	4.87	0.08	5.473	0.657	1.05E-06	18.33	998.5636	296838.10	0.04632	29/166.60	0.04539	0.11	-2.03
9.7500	44700.00	44700.00	61.2	4.87	0.08	5.655	0.652	1.05E-06	18.33	998.5636	452214.29	0.04587	451855.94	0.04487	-0.08	-2.21
0.9900	235.00	235.00	61.2	9.64	0.16	4.934	0.656	1.11E-06	16.11	998.9546	85978.38	0.04628	85901.35	0.04529	-0.09	-2.18
1.3500	436.00	436.00	61.2	9.64	0.16	5.068	0.657	1.11E-06	16.11	998.9546	11/243.24	0.04617	116949.94	0.04539	-0.25	-1./1
1./100	/06.00	/06.00	61.2	9.64	0.16	5.17	0.659	1.11E-06	16.11	998.9546	148508.11	0.04660	14/910.84	0.04560	-0.40	-2.18
1.9300	903.00	903.00	61.2	9.64	0.16	5.223	0.656	1.11E-06	16.11	998.9546	16/614.41	0.04679	16/109.06	0.04529	-0.30	-3.31
2.0700	1020.00	1020.00	61.2	9.64	0.16	5.255	0.652	1.11E-06	16.11	998.9546	1/9//2.9/	0.04594	1/9887.09	0.04487	0.06	-2.38
2.4600	1460.00	1460.00	61.2	9.64	0.16	5.342	0.657	1.08E-06	17.19	998.7704	219577.78	0.04657	219785.99	0.04539	0.09	-2.59
2.4800	1480.00	1480.00	61.2	9.64	0.16	5.344	0.657	1.08E-06	17.19	998.7704	221362.96	0.04645	220800.47	0.04539	-0.25	-2.33
2.6900	1750.00	1750.00	61.2	9.64	0.16	5.394	0.659	1.08E-06	17.19	998.7704	240107.41	0.04668	24//42.21	0.04560	3.08	-2.37
3.0000	2180.00	2180.00	61.2	9.64	0.16	5.428	0.659	1.08E-06	17.19	998.7704	26////./8	0.04676	26/916.83	0.04560	0.05	-2.53
3.1200	2360.00	2360.00	61.2	9.64	0.16	5.444	0.661	1.08E-06	17.19	998.7704	278488.89	0.04680	2//9/1.33	0.04581	-0.19	-2.15
3.6800	3250.00	3250.00	61.2	9.64	0.16	5.516	0.657	1.08E-06	17.19	998.7704	328474.07	0.04633	328095.29	0.04539	-0.12	-2.05
3.9000	3070.00	3070.00	01.Z	9.04	0.10	0.041 E EEO	0.009	1.08E-00	17.19	998.7704	348111.11	0.04638	34/330.10	0.04500	-0.17	-2.14
4.0000	3940.00	3940.00	01.2	9.04	0.10	5.559	0.007	1.08E-00	17.19	998.7704	502392.39	0.04614	302243.00	0.04539	-0.04	-1.04
4.8500	5680.00	5680.00	01.2	9.64	0.10	5.//0	0.659	9.00E-07	24.92	997.0961	519488.89	0.04669	597035.29	0.04560	12.99	-2.38
6.0300	8790.00	8790.00	01.Z	9.04	0.10	5.01	0.009	9.00E-07	24.92	997.0901		0.04674	040004.23	0.04500	-0.03	-2.50
0.8200	11200.00	11200.00	01.Z	9.04	0.10	0.803	0.007	9.00E-07	24.92	997.0901	/3049/./8	0.04656	/29437.31	0.04539	-0.14	-2.57
7.0900	14300.00	14300.00	01.Z	9.04	0.10	5.910	0.009	9.00E-07	24.92	997.0901	823084.44	0.04676	014000 40	0.04500	0.00	-2.53
0.000	21100.00	17200.00	01.Z	9.04	0.10	0.902	0.00	9.00E-07	24.92	997.0901	910000.00	0.04050	910220.49	0.04407	0.05	-1.00
9.3400	21100.00	21100.00	01.Z	7.04 2./12	0.10	ט רד כ	0.009	7.00E-0/	24.92 11.22	000 4000	5004 00	0.04090	E000 44	0.04000	-0.04	-2.94
0.3080	99.0U	104 00	ა0 აი	2.412	0.00	ა.// ეიე	0.090	1.20E-U0	11.33	333.0000	00.070.00	0.00002	0000.44	0.04900	-0.13	-1.93 0.17
0.3450	120.00	120.00	3U 20	2.412	0.00	3.02 2.055	0.099	1.20E-U0	11.33	777.0000	7150 42	0.05109	7141 40	0.00000	0.02	-2.17
0.3740	100.50	100.50	3U 20	2.412	0.00	3.822	0.707	1.20E-U0	11.33	333.0000	/ 159.43	0.05192	/101.43	0.05093	0.03	-1.95
0.4200	192.00	192.00	3U 20	2.412	0.00	3.905 2.055	0.712	1.20E-U0	11.33	333.0000	8020 57	0.05253	0015 71	0.05152	-0.06	-1.95
0.4000	239.20	239.20	3U 20	2.412	0.00	3.955	0.717	1.20E-U0	11.33	333.0000	0920.57	0.05310	9015.71	0.05212	1.00	-1.99
0.5100	295.00	293.00	30	2.412	0.00	4	0.73	1.23E-00	12.21	999.5024	10001.47	0.055414	10000.00	0.05370	-0.01	-1.93
0.000	300.00	300.00	30	2.412	0.08	4.041	0.734	1.23E-00	12.21	777.5024	10701.40	U.U0041	10440.00	0.00420	0.08	-Z.ZZ

