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Abstract
This paper describes the development of a robust and efficient reactor model suitable for representing batch and plug-
flow reactors (PFRs) in different applications. These would range from the nonlinear (NLP) dynamic optimization of a
stand-alone batch reactor up to the mixed-integer nonlinear (MINLP) synthesis of a complex reactor network in overall
process schemes. Different schemes for the Orthogonal Collocation on Finite Element (OCFE) and various model
formulations, in the case of MINLP model, were studied in order to increase the robustness and efficiency of the model.
A deterministic model for known kinetics was obtained for batch and PFR reactors and extended for uncertainties in
process parameters and reaction kinetics when the kinetics is unknown. Different variations of the developed model
were applied to certain problems, as examples. The first motivating example was the dynamic optimization of batch
reactor and the second the MINLP synthesis of a process scheme for the production of allyl chloride. The NLP version
of the model with moving finite elements was found to be the most efficient for representing a batch reactor in the
dynamic optimization example, and PFR trains in the process synthesis example. 

Keywords: Batch reactor, PFR reactor, orthogonal collocation, NLP, MINLP, process synthesis

1. Introduction
Kinetics in batch and PFR reactors is described us-

ing differential equations with time as independent variab-
le in the case of batch reactors and retention time, reactor
length or volume in the case of PFRs. These equations re-
present complex optimization problems, even in small and
simple examples, because equation-oriented solvers can-
not handle differential equations. The use of OCFE in op-
timization models of batch or PFR reactors has become a
well-established numerical method. It is used to convert
and approximate differential equations into a set of nonli-
near algebraic equations in a variety of applications, ran-
ging from dynamic optimization of a single stand-alone
batch reactor up to MINLP synthesis of complex reactor
networks in overall process schemes.

Over the last decade modelling, dynamic optimiza-
tion, and on-line optimization have been the main re-
search categories regarding the optimization of batch
reactors. The modeling category is usually oriented to-
wards a more realistic description of a batch reactor1 and
towards the use of special modeling techniques and strate-
gies in cases of imperfect knowledge of kinetic studies in-
volved, e.g. the use of tendency models2 or a sequential
experiment design strategy based on reinforcement lear-
ning.3 The second category is related to more advanced
aspects of dynamic optimization in respect of batch reac-
tors, e.g. robust optimization of models, characterization
by parametric uncertainty,4 or stochastic optimization of
multimodal batch reactors.5 Finally in work relating to on-
line optimization, which is currently the prevailing acti-
vity, different control schemes have been proposed, e.g.
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feedforward/state feedback laws in the presence of distur-
bances and nonlinear state feedback laws for batch pro-
cesses with multiple manipulated inputs have been deve-
loped.6,7 Due to the complexity involved, dynamic optimi-
zation problems are regarded as difficult research tasks.

On the other hand, the synthesis of reactor networks
in overall process schemes is even more complex because
we are dealing with discrete (selection of units, connecti-
vity, etc.) and continuous (temperatures, flows, pressures,
etc.) decisions simultaneously, which give rise to complex
high-combinatorial mixed-integer nonlinear problems.
Several methods have been developed for solving MINLP
problems and one of the more efficient is the outer appro-
ximation (OA) algorithm8 and its extensions. It is also
possible to solve MINLP reactor network synthesis prob-
lems using the geometrical approach,9 based on the attai-
nable region (AR) theory or even by more efficient hybrid
approaches which combine both methods.10 The geome-
trical approach, based on the AR theory, was first used for
constructing an attainable region in the concentration spa-
ce for 2-dimensional problems,11 and then for multi-D
problems.12 Recently a novel concept of time-dependent
Economic Regions (ERs) was incorporated into the
MINLP synthesis of reactor networks within the overall
process scheme.13 ER is obtained when economic criteria
(e.g. annual profit, cost) are plotted vs. volume, residence
time, or some other variable in contrast to the Concentra-
tion Attainable Region (CAR), which is constructed using
technological criteria (e.g. conversion, selectivity, yield).

A very important objective when optimizing reactor
systems is to obtain reliable and feasible solutions, even in
the presence of uncertain parameters. A lot of work has
been carried out so far in design under uncertainty. For
example, a novel approach was developed for the evalua-
tion of design feasibility/flexibility, based on the princi-
ples of the deterministic global optimization algorithm α-
BB14 and a two-stage algorithm for design under uncer-
tainty and variability was proposed.15

Efficiency when solving the above-mentioned reac-
tor optimization problems depends significantly on the
method applied to solve the embedded differential-alge-
braic systems of equation. From among different varia-
tions of OCFE methods, the one with fixed finite elements
is the most straightforward and easiest for modeling batch
and PFR reactors. However, when using fixed finite ele-
ments directly it is impossible to explicitly model the op-
timal retention times of the batch reactors nor the optimal
outlet concentrations and conditions. Consequently, the
use of flexible finite elements or moving finite elements is
regarded as a conventional approach for overcoming these
difficulties16. This model, however, seems to be more non-
linear because the length of the final element is converted
into a variable.

