
A SURVEV OF MICROPROCESSOR ARCHITECTURES INFORMATICA 2/86
FOR MEMORV MANAGEMENT

B. Furht
Department of Electrical and Computer Engineering
University of Miami, Coral Gables, Florida 33124

V. Milutinovič

School of Electrical Engineering
UDK: 681.3.325.6.08 Purdue Universitv, West Lafayette, Indiana 47907

This paper presenlt an overviem of current microprocetstr archilectvree tvhich atip-
port memory manogement. Basic requiremcnti for a proctitor to eupport the memorp
management are defined, and the hierarehicall]/ organized memory ie intrddueed. Several
addrett translation »chetnet, euch at paging, eejmcntation, and eotnbined
paging/ ttgmtntation are detcribed, and thtir imptcmentation tn cvrrent microproccsaort
ie diicussed. A »peeiai tmphasit ie givtn to tht applitation of tht aeeociative eache
memorji. Singlc-tcvel and muiti-lcvtl addrcst mapping Bchemei are analyztd and eom-
partd. Fvrthermore, tke paper discussee the eapabilities of cvrrcnt mieropraceisore to
evpport virtual mtmorp, tvhich ineludcs obilities to rteognhe an address /ault, to abori
the czceution c/ the evrrenl inttnetion and save neccisarg informalion, and the abilitp to
rtttort tht taved statc atid resume nermal processing. Tvio methods to restart (he inter-
rupted inttruetion, itutruetion restart and inttruction eontinualion, are evalaated, and
thtir implcmcntation in cnrrent mieroprocessora u discvsted. Proteetion and teearitp
rcquircmcntt art defined, dnd two proteetion tchcmet, hicrarehical and non-hkrarchicai,
are evaluated.

I. INTRODUCTION
New gencration 16-bit and 32-bit microprocessors are extensively used in multiuser

and multjtasking environments. Tfaerefore, there is an. iocreased demapd for the sup-
port of memory management. Furthermorc, as shown io Figure 1, the capacity of pri-
mary and secondary memories in advanccd microprdcessors is iocreasing, which in turn
requires an increased virtual memory space, as well as more sophisticated virtual
nemory management mechanisms.

In the 16-bit microprocessor arena, the techniques applied to solve memory
management problems are relatively inadequate, and inefficient. At the 32-bit level, a
more standardized approach can be found, and significaDtly more sophisticated srchi-
tectures for memory management bave been designed. The paper evaluates various
architectures for memory management and virtual memory support, and their imple-
mentations in existing microprocessors. Several important issues are addresscd, such as
selection of a virtual. memory organization, multi-|evel memory mapping schemes, asso-
ciative cacbe memories applied to address translation, virtual memory support tecb-
niques, dynamic)nemory allocation algorithms, as well as prptection and security tech-
niques.

Tbe implementatioD of these tecbniques in eurrent 16-bit and 32-bit microproces-
sors, sueh as Intel 286, 386, and 432, Motorola 68010 and 68010, Natiooal 32032, and
Zilog Z80.000, is discussed. .

Tbe paper is organized in eight sections. Tbe Section 2 discusses tbe requirements
for a processor to support memory management. Two main strategies applied in
current microprocessors are presented: memory management unit (MMU) on-the-CPU
chip versus off-tbe-CPU-cbip. Two memory addressiog schemes, lioear and augmented,
are evaluated. Section' 3 deals witb. tbe various address translatioD tecboiques, such as
paging, 8cgmentation and coinbined paging/segmeBtation, and their hnplementations io
cufrent microprocessors. Both single-level and mulli-level address mapping scbemes are

d. Tcchiiiques to support virtua! address mechanism arc prcsented in Section
4. The implemeatations of two methods, vvhich resume operation arter en addrcss fault
is detected and oorrected, are discussed. Soetion o describes the securilv aad protoction
t"rhniq'j?s applii-d in rurrent microproccssors.

Figure 1. Addressing range needs [54]

2. MEMORV M A N A G E M E N T REQUIREMENTS

Advahced microprocessor svstem arcbilecture, which is able to support memorv
management, uses tbe bicrarcbically structurcd m-.'inory svstem, as shown in Figure 2.

Thc memory svstem consists of lliree levels aad involves the maintaining of a largo
address spaeo based OD a.hierarchv of memorv dcvices, which differ in memorv capa-
citv, speed. and cost. At tbe first lcvel is the bigb-specd cache memorv, >vbich is tbe
most cxpcnsivc and, tbcrtfore of the lowest capacitv. At tht secood !evc! is the real
(primary) memorv, whicb is slo\ver, but less expansive than the cache memorv. Tbe

L

MA!N
PROCESSOR

DATA

CONTROl "~~

5^.
LOGlCAL

AODRESS

!

MEMORV
MANAGEMENT

UNlT

1

1
HIOH-
SPEEO
OCHE

h
PHTSICJM ir.

\ i
MAIN

MEMORV
BACKING

STORE

4 A
DRESS

Figure 2. Microprocessor system arcbitečture with tbree levels of l:icrarcbically
organized meniory to support memory manEgcmeai [30]

tbird level coosišts of largc capacitv storage dcviccs, such as disks, Mhich bo!d tbe pro-
grams ant! data that caLnot Gt in the first two Ievcis. \Vbec a proccss is to be run, ils
code ar.d data are brougbt into primarv or cache moniorv, where cacbe mcmory a'ways
boids the most ri'cen'!y uscd code or data.

In this hierarcbical mcmorv structure, the basic requirements of the mcmorv
managemcnt svstcm can bc specified as fo!lows:

1. abilitv to tr3Dslate addresscs and support dvnamif mc-morv allocatioc,

2. abilitv to support \irlual mcmorv, and
3. p.bility to provide memorv protection and securitv.

Tbere are two basic slrategies in creating tbc microprocessor svstcm architedutc
for mcmorv mabagcmcnt:

1. memory managcment unit is on thc CPU ehip, and

2. memorv manag?mcnl unit oll tbe CPU chip.

Both stratogifs, as wcll as tbe list of microproccssor systcms wliich applv thcm, arc
indicatcd in Figurir 3.

CPU VERSUS CPU MMU

Intel 285. 386
Inte) 432
Zilog Z80.000
Zilog Z800

MC68000/IO
MC68020
Z8001
Z8003
NS16000
NCR/32
W£32IOO

MC5845!
MC68851
Z8010
Z80I5
NS16082
NCR/32I01
VVE32101

Kigure 3. On-chip versus o!I-chip memorv maEagement unit

The main advantages of having tbc memory managemenl on the CPU chip are:

1. access time improvement, because there is no off-chip MMU-related delays,

2. maximum portabllity of operating systcm and applicalion programs, and

3. parts-couDt reduction.

On the other hand, the memory management on the CPU cbip requires additional
transistor count, vvhich could be invested iato oth>;r morc frequent!y used resourees.
For examp!e, the Motorola 68020, which applies rnemory maaagement ofT the CPU
chip, uses the saved transistor count to implement the instruction cache on the chip.

Acother important issue related to mernorj' mansgpment is selection of the
memorv organization scbemc. Basical!y, there are two tyj>es of memory organization
schemes: linear and segmeDled.

ln the 'inear addressing schtmes, addrcsses typically start from zero, and proceed
linearlv. The memory may later be structured, by software, at the level of address
traaslation.

In tbe segmented addressing scbemes, tbe programs are not written as a linear
sequcnce of instructions and data, but rather as modules of code and data. The logical
addrcss space is broke.n into scveral linear address spaccs, cach ot the specified length.
/Vn fffcctive logica! address is computed as a combiDatioo of the scgment number,
wbicb is a pointer to a block in memory, iind tbe segmcnt (•ffjot, whicb dcGucs the dis-
ptacement vitbin the segrnent.

Table 1 shows momory addressing scbemes appiied in various advanced micropro-
ccssors.

Note tbat Intcl aDd Zilog offer both segmented and linear addressing on their 32-
bit proccssors i8038G and Z80,000, respective!y, as software programmable options.

In gencral, a liiicar addressing scbeme is bettcr suited for tbe applications that
manii'ii!:itf large data structures, while the segmented addressing scbemc facilitates
prograinming,-ecabiing tbc programmer to structure softvare into segments. In addi-
tion, tbe segmented addressing schcme simplifies prolection and relocation of objects in
m«nory. As &a exain|ilc oftbe segmented addressing scbcm?-, Intcl's i808C processor
eontaias fou^ l&-bit segment rcgisters, which point to four objects in tbe memorv: code,
stack, dala, and extra sogment (altcrnate data), as shown io Figure 4a. The address
calculation mecbanisin, wbich produees 20-bit phvsica! address for tbe i80SC, is sbovvn
in Fig. 4b.

3. ADDRESS TRANSLATION TECHMQL!E£
Rc-gardlcss of tbe memory organization scheme, tbe prccessor must bave aa

address translation mccbanism to baodle virtual memorv. Tbe address translatjon
mechanism also provides a method of protecting memory objects.

