Glasilo Zveze geodetov Slovenije Journal of the Association of Surveyors of Slovenia Geodetski |VE S T N I K GEODETSKI VESTNIK | 64/2 | GEODETSKI VESTNIK UDK 528=863 ISSN 0351-0271 EISSN 1581-1328 Letnik 64, št. 2, str. 157-290, Ljubljana, junij 2020. Izidejo štiri številke na leto. Naklada te številke: 1200 izvodov. Prosto dostopno na spletnem naslovu: http://www.geodetski-vestnik.com. Vol. 64, No. 2, pp. 157-290, Ljubljana, Slovenia, Jun 2020. Issued four times a year. Circulation: 1,200 copies. Free on-line access at http://www.geodetski-vestnik.com. IF JCR (2018): 0,606 IF SNIP (2018): 0,543 Geodetski vestnik je odprtodostopna revija. Recenzirani objavljeni članki so indeksirani in povzeti v: Social Sciences Citation index (SSCi) Social Scisearch (SSS) in Journal Citation Reports/Social Sciences Edition (JCR/SSE) Geodetski vestnik je indeksiran in povzet tudi v bibliografskih zbirkah: GEOBASE(TM), iCONDA - international Construction Database, DOAJ - Directory of Open Access Journals, SCOPUS, COBiSS, Civil Engineering Abstracts, GeoRef, CSA Aerospace & High Technology Database, Electronics and Communications Abstracts, Materials Business File, Solid State and Superconductivity Abstracts, Computer and information Systems, Mechanical & Transportation Engineering Abstracts, Water Resources Abstracts, Environmental Sciences Geodetski vestnik is an open access journal. The reviewed papers are indexed and abstracted in: Social Sciences Citation Index (SSCI) Social Scisearch (SSS) and Journal Citation Reports/Social Sciences Edition (JCR/SSE) Indexed and abstracted is also in those bibliographic data bases: GEOBASE(TM), ICONDA - International Construction Database, DOAJ - Directory of Open Access Journals, SCOPUS, COBISS, Civil Engineering Abstracts, GeoRef, CSA Aerospace & High Technology Database, Electronics and Communications Abstracts, Materials Business File, Solid State and Superconductivity Abstracts, Computer and Information Systems, Mechanical & Transportation Engineering Abstracts, Water Resources Abstracts, Environmental Sciences Izdajanje Geodetskega vestnika sofinancira: Javna agencija za raziskovalno dejavnost Republike Slovenije. Geodetski vestnik je vpisan v razvid medijev na Ministrstvu za kulturo Republike Slovenije pod zaporedno številko 526. Geodetski vestnik is partly subsidized by the Slovenian Research Agency. Geodetski vestnik is entered in the mass media register at the Ministry of Culture of the Republic of Slovenia under No. 526. I 157 | | 64/2| GEODETSKI VESTNIK GLAVNA IN ODGOVORNA UREDNICA dr. Anka Lisec Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Slovenija Jamova cesta 2, SI-1000 Ljubljana Tel.: +386 1 4768 560 e-naslov: urednik@geodetski-vestnik.com PODROČNI UREDNIKI Sandi Berk, urednik rubrike strokovne razprave dr. Božo Koler, področni urednik za inženirsko geodezijo dr. Mojca Kosmatin Fras, področna urednica za fotogrametrijo dr. Klemen Kregar, področni urednik za geodezijo dr. Božena Lipej, področna urednica za upravljanje in evidentiranje nepremičnin dr. Krištof Oštir, področni urednik za daljinsko zaznavanje in geoinformatiko dr. Bojan Stopar, področni urednik za satelitsko geodezijo in geofiziko dr. Alma Zavodnik Lamovšek, področna urednica za načrtovanje in urejanje prostora MEDNARODNI UREDNIŠKI ODBOR dr. Ivan R. Aleksic (Univerza v Beogradu, Gradbena fakulteta, Beograd, Srbija) dr. Janja Avbelj (Eumetsat, Darmstadt, Nemčija) dr. Branislav Bajat (Univerza v Beogradu, Gradbena fakulteta, Beograd, Srbija) dr. Tomislav Bašic (Univerza v Zagrebu, Fakulteta za geodezijo, Zagreb, Hrvaška) dr. Giuseppe Borruso (Univerza v Trstu, DEAMS, Trst, Italija) Miran Brumec (Inženirska zbornica Slovenije) dr. Raffaela Cefalo (Univerza v Trstu, Oddelek za inženirstvo in arhitekturo, Trst, Italija) dr. Vlado Cetl (EK, Skupno raziskovalno središče, Ispra, Italija) dr. Joep Crompvoets (KU Leuven, Public Governance Institute, Leuven, Belgija) dr. Marjan Čeh (Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, Slovenija) dr. Walter Timo de Vries (Tehniška univerza München, München, Nemčija) dr. Urška Demšar (Univerza St. Andrews, Velika Britanija) dr. Samo Drobne (Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, Slovenija) mag. Erna Flogie Dolinar (Geodetska uprava RS, Ljubljana, Slovenija) dr. Thomas Kalbro (Kraljevi inštitut KTH, Stockholm, Švedska) dr. Dušan Kogoj (Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, Slovenija) dr. Žiga Kokalj (ZRC SAZU, Inštitut za antropološke in prostorske študije, Ljubljana, Slovenija) dr. Miran Kuhar (Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, Slovenija) dr. Reinfried Mansberger (Univerza za naravoslovne in biotehniške vede, IVFL, Dunaj, Avstrija) dr. Leiv Bjarte Mjos (Visoka šola v Bergnu, Bergen, Norveška) dr. Gerhard Navratil (Tehniška univerza na Dunaju, Dunaj, Avstrija) Tomaž Petek (Geodetska uprava RS, Ljubljana, Slovenija) dr. Dušan Petrovič (Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, Slovenija) dr. Alenka Poplin (Iowa State University, College of Design, Ames, Iowa, ZDA) dr. Andrea Podör (Univerza Obuda, Szekesfehervar, Madžarska) dr. Anton Prosen (Ljubljana, Slovenija) dr. Dalibor Radovan (Geodetski inštitut Slovenije, Ljubljana, Slovenija) dr. Fabio Remondino (Fondazione Bruno Kessler, 3DOM, Trento, Italija) dr. Miodrag Roic (Univerza v Zagrebu, Fakulteta za geodezijo, Zagreb, Hrvaška) dr. Baläzs Szekely (Univerza Eötvösa Loranda, Budimpešta, Madžarska) dr. Bojan Šavrič (ESRI Ltd, Redlands, Kalifornija, ZDA) dr. Maruška Šubic Kovač (Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, Slovenija) dr. Joc Triglav (Geodetska uprava RS, Murska Sobota, Slovenija) dr. Mihaela Triglav Čekada (Geodetski inštitut Slovenije, Ljubljana, Slovenija) dr. Arvo Vitikainen (Univerza Aalto, Aalto, Finska) dr. John C. Weber (Grand Valley State College, Department of Geology, Allendale, Michigan, ZDA) dr. Klemen Zakšek (Rosen Group, Lingen, Nemčija) I 158 | GEODETSKI VESTNIK | 64/2 | EDITOR-IN-CHIEF Anka Lisec, Ph.D. University of Ljubljana, Faculty of Civil and Geodetic Engineering, Slovenia Jamova cesta 2, SI-1000 Ljubljana, Slovenia Phone: +386 1 4768 560 E-mail: editor@geodetski-vestnik.com FIELD AND SUB-FIELD EDITORS Sandi Berk, editor for the section Professional Discussions Božo Koler, Ph.D., field editor for Engineering Geodesy Mojca Kosmatin Fras, Ph.D., field editor for Photogrammetry Klemen Kregar, Ph.D., field editor for Survaying Božena Lipej, Ph.D., field editor for Real Estate Management and Recording Krištof Oštir, Ph.D., field editor for Remote Sensing and Geoinformatics Bojan Stopar, Ph.D., field editor for Satelite Geodesy and Geophysics Alma Zavodnik Lamovšek, Ph.D., field editor for Spatial Planning INTERNATIONAL EDITORIAL BOARD Ivan R. Aleksic, Ph.D. (University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia) Janja Avblej, Ph.D. (Eumetsat, Darmstadt, Germany) Branislav Bajat, Ph.D. (University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia) Tomislav Basic, Ph.D. (University of Zagreb, Faculty of Geodesy, Zagreb, Croatia) Giuseppe Borruso, Ph.D. (University of Trieste, DEAMS, Trieste, Italy) Miran Brumec (Slovenian Chamber of Engineers) Raffaela Cefalo, Ph.D. (University of Trieste, Department of Engineering and Architecture, Trieste, Italy) Vlado Cetl, Ph.D. (EC, Joint Research Centre, Ispra, Italy) dr. Joep Crompvoets (KU Leuven, Public Governance Institute, Leuven, Belgium) Marjan Čeh, Ph.D. (University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia) Walter Timo de Vries, Ph.D. (Technical University of Munich, München, Germany) Urška Demšar, Ph.D. (University of St. Andrews, St. Andrews, Scotland, United Kingdom) Samo Drobne, Ph.D. (University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia) Erna Flogie Dolinar, M.Sc. (Surveying and Mapping Authority of the Republic of Slovenia, Ljubljana, Slovenia) Thomas Kalbro, Ph.D. (Royal Institute of Technology, Stockholm, Sweden) Dušan Kogoj, Ph.D. (University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia) Žiga Kokalj, Ph.D. (ZRC SAZU, Institute of Anthropological and Spatial Studies) Miran Kuhar, Ph.D. (University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia) Reinfried Mansberger, Ph.D. (University of Natural Resources and Life Sciences, IVFL, Vienna, Austria) Leiv Bjarte Mjos, Ph.D. (Bergen University College, Bergen, Norway) Gerhard Navratil, Ph.D. (Vienna Technical University, Vienna, Austria) Tomaž