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			Μ	lerjeno								Izračur	nano			
٧	dp/dx	dp/dx	D/ks	D	ks	log(Re)	log(100λ)	v	Т	ρ	Reizračunan	$\lambda_{izračunan}$	Re	λ	ΔRe	Δλ
[m/s]	[Pa/m]	[Pa/m]	[-]	[cm]	[cm]	[•]	[-]	[m²/s]	[⁰C]	[kg/m ³]	[•]	[-]	[•]	[•]	[%]	[%]
0.0000	422.00	422.00	30	2.412	0.08	4.070	0.730	1.23E-00	12.21	999.5024	12001 17	0.05540	11012.42	0.05445	0.24	-1.80
0.0120	439.00	439.00	30	2.412	0.08	4.079	0.744	1.23E-00	12.21	999.5024	12001.17	0.05057	12001 70	0.05540	-0.05	-2.00
0.6640	526.00	526.00	30	2.412	0.08	4.114	0.751	1.23E-00	12.21	999.5024	13020.88	0.05758	13001.70	0.05636	-0.15	-2.10
0.0940	559.00 (0F.00	559.00 405.00	30	2.412	0.08	4.133	0.74	1.23E-00	12.21	999.5024	15009.17	0.05602	13083.13	0.05495	-0.19	-1.93
0.7700	095.00	095.00	30	2.412	0.08	4.179	0.744	1.23E-00	12.21	999.5024	15099.51	0.05008	15100.80	0.05540	0.01	-2.01
0.8000	1007.00	1007.00	30	2.412	0.08	4.190	0.754	1.23E-00	12.21	999.5024	10620.07	0.05784	10/03.03	0.05075	0.10	-1.92
0.9500	1097.00	1097.00	30	2.412	0.08	4.27	0.70	1.23E-00	12.21	999.5024	10029.27	0.05007	10400.45	0.05754	-0.05	-1.95
1.0500	1192.00	1192.00	30	2.412	0.08	4.29	0.750	1.23E-00	12.21	999.5024	19311.71	0.05811	19498.40	0.05702	-0.07	-1.92
1.0000	1570.00	1570.00	20	2.412	0.00	4.314	0.709	1.23E-00	12.21	999.3024	20090.24	0.05997	20000.30	0.05075	0.06	-2.09
1.1100	1745.00	1745.00	20	2.412	0.00	4.34	0.703	1.23E-00	12.21	999.3024	21004.00	0.00924	21077.02	0.05794	0.00	-2.24
1.1000	1/00.00	1/03.00	20	2.412	0.00	4.300	0.770	1.23E-00	12.21	999.3024	23139.01	0.00110	23227.37	0.00990	0.30	-2.00
1.2400	2147.00	2147.00	20	2.412	0.00	4.300	0.772	1.23E-00	12.21	999.3024	24310.10	0.00000	24322.04	0.05910	0.02	-2.41
1.3100	2147.00	2147.00	30	2.412	0.08	4.41	0.772	1.23L-00	12.21	999.3024	25000.70	0.00038	25703.90	0.03910	0.00	-2.07
1.3340	2200.00	2200.00	20	2.412	0.00	4.425	0.702	1.212-00	12.01	000 5024	20371.00	0.00104	20007.23	0.00000	0.00	-2.10
1.4900	2620.00	2620.00	20	2.412	0.00	4.400	0.765	1.23E-00	12.21	999.3024	29210.04	0.00131	29241.02 22112-11	0.00090	0.00	-0.00
1.0900	1030 00	1030.00	30	2.412	0.00	4.52	0.70	1.23E-00	12.21	000 1667	28840.02	0.00131	3800/ 51	0.00020	0.00	2.00
2 1400	5900.00	5900.00	20	2.412	0.00	4.09	0.701	1.22L-00	12.01	999.4007	12650 51	0.00103	12657.05	0.00039	0.14	-2.04
2.1400	9000.00	0000.00	30	2.412	0.00	4.05	0.777	1.21E-00	12.01	000 1201	5202/ 12	0.06140	52088 11	0.03704	0.00	1.80
2.0000	12500.00	12500.00	20	2.412	0.08	4.723	0.70	1.21L-00	12.01	999.4294 000 200 <i>4</i>	45225.00	0.00140	64714.26	0.00020	0.12	-1.09
2.6400	16000.00	16000.00	20	2.412	0.08	4.011	0.701	1.20L-00	12.12	999.3904	72164.00	0.00109	72202 /5	0.00039	-0.94	-2.10
2 7500	17760.00	17760.00	20	2.412	0.08	4.005	0.776	1.20L-00	12.12	999.3904	75104.00	0.00120	75202.45	0.05904	0.10	-2.20