Th- .-"idress translation is a process of mapping logica! to phvsical memory

TABLEl
Memory addressing scbemes in advanced microprocessors

PROCESSORS

Intel
S0S6,S02SG,432
S03S6

Molorola
6S000, 680J0. 6S020

National
16032, 32032

Zilog
ZSOOO ramily
Z 80,000 .

ATkT
WE321OO

NCR
NCR/32

ADDRESSING SCIIEME

Linear

•

*

*

*

a

Segmccted

•
*

«
•

HOOVUA

HOOULte

pnocess

POOCKS
OATA
eioc«i

moccss
DATA
B l O C K l

cooc

DATA

COOC

O A t *

STACK

CATA

COOC SCCMCKT BASE

OATA SCCHEVT tASt

STACK SCCUCVT OAiC

t r r n A S t C M t W T B * s c

SEGULNTRLClSIČRS

CPU

cs

ss
Efi

«
OFKET j

SI3MSKT

1
v

ooool

7

1
fi

OfFSET
A0ORESS

I SECUEMT
AOORtSS

JO-BiT ?M
UtUOS*ADDHE5S

Figure 4 Segmentation end address cajeulatioD
a. Segmpnted addressing scbcme of tbe iSOSG [28]
b. Addrcss calculation in tbe iS0S5 pSl

addresses. The address translation mechanisrn divides the memorv iDto blocks, and
. then performs mapping of a block of logical addresses into a block of phvsical memorv
addresses. It a!lows programs to be relocated in the primary«memory. It also provides
the base for virtua! momory' svstem design, where tbe logical address space caa be
largcr than the pbvsical address space. The virtua! memorv mechanism a!!o\vs pro
grams to cxecute even vhen only few blocks of a program are in tbe primarv mcmory,
while the rest of the program is in the secondarv memorv (on the disk). Tbe other
important processor requirements for virtual nicmory support are discusscd in Section
4. Three basic address translation schemes are:

1. paging

2. segmentation, and

3. combincd paging/segmentation.

In tbe paging svstems, tbe primary memory is divided into fixed-size blocks
(pages). while in the segmentation systems, the blocks are of various size (segments), as
shown ID Figure 5.

Gencrally, tbe segments can overlap', vvhile pages cannot. so pages are usual!y of a
re!atively small size, compared to total memory. Typical page size is betweea 256 and
2048 bvtes, whi!e segments can be 64K bytes or more.

The paging/segmentation systems combine the features of botb paging and seg-
mentation addresaiug schemes. The segmentation part of tb? scheme rnanages virtual
space by dividing tbe programs into segments, whi!e tbe pagirg part manages physical
memory, wbich is divided into pages. Each segment consists of a numbcr of pages, as
sbown in Figure 6.

Selection of the address translation mechanism b:is a crucial impact on tbe
memorv managcment tcchDiques, whieh have to be implemected by the opcrating svs-
tem, to handle page br scgmcnt fetching, placement, and replacement. For example,
the paging address transiation svstem is wel! suited for page placcmcnt and replace-
mcnt, because all pages are of uniform sizc, while the segmeatation svstem needs more
complicated placemcnt and replacement algoritbms to matcb incoming segments witb
available memorv space in the segmentation svstems, a sejrrr.̂ nt must reside entireiv in
phvsica! (primarv) rnemorv in order to be exeeuted, because iL? minimum unit that can
be swapped is the segment itself. The availablc memorv space becomes thea frag-
mehted into manv small pieces, and there is.not enougb contijuous memory for storing
one large segment. Because of the fragmenlation problem a=:ociatcd with tbe segmen-
tation svstems, the paging systems are more ellicient witb r^pect to memory uliliza-
tion. In the paging sjstems, all pages ar<- of eqyil size, th1:'. pag?s can be swapped
v.ithout loaviug unusable fragmentcd spaces. Also, it is aot ncccssary to swap in nll
pages of a program at once, in order to execute it, Vut onlv the pagcs requircd
("demand paging"). Tbis significantlv reduces tbe swapping tl.-ne.

For all thcse reasons, (be demand paging address tran?!ation sjstcm scems tr> be

VIRTUAL (SCC0NDARY)

PAOE

MAPPINO

MECHANISM

«. Paglng system

PROGRAM-1

PROGRAM-2

b. Seamenlilion syslom

SEOHENT
MAPPING

MECHANISM

PRIMARY Mf.MORY

1

PROORAM-1'

PR06RAM-2/

i

11[

PAGE 0

PAGE t

PASE 2

PAGE 0

PA6E 1

PA6E 2

PA6E 3

VA
h/

PA6E FRAHE 0

PA6E FRAHE I

PA6E FRAHE 2

PA6E FRAHE 3

PAGC FRAHE A

PAGE FRAME 5

PAGE FRAHE 6

Figure S. Address translation schemes
a. paging

• b. segmentation'

VIRTUAL (SECONDARY)
MEMORV

MAPPING
MECHANISM

PR!MARY MEMORV

!—I

Pcgs 0
--SE6MEKT B

Pege

I - SFGfiENI C
Pegc 1

Pege 2

ojs 3

| PAGE

| PA3E

PAGE

?AQE

PAGE

PAGE

FRAME

FRAME

FRAME

FRAHt

FRAME

FRAME

0

1

3

<

5

6 |

PAGE FCAME 7

* PAGE FfAME 8 I

Figure 6 Address translation by eombined paging and scgmentatioD
(paging/segmentation)

tlie way to go. As a nialter of fact, a!l advanced .:2-bit prccessors, as \vcll as sever.il
!O-žjit processors, fullv »upport demand paging techniqut, which niay becomc a
standard address traaslation mecbanism in future microprocesoors.

Furtbe.-rr.ore, when one selects tbe address translation fcbeme (paging, segmenta-
tion, or combined svstcm), there arc two sdditiooal issues ubich should be addressed:

1. imp!enK-nta!ion o! the svlected addrcss (ranslation mechanism, and

l!. sclortioo of tbe uumbvr of maj)]>ing levcls

3.1 Implementation.of the address translatlon schemes

Regardless of tbe address translation organization, the iraplcmcntatioD raetbod is
always based on translation tablcs lorated in j)rimary mcmorv: page map tables (PMT)
iu thc pagiag svstcms, and segment rnap tables (SMT) in the segrrientatioa svstems
[10,11,14,16]. The table cntries contain inforrnation to trans!a(e tbe lo^ical into tlie
phvsical acdrcss, as »d l as additional data for protection pnrposes, and to support
p';i'cm(;-nt and rtplacemcnt algoritbms. A (ypical furmat cf s translation (able enlry is
sho«a in Figure 7.

As an exarnplf of tbc address translatioo irnp!'.'mc-Dt;i!i'..p., the virtua! addrcss of
ihe i2?6 proces^or consijts of a pair: segment selector and dL;p!acement v=(s,d). Tlie

RE5I0LNCE ACCLS5 RI0KT5
& PROTECTION

SUPPORT FOR
REPLACEMENT

PKYSICAt A0DRE55

Figur t 7. Tvpica! format of a page or segnicnt table cntry

scgmont sciector poinls to (!ie scgment dcscriplor in thc seg^ient map table, as shown
in Figure 8. The svgment d«.'scr plor rontains tho primarv mc.1 iory addrcss s', at wbicb
thc scgmciit begins. Tbe dispiaccnient d is adJed. to s" fcrming tbe real pbvsical
address, r=d+s ' , corresponding to the virlu.il addrcss y.

»CVCNTfOlOOICUADOKCU

{ MCfc»

V////////////A

Figure 8. Address (ranslatioD mechanism of tbe i2S6 [28]

Tbe descrihcd addrcss tranflation implemcntation metboi is Jinowo as direct map-
ping. Tracslating a logical address to a phjsical address, usiis dirert mappitig, requires
an additional momorv accoss opcration to obtain segmont (or page) b.isf addrcss, and
tbcrcfore the use cf direct nmpping can cause the compuier sv-stpm to run programs at
IOWCT spood. Tbcre aro sevcral solutions applicd in modcra mirroprocessor nrcliitcclurcs
to ovcrcome liiis problcm. Thcse solulions are distusscd bclo«.

ID thc IntePs i2S0 processor slandard, four sogmcnt regijtprs are ex(cDdcd \vith tbe
corr?5pouding four 4S-bit sogmcnt dcšcriptor cache rcgisters, ns sbown in Figure 9
(20,28).

SegmcDt regislcrs crc loadcd by the program, wbi!» the CPU loads tbc explicit
cache r«?gis!ers, uhkh are invisible to programs. Explic:t cacbe speeds up tht opcration
by clirninating thc nced to refcr to a descriptor tab!e for čvcrjr m^inorj refcrcnce
instruction. Loadinj tbe explicit cache is pcrformed io four steps:

SEGMENTSELECTORS
ACCESS SEOMEVT SEGVENT
RIGMTS BASEADOSESS SSE
7 CI3 CU 0

cs
os
ss
ES

SEGMENTREGISTERS
(LO/kDED BY PROGRAM)

SEGVENT DESCRIPTOS CACHE REGISTERS
(CCU10ADSTMIS CXPL>t:r C/-CHE WHICH
IS INVI5I3LE TO PBOCfAMS

Figure 9. Descriptor data type in the i28S [2S]

. 1. Program places a selector in tbe corresponding sepnent register.