Petek (Surveying and Mapping Authority of the Republic of Slovenia) Dušan Petrovič, Ph.D. (University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia) Alenka Poplin, Ph.D. (Iowa State University, College of Design, Ames, Iowa, USA) Andrea Podör, Ph.D. (Obuda Univerity, Szekesfehervar, Hungary) Anton Prosen, Ph.D. (Ljubljana, Slovenia) Dalibor Radovan, Ph.D. (Geodetic Institute of Slovenia, Ljubljana, Slovenia) Fabio Remondino, Ph.D. (Fondazione Bruno Kessler, 3DOM, Trento, Italy) Miodrag Roic, Ph.D. (University of Zagreb, Faculty of Geodesy, Zagreb, Croatia) Baläzs Szekely, Ph.D. (Eötvös Lorand University, Budapest, Hungary) Bojan Šavrič, Ph.D. (ESRI Ltd, Redlands, California, USA) Maruška Šubic Kovač, Ph.D. (University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia) Joc Triglav, Ph.D. (Surveying and Mapping Authority, Murska Sobota, Slovenia) Mihaela Triglav Čekada, Ph.D. (Geodetic Institute of Slovenia, Ljubljana, Slovenia) Arvo Vitikainen, Ph.D. (Alto University, Aalto, Finland) John C. Weber, Ph.D. (Grand Valley State College, Department of Geology, Allendale, Michigan, USA) Klemen Zakšek, Ph.D. (Rosen Group, Lingen, Nemčija) I 159 | |64/2|GEODETSKI VESTNIK IZDAJATELJ Zveza geodetov Slovenije Zemljemerska ulica 12, SI-1000 Ljubljana, Slovenija e-naslov: info@geodetski-vestnik.com IZDAJATELJSKI SVET mag. Blaž Mozetič, predsednik Zveza geodetov Slovenije mag. Erna Flogie Dolinar, Zveza geodetov Slovenije dr. Anka Lisec, glavna in odgovorna urednica Sandi Berk, urejanje rubrike Strokovne razprave dr. Mojca Foški, tehnično urejanje in oblikovanje TEHNIČNO UREJANJE IN OBLIKOVANJE dr. Mojca Foški, e-naslov: mojca.foski@fgg.uni-ljsi Barbara Trobec, e-naslov: barbara.trobec@fgg.uni-ljsi dr. Teja Koler Povh, e-naslov: teja.povh@fgg.uni-ljsi LEKTORIRANJE Manica Baša UREJANJE SPLETNIH STRANI dr. Klemen Kozmus Trajkovski e-naslov: web@geodetski-vestnik.com TISK SIMPRO d.o.o., Brezovica DISTRIBUCIJA mag. Janez Goršič, e-naslov: janez.gorsic@fgg.uni-lj.si TRŽENJE (OGLASNO TRŽENJE) Zveza geodetov Slovenije Zemljemerska ulica 12, SI-1000 Ljubljana e-naslov: zveza.geodetov.slovenije@gmail.com NAVODILA AVTORJEM http://www.geodetski-vestnik.com PUBLISHER Association of Surveyors of Slovenia Zemljemerska ulica 12, SI-1000 Ljubljana, Slovenia e-mail: info@geodetski-vestnik.com PUBLISHING COUNCIL Blaž Mozetič, M.Sc., president and Erna Flogie Dolinar, M.Sc., the Association of Surveyors of Slovenia Anka Lisec, Ph.D., editor-in-chief Sandi Berk, editor of the section Professional Discussions Mojca Foški, Ph.D., technical editor and design TECHNICAL EDITOR AND DESIGN Mojca Foški, Ph.D., e-mail: mojca.foski@fgg.uni-lj.si Barbara Trobec, e-mail: barbara.trobec@fgg.uni-lj.si Teja Koler Povh, Ph.D., e-mail: teja.povh@fgg.uni-lj.si SLOVENE PROOFREADING Manica Baša WEB PAGE EDITING Klemen Kozmus Trajkovski, Ph.D. e-mail: web@geodetski-vestnik.com PRINT SIMPRO d.o.o., Brezovica DISTRIBUTION Janez Goršič, M.Sc., e-mail: janez.gorsic@fgg.uni-lj.si MARKETING (ADVERTISING) Association of Surveyors of Slovenia Zemljemerska ulica 12, SI-1000 Ljubljana, Slovenia e-mail: zveza.geodetov.slovenije@gmail.com INSTRUCTIONS FOR AUTHORS http://www.geodetski-vestnik.com I 160 | GEODETSKI VESTNIK | 64/2 | VSEBINA CONTENTS UVODNIK | EDITORIAL Anka Lisec ZGODBE 163 STORIES Blaž Mozetič GEODETSKI BONI 166 SURVEYING VOUCHERS RECENZIRANI ČLANKI | PEER-REVIEWED ARTICLES Danijel Majcen 169 VZPOSTAVITEV PASIVNE KONTROLNE GNSS-MREZE V SLOVENIJI CREATION OF A PASSIVE GNSS CONTROL NETWORK IN SLOVENIA Nedim Tuno, Simona Savšek, Admir Mulahusic, Dušan Kogoj 182 ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION Berkant Konakoglu 198 ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS Ivan Nestorov, Milan Kilibarda, Dragutin Protic 214 OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE THE OPTIMAL CONFORMAL PROJECTION FOR PAN-EUROPEAN MAPPING Shaoqi Gong, Cunjie Zhang, Geshi Tang, Yehui Zhang, Jing Han 227 GLOBALNA ANALIZA ATMOSFERSKIH REFRAKCIJSKIH PROFILOV IZ PREKRIVANJ RADIJSKIH SIGNALOV COMSIC GPS GLOBAL ANALYSIS OF ATMOSPHERIC REFRACTIVITY PROFILES FROM COSMIC GPS RADIO OCCULTATION SOUNDINGS STROKOVNE RAZPRAVE | PROFESSIONAL DISCUSSIONS Joc Triglav 241 TEKMOVANJE BARV V VEKTORSKIH KARTICAH COMPETITION OF COLOURS IN VECTOR CARDS I 161 I | 64/2 | GEODETSKI VESTNIK Andreja Švab Lenarčič, Joc Triglav 250 DELNA AVTOMATIZACIJA BRISANJA PORUŠENIH STAVB PARTIAL AUTOMATION OF LEVELLED BUILDINGS ERASURE Boris Krotec 257 50-LETNICA USTANOVITVE IN PRIČETKA DEJAVNOSTI LASTNE AEROSNEMALNE SLU2BE V SLOVENIJI 50 YEARS FROM THE SETTING UP OF SLOVENIA'S OWN AERIAL SURVEY SERVICE Jurij Režek, Sandi Berk 265 20 LET PO OBDOBJU DUŠANA MIŠKOVICA 20 YEARS AFTER THE DUŠAN MIŠKOVIC PERIOD NOVICE IZ STROKE | NEWS FROM THE FIELD 269 DRUŠTVENE NOVICE | NEWS FROM SOCIETIES 277 RAZNO | MISCELLANEOUS 281 DIPLOMI IN MAGISTERIJI NA ODDELKU ZA GEODEZIJO UL FGG, OD 1. 2. 2020 DO 30. 4. 2020 STRAN ZA POPRAVKE, ERRATA NAPOVED GEODETSKEGA DNE Slike na naslovnici: Snemalna oprema nekdanjega Geodetskega zavoda SRS. V ozadju lastni letali: Piper Navajo Chieftain PA 31-350 v ospredju, za njim Cesasna 421-Golden Eagle. Vir: Oddelek za aerofotografijo GZ SRS I 162 | GEODETSKI VESTNIK | 64/2 | ZGODBE STORIES ¡T Anka Lisec glavna in odgovorna urednica | Editor-in-chief Ob pripravi in urejanju junijske številke Geodetskega vestnika, ki ponovno ponuja zanimive članke s področja znanstveno-raziskovalnega dela in iz stroke, me je tokrat pritegnila zanimiva zgodba. Zgodba, ki jo je težko spregledati, saj je močno zaznamovala razvoj fotogrametrije in daljinskega zaznavanja na Slovenskem. Naši kolegi so jo začeli z vzpostavitvijo prve ekipe za letalsko fotogrametrično snemanje — takrat v okviru Geodetskega zavoda SRS — pisati pred petdesetimi leti. Vrata za razvoj fotogrametrije v Sloveniji je na široko odprl zvezni odlok o snemanju iz zraka in izmeri-tvi zemljišč (Uradni list SFRJ, št. 13/1970). S tem odlokom je bilo dovoljeno, da opravljajo snemanja iz zraka in razvijajo zračni fotografski material za izmeritev zemljišč ustanovljene delovne organizacije, državni organi, pristojni za geodetske zadeve, in vojaški zavodi, ki opravljajo geodetska dela. Snemanje iz zraka pa tudi obdelava in objava tako imenovanih aeroposnetkov ter drugih izdelkov so bili sicer strogo regulirani z jasnimi postopki za pridobivanje ustreznih dovoljenj in strogimi pravili glede objave podatkov. Pa vendarle — začela se je doba izjemno hitrega razvoja in uveljavljanja fotogrametrije pri nas, kjer smo ves čas ostajali visoko konkurenčni tudi na mednarodni ravni. Čeravno smo imeli že pred tem izjemne, mednarodno prepoznavne znanstvenike in strokovnjake na področju fotogrametrije, je letalsko fotogrametrično snemanje v okviru Geodetskega zavoda SRS prineslo nove priložnosti za uveljavljanje raziskovalcev in strokovnjakov. Že pet let po ustanovitvi ekipe za letalsko snemanje smo v Sloveniji začeli izvajati ciklično aerosnemanje CAS, ki ga poznamo še danes. Z lastnim letalskim snemanjem so se razvijale ekipe za zajem in obdelavo fotogrametričnih podatkov, pojavljali so se novi izdelki, fotogrametrija pa se je močno utrdila tako v izobraževalnih kot raziskovalnih ustanovah in takratnih geodetskih organizacijah. Pomembna strateška odločitev pred petdesetimi leti, da se vlaga v razvoj razmeroma drage in nove tehnologije, je prispevala k mnogim uspehom slovenske fotogrametrije, izredno pomembno pri tem pa je izpostaviti, da smo vzporedno stalno skrbeli za visoko usposobljen kader. Takrat se najverjetneje niso niti zavedali, kako pomembna zgodba se piše. Ob današnjih uspehih slovenske fotogrametrije in širšega daljinskega zaznavanja žal pogosto pozabimo na izjemne strateške odločitve, ki so jih pogumno sprejeli pred petdesetimi leti in so še kako zaznamovale desetletja razvoja stroke pri nas. Manj strateške so bile odločitve v dobi tranzicije, ko je visoko usposobljena ekipa za letalsko fotogrametrično snemanje delila klavrno usodo s propadom prestrukturiranega in preimenovanega zavoda (op. Geodetski zavod Slovenije). Razlog je bojda bil v nerentabilnosti dejavnosti. I 163 | | 64/2 | GEODETSKI VESTNIK -j Takšna je pač prevladujoča logika družbene ureditve, za katero s(m)o se odločili pred tremi desetletji — cš teh prelomnih časov iz devetdesetih let preteklega stoletja se sicer ne spomnim dobro, saj sem takrat še S obiskovala osnovnošolske klopi in sanjala, kako bom postala kozmonavtka ali astronavtka. Tako tudi H težko sodim, kaj je bilo prav in kaj narobe ... 