The aim of this paper is to present the development
of mathematical models suitable for optimization of batch
and PFR reactors, which may either stand alone or be

combined in complex reactor networks embedded within
overall process flowsheets. Different schemes and strate-
gies are applied to modelling and solving these dynamic
and synthesis problems. The objective is to identify the
most robust and efficient solution procedure.

2. Experimental 
– Numerical Procedure

The following four-step procedure was proposed for
solving optimization problems that contain differential-al-
gebraic systems of equation:

Simulation: During the first, optional step, simula-
tion was performed using the MATHCAD professional
package. The simulation is useful for preliminary analysis
of a given kinetic system’s behaviour, and to provide a
good initial point for NLP or MINLP.

Model formulation: During the second step, a diffe-
rential-algebraic optimization problem (DAOP) model
was converted into an NLP or MINLP model. Differential
equations were approximated into a set of nonlinear alge-
braic equations by the use of OCFE, and an integral term
in the objective function was approximated by the Gaus-
sian integration formula.

Solution: During the next step, either NLP or
MINLP optimization was performed for the developed
model.

Analysis: During the last step, sensitivity analysis
was carried out by one-parametric NLP or MINLP opti-
mization with production rate (demand) as a varying (un-
certain) parameter. Sensitivity analysis can be upgraded
for flexible dynamic optimization where uncertain para-
meters are included directly in the optimization. When
process synthesis is carried out, ER can be constructed du-
ring this step, with reactor volume as varying parameter.

2. 1. Dynamic Optimization of Batch Reactor

Motivating example:
NLP and MINLP models for the optimization of

batch and PFR reactors were developed, based on a moti-
vating example of a batch reactor (Fig. 1), where consecu-
tive reaction A → B → C is carried out and B is the desi-
red product. Since the reaction is endothermic, the system
can be heated and/or preheated. Whenever the optimal in-
let temperature is higher than defined by the user the inlet
must be preheated.

The kinetics of this reaction is the following:



where cA, cB and cC are concentrations of A, B, and C, res-
pectively, k0 is a pre-exponential constant, R universal gas
constant, T reaction temperature, t time, and Ea,A and Ea,B
are activation energies of both consecutive reactions.

The corresponding (DAOP) is given as follows:

(1)

s.t.

(2)

(3)

(4)

(5)

(DAOP)

where cr, cp, rr and rp denote concentration and reaction
rate for reactants and products, respectively, Z profit, Nb
number of batches, C cost coefficients, topt optimal reac-
tion time, T0 inlet temperature, Tb desired temperature,
∆rH reaction enthalpy, cp specific heat capacity, ρ density

of reactive mixture, Φheat/cool and Φpreheat/precool heat-flow
for heating/cooling and heat-flow for preheating/precoo-
ling, respectively. The objective is to maximize revenue
for a certain number of batches. Costs for reactants and
utilities are subtracted from the profit of the product sale
(eq. (1)). Note that the cost function of the utility is inte-
grated into the objective function over the whole time pe-
riod. Eqs. (2) and (3) represent differential equations for
the production rates of reactants and products, respecti-
vely, while eq. (4) is the differential equation for heat-
flow. Heat-flow for preheating or precooling is calculated
using eq. (5). The (DAOP) model for motivating example,
shown above, cannot be used in equation-oriented solvers
because they cannot handle differential equations. There-
fore, the differential equations have to be converted into a
set of nonlinear algebraic equations. In this way a (DAOP)
model is converted into an NLP or MINLP model suitable
for optimization. The OCFE method was applied to ap-
proximate the differential equations.

Below we present three variations of the OCFE met-
hod: i) one with fixed finite elements, ii) one with moving
finite elements and iii) one with fixed but partly employed
finite elements. Deterministic NLP and MINLP models for
dynamic optimization of batch reactors were developed,
based on these variations. In order to handle deviations of
uncertain parameters, the deterministic models were up-
graded with flexibility constraints. Thus, the flexible dyna-
mic optimization models were finally developed.