2. Processor adds the selector index to the base address of the descriptor table,
to select a descriptor.

3. After the processor verifies segment access rigbts, it copies tbc descriptor to
the dala segrnent register in cache.

•i. Thc processor uscs the descriptor information to check segnient tvpes and
limits, as well as to form the cffective address.

The doscribed tcchnique based OD exflicit cacbe registers speeds up tbe direct
mapping, biil stil! is not efficient enotigh, tecause it reqv;:res ciche loadiog vihenever
coniro! is transfcrrtd from one to anolber sej ment of tbe ?3me t; pe.

A much more sophisticaled solution is bssed on a speria! associative cache (32 to
64 locations), \vhich holds tlie most recent!y used se! of trf.p.slatioii values. Then, tbe
translation prucess is perfnniM-d in (he follov.ing steps, as sbc«n in Figure 10:

1. First, thf virtual address received from the CPU is searcbe<i tbrough the
cac!)'j. lf tbe addrcss matches with oc; of t!ie cacho cntri'.'s, tben the
corrcsponding phvsica! address stortd in the ca:he is nsed by tbe CÎ L' to
acccss thc primarv rncmorv directlv.

2. If tbe rercived virtual address does.not match witb cache entries, but the
pagi* or segrnent is in the primary memorv, tben tbe pbvsica! addrcss wil! be
fctchtd from tbe translation tables locatcd ic tbe primary rnemory, and
then stort-d in ihe cache. Tbcn, the CPU will access tiie required phvsical
nicmorv.

3. Fina!ly, if the page or segrnent is not iti tht prirnarv nifmorv, it rnust be
first swappt'd from the sccondary mcmov ialo thc prim.iry inuniorv. The
translatiou talitcs must be updated, and thc pl.vsicil memory address will
be fctched• from thc translation t.ibles isto tbe cacbe.

Tbe associp.tive cache memory is usuallv organized as a Translation Lookaside
B:"?r (TLB). \Yhen tbe address translatioD mecbanism reccives a logical addrtss,
<••• ?:y «n:ry in tlie TLB is searched siniultaneouslv for the logiral address.

Figure 10. Address translatioa mechanism using the tssociative cache memorv [10]

A nuinber of sirnulalion studies bave proven that tbe small associative cacbe
signiGcantlv spceds up Ihc svstem oporatioa, because (he bit ratio of Gnding the addrcss
in the cache riches 9S9£. Manv recent processors, (such as .\'o'toro!a 6S000 fap.iilv vith
its MC58-15I \ 'Mt' , Inte! 803S6, Zilog ZSOOO fami.lv aad ZSO.OOO, National NSlSOOO
familv wi'.b its NS1G0S2 MN'U, atsd others) bavc implemented tbe addrcss trnaslation
schenic by using tbe TLB metbod [5,33,34,35,37,50,51.3«]. Although trans!ation
mechanisms ba.<.od c>n the TLB mctbod varv in comp!exity, tbev can be cl.issified in two
basic groups: address-acccs^able TLBs, and cODtcnt-addressable TLBs. In thc addross-
accessable TLB app-roacb, a logical address Celd idenliGes the register in the- TLB tbat
holds thc phvsioal base addrcss. As an example of lh:s tc:hniquc, (be ZSCO \vith on-
chip MNil" is sliciun in Figure J! [33j.

Tbc virtual adilrrss consists ot a 4-bit TLB pointer, and a 12-bit offsct. The Tl.B
pointer si-l'-cts one of i\<.<- ll> tra:is!atioii rcgisters of tlip TLB. Then, tbe 24-l-it physk-al

M
10

16
PAOE BASE
ADDRESS
RESISIERS

15
10GICAL ADDRESS

ri

15

0

REGISTER INOEX j PAGE OFFSET

4 blts !2 blts

15 4 3 0

PAOE FRAME
ADDRESS

PROTECTION
FIELO

23
PHVSICAL ADDRESS

PHVSICAl MEMORV

PAGE FRAME ADDRESS) OfFSET

Figure II. The Z800 address translatioD based on the address-arcessable TLB [33]

32 conlent- j
acMressable i
registers

LOGICAl ADDRESS

16 bits 7bi ts

| i | . . MASic . J O j Determines
T| segment sire

ASSOCIATIVE
V LOOKUP

. . . | o SEGMEK T BASE ADDS£S5

COMPARISON B!TS Sf6MENT BASf ADDSES3

Figure 12. Content-addressable TLB in the MC58451 NiXfU [44]

address is formed, as a selccted 12-bit page base address from the TLB, concateDated
with the 12-bit oftsct.

Tbe addrcss-acccssable TLB technique is not pracuca! for large systems, because
aeccsfing tbe TLB by addresscs recjuires a segmenl rcgister for each logical scgmcnt or
page tbat can be relocated.

Thc contcnt-addrcssable TLB is more suitablc for large svsiems. Tbis method has
been applied in scvera! microprocessors, sucb as the MC6S451 ,\L\fU, Z80I5 PMMU
Inte! S0336. and \ S IG0S2 M.\JU. To illustrate this meibod, Figure 12 shows the
contcnt-addressable TLB aj.plied in the MC6S431 MNRJ.

PR00R.V1 RCOUCSTS ACCtSS
I 0 S £ W £ I (

OS IN5IRUCTS CP'J
TO RlAD TKE PAOt

fROrlTHE S.1

?Ri.-MSY MEHORT
REPlACtMfNI
MCORITKn

•"Relurn lo !hs feulte: Instrumon

Figure 13. Tbe Do\v-chart of a pa^ing virtual memorj- svstem witb an associative
cache niemorv

The MNIU receives a logical address (23 bi's), and the ijiask register masks the low
order bits to determine the segment size. Then, the MNfl' compares the rest of the
most signiSeant bits- wjth the comparison field values of 32 content-addressable regis-
tcrs. If a match is found, the MMU performs address translation. If tbere is no matcb,
the NtNfU generates a fault condition, and activates a trap rouline. The trap routine
wi!! update the TLB from.translation tables stored in primarv memory.

The flow-chart in Figure 13 illustrates the ne?essary operations iu a paging-based
virtual mcmorj- svstem \vith an associative cacbe memorv for recent!y used pages.

The virtual rnemorv is activated whenever prograrn re\j'j«ts aa aecess to a page.
Tbe flow-chart in Figure 13 indicates three different control patbs:

1. whcn the pagc descriptor is found in thc associative cache,

2. when the page dcscripfor is not found in thc cache fcacbe miss'), but the
page is in the primarv mernory, and

3. \vben the pagc dcscriptor is uot foiind in the associative cache, and thc page
is not iri the primary memory ('page miss'). Tben,.the address fault ban-
dlir.g routine is activated.

Ia addition to address translation mccbanism, the MCC8151 MMU supports
dvnnmic mcmory allocation. Tbe dvnamic memorv allocauon mechanism is able to
allocate the memory to a process, vshile it is running. The Binary Buddy systcm, an
algorithm for d_YDamic rnemory allocation, is implemented in the MC'68451. The algo
rithm dividcs the entiri- phvsical address space into buffers. tbc size of whicb varics
frorn 256 bvtes !o 25GK bytes (in thc MC68451). Tbc algorilhm mairtains thesc bufTcrs
b\ using the buffer lists for all sets of bufTer:; of tbe same size. as well as buffer descrip-
tors for cacb buder independentlv [52].

\\ hen a mcinory request is reccived, thc algorithm s-earches (hrough the list of
available bufTors in ordcr to fmd the best fitted buffer. If the best-fitled bufler is not
available, tbe searcb process is continued for the next larger size buffer. Tbe Dow-chart
of tbe Binary.I3uddy algoritbm is sbown in Figure 14. •

A detailcd description of the algorithm, as wc!l as additional issues relatcd to it,
are discussed in [45,48,52].

3.2 Single-level verBus multi-level address mapping

Tbe second issue closclj- related to addrcss translation architectures is dealing with
thc number of mapping levels in address translation schenvjs. Tbe conventiocal
address mapping schcme consists of just one mapping level, such as in most of the 1&-
bit processors (i28G, Z8010, and Z8015 MMUs). Ob tbe other band,- almost all 32-bit
processors use muHi-level mapping schemes, which brings some nevv features in the
meniorv managcniont.

Thc basic advantagos of multi-lcvcl rnapping scbemes vcrsuš singk^-kvel mapping,
fchcmes can be summarized as fo!lows:

MEHOar RfOCEST

SCARCH or TH[nznom
BUffER ATAILABU TABLE5:

(AN APPROPRIAIELV

SIZE Burrcp.)

8UFfr»

:

Ho

StARCH FOR THE KEXT
l.ARG£R BUFFER

AilOCATlN« BUrFER
TO tHE RIOMSCTINO TASt:

No
SPLII IHE LARGE

8UFFER ISTC TW0 PIECtS

.ONt PIECt AUOCATE
TO !HE R[(X)fSIING r «
.ANOIHfR PLACt ON

IHE MErl!«r AVAILABLt

usr

i H.