8 = Opazujem pa zgodbe, ki jih pišemo danes. Nekoliko s skrbjo ugotavljam, da največkrat zmaguje tisto, kar se splača v danem trenutku, in ne tisto, kar bi bilo dobro na srednji in dolgi rok. To je žal pogosto uveljavljena logika sodobnega kapitalizma, ki ne le, da kroji naše trenutno življenje, ampak vpliva tudi na našo prihodnost in prihodnost naših zanamcev. Upam in verjamem pa, da današnji odločevalci na vodilnih mestih poznajo zgodbe iz preteklosti — uspešne in neuspešne, ki jim pomagajo pri strateškem razmišljanju in sprejemanju dobrih dolgoročnih rešitev. Neverjetno simbolično je dejstvo, da ravno ob petdesetletnici vzpostavitve prve letalske ekipe na Slovenskem za fotogrametrično snemanje pričakujemo izstrelitev dveh slovenskih satelitov v orbito — mikrosa-telita NEMO-HD in nanosatelita TRISAT. Kot smo poročali že v prvi številki letošnjega letnika, se je izstrelitev nekoliko zamaknila zaradi pandemije, a vse kaže, da bosta satelita utirjena še letos. Dejavnosti in odločitev, ki imajo potencial za dolgoročni uspeh in dobrobit skupnosti, je še več. A ne pozabite, zgodbe nastajajo tudi tiho, pri čemer se akterji mnogokrat niti ne zavedajo, da se sploh pišejo in da bodo nekoč o njih poročali. Pomembno je, da so to dobre in pozitivne zgodbe, o katerih bodo, če že, pisali s ponosom. During the preparation and editorial work for the June issue of Geodetski Vestnik, which again brings to light a variety of interesting scientific and professional topics, a compelling story attracted my attention. It is difficult to overlook as it left a deep mark in the development of photogrammetry and remote sensing in Slovenia. Our colleagues started writing it five decades ago when they put together the first team for aerial photogrammetry — as part of the then Land Survey Institute of the Socialist Republic of Slovenia. The federal ordinance on aerial photography and land measurements (Official Gazette of SFRY No. 13/1970) opened the door for the development of photogrammetry in Slovenia. It allowed officially established entities, state authorities competent for land surveying, and military institutions that performed land surveying duties to take aerial photographs and develop aerial photographic material for land measurement. Taking aerial photographs as well as processing and publication of so-called aerial shots and other products were strictly regulated with clearly established formal procedures to obtain the necessary permissions and strict rules on the publication of data — this marked the beginning of the extremely rapid development of photogrammetry in Slovenia, with its continued strong competitive international position ever since. Of course, there were some exceptional and internationally recognized scientists and professionals in the field even before that; nevertheless, it is a fact that aerialphotogrammetry undertaken by the Land Survey Institute of the Socialist Republic of Slovenia opened up opportunities for researchers and professionals to gain recognition. Within a short five years after the team for aerial photography was established in Slovenia, they started undertaking cyclical aerial surveys (CAS) that are still carried out today. A national service for aerial photography enabled the development of teams for capturing and processing of photogrammetric data, the emergence of I 164 | GEODETSKI VESTNIK | 64/2 | new products, photogrammetry as science found a firm footing in educational and research institutions, and _ land-surveying entities of the time. Fifty years ago, an important strategic decision to invest in the development g of relatively expensive and new technology contributed to many successful outcomes in photogrammetry in ¡53 Slovenia, and the constant attention devoted to the development of highly trained professionals must not be |g forgotten. It might even be the case that those involved were not fully aware of how important the story they § were writing was. Unfortunately, with all the accomplishments in photogrammetry in Slovenia and remote sensing as a whole, we tend to forget about exceptional strategic decisions that were bravely taken five decades ago and have more than decisively influenced several decades of professional development in the country. Less strategic were some decisions in the period of economic transition, when a highly trained team for aerial photogrammetry shared the grim fate with the institution that collapsed after it had been restructured and its name had been changed (i.e., Land Survey Institute of Slovenia). Apparently, it was impossible to ensure its economic viability. At present, that is the rationale of the social and economic system that we (they) chose three decades ago. I admit that my memories on the critical 1990s are hardy relevant as I was still attending primary school and dreaming of becoming a cosmonaut or an astronaut one day. So, it is difficultfor me to judge what was right and what was wrong. However, I closely follow the stories that are being written today. I find it rather disturbing that things that are profitable at a given moment mostly prevail over things that would prove useful in the mid-to-long term. Unfortunately, this is often the prevalent rationale behind modern capitalism that not only shapes our lives but also affects our future and the future of our descendants. I hope and I believe that decision-makers in prominent positions are familiar with the stories from the past — successful and unsuccessful — and consider them when applying strategic thinking and taking prudent long-term decisions. The fact that now, when we are expecting the launching of two Slovenian satellites into orbit — microsatellite NEMO-HD and nanosatellite TRISAT—fifty years have passed since the establishment of the first photo-grammetric team in Slovenia is incredibly symbolic. As we stated in this year's first issue, the covid-19 pandemic temporarily suspended the launch, but now it seems that the satellites will be put into their orbits before the end of this year. Many more activities and decisions that bear the potential for long-term success exist. Do not forget, however, that some stories are also being born in silence; those involved are often not even aware that they are writing them and that they will be talked about sometime in the future. What matters most is that these stories be good, be positive; that the people who might write about them in the future will be proud to do so. I 165 I | 64/2 | GEODETSKI VESTNIK GEODETSKI BONI SURVEYING VOUCHERS cc O Blaž Mozetič predsednikZveze geodetov Slovenije | president of the Association of Surveyors ofSlovenia Ali si predstavljate, da bi se v enem od zakonov o interventnih ukrepih za omilitev in odpravo posledic epidemije covid-19, ki se sprejemajo v Sloveniji, znašel tudi člen, ki bi opredeljeval geodetske bone? Denarni znesek si zamislite sami: za podporo boljši pravni varnosti lastnikov nepremičnin, posodobitev in ureditev nepremičninskih evidenc ter izboljšanje medsosedskih odnosov, saj so lastniki nepremičnin v času posebnih ukrepov zaradi razglašene epidemije imeli večinoma omejeno gibanje na domači nepremičnini in so zato do zadnjega kotička prehodili stanovanje ali vrt družinske hiše ter ugotovili, da bi bilo dobro kaj postoriti iz naslova dolžnosti in izključnih pravic ter interesa lastnika nepremičnine. Torej urediti in ažurirati podatke o nepremičnini, se pravi jasno opredeliti meje svojih pravic. Seveda bi geodetske bone lastniki žal lahko uveljavljali le za nekatera področja geodetskih storitev — katastrske storitve, sodobna država mora namreč zagotavljati osnovne pogoje in taka država je tudi prepričana, da so na eni strani lastnikom nepremičnin dobro poznane njihove pravice in dolžnosti ter da so na drugi strani usposobljeni in prodorni ponudniki geodetskih storitev zelo zainteresirani in znajo prepričljivo ponuditi dodatne »samoplačniške« storitve, ki lastnikom nepremičnin zagotavljajo umirjeno uživanje pravic na nepremičnini do njene pravne meje. Poleg ponudnikov geodetskih storitev na nepremičninskem področju, ki jih lahko opredelimo kot del javne geodetske službe, bi bila posebnega geodetskega bona deležna tudi geodetska uprava, kajti brez dobre in urejene infrastrukture se v zemljiški administraciji ne pride prav daleč. V obrazložitvi tega člena bi pisalo, da bodo rezultat urejene in znane meje pravic na