2. 1. 1. NLP Model Formulation

Let us first describe the case of using the OCFE met-
hod with fixed and partly-employed finite elements. The
following deterministic model (DFIX-NLP) was obtai-
ned, which is usually non-flexible or is flexible only for
very small deviations of uncertain parameters:

(6)

s.t.
Residual equations for component balances:

(7)
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Figure 1: Batch reactor.
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Additional component balance:

Residual equation for energy balances:

where N, K, and NE are Gaussian quadrature points, collo-
cation points and final elements, respectively.

Optimal outlet point is defined by Legendre polyno-
mials:

Continuity conditions: the point at the interior knot
is defined as the optimal interior point from the previous
finite element defined by Legendre polynomials (eq. 9):

(10)

Equal time distribution:

(11)

(12)

(13)
(DFIX-NLP)

where An denotes coefficients for Gaussian integration
formula, RB, RC and RT residuals for B, C and T, respecti-
vely, til time variable for collocation point i and finite ele-
ment l, tl

opt optimal time of the finite element, and tl
opt total

optimal time. In order to equally distribute the load of nu-
merical integration on the finite elements, all tl

opt are set as
equal, eq. (11). Total time is defined as a sum of all opti-
mal times in all finite elements, eq. (12). Each fixed final
element is defined as between zero and tl

opt,UP, eq. (13).
Note that, since tl

opt is continuously defined through the
Legendre polynomials between the bounds, only part of
the element is employed for integration (Fig. 2). It should

also be noted that the profit and number of batches in the
objective function (6) are defined for production covering
8 h and a 600 s non-operational period between batches.
Thus, the number of batches is 28,880/(ttot

opt + 600). On top
of complexity from differential equations, additional com-
plexity arises due to the presence of Gaussian numerical
integral in the objective function where heat-flow is inte-
grated over reaction time and which, in addition, is an op-
timization variable.

In the case when using OCFE with moving finite
elements, additional nonlinearities of algebraic con-
straints are introduced in the model due to the presence of
those variables which represent finite elements’ lengths.

(8)

(9)

Figure 2: The graphical representation of 5 fixed and partly emplo-
yed finite elements with 3 collocation points.



On the other hand, some nonlinearities vanish because op-
timal time is moved to the end of the finite element and
several equations become linear. Note that, in contrast to
the previous variation, entire finite elements are now em-
ployed for integration (Fig. 3). Since they have variable
lengths, the elements are moving along the time. Some
changes have to be made to the model (DFIX-NLP) in or-
der to obtain a deterministic model with moving final ele-
ments (DMOV-NLP). Because tl

opt is moved to the end of
the final element it is replaced by finite element length
(∆αl) and some terms are, therefore, simplified. The heat-
flow in the objective function is integrated over the whole
length of the final element; consequently the objective
function has the following form:

Also terms in the Legendre polynomials for calcula-
ting optimal outlet points, are simplified:

,

All final elements are set as equal and total time is
defined as a sum of the lengths of all finite elements:

(16)

(17)

(18)

Equations for residuals and continuity equations are
the same as in the (DFIX-NLP) model (eq. (7), (8), (10)).

(DMOV-NLP)

2. 1. 2. MINLP Model Formulation

Another variation when using OCFE, now with fi-
xed finite elements, gives rise to a MINLP model, which
is similar to the (DFIX-NLP) with the exception of some
additional constraints while other equations are equal to
those in (DFIX-NLP). Additional constraints are applied
in order to select the optimal number of finite elements:

(19)

(20)

(21)

(22)

where yl denotes binary variable for finite element l. Ineq.
(19) is applied to ensure that all finite elements up to the
last selected one are, in fact, selected. If the corresponding
finite element is rejected, ineq. (20) forces tl

opt to zero.
When the element is not the last one, ineqs. (21) and (22)
are applied to force the tl

opt of each finite element into the
upper bound. Hence, all the selected finite elements are
fully exploited for integration, except the last one where
the optimal time is continuously defined by the Legendre
polynomial between the element’s bounds. Note that, in
contrast to the NLP model where integration is distributed
equally and continuously within all the finite elements,
here integration is only applied to the selected finite ele-
ments. In the case of NLP optimization, the number of fi-
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(14)

(15)

Figure 3: The graphical representation of 5 moving finite elements
with 3 collocation points.
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nite elements has to be set in advance and is, thus, usually
overestimated in order to satisfy a given error tolerance,
whereas, in MINLP cases, it is explicitly modelled in or-
der to adjust it simultaneously to the minimal number of
elements, during the optimization process.