IPUT RCOUESt IN A OUtUE

Figure 14. Binary Buddv algorithm for dynamic memorv allocation

HOKtKi SEICCTOR

Figure 15. Two-level address mapping scheme in the i432 processor [27]

1. tbev provide more sophisticated protection mečbasism,

2. tbey arc able to accommodate !arg>r address spaoe, and

3. they provide page sharing.

Several multi-level mapping schemes are evaluated bclow.

Intel's 1432 processor iises tvvo-level mapping in order to providc more sophisti-
cated protection mochanism, as shown in Figure 15 [27,40,47].

The segment scleetor register poinls to .an entry of the access segment, vihere the
access rights are stored and are thus associated witb program module§. Tb<? fl
descriptor contains the pointcr to the segmect table, and fina!!y the scgnHMit d
contains a pointer to the beginning of the selected segmenl in the primary memorj".
Because the access rights are stored independently of the ieg.7i°nt descriptors, several
modulcs can share the same segment, each witb different aecess,rights to it. In Figure
lr>, the module A can writc and read lhe selected segment, vbile the module B can onlv

LINEAR
ADDRES5 DIRECTORY TABLE

ROOT

OFFSET
TRAN5LATI0N

L00.<AS!DE
' BUFFER

HIT

HIS5 j

PHYSICAL
MEM0RY

PA6E TABLES

ADDRE5S

OIRECTORY

Figure 15. Paging system architecture in tbe i38S processor [54]

read the scgment.

In addition, tbe twoleve l mapping scheme makes it possible to restrict t h e number
of segmenls accessable by a given program. In siDgle-level mapping systems, sucb as
i286, anv program tnav addrcss any segment in memorv. simply by poiDting to it
through thc segment table.

Tbe two-lcvcl schcme of tbc i432 also enables fewer address bits to point to a par-
ticular segmcnt.

Tbe Intel's i38G pnivides two options, which are user s?!ectable: segmentation sys-
tem (sanie &s in the i2S0), or paging svstem. T b e paging svstem arcbitecture uses t w o
i«v«l mapf>ihg schtnic, along with a translal ion lookaside luffer, desigDed as a cache
memorv. T h e complete architecture is sbown in Figure 16.

T b e linear virtual address coDsists of three fieldš (directory, table, offset), and
address (ranslatioo is performed in the following steps:

° 1. first, tbe address is searched tbrough the T L B . V tbe address is found, tbe
translation is pcrformed in the T L B , and the primary memory is accessed
direcllv. •';!'•.

2. if the address is not found in the T L B , tbe miss «igna! is generated, and tbe
(ranslation is performed tbrough the (wo-leve! rr.apping built on the C P U
chip, as sbovvn in Figure i 5 .

The (wo-1eve! on-chip mapping scheme enablcs fašt address' translation, and page
tables can be sharcd a n d / o r swapped.

A similar two-level niappinf scbeme bas been imp!emer:!e.l in the NSI6082 MMU
[6.25,38]. T h e tolal phvsical addrcss space is divided into 32,768 fixed pagcs of 512
bytes cach. T h e virtual address consist of 24 bits divided icio Ihrce Gelds: index-l and
indcx-2 of thc page sclcctor, and thc offsct, as shown in Figure 17.

LOGICAL ADORESS

8 BITS 7BITS

1sllNDEX

SBITS

2nd INDEX

BANK

l/ L

255 PTEs

15

BYTE
ADDRESS

123 PTEs

9

11 RESERVEO (PAGE A00RESSV512 PROT. & USE

PAGE

PTE (32 BITS) MEMORV

Figure 17. Tvvo-level mappiag scheme of tbe NS160S2 MMU [35]

The index-l (8 bits) of the page selector is used to lorate ope of tlie 256 entries of
the page table. The contents of the page table PTE-1 points to the beginning of one of
256 pointer tables, each of \vhich contains 128 entries. Thcn. the pointer to tbe pointcr
table is combined with the index-2 (7 bits) of the page selector, to locate one of the
entries within tbe pointer table. The selccted entrv contains tbe actual page number in
primarv memory. The offset field is tben uscd to locate data within the page. The NS
1S0S2 MMU contains the associative cache to hold 32 recently used page address
entries, as well.

Tbe Z80,000 processor uses three-level mapping scbeme bafi!(J on H)? SCt Of tbtee
translaUon tables located in primary. memorj' [2,33,53]. ll alsc .i^ntaius an ošsoeiativ«
rr.emorv for tbe TLB, vvhere 16 most rccently referenced pages are storcd. The CPU
automatioallv loads the TLB from translation tables, when a logical address is missing.

The NCR/32 processor uses an address translation chip (ATC) for address transla-
tion based cm pagicg svstem with one-level mappiug [22]. The chip contains 16 associa-
tive memories for recently used pages.

Tbe ZS010 MMU, vvhich is used with' the ZS001 processor, applies one-level seg-
mentatioD sjstem, based ou 64 content-addressable segment descriptor registers. For
more details see [33,50].

The ZS015 MMU differs from the Z8010 MMU in that the logical address is
translated into page frames ratlier than segments. It applies one-levcl mapping scbetne
and uses 64 page descriptor registers, which are also content-addressable [33,56].

The \VK32100 32-bit processor uses oG-chip £2101. MMU, whicb supports both
demand paging and segmentation svstems, which are user iseiectable [15, 17, 18]. The
MMU contains an on-chip cache memory: a 32-entrv segment d<>scripi.or cache, and a
64-cntry page descriptor eache, to hold recently used segment and pagc dcscriptors,
respcctivelv.

Table 2 summarizes address translation features of sonie 16- and 32-bit micropro
cesjors.

4. VTRTUAJL ADDRESS SUPPORT TECHNIQUES

A virtual memory svstem a!lows the user to execute programs on a very large
mcmorv of virtual address space, much larger than the actua! phvsical memorv. Tbis is
accomplished by the capabilitv of a microprocessor to detect access to memory pages
(or segments) wbich are not present in the phvsical rnemorv. \Vhen the virtual memory
svstcm delects such a reference, it will fetch' the required page from tbe secondary
memory into the primary memory.

In order to support virtual memory capabilities, besides the address translation, a
microprocessor must provide tbe follovving attributes:

1. to rccognize a page or segment fault, if the page or segment is not pres?nt
iD the primary memory. The memory manager must then iaform the pro-
cessor 50 that the missing page or segment caa bc fetcbed from the secon-
dary memorj', and eventuallv one of the current pages or scgments can be

w
t

r+

**<

y i

9O

•

O

v>
r>

*
(-•

a
cr

P

t—•

0
0

+

r™

_̂

0
i—•

n

»—<

cs
Q/
[7

O
31

ZZL
-̂3

> •
1—j
1—1

0

c>
1

3

•"(
»•<

•o

a-
0

w
n

•

£>

cr

p5

+

n
7 0
(^

2:

1 3

C")
»—4

n

"O

cra

01
t—
M
O

u

5

0
(~j

^ .

1;

r *

<

j

0

z z
OJ ^^

0 c

+
1—*

o*
0
ao

2 ;

0

Ci

O
t—»

3^

•a

V)
)—'
N

n
• ^ *

rsj -

0

r t

r t
1

Dl

a.
" i

\

n •
CJ

o
D"

0 0
C :

•

O
O
O

O>

O

__

5>

^ H

Z
O

/—^
• O
Dl

cra

Ul
M"
(s l

0

V)
0
n
»
0
to
r>
0

r~

0 0
0
0

: 1 -

S.

..en

_,
5>
0

0

•u
u

0 0

U)
t_l.

^ J

• «

n

_.

0 .

<
1

0)

n
0
0
t / i
trt
Oi

zr
_̂>

0

0 0

oc
c
t n

• : -

&>
Dc

t/i

M

f
ISJ

d .

t/)

n

oc
tn
r-»
O
M

Ul

r«)

—

X

—

M
ll

D

2

H

O
2£

«Q

3

O

r*

ra
r t

1

Zi
C -

^

3 :
0
ô
co
O
ts*
O

+

0 0
0 0
V I

1

0

- 0

c
Cfi

cr
?3

0 1

ra
r-
rr
0
-H

r-
ro

o*
1

n
0
3
r*
re
3

19
O.
C

•

"1

*

C
00

_«

0

(
(

n
Ov

0
0
0

+

Ck

1

C

rn
5 0

cn
ra
™

ro
n

r**

t - i
M

1

O :

O^
3
r *
O
3
(

1̂

09
O.
o.

0

•

S

tn

c
in
ra

cn
ra
j ~

n
-a
a
r"
cn

•

n
0
9
r »
a
r f

1

a.
0 .