nepremičninah; zavedati se moramo, da posredno govorimo o človekovih pravicah in ustavnih določbah, ki se nanašajo na pojem zasebne lastnine, da je to osnova trajnostnemu razvoju družbe tako v človeškem kot gospodarskem smislu. Pisalo bi tudi, da je javna geodetska služba zaradi svoje strokovnosti, kompetentnosti, visoke integritete, korektnosti in pomembnosti v sistemu državne administracije ključna pri ponovnem zagonu gospodarstva. Mediji bi morda v svoji službeni skeptičnosti in novinarski radovednosti geodetskim subjektom zastavljali številna vprašanja v zvezi z izvedljivostjo tako velikega projekta, zadostnimi kadrovskimi in drugimi zmogljivostmi, strokovnostjo in usposobljenostjo kadra, časovnimi okviri, informacijskimi sistemi in podporo, odpravo birokratskih ovir ... Ne bi se pa bilo mogoče izogniti vprašanjem bolj komercialne tematike, kot so cene storitev, posebne ponudbe, popusti in morebitne podražitve, ter tudi čisto uradniškim temam, kot so trajanje postopkov, zaostanki in birokratizacija. I 166 | GEODETSKI VESTNIK | 64/2 | Kot vedno bi se našli tudi dvomljivci in nergači, ki ne bi bili zadovoljni z načinom reševanja geodetske problematike, razlagali bi, da je težav in področij še več, a zaradi njim neznanih razlogov niso zajeti v g določbah zakona, čeprav bi bilo to nujno. Pojavila bi se tudi najrazličnejša vprašanja: ali je predvideni ¡53 znesek geodetskega bona dovoljšen, saj so na primer parcele označene z različnim številom in vrstami || mejnih znamenj, dostop in pogoji za meritve so tudi zelo raznovrstni, lastniki imajo več nepremičnin, p težave s solastniki ... Spoštovane kolegice in kolegi, jaz si z lahkoto predstavljam vse to (pa ni nujno, da v povezavi z boni), ampak žal v oddaljeni prihodnosti, ko bo tudi geodetska stroka dozorela v spoznanju, kaj je njeno pravo poslanstvo na področju zemljiške administracije, in ko bo družba končno ugotovila ter ponotranjila, da so urejene meje pravic na nepremičninah svete in da je to tudi temelj dobrih družbenih odnosov ter jamstvo proste gospodarske (s)pobude na trgu znanja, idej, konceptov, rešitev, kapitala, lastnine ter ne nazadnje umetnost ponudbe in povpraševanja. Ostanite zdravi in srečno! Can you imagine that one of the acts on the intervention measures to mitigate and prevent the consequences of the covid-19 epidemic that are being adopted in Slovenia at the moment would include an article on surveying vouchers? Feel free to choose their value: be they intended to support the legal certainty of property owners; to update and maintain property registers; to improve relations with neighbours. In the period when measures to cope with the epidemic were in force, the movements of property owners were mostly limited to their properties, which allowed them to explore every nook and cranny of their apartments or gardens around their family houses; and to establish that it would not harm if they invested some of their energy into the duties, exclusive rights, and interests of a property owner. In essence, this means to compile and update the data associated with their property, which is to state the boundaries of their rights clearly. As might be expected, surveying vouchers could, unfortunately, be used only in some areas of the mapping and surveying profession, mainly for cadastral services. As is, the state is obliged to create the basic conditions; besides, such a state has no doubts that, on the one hand, property owners are well informed about their rights and obligations and, on the other hand, providers of surveying services are properly trained and resourceful, they are highly engaged and know how to offer additional, 'self-paid' services that enable property owners to enjoy their property rights up to their legal boundaries calmly. Apart from surveying entities operating in the real-estate market that might be considered a part of public land surveying services, a special surveying voucher would be issued in favour of the Slovenian surveying mapping and authority as no real progress in land administration is possible without good and orderly infrastructure. The reasons for the inclusion of the above-mentioned concept would include formally established and known boundaries of property rights; the issue is linked to human rights and constitutional provisions that apply to private property; it is the foundation of the sustainable development of the society, be it for people or economy. It would also be stated that the public surveying and mapping authority, with its high professional standards, competencies, high levels of integrity, regularity, and importance in the system of public administration, is of central importance for rebuilding the economy. I 167 I | 64/2 | GEODETSKI VESTNIK It might happen that journalists, bound by their professional scepticism and curiosity, would ask many questions about the feasibility of the project of this size; about the sufficient human and other resources, professional ^ capacities, andskills ofemployees; about timelines, information systems andsupport; about the elimination of H bureaucratic obstacles, and similar. It would by no means be possible to evade economic questions, for example > on the price of the service, special offers, discounts, and possible increases in prices; and there are also some purely administrative issues as the length of procedures, backlogs, and unnecessarily bureaucratic procedures. As always in such cases, doubters and grumblers would emerge; they would be highly discontent with solutions for surveying issues. They would go on to explain that there are more problems, more areas that are extremely urgent but have not been included in the legislation. Numerous other questions would emerge: is the amount of the surveying voucher sufficient, as different plots of land contain different numbers and types of survey markers; some plots are not easily accessible, the surveying conditions might differ considerably; some owners have several properties; there are co-owners and so on. Dear Colleagues, for me it is extremely easy to imagine all this (not necessarily in connection with vouchers), but unfortunately only in the remote future, when the surveying profession will mature with the recognition of its true meaning in land administration; when society will finally realize and welcome the presumption that regulated boundaries of rights on properties are sacred, that they are the foundation of sound social relationships; that they assure free economic initiative and stimulus in the markets of knowledge, ideas, concepts, solutions, capital, property, and, last but not least, that this is where the art of supply and demand comes in. Stay healthy and good luck! I 168 | G š 9 v GEODETSKI VESTNIK | letn. / Vol. 641 št. / No. 21 |64/2| VZPOSTAVITEV PASIVNE CREATION OF A PASSIVE KONTROLNE GNSS-MREŽE V GNSS CONTROL NETWORK IN | SLOVENIJI SLOVENIA -=c Danijel Majcen UDK: 528.2(497.4) Klasifikacija prispevka po COBISS.SI: 1.04 Prispelo: 31. 1. 2020 Sprejeto: 23. 5. 2020 DOI: 10.15292/geodetski-vestnik.2020.02.169-181 PROFESSIONAL ARTICLE Received: 31. 1. 2020 Accepted: 23. 5. 2020 IZVLEČEK V prispevku je obravnavana idejna zasnova in izvedba projekta vzpostavitve kontrolne GNSS-mreže na območju Republike Slovenije. Kontrolne točke bodo namenjene nadzoru kakovosti delovanja omrežja SIGNAL ter preverjanju kakovosti metod in merilne opreme za določanje položaja z GNSS. Opisani so stabilizacija in izbor lokacij kontrolnih točk. Predstavljena je določitev referenčnih koordinat kontrolnih točk. Narejena je primerjava koordinat kontrolnih točk v referenčnih koordinatnih sistemih D96/TM in D96-17/TM. Narejena je tudi primerjava določitve koordinat kontrolnih točk na podlagi 24-urnih statičnih meritev, in sicer z navezavo na: 1) bližnje stalne postaje omrežja SIGNAL in 2) virtualno referenčno postajo (VRS; angl. virtual reference station) v neposredni okolici posamezne točke. ABSTRACT _ This paper describes the conceptual design and the implementation of the project ofestablishing a GNSS control network in the territory of the Republic of Slovenia, which will be used to monitor the quality of the SIGNAL network products and services and to verify the quality of methods and measurement equipment for GNSS positioning. The stabilization process and the selection of locations of GNSS points are described. The determination of the reference coordinates of GNSS points is presented. A comparison of coordinates of the GNSS points in the coordinate reference systems D96/TMandD96-17/TM is made. A comparison of coordinates determined from 24-hour static measurements is also made, by using baselines 1) to the nearest SIGNAL stations and 2) to a virtual reference station (VRS) in the immediate neighbourhood of each point. KLJUČNE BESEDE KEY WORDS kontrolna mreža, kontrolna točka, točnost, statična GNSS-izmera, VRS z naknadno obdelavo accuracy, control network, control point, static GNSS measurement, post-processing VRS :l Majcen | VZPOSTAVITEV PASIVI E V SLOVEt OF A PASSIVE GNSS CONTROL NETWORK IN SLOVENIA | 169-181 | I 169 | |64/2| GEODETSKI VESTNIK ^ 1 UVOD E p= V Republiki Sloveniji od 1. 