3.7500	25400.00	25400.00	20	2.412	0.08	4.000	0.770	1.10L-00	13.75	999.3072	02150 77	0.00097	02257.14	0.05970	0.11	-2.11
4.4700	20820.00	20820.00	30	2.412	0.00	4.70J	0.773	1.17E-00	14.07	000 2628	92130.77	0.06145	100000 00	0.00012	0.12	-2.00
5 3200	27020.00	29020.00	30	2.412	0.00	5 042	0.701	1.17E-00	14.07	000 2628	100673.85	0.00143	110153 03	0.00037	0.22	2.22
5.6000	10190.00	10190.00	30	2.412	0.00	5.042	0.781	1.17E-00	14.07	999.2020	125066.67	0.00137	12531/ 12	0.00020	0.44	-2.22
5.0000	51000.00	51000.00	30	2.412	0.00	5 155	0.701	1.00L-00	17.19	008 7704	1/2000.07	0.06014	1/20014.12	0.00037	0.20	-2.47
6 7500	58090.00	58090.00	30	2.412	0.00	5 179	0.770	1.00E-00	17.17	908 7704	150750.00	0.06158	151008.02	0.03770	0.03	-0.27
7,8800	79000.00	79000.00	30	2.412	0.00	5 285	0.701	9.80E-07	21.20	007 0702	1030/1/ /0	0.06150	102752 /0	0.00037	-0.62	-1.70
0.7550	291.00	363 75	30	4.82	0.00	4 44	0.775	1.32E-06	9.67	999 7567	27568.94	0.06153	27542.29	0.05957	-0.02	-2.30
0.7550	382.00	477.50	30	4.02	0.10	4.5	0.773	1.32E-00	9.67	900 7567	21585.61	0.06154	21622.27	0.05984	0.10	-3.30
0.0000	460.00	575.00	30	4.82	0.16	4 54	0.778	1.32E-00	9.67	999 7567	34689 39	0.06143	34673.69	0.05998	-0.05	-2.00
1 0800	596.00	745.00	30	4.82	0.16	4 596	0.78	1.32E-06	9.67	999.7567	39436.36	0.06159	39445 73	0.06026	0.02	-2.21
1 2850	842.00	1052 50	30	4.82	0.16	4 685	0.781	1.02E 00	10.76	999.6576	48388.28	0.06147	48417.24	0.06039	0.02	-1.78
1 5000	1150.00	1437.50	30	4.82	0.16	4,722	0.777	1.28E-06	10.76	999.6576	56484.38	0.06161	52722.99	0.05984	-7.13	-2.96
1 8400	1730.00	2162.50	30	4.82	0.16	4 845	0.775	1.27E-06	11.04	999 6295	69833.07	0.06160	69984 20	0.05957	0.22	-3.41
1.9350	1910.00	2387.50	30	4.82	0.16	4.869	0.778	1.26E-06	11.33	999.6000	74021.43	0.06149	73960.53	0.05998	-0.08	-2.53
2 1200	2300.00	2875.00	30	4.82	0.16	4 929	0.78	1.20E-06	13.12	999,3904	85153.33	0.06170	84918.05	0.06026	-0.28	-2.40
2 1800	2420.00	3025.00	30	4.82	0.16	4 949	0.779	1.18F-06	13.75	999.3072	89047.46	0.06140	88920 11	0.06012	-0.14	-2.14
2.4600	3090.00	3862.50	30	4.82	0.16	5.002	0.777	1.18E-06	13.75	999.3072	100484.75	0.06157	100461.58	0.05984	-0.02	-2.89
2.4800	3140.00	3925.00	30	4.82	0.16	5.005	0.775	1.18E-06	13.75	999.3072	101301.69	0.06156	101157.95	0.05957	-0.14	-3.35
2.5400	3300.00	4125.00	30	4.82	0.16	5.097	0.778	9.80E-07	21.20	997,9792	124926.53	0.06176	125025.90	0.05998	0.08	-2.97
2.8000	4000.00	5000.00	30	4.82	0.16	5.139	0.783	9.80E-07	21.20	997.9792	137714.29	0.06160	137720.95	0.06067	0.00	-1.53
2.9100	4320.00	5400.00	30	4.82	0.16	5.156	0.784	9.80E-07	21.20	997.9792	143124.49	0.06160	143218.79	0.06081	0.07	-1.29
3.3700	5800.00	7250.00	30	4.82	0.16	5.22	0.777	9.80E-07	21.20	997.9792	165748.98	0.06166	165958.69	0.05984	0.13	-3.05
3.5000	6250.00	7812.50	30	4.82	0.16	5.236	0.78	9.80E-07	21.20	997.9792	172142.86	0.06160	172186.86	0.06026	0.03	-2.24
				1	i					I				1		