•

O

•

3

O
t—'

OO
O
U t
OO
O^

cn

o>

H

*c

•—<

W

d

~i
^>
-5
«—*
0
z

(A
U>
O
n
•

0

n
tr
re
H

C3

ra
i—•

Lr*

(—
O

H

Cft

ra
0

R5

-i

O
z

U)
t/>
O
O

n
w
0

n
-J
c-
ra

r »

—

OO
O

0 0

c*

0

m

rr
~zr

H

O
z-

U)

0Q
•3

3

a.
0

0

•

re
0 0
•

• 0

O

rr.
C/5

O
- ? 3

•

rr >
> 0
r- 0

r r i

< tn

c: >

0
0
5 3

m

3: 50
ro >

cn
r-
•—j

O
z

m ^
< 13

r̂ •"*

0 0
> 0
D "
rn "̂

m

a.

o o
3 »

3 ui'

replaced,

2. to abort execution of the current instruction (inttruction abort capobi!ity),

3. to save necessary information needed later to recover from the fault,

4. to call and execute tbe fault service routine in the operating system, vbich
\vill swap the required page(s) OT segments(s), from seeoi5dary memory to
primarv memory,

5. to provide necessarv information for tbc operating svstem, in order to sup-
port page (or segment) placemenfand replacement algorithms (indicalion
of occess aclivities), and

6. to restore the saved state and resume the nortnal processing (inslruciion
rtstart capabilitits),

Although very different in complexity, all advaneed microprocessors provide
instruction abort acd restart capabilities. Some soiutions are presentcd belo«\ Recog-
nizing the access fault can be performed internal!y onlv, if the MMU is on the CPU
chip, or both interually and externa!Iy, if the MMU is off tbe CPU chip.

When an acccss is madc to an instruction or data whi:h is noi present in primary
memory, an address error is interna!ly detected, and it iniliates the address error fault
handling routine (intcrnally dctectcd fauttj. If the off-chip MNfL' detects a fault situa-
tion, it v,il! scnd a signal to the CPU, whicb v.-ili in turn activate the fauH handling
routine (cztcrnaHy dttccted fault).

\Vhen the GPU recognizes an access fault, it saves (be state information needed to
recover from the fault. The informatioD fs usua!ly saved on the stack. Thc typical
information wbich mast be saved ID the program counte: (rtarting address of tbe
instruciion), the status register, tbe fault address, the trap-speciilc paramcters, the
access type, the internal temporary registers, various internal statuses, etc. For i!!us-
tration, the MCGS010 processor which supports virtua! memorv, savcs 2G words versus
tho MC6S0O0 process, wbich saves only seven vvords, which is not enougb to provide
the user w;th thc slatc of the machine after tbe. fault bas been occurrcd. Figure 18
sbows ihe informatioD saved on the stack for these two prooe^sors.

Th« MC 6S010 address stack is divided into two parts: a user visible section, and a
non-user visible section in whicb Ihe interual status and tbe temporary dat.i are saved.

Tbe memory managemcnt unit also has to provide tbe information related to
access activities needed by tbe operating svstem (placement and replacement a!go
rithms). This information is usually stored in the transitioa table entries. Tberc are
three information bits \vbicb are present in typical systems:

1. the valid bit - which is controllsd by tbe opcraticr; system, and specifies
vvhetber or not a block (page or segment) is in the pr.mary memory.

2. tht rcfcrenees bit - where the MMU typically sets tbis bit (o indicate if
access to the corresponding block in primarv n)?ny>ry is on. The operating
svstem mav reset this bit to keep track of the acct-ss bistory.

3. the modified bil • wbich is sct by any write operžtion to tbe corresponding

STATUS REOISTER

fP.0G!UM COUKTER HIGK

PnOGRAM C0UK7ER I W

FCRMATJvECTORC^fSET

SP£C:AL SIATU3 W0S0

FAULT ADDRESS HIGH

FAUU ADDSESS ICW

RESERVEO

DMAOUTPUT BUfFER

DATA ISPUT 8U=f£R

RESESVEO

INSIR IhPU! BUFfER

MO.V USEfl ViSlSLE '
IMERNAl IVFORU.AriON

• SP

0?

04

06

03

0A

OC

CE

10

i :

14

16

18

IA

33

S^ECUi STATUS W0RD

FAULT A33SESS HIGH

• FAUlT ADDRESS IOW

I.SSTF.UCTION REGISIER

STATfS M5'SIER

PR?:c.tU CC-MER H.GK

• $!>

02

04

OS

03

0A

OC

b.

4-

Figure 18. Address error stack [36]
a. XfC68010
b. MCG8000

block. Tbis bit indieates whether tbe block must be written back to the
secondarv memory, before being replaced from tbe primary memory.

For illustraiion, thc i432 proc»ssor contains four access activity bits JD ils segment
descriptor, as shown in Figure 19.

The valid bit (V) indicates uhctber or Dot the segment is in the nicmory. The
storage allooated bil (S) indicates ubether acv memorv has been associatccj ^ith this
descriptor. The accesscd bit (AC) indicates wbctbcr the setment has becn acccssed,
whi!e tbe altcred bit (.AL) indicates wbcthcr tbe iDformation ctJDtained in the
bas bcen modified.

co

AC AL

Figure 10. Access activity bits of the i432 processor contained in the segment
descriptor [27]

The operatiog system uscs V and S bits to detect wb»n a phvsica! segmcnt iš not
present in memorv, uhile the AC and AL bits are used by the replacement algorithm to
decide which of the currentlv present segments sbould be swapped out by tbe new seg-
ment. . .

In additioD, several fields in the segment descriptor can be used by the operating
svstem to record other useful information about the segment (frequency of use, etc).

The other advanced proccssors epntain similar information on aceess activities used
by the operating svstem. Commoalj' used page replacement tcchniques are Least
Recentlv Used (LRU), Least Frequently Used (LFU), and First-In-First-Out (FIFO)
[1,5,8.9.55]. The described information maintained by the CPU (referenced and
modiSed bits), as well as some additional user-defined Selds, can be used to design the
page replacement algorithm in the operating svstem. '

One of the popular schemes for the LRU algorithm classiGes the pages into four
groups: . • •

Group 1: unreferenced (R — 0) and unmodified (M-0)
Group 2: unreferenced (R=0) and modified (M = l)
Group 3: refurenced (R^l) and unmodified (M=0)
Group 4: referenced (R = l) and modificd (M —1)

The pages from the louest gioups are replaced first. and tbe pages from the
highest groups are replaced last. The referenced bit is set by the CPU •vvhenever the
page is referenced. The operating svstern (OS) pcriodica!!y elears thc referenced bit. A
sophisticated LRU algorithm, "software cacbing." has been implernented in the
VAX/\"M3 operating system [31]. The LFU algorithm can also be incorporated into
this scheme. Whenever the refcrenced bit is cleared, the OS can count the frequency
vvith which the pages were used. Tbe modified bit is set by the CPU.wbenever the
page is writt.cn. When the page is swapped, the OS checks this bit to see if there is a
need to update tbe copy of the page in the secondarv memorv.

The last attribute of a proccssor to support virtual memorv is the most complex,
and refefs to reloading of the state of tbe program, and resuming the operation, after
the address fault routine is completed. Two methods of. implcmenting the resume
opcration on a proccssor are:

1. instruction restart method, and
2. instruction continuation method.

Advantages and drawbacks of tbese two metbods are discussed in the fo!!owing two
subsections.

4.1 Instructlon restart method

Ia this metbod, after tbe address fault error handlitig routine has completed all
activities, the instructioD in which fault occurred is restarted from the beginning. Fig-
ure 20 illustrates Ihe executioD of the microcode in the as$. wheD no address fault is

present (Fig. 20a), and in tbe case when the restart method fe applied, with an address
fault occurred (Fig. 20b).

In Figure 20 il is assumed Ihat a machine instructioa consisU of severa! microin-
structions [ml, m2, m3, m4j. If there is no address fault, th«e instructions will exeeute
sequentially, as sbown in Fig. 20a. If tbe MMU detects an address fault in the microin-
struction m2, tbe contro! will be transferred to the address error routine. The addrcss
error routine wi!l Grst save the information state, and tben tae routine will baDdle tbe
address error (the requircd page or scgment will be fetcb?d from tbe sccondarv
mcmorv). Finallv, tbe saved information state \vill be resto;?-! and tlie fauhcd instruc-
tion will be restarted from the bcginning - at the macbine ic>tructioD level. Therefore,
the scquence [ml, m2, m3, m4j \vill be executed again.

The main problern in the instruction restart method is that tbe processor niust
reconstruct tbe statc of the machine, as it was at tbe begiDLisg 6f the machine instruc-
tion, whi!e he faulted instruction was iaterrupted in the midii« of its execution. Thcre
are some situations when this is verv comp!ex, such as v-hei a rtsource is used both as
input and output parameter in the same instruction. For «xample, in extended preci-
sioD arithmetic operations, a carrv (or borrow) bit froni tht previous oporation is uscd
in the instruction as an input parameter, but the instruclion itsolf also sets the saino
bit as the result pf the current operation. If the address fi':\t is detccted after this bit
is updated, the original value must be restored before the iistruction is reitarted. A
similar casc is with autoiriCremcnt and autodecrcment addre;.;bg modos.

FAULI
5E0UENCE

NORMAL
MICR0IN5TRUCTI0N

SEOUENCE FAULT

ml
ADDRESS FAULT
.. ROUTINE

ml
m2

m4

Figurc 20. Microinstruction sequence [36]
a. No address fault
b. Icstruction restart method

Several techniques have been proposed to solve this problem, and are discussed
below:

1. The processor may postpone the modification of u-er-visible resomces (such
as rarry bit), until the end of the instruction. Thea, if the address fault has
not occurred, the resoufces will be updated.