1. 2008 uporabljamo referenčni koordinatni sistem D96/TM. Od 1. 1. 2020 2 uporabljamo nove, izboljšane koordinate z oznako D96-17/TM (Obvestilo, 2019). Določanje položaja ¡3 geodetskih točk v D96-17/TM lahko izvajamo z uporabo produktov in storitev omrežja SIGNAL, ki ga qc sestavlja 16 stalnih GNSS-postaj na območju Slovenije (SIGNAL, 2020). Od omrežja SIGNAL upo- cc Sj rabniki dobivajo popravke GNSS-opazovanj za izračun natančnega položaja v realnem času. Na izračun s položaja pri uporabniku vplivajo različni dejavniki: modeliranje vplivov ionosfere in troposfere, hitrost ,5 prenosa popravkov do uporabnika, kakovost merilne opreme, odboji signalov (večpotje), programska H oprema omrežja SIGNAL, nepredvideni dogodki itd. H Na Geodetski upravi Republike Slovenije smo vzpostavili kontrolno GNSS-mrežo z namenom preverjanja pravilnosti delovanja omrežja SIGNAL, za testiranje merilne opreme in metod izmere ter za izobraževalne namene. Kontrolno GNSS-mrežo sestavljajo trajno stabilizirane geodetske točke (v nadaljevanju: kontrolne točke). Na vsaki kontrolni točki smo izvedli 24-urno statično GNSS-izmero. Surova opazovanja smo pretvorili v datoteke formata RINEX 3.02. Prav tako smo za pripadajoče časovne intervale pridobili podatke meritev na stalnih postajah omrežja SIGNAL in jih obdelali s programom Leica Infinity. Tako smo za vsako točko posebej določili referenčne koordinate kontrolnih točk. Kontrolne točke bodo namenjene nadzoru kakovosti delovanja omrežja SIGNAL. Na voljo so tudi za preverjanje kakovosti merilne opreme in metod izmere z ^ GNSS - uporabljajo jih lahko tudi geodetska podjetja in drugi uporabniki GNSS-tehnologije. 2 PROJEKT KONTROLNE GNSS-MREŽE Za določitev števila kontrolnih točk smo izhajali iz površine Slovenije, ki znaša 20.273 km2. Za ciljno gostoto smo izbrali eno točko v kvadratu s stranico 20 km, kar pomeni, da za celotno državo potrebujemo približno 50 kontrolnih točk. Za izbor mikro- in makrolokacij točk smo upoštevali pogoje, da: — enakomerno pokrivajo ozemlje celotne države, — so brez fizičnih ovir, ki bi onemogočale sprejem signalov GNSS, — so dostopne z osebnim avtomobilom, — je mogoča stabilizacija na javni infrastrukturi, — so nekatere na večjih nadmorskih višinah (900 m in več), — so na različnih oddaljenostih od stalnih postaj omrežja SIGNAL, — se po možnosti uporabijo primerne že obstoječe gravimetrične točke in točke za vpetje geoida. Točke 1. reda in geodinamične točke za ta namen niso primerne (težko dostopne, stabilizacija na stebru ali kovinski drog — pogosto privijanje slednjega lahko uniči navoje). Na podlagi zgornjih pogojev smo izdelali projekt predvidenih makrolokacij za 42 kontrolnih točk (slika 1). Na sliki 1 so z zelenimi, modrimi in rdeči krogi premera 20 kilometrov prikazane predvidene lokacije kontrolnih točk po skupinah. Prikazane so še obstoječe stalne postaje omrežja SIGNAL in točke za vpetje geoida. Glede na namen in uporabo smo lokacije točk razvrstili v tri skupine: — V prvi skupini so kontrolne točke, ki so že stabilizirane in so bile uporabljene za vpetje geoida. Središča rdečih krogov, ki jih je 14, so obstoječe točke, ki bi bile primerne (stabilizirane so s kovinskimi čepki). Točke so internega značaja in jih uporablja le geodetska uprava za svoje potrebe. | 170 | Danijel Majcen | VZPOSTAVITEV PASIVNE KONTROLNE GNSS-MREŽE V SLOVENIJI | CREATION OF A PASSIVE GNSS CONTROL NETWORK IN SLOVENIA | 169-181 | GEODETSKI VESTNIK | 64/2 | — V drugi skupini so kontrolne točke, ki se stabilizirajo na večjih nadmorskih višinah. Zeleni krogi, ki jih je 14, označujejo makrolokacije za nove točke na nadmorskih višinah nad 900 m ali pa ob državni meji. Izbrane lokacije so: Vogel, Idrijsko hribovje, Črni vrh - Trnovski gozd, Polhograjsko hribovje, Raduha, Menina, Storžič, Suha krajina, Kočevski rog, Sviščaki, Rogla, Boč, Bohor in Krim. — V tretji skupini so dvojne kontrolne točke, ki se stabilizirajo po različnih regijah. Služile bodo za preizkus oziroma kalibracijo instrumentov po navodilih standarda ISO 17123-8. ali pa kot oslonilne točke v fotogrametriji. Modri krogi, ki jih je 14, označujejo makrolokacije za nove regionalne točke. Dostopne so z osebnim avtomobilom. Nahajajo se v okolici večjih mest: Murska Sobota, Maribor, Celje, Ljubljana, Koper, Novo mesto, Slovenj Gradec, Nova Gorica, Bovec, Jesenice, Trbovlje, Postojna, Brežice in Ptuj. Na vsaki navedeni lokaciji se stabilizirata po dve točki (R1 in R2), ki sta oddaljeni vsaj 2 metra in ne več kot 20 metrov (slika 2), oddaljenost od točk R1 in R2 do referenčne postaje B (stalna postaja ali lastna bazna postaja) pa ni predpisana. Slika 1: Predlog makrolokacij kontrolnih točk. ES or -< D or or or Slika 2: Postavitev kontrolnih točk iz tretje skupine (Pavlovčič Prešeren in sod., 2010). Danijel Majcen | VZPOSTAVITEV PASIVNE KONTROLNE GNSS-MREŽE V SLOVENIJI | CREATION OF A PASSIVE GNSS CONTROL NETWORK IN SLOVENIA | 169-181 | I 171 | | 64/2 | GEODETSKI VESTNIK ^ Način testiranja in analiza kakovosti določanja položaja z metodo RTK sta - skladno s standardom ISO i i i ^ 17123-8 - podrobno opisana v članku Pavlovčič Prešeren in sod. (2010). 3 STABILIZACIJA IN IZMERA KONTROLNE GNSS-MREZE Sledita opis stabilizacije kontrolnih točk na izbranih lokacijah in opis GNSS-izmere za določitev njihovih referenčnih koordinat. 3.1 Stabilizacija točk Kontrolne točke iz prve in druge skupine so stabilizirane s kovinskim čepkom dolžine okoli 4 centimetre (slika 3), nekatere pa tudi s talnim reperjem. Stabilizirane so v trdne površine, kot so skala, beton in podobno. Kontrolne točke iz tretje skupine so stabilizirane na dobro utrjenih ravnih javnih površinah, predvsem v beton, redkeje tudi v asfalt. Za stabilizacijo je uporabljen talni reper dolžine od 10 do 19 centimetrov z luknjico (slika 4). Primera vgradnje kovinskega čepka in talnega reperja sta prikazana na slikah 5 in 6. | 172 | Danijel Majcen | VZPOSTAVITEV PASIVNE KONTROLNE GNSS-MREŽE V SLOVENIJI | CREATION OF A PASSIVE GNSS CONTROL NETWORK IN SLOVENIA | 169-181 | GEODETSKI VESTNIK | 64/2 | -=c Slika 7: Grafični prikaz realizirane pasivne GNSS-mreže kontrolnih točk. Na sliki 7 so prikazane v letu 2017 stabilizirane pasivne kontrolne točke. Stabiliziranih je 17 višinskih in obmejnih kontrolnih točk (zelene barve), 14 parov kalibracijskih kontrolnih točk (modre barve) in 13 kontrolnih točk, ki so služile za vpetje geoida (rdeče barve). Skupno število vseh kontrolnih točk je 44 oziroma 58 (17 + 13 + 2 x 14). 3.2 Izvedba meritev na kontrolnih točkah Po končani stabilizaciji smo za vsako kontrolno točko izdelali topografijo (slika 8) in opravili 24-urno statično GNSS-izmero. Postavitev instrumenta je bila vedno izvedena na stativ (slika 9). Za pare kontrolnih točk je bila statična GNSS-izmera opravljena istočasno. Za statično izmero smo uporabili GNSS-sprejemnik JAVAD TRIUMPH-LS2 z anteno JAV-RINGANT G3T. Uporabljena sta bila interval registracije 30 s in višinski kot 10°. Slika 8: Primer izdelane topografije. Slika 9: Primer postavitve instrumenta. Danijel Majcen | VZPOSTAVITEV PASIVNE KONTROLNE GNSS-MREŽE V SLOVENIJI | CREATION OF A PASSIVE GNSS CONTROL NETWORK IN SLOVENIA | 169-181 | I 173 | | 64/2 | GEODETSKI VESTNIK cc ■ do 1,5" (°"DIN18723 THEOHzV> °ISOTHEO HzV). Za čitanje razdelbe horizontalnega in vertikalnega limba se uporabljata ali statični (absolutni ali relativni postopek) ali pa dinamični postopek čitanja. Na univerzalne teodolite lahko z ustreznim dodatkom pričvrstimo elektronski razdaljemer. Tako nastane modularni elektronski tahimeter. Osnovni modul modularnega tahimetra je elektronski teodolit. Omogoča neprekinjen pretok podatkov od terenskih meritev do izpisa koordinat točk (slika 3), pri čemer ostaja še naprej samostojni instrument. Modularno zgrajeni instrument