In the case of the MINLP model, the robustness of
the model was studied with respect to the use of different
model formulations motivated by recently developed al-
ternative convex-hull model formulation (ACH).17 Na-
mely a comparison was made between, Big-M formula-
tion, conventional convex hull (CCH) and alternative con-
vex hull formulation (ACH). In addition, the following re-
presentations of OAs in the solution point xk for the Outer
Approximation/Equality Relaxation (OA/ER) algorithm
were compared:

Big-M formulation:

CCH representation:

ACH representation:

Unlike CCH representation, where the continuous
variables x are usually forced into zero values when the
corresponding disjunctives are false, in ACH the variables
are forced into arbitrarily-forced values, xf.

Finally, in order to obtain better approximation of the
OCFE method, additional inequality constraints for appro-
ximation error were included in the NLP and MINLP mo-
dels (ineqs. (23)-(25)). These inequalities minimize the
difference between values from the current finite element
and the starting point of the next finite element

where ε is an error tolerance, e.g. 10–3.

2. 1. 3. Flexible Dynamic 
Optimization

Different changes in operating conditions, costs,
quality of raw material etc. could significantly affect the
steady-state operation of the process and, hence, the desi-
red amount and quality of the product. Such changing pa-
rameters are called uncertain parameters and processes
which can tolerate these changes are regarded as flexible
processes. For this reason, it is important to consider un-
certainty, and hence flexibility, as additional constraints
when obtaining flexible process solutions.

The main task of flexible design is to obtain opti-
mally over-sized design variables for process equipment,
which assure feasible solutions over the entire range of
uncertain parameters using optimal investment costs. To
ensure flexibility, besides nominal conditions, optimiza-
tion has to be performed simultaneously at critical points,
which is achieved by setting uncertain parameters at ver-
tex points when the problem is convex. Thus, optimization
at the critical vertex points serves as a flexibility con-
straint.

In this way the deterministic model was extended
by the flexibility constraints, defined at all vertex
points. This was done for all equations, inequalities, and
state and control variables, except for design variables
because they must correspond to all vertex points simul-
taneously. Consequently, the size of the process equip-
ment is valid for every possible combination of uncer-
tain parameters. Objective function was approximated
at the nominal point. The model obtained is, therefore,
(NC + 1) times bigger than the deterministic model,
where NC is the number of vertex points. In the case
with three uncertain parameters and eight vertex points,
the model is nine-times larger vs. the Gaussian integra-
tion method with five quadrature points for continuous
distributions for every uncertain parameter where the
model would be 133 times bigger than the deterministic

(23)

(24)

(25)



one. Therefore it is very useful, when no probability
functions are known for uncertain parameters, to appro-
ximate objective function at a nominal point and, hence,
very large model and expensive calculations are avoi-
ded. The following flexible model with moving finite
elements (FMOV-NLP) was obtained where initial con-
centration of A, temperature, demand, pre-exponential
factor and activation energy were defined as uncertain
parameters:

Residual equations and component balances:

Additional component balance:

Residual equations and energy balances:

where additional index u is defined for NC vertex points
and the nominal point.

Optimal outlet point by Legendre polynomials:

,
, (29)

Continuity conditions:

706 Acta Chim. Slov. 2007, 54, 700–712

Ropotar and Kravanja:   Development of a Mathematical Model for the Dynamic Optimization   ...

(26)

(27)

(28)

(29)

(30)

(33)

Equal distribution of finite element lengths:

(FMOV-NLP)

(31)

(32)
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where Du is the demand and reactor volume (Vr) is the lar-
gest volume of reactive mixture at all critical vertex points
(Vu), eq. (33). Note that the objective function is approxi-
mated at the nominal point indicated by superscript N.

All the developed models were solved using a
GAMS/CONOPT solver for NLP and a Mixed Integer
Process SYNthesizer (MIPSYN), the successor of
PROSYN-MINLP,18 for MINLP dynamic problems.

2. 2. MINLP Synthesis of Reactor Networks
in Overall Process Schemes
The three-step superstructure approach was applied

for MINLP synthesis of a reactor network in an overall
process scheme:
– definition of the reactor network superstructure within a

process scheme,
– MINLP model formulation,
– solution of the MINLP problem.

2. 2. 1. Reactor Network Superstructure Within 
a Process Scheme

The superstructure by Ir{i~-Bedenik et al.13 was ap-
plied (Fig. 4a). The reactor/separator superstructure com-
prises a sequence of PFR/continuous stirred tank reactors
(CSTR) with side-streams and intermediate separators at
different locations. Each PFR consists of a train (Fig. 4b)
of several differential non-isothermal elements.

2. 2. 2. MINLP Model Formulation

In the next step, an MINLP model was developed
for a given superstructure. Each segment was modelled in-
dividually and different variations of model for PFR were

and a comprehensive library of models for basic process
units and interconnection nodes, together with a compre-
hensive library of basic physical properties for the most
common chemical components were developed, in order
to facilitate the modelling and solution procedure.