2. AJl modiGcations of the user-visible resources wil) be recorded by tbe proces-
sor if the address faull occurs. On the basis of thb information, tbe proces-
sor will be ablc to restore the original values of the modified resources.

3. The processor maintains tbe copies of a!l user-visible resources, that are
modiSed. Because the copy a!ways contains the origioal value, if tbe
addrcss fault occurs, it'will be easy to restore the original state.

4.2. Instructlon continuatlon method

In the instruction coDtinuation method, vvben the address error routine has been
completed, tbe machine instruction will not be resumed from the beginning, but from
the same locatioo within the instruction at wbich the execution vvas suspended. Tbe
execution of the same sequence of microipstructions |ml, m2, m3, m4), in tbe case of
tbe eontinuation method, is shovvn in Figure 21.

Tbe address fault was detected in tbe microinstruction m2, and the control was
transferred to the address crror handling loutine. Aftcr tbe routiuc has been com-
plited, the proccssor will resume oporation, jy exe<uting the mkroinstruction m3. The

FAULT
SEOUENCE

FAULT•

ADDRESS FAULT
ROUTiNE

continuation mcthod is anaJogous to aD interrupt opcratioo at tbe mieroinstrucfion
level.

In order to support the instruction continuation method. the processor must be
able to savc tbe eatire state of the maehine, vvben an address fau!t is dctected. Tbcre-
fore, tbe proeessors wbicb applv tbis metbod usuallj" have a hrge address error stack,
to save all necessarv information (e.g. MC6S010). Rcgardless bf this requiren)CD(,
another problcm vvith the coDtmuation method is rclated to the instructions (hat
require execution without interruption. In addition, tbis metbod requires tbe additional
time ar.d silicon rc?ources for saving and restoring the completf. slat<- of the machine.

Tbe instruction continuation mctbod has been implemeBted in the MC6S010 and
tbe MC6S020 procossors only [35,36], while all otber advanced processors use tbe
instruction restart mctbod.

The NS1S0S2 NINfU scnds an abort signal to tbe CPL- (NS 16032 or 32032), which
wi!l stop the execution and wi!l rcturn tbe CPU iato the ftate bcfore l!ie aborted
instruction. Then, a!I needcd information (containcd ID program counter, machine
status, stack pointer, and several other registcrs) is automsticallv saved. \Vhen thc
address fault routine is complelcd, a return-from-trap icstruction is executcd, which
will resume Ihe aborted instructioD from the beginning |3SJ.

Zilog processors also implement tbe instruction restart metbod. Tbc Z8001/ZS015
system contains a specia! data couut register whicb Counts tbe number of successfu!
data accesses before an address fault. This informatioD b used to rcstore tbe macbiae
state, whicb existed bcfore the addrcss fault.

The Z80.000 and ZSOO processors, whicb have the MMl" oa the CPU rbip, applv
an improved instructiotf restart metbod compatible wiih their pipelining architecture.
The ZSO.000 csecutes instructions by using six-stage pipeliaicg, aDd thertfore the p3ge
fault can be detected before mcmorv access. Tbe address translation is performed in
the third stage of the pipeline, and if an address fault is detected, tbe execution stage
wil! be suspended, before anv change of register contents is made [33,35]. Tbe Z800
applies a similar technique, beeause it bas a three stage pipeline allowing tbc instruc-
tion suspension, before anv rcgister is cbanged.

Intel proeessors i2S6 and i386 apply the inslruction restart metbod, as well
[26,28,5-1]. They are also able to detect an address fault before cxecuting instrucfion, •
and thus faulted instructioD restart becomcs simple. ATter completing tbe execution of
the address fault bandling routine, tbe CPU places tbe address of the interrupted
instruction into the instruction poioter, and resumes the progTam execution.

6. PROTECTION AND SECURITY TECHMQUES

In multitasking and multiuser environments, it b required from processor architec-
fjre to support prctectioD and security, in order to increaje svslem performance and
simplifv svstem implemcntatioa. Basicallv, proteclion and securitv issues can be
dividcd into the fo!!owing topics:

Figure 21. Microinstruction executioc - the instruction < oDtinuation mtthod [36] 1. memorv protection,

2. program protection,
3. user protection, and
4. information security.

.\f:mory protcction mtehanism should detect anv addressing error before it caused dam-
age. Each insiruction should be checked to verifv that it performs the intended opera-
tion. The NL\fU unit performs this check, and if tbere is aa address error detected, it
generates an address fault. The address fault bandling routine b then activated, v.bich
analvzes the address error, eventual]y fixes it, aDC returcs to the inlcrrupled program.
Program protection mechanism sbould prevent applicatioc pro^ram from making illegal
modifications of the operating system. It elso should CODUOI tbe transfcr betvveen svs-
tem modules to aehieve total reliability. Uscr prctection michanism sbould protect
users against each otber. Security mechanism should provide limited access to informa-
tion.

Two basic architectures tbat provide program and user protection are:

1. hierarchical protection system, or ring protection tystem, and

2. non-hierarchical protcctiop system, or capabiUly-bastd proteclion system.

These two systems are discussed in the following paragraphs.

Hierarchical protection system consists of a hierarchv of protectioc levels, or rings,
starting from the most privileged to the least privilcged. Basic prtnciples of the ring
sjstem are:

RING 0

RIN3 1

RINO 2

RINS 0

RING 1

RINO 2

Figure 22. Principles of ring protection system [2
a. control transfer between programs
b. data access

1. A program mav access on!y data that reside oa the same ring, or a !ess
privilcgcd ring,

2. A program may cal services tbat reside on the same, or a more privilcged
ring.
These two protection aDproacbes are illustraled in Figure 22.

The ring svstem has becn implemented in the t2S6 aDd the i3S6 processors
[21,26,28,54]. Their ring protection svstem consists of four privilege rings, a5
sbown in Figure 23.

DilTerent priorities are assigncd to diflereDt, programs (scgments) withia tbo
sjstcm. Grealer privilcge is/assigned to more important programs. Typically, the
operating svstem occupies thc most-privilcged ring, thus it is protected from the
application programs. Tbe programs mav access the OS with a high-spced call
instruction, rather than using tbe context svitching techniqiie, which is tbc
traditiona! way to impleineDt the call of OS services.

Second and third rings are (jpicallv used for svstem scrvices and custom
exteasioas, rcspeclivelj', vhile the application progTami are usuallv located at tbe
least-privileged ring.

Tbe i286/i3S6 protection model also provides task isolation, by having
separate descriptor tables. Thc entire isolation bct«e?n rings is provided by a
sčparate stack for cach ring.

In non-hierarchical protcction systems (or capabilitj-based protectioD svstems), for
cach task a table of opcrations is deSned. This table of operatioD.s spcciGes opera-
tioEs tbat mav affect otber tasks in (be sys(cra. In order to perfdrm an opcration

Figure 23. The ring protection svstem of the i2S6/i3S5 processors [28]

could afTect another task, a task must have the correspoDding capabilitv in
its table of operations.

The capabilitv-based protection svslem is more complex, and the current pro-
cessors stil! do not implement it in the architecture, but in tbe operating svstem.
The current processors provide some protection fealur«. whieh can be used when
designing a sophisticated protection system in softuare [3,4,5,25,35].

The MCGSOOO, tbe ZS000, and the NS 16000 processors bave two operating
modes (or privilege lcvels) of thc CPU: supervisor mcde, and user mode. In the
supervisor niode, the CPU can execute the complcie set of inftructions, wbile in
the user rnode, onlv a subset of instructions can be used. In Zilog processors, thcse
two modes are called svstem and normal.

Tvpicallv, thc operatiag system functions are p!a?ed at tbe supervisor level,
vvhile applioation programs execute at tbe user lcvel, tbus the opcrating svstem is
protected from the applicalion programs. The supervbor lcvel typical!y has access
to all of the processor resources, as well as to al! externa! resources, such as
memorv an<! I/O. This enables the operating svstem \o control botb processor and
externa! functions.

In addition, tbe NS16000 processors provide separate address spaces for each
running process, thus protccling one user from another.

Tbe MC6S020 inipk-ments a coneept of multiple access lcvels, vvhicb provides
expansion on up to 25G hierarcbica! levels, whicb present a superset of ring arcbi-
tecture.

Securitv refers to thc limited access to information. The basic principle is to
allow a program to access only wbat it needs to know. For cxamp!e, Linden sug-
gests that "...almosl every procedure sbould run in a protection domain that gives
it aa access to exactly what it needs to accomplisb its function, and nothing rnore
[32]." Tbe sccuritv is provided by giving each proress certain access rigbts to a
page or a segment. The most commoDlv used access rights are:

1. rtad acctss: a process may obtain anv inform3tion from the page or tbe
segment.

2. urile aeeess: a process may modify tbe page or tbe segment, and mav
place additional information in it. The proress may destroy all of tbe
information in thc page or the segment.