je imel nekatere prednosti, saj je lahko geodetski strokovnjak izbral ustrezno kombinacijo — teodolit — razdaljemer — tahimeter. Razdaljemer, ki ga je bilo mogoče s posebnim nosilcem uporabiti tudi samostojno, je bil pritrjen ali na nosilcih daljnogleda teodo-lita ali neposredno na daljnogledu. Prenos podatkov med razdaljemerom in teodolitom je potekal preko kabla ali neposredno. S priključkom elektronske spominske enote je bilo mogoče vse podatke samodejno shraniti. Nekateri teodoliti so imeli vgrajeno spominsko enoto, najnaprednejši modeli pa so poleg tega | 186 | NedimTuno, Simona Savšek, Admir Mulahusič, Dušan Kogoj | ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA | ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION | 182-197 | GEODETSKI VESTNIK | 64/2 | omogočali shranjevanje podatkov na prenosni pomnilnik. Teodoliti so imeli vgrajene mikroprocesorje, ki so omogočali avtomatizacijo merskega procesa v smislu upoštevanja instrumentalnih popravkov in preračunov merskih vrednosti. Obdelava merskih podatkov se je na terenu izvedla prek ločenega modula — elektronskega zapisnika. Najnaprednejši modeli teodolitov so imeli vgrajene programe, ki so omogočali različne izračune (sredine merjenih vrednosti, polarne — pravokotne koordinate, koordinate poligonskih točk ...). Vsi univerzalni elektronski teodoliti imajo elektronske kompenzatorje — enoosne za popravljanje čitanja vertikalnega limba ali dvoosne za samodejno korekcijo zenitnih razdalj in horizontalnih smeri. Nekateri univerzalni elektronski teodoliti so tudi motorizirani. Slika 3: Različne možnosti sestavljanja modularnega merskega sistema s teodolitom Wild T1610 kot osnovno enoto (Leica, 1993). 4.2 Razvoj večnamenskih elektronskih teodolitov Od izdelave elektronskega digitalnega teodolita DIGIGON do pojava instrumentov, ki bi jih lahko šteli za predhodnike modernih elektronskih teodolitov in tahimetrov in ki so geodezijo resnično pripeljali v elektronsko dobo, je minilo več kot desetletje. Leta 1977 so se pojavili instrumenti, katerih napredni koncepti so določali smer razvoja elektronskih teodolitov in tahimetrov v naslednjih dveh desetletjih. Koncept tovarn Wild (danes Leica Geosystems) in Hewlett Packard je temeljil na integriranih tahime-trih (Tuno in sod., 2019), medtem ko sta Kern (danes Leica Geosystems) in Keuffel & Esser (K & E) oglaševala modularno rešitev z elektronskim teodolitom, elektronskim razdaljemerom in elektronskim zapisnikom kot ločenimi enotami. Nedim Tuno, Simona Savšek, Admir Mulahusič, Dušan Kogoj | ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA | ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION | 182-197 | | 187 | | 64/2 | GEODETSKI VESTNIK cc -< cc cc -i E cc Prvi, na trgu dostopni elektronski teodolit z možnostjo modularne rešitve je bil K & E Vectron (slika 4). Instrument ima enoosni kompenzator in mikroračunalnik z mikroprocesorjem. Limbi imajo inkrementalno razdelbo, način čitanja je relativni. Za merjenje zenitnih razdalj je bilo treba ob vklopu instrumenta vedno znova določiti mesto zenita oziroma mesto indeksa vertikalnega limba (orientacijo vertikalnega limba) z enostavnim postopkom inicializacije. Ob horizontiranem instrumentu je bilo treba daljnogled z ustrezno hitrostj o prevrteti preko horizonta. Relativni način določanj a odčitkov na limbih z inkrementalno razdelbo je bil takrat veliko zanesljivejši kot absolutni sistem, pri katerem je kompleksna struktura pogosto povzročala napake odčitanih vrednosti kotov. Standardni odklon merjenih horizontalnih smeri in zenitnih razdalj je znašal 3" (°DIN18723THEO hzV). V prvi legi daljnogleda se je nahajala plošča s tipkovnico in LED-zaslonom (8 znakov) za prikaz izmerjenih ali izračunanih vrednosti. Kotne vrednosti so se prikazovale v gonih, stopinjah (seksagezimalna ali decimalna razdelba) ali tisočinah (hiljaditih). Zaslonska ločljivost je bila ali 1 mgon ali 1". Ob naviziranju začetne točke je bilo mogoče s pritiskom na gumb nastaviti odčitek na vrednost 0. Teodolit je bilo mogoče povezati z zunanjo tipkovnico za vnos dodatnih podatkov o stojišču, vizurni točki ipd. Omogočala je tudi nastavitev vrednosti začetne smeri, izbiro zaporedja merjenja horizontalnih smeri, računanje sredin niza nadštevilnih meritev in drugo. S pritrditvijo elektronskega razdaljemera Autoranger na nosilec daljnogleda teodolita je nastal elektronski tahimeter z možnostjo neposrednega prenosa izmerjenih dolžin v mikroračunalnik teodolita. To je omogočilo pretvorbo polarnih koordinat v merskem prostoru v koordinatne razlike v koordinatnem prostoru in naprej v koordinate merjenih točk v koordinatnem sistemu baze izmere. Posebno stikalo na tipkovnici je služilo za izbiro prikaza želenih izmerjenih ali izračunanih vrednosti. Vektron je bil povezan z zunanjim registratorjem — terenskim računalnikom (angl. field computer), katerega spominska zmogljivost je znašala od 8 KB do 24 KB. Terenski računalnik je omogočal pregled vseh vpisanih podatkov v pomnilnik, služil pa je tudi za izračune in kontrolo izmerjenih vrednosti na terenu (npr. zapiranje poligonskega vlaka) (Erickson, 1978; Ketteman, 1985). Na podlagi prototipa teodolita ET2 (konstruiral ga je Hans Koch) je tovarna Kern leta 1980 začela proizvodnjo preprostejše različice instrumenta pod oznako E1 (Aeschlimann, 1978; Aeschlimann, 2008). Elektronski teodolit E1 je imel podobne lastnosti in zmogljivosti kot teodolit Vectron. Podatke je prikazoval na štirih vrstičnih LCD-zaslonih v prvi legi daljnogleda in na dveh zaslonih v drugi legi daljnogleda. Vrednosti horizontalne smeri in zenitne razdalje sta bili določeni istočasno, instrument je potreboval dve sekundi za prikaz. Leta 1983 je Kern začel proizvajati teodolit visoke natančnosti Kern E2 (slika 4). Njegova natančnost je bila osupljiva, standardni odklon merjene horizontalne smeri in zenitne razdalje je bil 0,5" (°DIN18723 THEO HzV), to pa je natančnost statičnega načina čitanja današnjih najnatančnejših preciznih tahimetrov. Dvoosni kompenzator je omogočal samodejno korekcijo vrednosti zenitne razdalje in horizontalne smeri zaradi nagiba navpične osi (Kern, 1985a; Kern 1985b). Istega leta je tovarna WILD pričela proizvodnjo teodolita visoke natančnosti Theomat T2000 (50 years of..., 2014; Virtual Archive of., n. d.). T2000 je bil opremljen z dinamičnim sistemom čitanja limba, ki omogoča visoke natančnosti merjenja horizontalnih smeri in zenitnih razdalj 0,5" (°*DIN18723 THEOHzV). Razdelba na limbih je inkrementalna, pri tem pa instrument na podlagi merjenja časa določi vrednost kota med fotocelico začetne smeri — ničle razdelbe in fotocelice smeri kolimacijske osi (Katowski in Salzmann, 1983). Na nadzorni plošči instrumenta je numerična tipkovnica z ukaznimi tipkami za neposredno upravljanje. Teodolit ima izmenljivo baterijo v posebnem delu instrumenta, kar je veliko priročnejši način napajanja od dotedanjih rešitev z zunanjimi baterijami (Wild, 1985). | 188 | NedimTuno, Simona Savšek, Admir Mulahusič, Dušan Kogoj | ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA | ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION | 182-197 | GEODETSKI VESTNIK | 64/2 | V sredini 80. let uvedejo absolutni statični sistem čitanja limbov, pri katerih se uporablja le ena koncentrična linija (Wild Theomat T1000 in T1600). Ta način ima bistveno prednost pred dinamičnim, saj je čas meritev občutno krajši, celoten sistem pa je enostavnejši in veliko cenejši. Teodoliti so opremljeni z izmenljivim spominskim modulom majhnih dimenzij in mase. Nameščen je v posebno ohišje na instrumentu, ki v primerjavi z zunanjimi enotami občutno poveča funkcionalnost instrumenta. Pri T1000 in T1600 so osnovni programi za računanje shranjeni v instrumentu, dodana je možnost shranjevanja instrumentalnih popravkov in s tem možnost popravkov merskih vrednosti (Virtual Archive..., n.d.; Tuno in sod., 2010). Evropski in ameriški proizvajalci elektronskih teodolitov kmalu dobijo konkurenco z Daljnega vzhoda - od sredine 80. let se pojavljajo večnamenski instrumenti japonskih tovarn Topcon, Sokkisha (danes Sokkia) in Nikon. Zaradi splošnega napredka računalniške tehnologije in senzorjev, povečane konkurence, ki jo je povzročila hitra rast tržnega deleža japonskih proizvajalcev, in drugih vzrokov je cena elektronskih teodolitov v drugi polovici 80. let močno padla. Tako je na primer elektronski teodolit srednje natančnosti Wild T1000 takrat stal približno 12.000 USD, celotni modularni tahimeter (teodolit Wild T1000 in elektronski razdaljemer Wild DI1000 z zunanjim registratorjem/računalnikom Wild GRE4) pa približno 25.000 USD (približno 56.000 današnjih ameriških dolarjev). Enakovredni modularni tahimetri proizvajalcev Sokkisha in Topcon so bili za tretjino cenejši. Precizni modularni tahimetri so bili veliko dražji. Kernov sistem teodolita E2 in razdaljemera DM503 ali DM 504 je stal okrog 37.000 USD, Wildov sistem, ki je temeljil na teodolitu T2000, razdaljemer je bil serije DI2000, pa celo 45.000 USD (Kamphorst, 1987). cc -=c D cc cc en Slika 4: Elektronski teodoliti kot osnovni instrumenti sistema modularnega tahimetra: Keuffel & Esser Vectron (Ericson, 1978), Kern E2 (Kern, 1985a) in Sokkia DT4E (Sokkia, n. d.). Nedim Tuno, Simona Savšek, Admir Mulahusič, Dušan Kogoj | ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA | ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION | 182-197 | | 189 | | 64/2 | GEODETSKI VESTNIK ^ Do začetka devetdesetih let se na trgu pojavijo naprednejše izvedbe elektronskih teodolitov (npr. Zeiss, d (danes Trimble) ETh2, Sokkisha DT-2E, Wild T2002, Leica T1610 in podobni), izdelane na preverjene nih osnovah predhodnih modelov. Modularna struktura je omogočila izdelavo optimalne konfiguracije 3s instrumentov za specifične naloge, zato so bili kombinirani tahimetri v osemdesetih in devetdesetih letih £ zelo priljubljeni. Tako so se na daljnogled teodolita Leica T1010 (v proizvodnji od 1991. do 1995.) lahko SS namestili različni fazni in impulzni razdaljemeri (DI1001, DI1600, DI2002, DI3000S, DI0R3002S Ci_ pa tudi starejši modeli razdaljemerov). Kombinacija teodolita s faznim razdaljemerom DI2002 je omo-3 gočala merjenje dolžin visoke natančnosti — standardni odklon °"[mm];[ppm] : 1 mm; 1 ppm, z impulznim s razdaljemerom DI3000S so lahko merili razdalje do 19 kilometrov, medtem ko je DI0R3002S omogočil čg merjenje dolžin brez uporabe reflektorja do oddaljenosti 350 metrov. Tovarna Leica je hkrati izdelovala uj integrirani tahimeter TC1010, ki sta ga sestavljala teodolit T1010 in fazni razdaljemer standardne natančnosti °"[mm];[ppm] : 3 mm; 2 ppm, dosega največ 5,5 kilometra. Lastnosti tahimetra ni bilo mogoče spreminjati. Primer kaže na prednosti in prilagodljivost koncepta kombiniranih tahimetrov, predvsem v smislu možnosti izbire ustreznega razdaljemera glede na zastavljeno nalogo. S postopnimi nakupi je bilo mogoče sestaviti kompleksnejši sistem teodolit-razdaljemer. Na drugi strani pa nekateri uporabniki niso merili dolžin, zato zanje nakup integriranega tahimetra ni bil zanimiv (Courbon, 2007). Izdelava modularnih tahimetrov doseže vrhunec leta 1995, ko se je pojavila nova generacija instrumen- ^ tov tovarne Leica, poimenovanih serija TPS 1000 (Theodolit - Positions - Systeme). V serijo TPS 1000 SI so uvrščeni elektronski teodoliti T(M)1100/1800, ki so bili znatno izboljšani z možnostjo shranjevanja podatkov na notranji pomnilnik in PCMCIA SRAM-kartice, z vgrajenimi stopenjskimi motorji za obračanje alhidade in daljnogleda (M-različica), neskončnimi vijaki za fino viziranje (M-različica), velikimi LCD-zasloni z možnostjo prikaza enostavne grafike, elektronsko libelo, možnostjo lastnih programskih rešitev »on board« itd. (Leica Geosystems, 1998). Kljub precejšnjemu povečanju učinkovitosti elektronskih instrumentov so njihove cene padale, kompleksni motorizirani teodolit TM1100 (natančnost 3") je bilo mogoče ob koncu devetdesetih kupiti že za približno 11.000 USD (okoli 16.000 današnjih USD) (Point of Beginning, 2000). Takrat se je občutno zmanjšalo povpraševanje po tahimetrih modularnega tipa, zato so proizvajalci geodetske opreme pričeli opuščati proizvodnjo takšnih instrumentov (Rüeger, 2006). Zaradi hitrega razvoja in občutnega padca cen integriranih tahimetrov so prednosti sestavljanja elektronskega tahimetra z ločenimi enotami tako rekoč izginile. Geodeti so se pri nakupih raje odločili za integrirane instrumente, saj so bile takšne rešitve bolj praktične za izvajanje meritev. Po letu 2000 proizvajalci geodetskih instrumentov niso več razvijali novih modelov večnamenskih (univerzalnih) elektronskih teodolitov. 5 ENOSTAVNI ELEKTRONSKI TEODOLITI 5.1 Splošne značilnosti enostavnih elektronskih teodolitov Enostavni elektronski teodolit je namenjen manj zahtevnim uporabnikom, ki potrebujejo relativno preprost instrument za geodetska dela manjše natančnosti, tehnične meritve v gradbeništvu, gozdarstvu, poljedelstvu in podobno. Pri izdelavi takšnih teodolitov je posebna pozornost namenjena enostavnosti uporabe in robustnosti. Večina tovrstnih teodolitov je odpornih proti prahu in vodi (stopnja zaščite do IP66). Preprosta tipkovnica (od 3 do 10 tipk) je ena sama z enobarvnim dvovrstičnim LCD-zaslonom, prirejena za uporabo le v prvi krožni legi daljnogleda. Razdelba na limbih je pogosto inkrementalna, | 190 | NedimTuno, Simona Savšek, Admir Mulahusič, Dušan Kogoj | ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA | ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION | 182-197 | GEODETSKI VESTNIK |64/2| natančnost kotnih meritev pa znaša od 2'' do 20'' (°"ISOTHEO HzV). Večinoma imajo daljnogled z vgrajenim Reichenbachovim razdaljemerom za optično merjenje dolžin. Starejši modeli enostavnih teodolitov imajo na daljnogledu nivelacijske libele za horizontiranje vizurne osi, s takšnim instrumentom lahko tudi niveliramo. Teodoliti se v večini napajajo s standardnimi baterijami AA 1,5 V. Najenostavnejši modeli enostavnih teodolitov nimajo kompenzatorjev, v nekoliko naprednejših izvedbah pa so vgrajeni kompenzatorji za samodejno popravljanje odčitka vertikalnega limba. Pri merjenju horizontalnih smeri pogosto obstaja možnost shranjevanja vrednosti kolimacijskega pogreška, kar omogoča popravke horizontalne smeri, merjene le v eni krožni legi. Instrumenti običajno ne omogočajo samodejne registracije merskih podatkov. Naprednejši modeli imajo večje zaslone in dvojno tipkovnico, dvoosni kompenzator za samodejno eliminacijo vpliva nagiba stojiščne osi teodolita, lasersko grezilo, priključek za elektronski zapisnik, osnovno programsko podporo in podobno. Razvite so tudi posebne različice, ki materiali-zirajo kolimacijsko os z laserskim žarkom — tako imenovani laserski teodoliti, ki omogočajo direktno signalizacijo ciljne točke. Novejši enostavni teodoliti v splošnem nimajo možnosti modularne zgradbe z elektronskim razdaljemerom. Združitev so sicer omogočali starejši modeli enostavnih tahimetrov, vendar komunikacija med teodolitom in razdaljemerom po navadi ni bila mogoča. Instrumenta sta se tako med delom uporabljala ločeno, zaradi česar je bila funkcionalnost sistema zelo okrnjena. 5.2 Razvoj enostavnih elektronskih teodolitov Univerzalni elektronski teodoliti in tahimetri iz prve polovice osemdesetih let so bili za večino uporabnikov cenovno nedostopni. Veliki večini strokovnjakov, ki so se ukvarjali pretežno z enostavnimi geodetskimi nalogami, dragi kompleksni elektronski instrumenti in samodejna obdelava podatkov niso bili zanimivi. Še naprej so uporabljali mnogo cenejše optične teodolite. Da bi elektronski instrumenti postali cenovno dostopnejši, so japonske tovarne pričele izdelovati poenostavljene elektronske teodolite, katerih velikost, masa in cena so bile primerljive z enostavnimi optičnimi teodoliti. Na podlagi teh so leta 1983 nastali teodoliti nizke natančnosti, natančnost merjenja je bila 20'' (ct theo HzV). Primeri takšnih instrumentov so Topcon DT20, Sokkisha DT20E in Pentax PD20 (Topcon Museum, 2020; Sokkia Museum, 2020). Njihova glavna naloga je bila digitalni prikaz merjenih vrednosti na zaslonu ter s tem hitro in zanesljivo čitanje. To je bila tudi osnovna prednost glede na optične teodolite. Omogočali so priključitev elektronskega registratorja za shranjevanje rezultatov meritev pa tudi namestitev elektronskega razdaljemera na nosilec daljnogleda. Podobne lastnosti je imel teodolit ETh 4 (Electronic THeodolite) tovarne Zeiss Oberkochen, ki so ga pričeli izdelovati leta 1985 (slika 5). Stroške proizvodnje tega modela so znižali tako, da so uporabili relativni način čitanja razdelbe horizontalnega in vertikalnega limba ter znižali natančnost na 6'' (°*DIN18723 THEO HzV). Poleg tega v instrument niso vgradili dvoosnega kompenzatorja (obstaja le kompenzator vertikalnega limba), vgrajeni so bili le osnovni merski programi. Vseeno pa je proizvajalec dopuščal možnost samodejnega shranjevanja merskih vrednosti, saj je imel teodolit izhodni