Sensitivity analysis can be performed and ER can be
constructed during the solution step. If in the AR, techno-
logical criteria such as conversion, selectivity or yield are
drawn in a concentration space, we call such regions
CAR. In order to reflect economic criteria, annual profit
or annual cost can be plotted vs. reactor volume, retention
time or some other variable, for different reactor systems.
ERs can thus be constructed and their boundaries identi-

developed in analogy to the described dynamic models of
a batch reactor. It should be noted that so far only MINLP
model formulation for PFR trains with OCFE having fi-
xed finite elements has been used because of better ro-
bustness of NLP with fixed than with moving finite ele-
ments.13 The optimal number of elements was selected
during MINLP optimization. Simultaneous heat integra-
tion was performed by Yee’s model.19 The overall model
is highly nonlinear and nonconvex.

In this work the MINLP model for PFR trains was
converted into an NLP model with moving finite ele-
ments, in order to reduce the combinatorial burden. Since
the optimal length is now located at the end of the finite
element, some equations become linear and, since the se-
lection of the optimal final element is avoided, the combi-
natorial burden is significantly reduced.

2. 2. 3. Solution of the MINLP Problem

In the final step, the developed MINLP model was
solved using a modified OA/ER algorithm,18 which is an
extension of the OA algorithm8 and is implemented in the
MIPSYN process synthesizer, the successor of PROSYN-
MINLP.18 MIPSYN enables automated execution of si-
multaneous topology, and parameter optimization of the
processes. Optimization of each NLP subproblem is per-
formed only on existing units, rather than on the entire su-
perstructure, which substantially reduces the sizes of the
NLP subproblems. An NLP initializer, model generator

Figure 4: a) Superstructure of allyl chloride problem. b) Train of
differential segments in PFR.

a)

b)



mately 10 K’s lower than the MINLP temperature profile,
leading to significantly longer optimal time (173.65 vs.
139.85). It should be noted that Big-M model formulation
was used in the case of MINLP.

Time-dependent profiles were obtained as a result
of dynamic optimization. The concentration profiles
are shown in Figure 5 for that NLP with moving finite
elements in Table 2. It can be seen how concentrations
of B and C increase and concentration of A decreases
with time.
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In addition, sensitivity analysis was performed for
the batch reactor. Temperatures were taken as varying
parameters and, as a result, curves for the selectivity of

fied using the most economically-optimal reactor sys-
tems.

3. Results and Discussion
3. 1. Example 1 – Dynamic Optimization 

of Batch Reactor
A motivating example was modelled, as described in

2.1., and solved with GAMS, using data shown in Table 1.

3. 1. 1. Deterministic Dynamic Optimization 
of a Batch Reactor

Table 2 shows results for NLP and MINLP models
with fixed finite elements and NLP and MINLP models
with moving finite elements. The last two columns outline
NLP and MINLP solutions obtained by considering ap-
proximation error tolerance ε = 10–3.

Comparison between three different MINLP model
formulations is given in Table 3. It can be seen that, when
fixed final elements were used, the tCPU needed for sol-
ving 11 major iterations is comparable with Big-M and
CCH formulations, while against ACH formulation it is
somewhat smaller. A slightly better solution was found
with Big-M formulation; otherwise the results are very
similar.

It can be seen that the solutions are very similar:
small differences occur in temperatures, total optimal ti-
me, and profit. However, the CPU time (tCPU) for solving
the NLP model is significantly smaller than for the
MINLP because 6 major MINLP iterations have to be per-
formed in order to obtain an optimal solution. However,
annual profits obtained using the MINLP model are so-
mewhat grater than for the NLP. It can be seen, moreover,
that the NLP model with moving finite elements requires
somewhat less CPU time than the one with fixed final ele-
ments. With 50 finite elements, the MINLP and NLP mo-
del were able to tolerate an approximation error tolerance
of less than 10–3. When approximation error tolerance is
explicitly considered in the model, the value of the objec-
tive function is, as expected, somewhat smaller. Both so-
lutions are very similar for almost all process parameters.
The only difference concerns temperature profiles where
the temperature profile from the NLP solution is approxi-

Table 1: Data for example 1.