3. ezecute -access: a process may run tbe page or tbe segroent as a pro
grani. Execute aceess is given to pages or segments which are pro-
grams, and denied to data pages or segments.

Current processors typieal!y store tbe access rigbts in page or segment
descriptors. Befori* tbp processor access?s ,i page or a jegrrrppt, it Srst checks its
acccss rights, ano if tbev art verified, ii raav access tbe sciccted page or .segment.
The diagram in Figure 24 illustretes Ihe dvscrihed mt-cbsnism, bascd on actess

rigbts stored in the pago or segment descriptors. Tbc character N indicates that
thc corrcsponding pagc or segmont cannot bc accesfed at a!!.

The segmentation virtua! memorv svstem provides a morc natural securitv
svstem in a paging svslcm. The logical address space is divided into pagcs, and
the deseribed mccbanism cannot protcct (be program modules prccisc]y. lt cithcr
protects too litlle or too much. In the segmentation sysiem, eacb scgmcnt is of
specific lcngth, and Ibe way to protect segments by using aceess rights is more
natural.

Rogardlcss of the iniplemcnted virtua! mcmory svstem, the drawback of the
described securitv mcchanism is tbat all users have tbe same access rigbts to com-
tnon pagcs or segmcnts, becausc the access rights are asso.-iafed witb the pages or
the segments, and not witb the users.

Tliis problem caa be solved by using two-Ievel mapping scheme, as dcscribcd
in SectioD 3.2, for thc case of tbc i432 proccssor [2"j. In this twolevel mapping
schcme, the access righls are stored indepcadcntlv of tbe scginent (or pagc)
dcscriptors, and are associated \vith tbe users, and Dot witli tbe scgmeDts (or
pagcs).

Figure 24. Sccurity t<-cbnique bused OD access rigbts stored in the pagc orsegment
descriptor« [27]

6. DISCUSSION AND CONCLUSION
\Ve have disciisšed in this paper several issues related to memory management

in advanced microprocessors. All tbese concepts are not new; they are known for
vcars from tbe operating syslem's tbeorvand practice, hovvever thc approaches are
somctimes modified, and implementation techniques may be diflerent, in com-
parison with the minicomputer and mainframc environments.

The processor architect must make scveral erucial decisions related to the pro-
cessor architecture, vhich havc to support inemorv management and virtual
memory. Tbe main decisions to be made are lisled in Figure 25.

The on-chip MMU versus ofT-cbip MMU is one of the basic deeisions \vhich
has to be made. Botb concepts have.advantages, as well as drawbacks. Tbcse
have been.discussed in the paper. In addition, the on-chip MMU has an advantage
over tbe ofl-chip MSfU whicb is related to cache memory design. An extemal
MMU requires logical address caches to bjpass the MNflJ delav, while the intcrnal
MMU imptements the phvsical address cache.- Tbe logical address cacbe requires
special addrc-ss tag hardwarc, large operating svstem overhead on task svvilcb, and
flush cache •uben sharing data.

Thc issue related to virtual memory system: pagiog versus segmentation, is of
crucial iinportance. Again, some microproccssors support paging, otber pj-ocessors
support segmentation, while few microprocessors support both systems, in which
case tbe mode is user selectable. Auybow, it seeras tbat tbe paging svstem bas
advantages over the segmentation sjstem, and almost all 32-bit microprocessors
support it.

The next two questions are related to tbe implfmentation of tbe'addrcss
translation mechanism: levels of mapping and use of an associative cache memory.
Both multi-level mapping and a small associative cache memory signifieantly
improve svstem performance, and thus thev should be built into an advanced
microprocessor architocture. Practical!y, all 32-bit microprocessors have imple-
mected these two coDcepts in their arcbitecture.

HMU ON-CHIP

PAGING

ONE-STAOt MAPPINO

CACHE HEMORY-YES

INSTRUCTION RESTARl

PROTECTION BUILT-IN

versus

versus

versus

versus

versus

versus

MMU OFF-CHIP

SEGMENTATION «

MUITI-51A0E HAPPINO

CACHE MEMORV-NO

INSTRUCTION CONTINUATION

PROECTION IN SOFTVVARE

Figure 25. A list of questions for the processor arehilect

Teehniques to support tbe vittual memory svstem, especial!y the choiee of the
techniques to implement resume operation, after ao address fault is dctected and
corrected, b also aii important decision for the arcbiteet. The instruction restart
melhod jccms to bc morc efllcicnt than tlie iDstructioa coutinuation inclhod, cspo-
ciallv if the NIMU is on tbc CFU cbip. Tben, due to pipclined nature of
architecturcs in modern microprocessors, th? addres? faull can be dctected before a
memory access. Tbis significantlv simpliScs Ihe restart of tbe faulted instruction.

Finally, the protection mechahism built io the architecturc (such as the ring
svstcm ID the i28C/i386 proces;ors) providcs a powcrful tool for an operating svs-
tem designer, and reduccs softwarc overhead. On tbe other hand, because tbe p r o
tection system is a!ready dcfined in tbe architecture, there is DO choice for the OS
designer, but to implement the available mechanism, wbetber be (she) likes it or
not.

Tbe otber approach, in which the processor provides some basic protection
elements, but not tbe wbole prolection system (such as supervbor/user modes and
access concepts in tbe MC08020), requires from the OS designer to create the pro-
tection system insoftware, tbus increasing the soflware overbead. However, tbis
approacb is more flexible.

Wc may concludc tbat tbe memory management architeeturcs in current "
microprocčssors are coming of age. Hcnvever, one of the most chalknging aspects
of future processor design wi!l be to provide more elegant solutions to all tbese
problems, as we!l as to enable a more complete intcgTalion of memory manage-
ment and virtual memory support.

7. A C K N O V V L E D G E M E N T

Tbe autbors are thankful to Jeff Pridmore and NVah Helbig, of RCA, for tbeir
comments.

8. R E F E R E N C E S

1. Aho, A.V., Denning, P.J., aDd Ullman, J.D., "Principles of Optimal Page
Replacement," JACM,.Vol. 18, No. 1, January 1971, pp. 80-03

2. Alpert, D., "Powerful 32-bit Micro Includes \5emory Management," Com-
putcr Design, October 19S3, pp. 213-220.

3. Alpert, D., Carberyy, D., Vamamura, M., Chow, V., and Mak, P., "32-bit
Proeessor Chip Integrates Major Svstem FuDctions," Elcetronics, Julv 14,
1083, pp. 113-119.

4. "An Arehiteetural Conlrast: Tht M6S00O Microprocetaor Family and the
S086/iAPX £#<?,' Motorola Corp., Novcmber 19S3.

5. Afldrews, R., "Tbe Z80.000 Processor Chip Integrat« Major System Func-
tions," Proeeedings of the IEEE Mini/Micro Souiheast, OrlaDdo, Florida,
January 1984, pp. 5.2.1-5.2.7.

6. Bal, S., et al, "Tbe NS16000 Fami!y - Advances in' Architecture and
Hardvvare," IEEE Computer, June 1082, pp. 58-67.

7. Beyers, J.\V., et al, "A 32-bit VLSI CPU Chip," IEEE Jovrnal of Solid-State
Circuils, Vol. 16, October 1981, pp. 537-541.

8. Chamberlin, D.D., Fuller, S.H., and Lin, L., "An Ajoa!ysis of Page Allocation
Štrategies for Virtual Memory Systems," IBM Jovrnal cf R&D, Vol. 17, 1973,
pp. 404-412.

9. Chu, \V.W., and Opderbeck, H., "Program Bebaviour and the Page-FauR-
Frequency RepIacemeDt AJgorithm," IEEE Computtr, November 1976, pp.
29-38.

10. Deitel, H.M., "An Introduetion to Operating Systems," Addison-Wesley Pub-
lishing Company, 1984.

11. Denning, P.J., "Virtual Memory," ACM Computing Survcys, Vol. 2, No. 3,
September 1970, pp. 153-189.

Denning, P.J., "VVorking Sets Past and Present," IEEE Tronsactiont on
Soflrrart Engineering, Vol. 6, No. 1, January 1980, pp. 64-84.

13. DeDning, P.J., and Schwartz, S., "Properties of the \Vorking-Set Model,"
Communications of the ACM, Vol. 15, No. 3, March 19872, pp. 191-198.

14. Denois, J.B., "Segmentation and the Design of Muhiprogrammed Computer
Systems," JACM, Vol. 12, No. 4, Octobcr 19G5, pp. 589-602.

15. Diodato, P.\V., et al, "CAD Construction of a \TSI Memorj- Managcment
UDit," Proeeedings of the ICCAD, 1083.

16. Doran, R.\V., "\'irtual Memory," IEEE Computcr, Oclober 1076, pp. 27-37.

17. Goksel, A.K., et al, "A Memory Management Unit foi a Second Geoeration
Microprocessor," Proeeedings of the Compcon, 10S4.

18. Goksel, A.K., et al, "A VLSI Memory Management Chip: Design Considera-

tions and Expcricncc," IEEE Jovrnol on Sotid-Stalt Cireuitt, Vol. 10, No. 3,
June 1984.