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			М	erjeno								Izračur	nano			
v [m/s]	dp/dx [Pa/m]	dp/dx [Pa/m]	D/ks [-]	D [cm]	k₅ [cm]	log(Re) [-]	log(100λ) [-]	v [m²/s]	T [⁰C]	ρ [kg/m³]	Re _{izračunan} [-]	λizračunan [-]	Re [-]	λ [-]	∆Re [%]	Δλ [%]
4.0600	8400.00	10500.00	30	4.82	0.16	5.31	0.778	9.60E-07	22.08	997.7822	203845.83	0.06154	204173.79	0.05998	0.16	-2.61
4.5600	10600.00	13250.00	30	4.82	0.16	5.36	0.775	9.60E-07	22.08	997.7822	228950.00	0.06156	229086.77	0.05957	0.06	-3.35
5.1200	13400.00	16750.00	30	4.82	0.16	5.41	0.78	9.60E-07	22.08	997.7822	257066.67	0.06173	257039.58	0.06026	-0.01	-2.45
5.5600	15800.00	19750.00	30	4.82	0.16	5.446	0.78	9.60E-07	22.08	997.7822	279158.33	0.06172	279254.38	0.06026	0.03	-2.44
5.6800	16500.00	20625.00	30	4.82	0.16	5.455	0.777	9.60E-07	22.08	997.7822	285183.33	0.06176	285101.83	0.05984	-0.03	-3.21
6.5200	21700.00	27125.00	30	4.82	0.16	5.515	0.781	9.60E-07	22.08	997.7822	327358.33	0.06165	327340.69	0.06039	-0.01	-2.07
7.5000	28700.00	35875.00	30	4.82	0.16	5.567	0.778	9.80E-07	21.20	997.9792	368877.55	0.06161	368977.60	0.05998	0.03	-2.71
8.3400	35500.00	44375.00	30	4.82	0.16	5.613	0.78	9.80E-07	21.20	997.9792	410191.84	0.06163	410204.10	0.06026	0.00	-2.27
9.9600	50600.00	63250.00	30	4.82	0.16	5.69	0.784	9.80E-07	21.20	997.9792	489869.39	0.06159	489778.82	0.06081	-0.02	-1.27
10.1800	53000.00	66250.00	30	4.82	0.16	5.834	0.781	7.20E-07	35.70	993.8216	681494.44	0.06201	682338.69	0.06039	0.12	-2.67
11.3500	65700.00	82125.00	30	4.82	0.16	5.882	0.777	7.20E-07	35.70	993.8216	759819.44	0.06184	762079.01	0.05984	0.30	-3.34
13.6000	94400.00	118000.00	30	4.82	0.16	5.959	0.778	7.20E-07	35.70	993.8216	910444.44	0.06188	909913.27	0.05998	-0.06	-3.17
15.2000	118000.00	147500.00	30	4.82	0.16	6.008	0.78	7.20E-07	35.70	993.8216	1017555.56	0.06193	1018591.39	0.06026	0.10	-2.77
9.7600	49700.00	62125.00	30	4.82	0.16	5.793	0.78	7.60E-07	32.94	994.7538	618989.47	0.06320	620869.03	0.06026	0.30	-4.89
11.3000	65200.00	81500.00	30	4.82	0.16	5.857	0.777	7.60E-07	32.94	994.7538	716657.89	0.06185	719448.98	0.05984	0.39	-3.36
13.4200	91800.00	114750.00	30	4.82	0.16	5.93	0.778	7.60E-07	32.94	994.7538	851110.53	0.06175	851138.04	0.05998	0.00	-2.95
15.2600	119000.00	148750.00	30	4.82	0.16	5.987	0.78	7.60E-07	32.94	994.7538	967805.26	0.06190	970509.97	0.06026	0.28	-2.73