Data R k0 ∆∆rHA ∆∆rHB ρρ Ea,A Ea,B cp V
Value 8.314 32500 50 50 700 46000 53000 1.5 0.8
Unit J (mol K)–1 (mol s)–1 kJ mol–1 kJ mol–1 kg m–3 J mol–1 J mol–11 kJ (kg K)–1 m3

Table 2: Comparison among different models.

model NLP MINLP NLP NLP (εε = 10–3) MINLP (εε = 10–3)
(fixed FE) (fixed FE) (moving FE) (moving FE) (fixed FE)

cA
opt /mol L–1 0.101 0.101 0.101 0.101 0.101

cB
opt /mol L–1 0.605 0.605 0.605 0.607 0.605

cC
optmol L–1 0.094 0.094 0.094 0.092 0.094

Topt/K 369.1 369.3 369.3 369.2 369.3
topt/s 142.55 138.69 139.95 173.65 139.85
Z/k$ 36.996 37.024 36.998 36.574 36.999
tCPU/s 11.46 244.48 7.07 33.96 337.88

Figure 5: Concentration profiles for example 1.
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3. 1. 2. Flexible Dynamic Optimization 
of a Batch Reactor

A flexible model (FMOV-NLP) was applied for un-
certain parameters: inlet temperature, inlet concentration
and demand, and in addition for the pre-exponential fac-
tors and activation energies of both reactions. Values of
uncertain parameters in vertex and nominal points are gi-
ven in Table 4.

A deterministic model (DMOV-NLP) was applied
for the deterministic design (Table 5a) and a flexible mo-
del (FMOV-NLP) for flexible design with 3 (cA

in, Tin, D in
Table 5b) and 6 (cA

in, Tin, D, k0, Ea,A, Ea,B in Table 5c) un-
certain parameters combining into 8 and 64 vertex points,
respectively.

It can be seen from Table 5 that profit from the fle-
xible solution is, as expected, somewhat lower because of

(Big-M, CCH, and ACH) were applied for the process
superstructure of Fig. 4a and solved by MIPSYN where
the PFR trains (Fig. 4b) are represented by the i)
MINLP model with fixed finite elements, and the ii)
NLP model with moving finite elements. The objective
is to maximize net present value (VNP) for a period of
ten years. The results until 11 major iterations are given
in Table 7.

a higher investment costs for an optimally over-sized reac-
tor. Higher reactor volume does not mean higher produc-
tion of B, since it is limited by the current values of chan-
geable product demand, considered as an uncertain para-
meter. However, the reactor has to be over-sized in order
to satisfy higher demand or other deviations. When the ki-
netics of the reactions is also considered as uncertain, it
has a significant influence on the reactor volume, which
doubles in order to tolerate the specified deviations of un-
certain parameters. If tCPU are compared, it can be seen
that flexible optimization increases the required computa-
tional effort, especially in the case of 6 uncertain parame-
ters with 64 vertex points where an hour and a half of
CPU time was required.

3. 2. Example 2 – The MINLP Synthesis 
of a Reactor Network in the Overall
Process Scheme
Using the superstructure approach, as described in

2.2., a process synthesis example regarding the produc-
tion of allyl chloride was used, with basic data as shown
in Table 6. A description of the process is given elsew-
here.13 All three different MINLP model formulations

Table 3: Comparison among three different model formulations.

Process MINLP formulation
parameter a) BIG-M b) CCH c) ACH

(fixed FE) (fixed FE) (fixed FE)
cA

opt /mol L–1 0.101 0.101 0.101
cB

opt /mol L–1 0.605 0.605 0.605
cC

optmol L–1 0.094 0.094 0.094
Topt/K 369.3 369.3 369.3
topt/s 138.69 139.85 139.85
Z/k$ 37.024 36.999 36.999
tCPU/s 627.26 639.21 844.09

Figure 6: A trade-off between selectivity and production rate.

Table 4: Values of uncertain parameters in vertex and nominal points.

Parameter cA
in/mol L–1 Tin/K D/t d–1 k0/s–1 Ea,A/J mol–1 Ea,B/J mol–1

θ LO 0,6 360 1,4 27500 43000 50000
θ N 0,8 380 1,9 32500 46000 53000
θ UP 1,0 400 2,4 37500 49000 56000

Table 5: Results for deterministic and flexible design with 3 and 6
uncertain parameters.

Process Design
parameter a) deterministic b) flexible c) flexible

3 uncertain 3 uncertain
parameters parameters

cA
opt /mol L–1 0.082 0.082 0.082

cB
opt /mol L–1 0.624 0.624 0.624

cC
optmol L–1 0.094 0.094 0.094

Topt/K 345.8 345.8 345.8
topt/s 411.08 411.36 411.55
Vr/m3 1.069 1.275 2.380
Z/k$ 42.505 42.488 42.426
tCPU/s 3.34 193.36 5745.77

B and the production rate were obtained, respectively
(Fig. 6).