19. Gupta, A., and Toong,' H.D... "An Arcbitectural Comparison of 32-bit
Microprocessors," IEEE Micro, Vol. 3, No. 1, Februarv 19S3, pp. 9-22.

V

20. Hansen, D.J., "Programming Motorola's 32-bit Microprocessor the 68010,"
Proceedinjs o/ thc IEEE Mini/Micro Southcast, Orlaodo, Florida, January
19S4, pp. 4.1.1-4.1.9.

21. Heller, P., "The Inte! iAPX 286 Microprocessor," Proctedings of the \Veseon,
I9S1, pp. 1.3.1-1.3.4.

22. Heller, P., Cbilds, R., aDd Slager, J., "Memor.v Protection Moves Onto 16-bit .
Microproeessor Chip," EleetronicB, Vol. 55, Feb. 24, 1982, pp. 133-137.

23. Hirschberg, S.D., "A Class of Dynamie Memorv AJIocation AJgorithms,"
'Communications of Ihe ACM, Vol. 16, Ko. 10, October 1973, pp. 615-618.

24. Hoeschene, H.A., et al, "A Second Generation 32-bit CMOS Microprocessor,8

Proceedings oj the Compcon, 1984. u

25. Hunter, C.B., and Farqjhar, E., "Introduction to the !>.'S16000 Arcbitccture,"
IEEEMicro, Apri! ISS-Ž, pp. 26-47. ' '

26. "IAPX 286 Operating Sj/slems Writer's Gvide,* Intel Corporation, Santa
Clara, 1983.

27. "Inlroduetion to the iAPX 432 Architeeture," Intel Corporation, Santa Clara,
1981.

28. "Introduction to the iAPX 286," Intel Corporation. Saota Clara, 1982.

29. Kaminker, A., et al, "A 32-bit Microprocessor witb Virtual Mcmory Sup-
port," IEEE Jovrnal of Solid-State Circuits, October 1981, pp. 230-231.

30. KaowltoD, K.C., "A Fast Storage Allocator," Commvniealions of tht ACM,
Vol. 8, No. 10, October 1065, pp. 623-625.

31. Levy, H.M., and LipmaD, P.H., "Virtual Memory Management in the
VAX/VMS Operating Svstem," IEEE Computtr, ^Jarcb 1982, pp. 35-41.

32. Linden, T.A., "Operating System Structures to Support Securitv and Reli-
able Softuare," ACM Computing Suneys, Vol. 8, No. 4, Dec. 1976, pp. 410.

33. Look, H., "Virtual Memory for Zilog's 8-, 15-, and 32-bit Microprocessors,"
Procccdings of the 1EEE Mini/Micro Southcasl. Orl.indo, Florida, January
1084, paper 3.3.

34. MacGregor, D., "Hardware and SofUvare Strat?gies for the MC68020," EDN,
June 20, 1985, pp. 89-98.

35. MacGregor,- D., Mothersole, D., and Mover, B.. "The Motorola MC68020,"
IEEE Micro, August 1084, pp. 101-118.

36. MacGregor, D., and Mothersole, D.S., "Virtua! Memory and the MC68010,"
IEEE Micro, June 1983, pp. 24-38.

37. Martin, G., "Virtua! Memory Managcment Expands Microprbcessors," Com-
puter Deaign, June 1983, pp. 169-178.

38. Mateosian, R., "Elegance is Ever-ything in NS 16000 Memory Management,"
Proecedings of the IEEE Mini/Micro Sovthcast, Orlando, Florida, January
19S4, paper 3.2.

39. Mateosian, R., "Operating System Support - tbe Z8000 \Vay," Compuler
Disign,\lay 1982, pp. 255-261.

40. Mazor, S., \Vharton, S., "Compact Code iAPX 432 Addrcssing Techniques,"
Computer Design, Mav 1982, pp. 249-253.

•4li Mazor, S., Wharton, S., "Promote User Privacv Through Secure Memory
Areas," Compvtcr Dcsign, October 1982, pp.' 89-92.

42. "MC680S0 SS-bit Microprocetsor Uter'e Manual,' Prentice-Hall, 1984.

43. Mvers, G.J., "Advancee in Compuler Architcctvrc," John Wilcy & Sons,
1978. •

44. Philips, D., "Memory-Management Strategies Suit Diffarent Application
Areas," EDN, September 1984, pp. 135-143.

45. Peterson, J.L., Theodore, N., "Buddy Systems,* Communications o/ tkt
ACM, June 1977, Vol. 20, No. 6, pp. .421-431.

46. Pohn, A.V., and Smay, T.A., "Computer Memorv Systems,* IEEE Com-
puter, Oetober 1981, pp. 93-110.

47. Pollack, F. J., et al, "Supporting ADA, Memory Management in the IAPX-
432," ACM 1982, pp. 117-130.

48. Purdom, PAV., and Stigler, S.M., "Statbtical Projerties of the Buddv Svs-
tem," Jovrnal of the ACM, Vol. 17, No. 4, October 1970, pp. 6S3-697.

49. Saltzer, J.H., and Schroeder, M., "Tbe Protectio: of Information in Com-
puter Svstems," Proccedings of the IEEE, Vol. 63, No. 0, September 1975,
pp. 1278.

• / '

50. Skoog, S.K., ".\!emory Management with the NCR/32 Scipset," Proetedings

of thc IEEE Mini/MicTO Southeatt, Orlando, Floriia, January 19S4, paper
3.1. • •

51. Stockton, J.F., "A Virtual Breaktbrough for Micro«, Computer Design, pp.
153-162.

52. Slockton, J.F., "The M68451 Memo^ Management Unit," Elccironit
Engineering, Vol. 54, Mav 1982, pp. 54-73.

53. Timms, B., "ZSO.OOO Mainframe Resources Optirnize' tbe Soflware Environ-
ment," Proceedinga of tht IEEE, Mini/Micro Southtast, Orlando, Florida,
January 1984, pp. 4.4.1-4.4.13.

54. "Touch the Futvre," Intel Design Seminar, Miami, Florida, 1985.

55. Turker, R., and Levy, H.t "Segmented FIFO Page Replacement," Procecd-
ings of the ACM Confcreitit on Measurement artd Modcling oj Compuler Sys-
tems, Las Vegas, Ncvada, Scptember 19S1, pp. 4S-51.

56. Wallers, S., "Memory Management Made Easy with Ibe Z8000," Procttdings
ofthe \Veseon, 1981, p;.. 9.3.1-9.3.9.

36

9. ABOUT THE AUTHORS

Dr. B. P . Fu rh t is on the faculty of thc Dcpartment of Eloctrical and Com-
puter Engincering. Universitv of Miami, Cora! Gables, Florida. He bas published
over 60 technica! papers, and 2 books. Hc is tbe autbor ot Microprocessor Inter-
faeing and Communication (Rcston 19S5), and coeditor pf tbe Tvtoria! ©n
Advanced Topics tn Computer Archilecture (IEEE Press, 1085). His current
rcaearch activities include bigb-level language computer architcctures, multiproces-
sor systems, and architectures for virtual mcmory managemcnt. Hc prescnled over
30 invited leetures in Europe, North, and Latin America on various topics related
lo computcr arcbitecture. Hc has bcen involved in consulting activitics for a
Dumber of companies surh as KASA, RCA, Cordis, HoDtvvvell, and othcrs. lle is a
member of tlie IEEE, and a chief cditor of the Intercational Jouroal of Mini and
Microcornputers.

Dr. V. M. Milutinovicf is on tbe faculty of the School of Elrctrical Enginecr-
ing, Purdue University. He bas published over 60 technical papers, 2 original
books, and 4 tdited books. His research papprs Lave been published in IEEE
Traiisactions, 1EE froctfdings, IEEE Computer, and othcr rcforecd journals. One
of bis books has bppn republishtd (in various forms) in ss-veral langunges. He is the
editor of tbc IELI2 Press Tutorial on Advanccd Micreproccisors and lligh-Ltvcl
Language Computcr Arehitccturc, and (hc coeditor of ibe IEEE Press Tulorial on
Adtoneed Topics in Computer Architccture. Ile is the editor and thc conlributing
author for l\vo multiauthor books on cotnputcr arcbitecture. His pioncering papcr
on Ga.\s computtr arcbitccture for \1>SI has bcen schtduled to appear irt (hp Scp-
tembor issue of IELE Cotnputer. Ile prcscntcd ovtr 40 invited Itcturcs in Europc,
North, and Latin Amcrira. His currcnt inlcrcsls includc M J S I cotnputcr
ftrcbitecture for GaAs, high-!evcl language computcr architccture, and microproccs-
sor systcms for AI. His currcnt researcb supporl is equal to about $250k per year,
predominantl)' in tbe area of VLSI computer architccture for Ga.^. He has con-
sulted for a nuinbcr of high-tech companies, including Intel, Honcywc!l, NASA,
RCA, and others. llc is currcotly involved iu the industria! implcmentation of a
32-bit VLSI microprocessor in tbe GaAs lcchnolog)', witb responsibilities in the
microarchitecture domain. Hc is a mcmbcr of the IEEE, and is on thc EURONO-
CRO Board of Dirertors.