Digitalizirane meritve Nikuradseja – hidravlično hrapave cevi

Po	2		ке	λ	D/K _s
[-]	~ [_]	[-]	[-]	[-]	[-]
L ⁻ J	L ⁻ J	20.0	4161.98	0.04058	61.2
620.17	0.11743	30.0	4541.51	0.04481	61.2
039.13	0.09910	20.0	5090.96	0.03840	61.2
14.20	0.00240	20.0	5530.95	0.04105	61.2
1013.99 1055 04	0.04040	30.0	5596.29	0.03749	61.2
1900.24	0.03023	30.0	575.04	0.11127	120.0
2324.34	0.02893	30.0	908.03	0.07354	120.0
2809.40	0.03454	30.0	1159.58	0.05675	120.0
31/2.49	0.03097	30.0	1450.77	0.04763	120.0
3205.88	0.04231	30.0	1740.60	0.03591	120.0
3562.05	0.03965	30.0	1876.29	0.03429	120.0
3789.66	0.03924	30.0	2076.83	0.03285	120.0
3955.49	0.04407	30.0	2177.21	0.03039	120.0
4187.94	0.04524	30.0	2310.47	0.03211	120.0
4248.15	0.04578	30.0	2439.50	0.03025	120.0
4519.60	0.04469	30.0	2500.92	0.03163	120.0
4/1/.3/	0.04643	30.0	2601.96	0.02864	120.0
4923.80	0.04589	30.0	2747.26	0.03028	120.0
5090.96	0.04955	30.0	3003.31	0.03434	120.0
5519.50	0.04716	30.0	3093.86	0.03441	120.0
5679.37	0.04653	30.0	3203.32	0.03540	120.0
5788.95	0.05075	30.0	3432.42	0.03665	120.0
579.95	0.10917	61.2	3466.57	0.03863	120.0
912.24	0.07015	61.2	3846.80	0.03722	120.0
1992.51	0.03193	61.2	4418.76	0.03531	120.0
2286.65	0.03104	61.2	4878.65	0.03589	120.0
2305.15	0.03157	61.2	6006.20	0.03665	120.0
2426.05	0.03136	61.2	531.84	0.12136	252.0
2503.80	0.03153	61.2	633.66	0.10031	252.0
2543.31	0.03198	61.2	860.00	0.07257	252.0
2666.86	0.03148	61.2	1090.44	0.05379	252.0
2666.86	0.03178	61.2	1393 80	0.04607	252.0
2730.23	0.03390	61.2	1549 17	0.04081	252.0
2817.73	0.03226	61.2	1863 37	0.03589	252.0
2851.02	0.03664	61.2	2112.03	0.03096	252.0
2885.36	0.03303	61.2	2125.69	0.03325	252.0
2919 44	0.03351	61.2	2749 16	0.03462	252.0
2717.11	0.00001		LIT/.IU	0.00402	202.0
3073.26	0.03492	61.2	2036 07	0 03//6	252.0
3073.26 3234.45	0.03492	61.2 61.2	2936.97	0.03446	252.0 252.0
3073.26 3234.45 3404.08	0.03492 0.04276 0.03872	61.2 61.2 61.2	2936.97 3015.09 3867.22	0.03446 0.03382	252.0 252.0 252.0

Kot vir za digitalizacijo podatkov je služil diagram na sliki 9 v Nikuradse (1933).

Meritve univerze Oregon in Princeton

Podatki univerze Oregon in Princeton so objavljeni v McKeon et al. (2004). Podatki o standardni »peščeni« hrapavosti k_s so predpostavljeni tako, kot je opisano v poglavju 3.4 in 7.2.

Oregon

Re [-]	λ [-]	D [mm]	k _s [μm]	D/k _s [-]	Re [-]	λ [-]	D [mm]	k _s [μm]	D/k _s [-]
11.210	5.537	4.672	0.050	93440	2227.000	0.034	4.672	0.050	93440
20.220	3.492	4.672	0.050	93440	2554.000	0.031	4.672	0.050	93440
29.280	2.329	4.672	0.050	93440	2868.000	0.028	4.672	0.050	93440
43.190	1.523	4.672	0.050	93440	2903.000	0.032	4.672	0.050	93440
57.730	1.173	4.672	0.050	93440	2926.000	0.038	4.672	0.050	93440
64.580	0.986	4.672	0.050	93440	2955.000	0.034	4.672	0.050	93440
86.050	0.783	4.672	0.050	93440	2991.000	0.041	4.672	0.050	93440
113.300	0.571	4.672	0.050	93440	2997.000	0.035	4.672	0.050	93440
135.300	0.482	4.672	0.050	93440	3047.000	0.039	4.672	0.050	93440
157.500	0.418	4.672	0.050	93440	3080.000	0.043	4.672	0.050	93440
179.400	0.366	4.672	0.050	93440	3264.000	0.043	4.672	0.050	93440
206.400	0.324	4.672	0.050	93440	3980.000	0.040	4.672	0.050	93440
228.000	0.288	4.672	0.050	93440	4835.000	0.038	4.672	0.050	93440
270.900	0.243	4.672	0.050	93440	5959.000	0.036	4.672	0.050	93440
315.200	0.208	4.672	0.050	93440	8162.000	0.034	4.672	0.050	93440
358.900	0.183	4.672	0.050	93440	10900.000	0.031	4.672	0.050	93440
402.900	0.166	4.672	0.050	93440	13650.000	0.029	4.672	0.050	93440
450.200	0.148	4.672	0.050	93440	18990.000	0.027	4.672	0.050	93440
522.500	0.125	4.672	0.050	93440	29430.000	0.024	4.672	0.050	93440
583.100	0.113	4.672	0.050	93440	40850.000	0.021	4.672	0.050	93440
671.800	0.099	4.672	0.050	93440	59220.000	0.020	4.672	0.050	93440
789.800	0.085	4.672	0.050	93440	84760.000	0.018	4.672	0.050	93440
891.000	0.077	4.672	0.050	93440	120000.000	0.017	4.672	0.050	93440
1013.000	0.067	4.672	0.050	93440	176000.000	0.016	4.672	0.050	93440
1197.000	0.059	4.672	0.050	93440	237700.000	0.015	4.672	0.050	93440
1300.000	0.053	4.672	0.050	93440	298200.000	0.015	4.672	0.050	93440
1390.000	0.048	4.672	0.050	93440	467800.000	0.014	4.672	0.050	93440
1669.000	0.043	4.672	0.050	93440	587500.000	0.013	4.672	0.050	93440
1994.000	0.037	4.672	0.050	93440	824200.000	0.012	4.672	0.050	93440
					1050000.000	0.012	4.672	0.050	93440