As can be seen from Table 7, tCPU decreased when the
NLP model was used for PFR trains except in the case of
CCH formulation. This is clearly emphasized in the case of
ACH model formulation where tCPU using the NLP model for
PFR trains is more than two times smaller than when using
the MINLP model. In the case of Big-M formulation, a better
solution was found using the NLP model for PFR trains. 

3. 2 . 1. Sensitivity analysis and definition 
of an Economic Region:

Any change in VNP vs. reactor volume was investi-
gated using sensitivity analysis. One-parametric MINLP
optimization, with reactor volume as varying parameter,
was performed directly for all three model formulations,
in order to construct ER (Fig. 7). The obtained optimal
structure and VNP for each volume, is given in Table 8. The
best solution among all three formulations is marked for
each volume. All these best solutions plus the best one
from Table 7 define the border of ER in Figure 7.
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Figure 7: ER for allyl chloride example.

Table 6: Data for example 2.

A: propene; B: allyl chloride; C: 1,3-dichloropropene; 
D: 1,2-dichloropropane

Table 7: Results for allyl chloride example.

Reaction k0 Ea/J mol–1

A + Cl2 → B + HCl 1.5 10–6 s–1 66271
B + Cl2 → C + HCl 4.4 108 s–1 99410

A + Cl2 → D 100 L (mol s)–1 33140

MINLP PFR train model formulation
formulation MINLP NLP

VNP/k$ tCPU/s VNP/k$ tCPU/s
for 11 it. for 11 it.

Big-M 81,924 84 82,332 51
CCH 82,068 165 81,979 382
ACH 81,769 235 81,780 101

Table 8: Optimal structure for all three formulations.

Binary number: 1 – PFR-I, 2 – CSTR-I, 3 – PFR-II , 4 – CSTR-II, 5 – PFR-III, 6 – CSTR-III

Big – M CCH ACH Border of ER
V VNP /k$ Optimal VNP /k$ Optimal VNP /k$ Optimal VNP /k$ Optimal

structure structure structure structure
3 23,534 2,3 78,512 2,3,5 58,430 2,3 78,512 2,3,5
3.5 77,328 2,3,5 78,317 1,3 74,051 2,3 78,317 1,3
3.75 69,787 1,4,5 78,304 2,4,5 46,242 2,3 78,304 2,4,5
4 55,998 1,4,5 79,854 2,3,5 76,034 2,4,5 79,854 2,3,5
6 81,870 1,3,5 80,708 1,3,5 80,137 2,4,5 81,870 1,3,5
7 81,503 1,3 80,479 2,4,5 79,283 1,3,5 81,503 1,3
8 79,489 1,4,5 79,036 1 80,318 2,3 80,318 2,3
9 81,318 2,3 80,370 2,4,5 80,772 2,4,5 81,318 2,3
10 81,879 1,3 80,752 2,3 79,845 1 81,879 1,3
12 80,331 2,3 80,876 2,4,5 81,361 2,3 81,361 2,3
14 80,639 1 80,973 2,4,5 81,744 2,3 81,744 2,3
20 82,053 1,3 81,160 1 82,295 1,3 82,295 1,3
30 81,742 2,3,5 82,063 2,3,5 82,264 1,3 82,264 1,3
40 81,761 1 81,746 1 82,150 1,3 82,150 1,3
49 82,332 1,3 / / 82,332 1,3
50 81,739 2,3 81,850 1 82,227 2,3,5 82,227 2,3,5
100 81,919 1 81,787 2,3 82,043 1,3 82,043 1,3
150 82,028 2,3 81,840 1 81,745 1,3 82,028 2,3
200 81,830 1,3 81,686 1 81,562 1,4,5 81,830 1,3
250 81,529 1 81,477 2,3 81,665 1,4,5 81,665 1,4,5
300 81,572 1,3 81,420 1 81,438 2,3 81,572 1,3
350 81,112 1,4,5 81,105 1 81,027 1,3 81,112 1,4,5
400 81,384 2,3 81,164 1 81,350 2,3 81,384 2,3
450 81,022 1 80,954 1 80,933 1 81,022 1
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Note that the best solution was found when using
MINLP optimization and Big-M formulation (Table
7), and is marked in Figure 7. It is interesting to note
that optimal structures differ significantly from one
volume to another. This is most likely due to strong
nonlinear and discrete interaction between the reac-
tion, separation and utility subsystems in the process
scheme.

4. Conclusions

The main goal of the research was to obtain robust
and efficient NLP or MINLP models, suitable for solv-
ing different applications ranging from dynamic opti-
mization of batch reactors up to the MINLP synthesis of
reactor networks with PFR reactors, in overall process
schemes.