Princeton

Re	λ	D	k _{teh}	k _s	D/k _s
[-]	[-]	[mm]	[µm]	[µm]	[-]
31310	0.02364	129.286	0.15	0.45	287302
41440	0.02216	129.286	0.15	0.45	287302
56360	0.02061	129.286	0.15	0.45	287302
73970	0.01929	129.286	0.15	0.45	287302
98460	0.01815	129.286	0.15	0.45	287302
145600	0.01666	129.286	0.15	0.45	287302
184800	0.01594	129.286	0.15	0.45	287302
229600	0.01529	129.286	0.15	0.45	287302
308500	0.01461	129.286	0.15	0.45	287302
408100	0.01384	129.286	0.15	0.45	287302
537800	0.01324	129.286	0.15	0.45	287302
750700	0.01249	129.286	0.15	0.45	287302
1024000	0.01183	129.286	0.15	0.45	287302
1342000	0.01131	129.286	0.15	0.45	287302
1791000	0.01079	129.286	0.15	0.45	287302
2352000	0.01028	129.286	0.15	0.45	287302
3109000	0.00989	129.286	0.15	0.45	287302
4438000	0.00941	129.286	0.15	0.45	287302
6103000	0.00897	129.286	0.15	0.45	287302
7757000	0.00862	129.286	0.15	0.45	287302
10310000	0.00825	129.286	0.15	0.45	287302
13680000	0.00798	129.286	0.15	0.45	287302
18300000	0.00767	129.286	0.15	0.45	287302
24130000	0.00740	129.286	0.15	0.45	287302
30150000	0.00720	129.286	0.15	0.45	287302
35540000	0.00708	129.286	0.15	0.45	287302

Meritve v sklopu raziskave – UL-FGG

Podatki o standardni »peščeni« hrapavosti k_s so predpostavljeni tako, kot je opisano v poglavju 5.3.1 in 7.2.

v	dp/dx	Re	λ	Т	D	k teh	v	ρ	ks	D/ks
[cm/s]	[Pa/m]	[-]	[-]	[°C]	[mm]	[mm]	[m²/s]	[kg/m³]	[mm]	[-]
0.3406	0.0503	144.37	0.44109	12.97	50.83	3.39	1.1990E-06	999.4092	35.59	1428
0.4865	0.0756	196.51	0.32494	11.18	50.83	3.39	1.2585E-06	999.6156	35.59	1428
0.5988	0.0886	255.05	0.25116	13.15	50.83	3.39	1.1935E-06	999.5854	35.59	1428
0.7555	0.1131	318.91	0.20156	12.81	50.83	3.39	1.2041E-06	999.4162	35.59	1428
0.8518	0.1325	346.74	0.18573	11.46	50.83	3.39	1.2487E-06	999.3901	35.59	1428
1.0711	0.1593	457.42	0.14128	13.25	50.83	3.39	1.1903E-06	999.4116	35.59	1428
1.3709	0.2075	580.30	0.11232	12.92	50.83	3.39	1.2008E-06	999.4106	35.59	1428
1.4689	0.2191	634.74	0.10332	13.70	50.83	3.39	1.1763E-06	999.4000	35.59	1428
1.6336	0.2475	697.02	0.09433	13.22	50.83	3.39	1.1913E-06	999.3913	35.59	1428
2.0383	0.3105	876.61	0.07603	13.52	50.83	3.39	1.1819E-06	999.4110	35.59	1428
2.3028	0.3572	980.13	0.06853	13.12	50.83	3.39	1.1942E-06	999.3920	35.59	1428
2.5836	0.3989	1113.14	0.06080	13.58	50.83	3.39	1.1798E-06	999.3822	35.59	1428
2.9262	0.4642	1239.89	0.05515	12.95	50.83	3.39	1.1996E-06	999.3723	35.59	1428
3.2620	0.5115	1410.79	0.04890	13.73	50.83	3.39	1.1753E-06	999.3674	35.59	1428
3.7347	0.6011	1614.60	0.04384	13.71	50.83	3.39	1.1758E-06	999.3615	35.59	1428
4.0486	0.6761	1715.84	0.04196	12.96	50.83	3.39	1.1994E-06	999.3544	35.59	1428
4.3592	0.7395	1885.34	0.03959	13.73	50.83	3.39	1.1753E-06	999.3620	35.59	1428
4.7343	0.8227	2010.91	0.03734	13.05	50.83	3.39	1.1967E-06	999.3502	35.59	1428
4.9530	0.8646	2095.94	0.03585	12.90	50.83	3.39	1.2012E-06	999.3402	35.59	1428
5.0379	0.8935	2117.34	0.03581	12.65	50.83	3.39	1.2094E-06	999.3291	35.59	1428
5.1806	0.9119	2204.50	0.03457	13.11	50.83	3.39	1.1945E-06	999.3261	35.59	1428
5.2817	0.9311	2229.20	0.03395	12.81	50.83	3.39	1.2043E-06	999.3127	35.59	1428
5.4828	0.9683	2316.43	0.03277	12.84	50.83	3.39	1.2031E-06	999.3107	35.59	1428
5.5532	0.9853	2339.99	0.03250	12.75	50.83	3.39	1.2063E-06	999.2951	35.59	1428
5.8794	1.0433	2492.42	0.03071	12.97	50.83	3.39	1.1990E-06	999.3009	35.59	1428
5.8822	1.0442	2492.69	0.03070	12.96	50.83	3.39	1.1995E-06	999.2802	35.59	1428
5.9064	1.0477	2512.94	0.03055	13.11	50.83	3.39	1.1947E-06	999.2556	35.59	1428
6.1544	1.0936	2623.80	0.02937	13.19	50.83	3.39	1.1923E-06	999.2448	35.59	1428
6.1976	1.0981	2640.16	0.02909	13.16	50.83	3.39	1.1932E-06	999.2384	35.59	1428
6.4147	1.1361	2724.33	0.02809	13.04	50.83	3.39	1.1968E-06	999.2188	35.59	1428
6.4786	1.1987	2767.60	0.02906	13.26	50.83	3.39	1.1899E-06	999.2221	35.59	1428
6.6604	1.3375	2848.14	0.03067	13.30	50.83	3.39	1.1887E-06	999.2177	35.59	1428
6.8993	1.5708	2922.85	0.03357	12.95	50.83	3.39	1.1998E-06	999.2144	35.59	1428
6.8837	1.6183	2937.78	0.03474	13.22	50.83	3.39	1.1910E-06	999.4495	35.59	1428
6.9739	1.7708	2964.25	0.03704	13.07	50.83	3.39	1.1959E-06	999.4375	35.59	1428
6.9514	1.8074	2976.11	0.03805	13.34	50.83	3.39	1.1872E-06	999.4300	35.59	1428
7.0783	1.8319	3014.72	0.03719	13.15	50.83	3.39	1.1934E-06	999.4253	35.59	1428
7.2745	2.1032	3118.91	0.04043	13.40	50.83	3.39	1.1856E-06	999.4178	35.59	1428
7.3744	2.1635	3128.82	0.04047	13.00	50.83	3.39	1.1980E-06	999.4093	35.59	1428
7.8011	2.5404	3333.37	0.04246	13.27	50.83	3.39	1.1896E-06	999.4007	35.59	1428
7.8001	2.5401	3339.15	0.04247	13.34	50.83	3.39	1.1874E-06	999.3860	35.59	1428