An efficient four-step numerical solution procedure
was proposed and NLP and MINLP models were devel-
oped based on motivating examples where different
OCFE schemes were applied in order to develop robust
and efficient reactor models. Furthermore, different mod-
el formulations were studied in the case of the MINLP
model.

Two examples were solved. The NLP model with
moving finite elements was the most efficient in the case
of a batch reactor’s dynamic optimization because nonlin-
earities were reduced and CPU time also decreased. In or-
der to handle uncertainties, the deterministic NLP model
was extended by flexibility constraints. A flexible model
was obtained in this way. This model can tolerate devia-
tions in process conditions and in the kinetics of the reac-
tion. In the case of the MINLP model, Big-M formulation
was the most efficient because it comprises the smallest
number of variables and equations. 

Because the NLP model with moving finite ele-
ments was the most efficient in the dynamic optimization
example, it was also applied to the process synthesis ex-
ample of allyl chloride production, for modeling the PFR
trains. When the NLP model was used for PFR trains,
rather than the MINLP, CPU time was decreased, espe-
cially in the case of ACH. Sensitivity analysis with one-
parametric MINLP optimization was performed for all
three formulations and the border of the ER was con-
structed directly from the best solutions. The ER indi-
cates high variations for the reactor system’s optimal
structure versus the reactor volume over the whole range
of the reactor’s volume. On the other hand, the VNP
changes rapidly only at smaller reactor volumes. At larg-
er volumes, the border of ER becomes more smooth indi-
cating the existence of many similar non-optimal solu-
tions.

Optimization of a complex industrial application is
presently under way based on the experience gained from
this research. 
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y Binary variable; /
Z Profit; k$
∆a One-dimensional variable; /
ε Error tolerance; /
ρ Density; kg m–3

Φ Energy flow rate; kW
Superscripts

k Solution
LO Lower
N Nominal point
opt Optimal
UP Upper
Subscripts

A Reactant A
B Product B
C By-product C
heat/
cool Heating/Cooling
i, j, k Collocation points
l Finite element
n Points for Gaussian integration formula
p Product
preheat/
precool Preheating/precooling
r Reactant
s Steam
u Vertex point
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Povzetek
Razvili smo u~inkovit model za reaktor, ki je primeren za modeliranje {ar`nih in cevnih reaktorjev. Uporabimo ga lah-
ko za nelinearno (NLP) dinami~no optimiranje {ar`nega reaktorja kot posami~ne procesne enote ali za me{ano celo{te-
vilsko (MINLP) sintezo kompleksnih reaktorskih omre`ij v celotni procesni shemi. Da bi pove~ali robustnost in u~inko-
vitost modela, smo prou~evali razli~ne sheme in strategije za ortogonalno kolokacijo kon~nih elementov in v primeru
MINLP modela tudi razli~ne modelne formulacije. Dobili smo deterministi~en model z znano kinetiko za {ar`ne in cev-
ne reaktorje. Raz{irili smo ga za pogoje nedolo~enosti v procesnih parametrih in reakcijski kinetiki v primeru, ko je ki-
netika neznana. Razli~ne variante razvitega modela smo uporabili na dveh primerih. Prvi primer je bil motivacijski pri-
mer dinami~nega optimiranja {ar`nega reaktorja in drugi MINLP sinteza procesne sheme proizvodnje alilklorida. NLP
model s pomi~nimi kon~nimi elementi se je izkazal za najbolj u~inkovitega tako pri optimiranju {ar`nega reaktorja kot
pri cevnem reaktorju v procesni sintezi.

Nomenclature
An Coefficient for Gaussian integration formula, /
c Concentration; mol L–1

cA
in Inlet concentration of reactant A; mol L–1

C Cost coefficient; k$
cP Specific heat capacity; kJ (molK)–1

D Demand of the product; t d–1

Ea Activation energy; J mol–1

FB Production rate; mol s–1

h(x) Equality nonlinear constraint function; /
∆rH Reaction enthalpy; kJ mol–1

k0 Pre-exponential constant; (mols)–1

M Molar mass; kg kmol–1

Nb Number of batches; /
NC Number of vertex points; /
r Reaction rate; mol m–3 s–1

R Universal gas constant; J (molK)–1

SB Selectivity; /
t time; s
tCPU CPU time; s
ttot
opt Total optimal time; s

T Temperature; K
V Volume; m3

VNP Net present value; k$
x Vector of variables; /
xf Vector of arbitrarily-forced values; /
xk Vector of solutions; /