, v	dp/dx	Re	λ	T	, D	kteh	V V	ρ	, ks	D/ks
[cm/s]	[Pa/m]	[•]	[•]	[0C]	[mm]	[mm]	[m2/s]	[kg/m3]	[mm]	[-]
8.0280	2.6683	3444.87	0.04211	13.43	50.83	3.39	1.1845E-06	999.4125	35.59	1428
8.0591	2.6879	3451.96	0.04210	13.36	50.83	3.39	1.1867E-06	999.4053	35.59	1428
8.1693	2.7472	3512.56	0.04187	13.51	50.83	3.39	1.1822E-06	999.3967	35.59	1428
8.3378	2.8391	3592.86	0.04154	13.59	50.83	3.39	1.1796E-06	999.3870	35.59	1428
8.4410	2.8963	3639.50	0.04135	13.61	50.83	3.39	1.1789E-06	999.3771	35.59	1428
8.6186	2.9953	3725.79	0.04102	13.71	50.83	3.39	1.1758E-06	999.3712	35.59	1428
8.9142	3.1676	3855.13	0.04055	13.73	50.83	3.39	1.1753E-06	999.3592	35.59	1428
9.1900	3.3283	3986.37	0.04009	13.84	50.83	3.39	1.1718E-06	999.3572	35.59	1428
9.6491	3.6125	4180.80	0.03947	13.80	50.83	3.39	1.1731E-06	999.3471	35.59	1428
9.8967	3.7696	4305.19	0.03915	13.95	50.83	3.39	1.1685E-06	999.4293	35.59	1428
10.2562	3.9930	4510.03	0.03861	14.36	50.83	3.39	1.1559E-06	999.3870	35.59	1428
11.0798	4.5523	4875.13	0.03772	14.39	50.83	3.39	1.1552E-06	999.3740	35.59	1428
12.1292	5.3274	5317.74	0.03684	14.25	50.83	3.39	1.1594E-06	999.3781	35.59	1428
13.8961	6.7457	6085.14	0.03554	14.20	50.83	3.39	1.1608E-06	999.3390	35.59	1428
15.5254	8.2314	6652.70	0.03474	13.38	50.83	3.39	1.1862E-06	999.3299	35.59	1428
17.2064	9.7859	7576.84	0.03363	14.42	50.83	3.39	1.1543E-06	999.3104	35.59	1428
19.5075	12.1864	8585.05	0.03258	14.39	50.83	3.39	1.1550E-06	999.3125	35.59	1428
22.6917	15.9950	9743.28	0.03160	13.45	50.83	3.39	1.1838E-06	999.3104	35.59	1428
24.6888	18.4284	10789.69	0.03076	14.13	50.83	3.39	1.1631E-06	999.3147	35.59	1428
27.5434	22.3965	11947.71	0.03003	13.84	50.83	3.39	1.1718E-06	999.3118	35.59	1428
30.0162	26.0194	12996.06	0.02938	13.77	50.83	3.39	1.1740E-06	999.3047	35.59	1428
36.6341	36.9007	15839.74	0.02797	13.72	50.83	3.39	1.1756E-06	999.2951	35.59	1428
41.5264	45.8433	18038.76	0.02704	13.90	50.83	3.39	1.1701E-06	999.2940	35.59	1428
47.9376	59.0717	20798.48	0.02615	13.85	50.83	3.39	1.1716E-06	999.2876	35.59	1428
57.6217	81.4453	25080.97	0.02495	13.97	50.83	3.39	1.1678E-06	999.2771	35.59	1428
71.5778	118.7166	31173.97	0.02357	13.99	50.83	3.39	1.1671E-06	999.2739	35.59	1428
82.9778	153.8802	36228.13	0.02274	14.09	50.83	3.39	1.1642E-06	999.2608	35.59	1428
95.6902	197.5064	41794.55	0.02194	14.10	50.83	3.39	1.1638E-06	999.2588	35.59	1428
106.5133	237.9507	46585.29	0.02134	14.16	50.83	3.39	1.1622E-06	999.2438	35.59	1428
116.9876	280.0625	51247.44	0.02082	14.22	50.83	3.39	1.1603E-06	999.3702	35.59	1428
128.7648	331.2552	56541.21	0.02032	14.31	50.83	3.39	1.1576E-06	999.3602	35.59	1428
139.3619	380.5950	61365.53	0.01993	14.41	50.83	3.39	1.1544E-06	999.3473	35.59	1428
152.1743	446.6374	65167.59	0.01962	13.35	50.83	3.39	1.1869E-06	999.3362	35.59	1428
152.4703	445.7810	66780.32	0.01951	14.21	50.83	3.39	1.1605E-06	999.3320	35.59	1428
167.7270	529.9235	71682.85	0.01916	13.28	50.83	3.39	1.1893E-06	999.3199	35.59	1428
179.0269	594.5571	76867.18	0.01887	13.45	50.83	3.39	1.1839E-06	999.3035	35.59	1428
190.6701	665.5890	82047.23	0.01863	13.54	50.83	3.39	1.1812E-06	999.2931	35.59	1428
198.2096	712.0346	86541.35	0.01844	14.09	50.83	3.39	1.1642E-06	999.2848	35.59	1428
213.8607	824.2658	92102.02	0.01833	13.57	50.83	3.39	1.1803E-06	999.2698	35.59	1428
222.1628	878.9578	96832.66	0.01812	14.02	50.83	3.39	1.1662E-06	999.2607	35.59	1428
237.1773	982.1542	102387.09	0.01776	13.66	50.83	3.39	1.1775E-06	999.2515	35.59	1428
248.1988	1067.4656	107875.29	0.01763	13.92	50.83	3.39	1.1695E-06	999.2429	35.59	1428
264.3424	1195.5228	114708.31	0.01741	13.86	50.83	3.39	1.1714E-06	999.2300	35.59	1428
279.4563	1323.6521	121024.18	0.01724	13.78	50.83	3.39	1.1737E-06	999.2147	35.59	1428