priključek za zunanji elektronski zapisnik (Opton, 1986; The California Surveyor, 1986). Leta 1985 je teodolit stal okrog 3000 USD, približno enako vrednost je bilo treba nameniti nakupu elektronskega registratorja. Istega leta je tovarna Nikon na trgu predstavila teodolit NE-10, ki je bil še cenejši. Koncept tega instrumenta (dostopna cena, enostavna uporaba, primerna velikost in masa, nizka natančnost, brez možnosti dodatka elektronskega razdaljemera ipd.) je bil podlaga za samostojni poenostavljeni teodolit, ki je bil v osnovi namenjen nezahtevnim kotnim meritvam. Koncept instrumenta so hitro prevzeli tudi drugi proizvajalci geodetskih instrumentov. V tej skupini je bilo razvitih daleč največ elek- NedimTuno, Simona Savšek, Admir Mulahusic, Dušan Kogoj | ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA | ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION | 182-197 | | 191 | | 64/2 | GEODETSKI VESTNIK cc -< cc -< -< cc EN E cc tronskih teodolitov. Zaradi množične uporabe na gradbiščih jih pogosto imenujemo tudi gradbeni teodoliti. Danes obstaja na desetine različnih modelov enostavnih teodolitov, ki jih izdelujejo različni proizvajalci, kot so Topcon, Sokkia, Pentax, Spectra Precision, Leica Geosystems, CST Berger, Johnson, geo-FENNEL, South, Foif, Boif, Datum, Northwest, Futtura, David White, Kolida, Ruide, UOMZ itd. Posebej zanimiva je serija teodolitov Topcon DT-200 (slika 5), ki se neprekinjeno izdeluje od leta 2003 (Topcon, 2009; Topcon, n.d.), kar je redkost v dobi elektronskih instrumentov. Številni teodoliti drugih proizvajalcev se v osnovi zgledujejo po seriji instrumenta DT-200 in so mu zelo podobni. Ko govorimo o elektronskem merjenju dolžin, je treba omeniti teodolit Leica T460D iz leta 1996, ki ga je bilo mogoče uporabljati v kombinaciji z ročnim laserskim razdaljemerom DISTO (Virtual Archive..., n. d.), pa tudi teodolit Ruide Disteo 23 (slika 5) iz leta 2017 z vgrajenim enostavnim elektronskim razdaljemerom za merjenje dolžin do 300 metrov z uporabo reflektorja (Ruide, n. d.). Najenostavnejši teodoliti kitajskih proizvajalcev se lahko danes kupijo že za 500 USD do 1000 USD, medtem ko se najboljši modeli enostavnih teodolitov proizvajalcev Leica Geosystems, Topcon in Sokkia prodajajo za približno 4000 USD. Slika 5: Enostavni elektronski teodoliti: Zeiss ETh-4 (Opton, 1986), Topcon DT-200 (objavljeno z dovoljenjem GeoWild Sarajevo) in Ruide Disteo 23 (Ruide, n. d.). 6 PRECIZNI ELEKTRONSKI TEODOLITI ZA POSEBNE NAMENE 6.1 Splošne lastnosti preciznih elektronskih teodolitov Najbolj izpopolnjeno in najmanjšo skupino teodolitov predstavljajo instrumenti visoke natančnosti, ki so namenjeni kompleksnim nalogam. Tu uporaba enostavnih teodolitov in tahimetrov ni primerna. Standardni odklon merjene horizontalne smeri in zenitne razdalje takšnih instrumentov znaša 0,5'' (o"ISO THEO HzV). Uporabljajo dinamični in statični absolutni način čitanja limbov. Opremljeni so z dvoosnimi kompenzatorji in kompleksnimi programi za terensko uporabo. To so posebej zasnovani teodoliti, ki so bili razviti predvsem za industrijsko uporabo, kot so določanje položaja ali usmerjanje strojnih elementov, ugotavljanje premikov | 192 | NedimTuno, Simona Savšek, Admir Mulahusič, Dušan Kogoj | ELEKTRONSKI TEODOLITI - RAZVOJ IN KLASIFIKACIJA | ELECTRONIC THEODOLITES - DEVELOPMENT AND CLASSIFICATION | 182-197 | GEODETSKI VESTNIK | 64/2 | v določeni smeri, merjenje vertikalnih premikov ali zasuka gibljivih delov, laboratorijske meritve itd. Uporabljajo se tudi za kontrolne meritve med gradnjo in obratovanjem raznih objektov ipd. Takšni teodoliti so najpomembnejši del industrijskih merskih sistemov, kjer z zunanjim urezom določamo velikost in obliko objektov z visoko relativno natančnostjo. Za reševanje posebnih merskih nalog so v precizne elektronske teodolite vgrajeni posebni dodatki, kot so panfokalna optika daljnogleda, pogonski stopenjski motorji, CCD-kamere, sistemi za samodejno izostritev slike, sistemi za samodejno viziranje označenih in neoznačenih merskih točk ipd. Za posebne naloge inženirske geodezije so razvili tudi precizne elektronske teodolite, na katere je mogoče namestiti elektronske razdaljemere. V preglednici 1 so prikazani osnovni tehnični podatki izbranih modelov enostavnih, večnamenskih (univerzalnih) in preciznih elektronskih teodolitov. Preglednica 1: Pregled elektronskih teodolitov (Spectra Geospatial, 2015; Topcon, 2009; Zeiss, 1995; Sokkia, n.d.; Leica Geo-systems, 2009). Enostavni teodoliti Univerzalni teodoliti Precizni teodoliti Proizvajalec in tip teodolita Nikon NE-1GG Topcon DT2G5L Zeiss Eth2 Sokkia DT-4F Leica TM6100A ■ = S(k)d Qd > = S(k kQd (S )T W(k+1) = diag (...,w((k+1), (1) where d = the displacement vector; Qd = its cofactor matrix; S® = I - Q(HTW!)H)XHTW!) ; I = the identity matrix; and H = the inner constraints datum matrix, which spans the null space of the design matrix. In the first iteration (k = 1), the weight matrix is accepted as W(k) = I (Setan and Singh, 2001). k=1,2 | 200 | Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-213 | GEODETSKI VESTNIK | 64/2 | Several robust weight functions have been proposed and commonly used to solve geodetic problems. For example, if the Huber weight function is adopted for the displacement problem, in the subsequent iterations, the weights of the points will be determined as shown in Eq. (2) (Chen, 1983; Chen et al., 1990). w. = 1 | d,\ < qt pq I d\ > qt \d,\ 1 1 (2) where cij = the given component of vector dfor point i (dx or dy ); q = ca^ is the tuning constant; c = a suitable factor (e.g., = 1.5); and ct^ = the standard deviation estimate for the corresponding component of the displacement vector di (a. or ct^ ). The displacement vector components depend on the orientation of the reference system of the network, which is determined by approximate coordinates. Caspary and Borutta (1987), Caspary et al. (1990), and Caspary (2000) proposed that the best solution may be for the weight function variables to be the lengths of the displacement vectors. For example, if the Huber weight function is the weight function and the variables are in the form of the lengths of the displacement vectors, then the weight function will take this form, as in Eq. (3). i I s I < q rr I s] > q | i | h where s. = + Id2 + d2; q. = cc; and c2 = i V xi y i s i s i al., 2006). fl V s • v y a, d d C + 2C . + d-. s. s. d-dyi 'k V s ' v y s f * v (sin q. v q/ s . < q. n i j* (4) 0 |i,| > qn where qi = cas; c = 1.5. — Beaton-Tukey weight function (Beaton and Tukey, 1974) The Beaton-Tukey weight function assumes the form of Eq. (5). -=c (3) C (e.g. Savšek-Safic et The iterative procedure given in Eq. (1) continues until the differences between the displacements of all common points \d(k + 1)1 - d(k' | are less than the tolerance value s (i.e., 0.0001 m.). 2.1 Other weight functions of robust methods used in this study - Andrews weight function (Andrews, 1974) The Andrews weight function assumes the form of Eq. (4). Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-213 | | 201 | w, = s w, = | 64/2 | GEODETSKI VESTNIK cc ■ q, where qt = cc.; c = 1.5. Cauchy weight function (Pennacchi, 2008) The Cauchy weight function assumes the form of Eq. (6). 1 1 + "i.lV where qt = ca.; c = 2.3849. Danish weight function (Berberan, 1992) The Danish weight function assumes the form of Eq. (7). 1 exp i s. s. < q. i i h \ sJ > qi (5) (6) (7) v q, y where qi = ca.; c = 3. Fair weight function (Pennacchi, 2008) The fair weight function assumes the form of Eq. (8). 1 W. = -j—r ' 1 + M q. where qi = ca.; c = 1.3998. German-McClure weight function (Pennacchi, 2008) The German-McClure weight function assumes the form of Eq. (9). 1 w =-- ' (i+W')' Hampel weight function (Hampel et al., 1986) The Hampel weight function assumes the form of Eq. (10). il 0 < |i,| < q, Kl q, (v -\ 11) (8) (9 q i < lsi |< u (10) ¡|(v -u) 0 u. < s . < v. ! I ! I ! \ s > v w■ = w. = w | 202 | Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-213 | GEODETSKI VESTNIK |64/2| where qi = au. ; u = bu. ; v = c F(1 - a, h,,f), this means that point i can be regarded as unstable; otherwise, it can be stated that this point was not significantly displaced. w, = 2 3 STUDY AREA, GEODETIC DEFORMATION NETWORK USED AND GNSS MEASUREMENTS The Deriner Dam, which is a double-curvature concrete dam, was constructed in the north-eastern Black Sea Region of Turkey (Fig. 1). This structure is one of the highest arc dams in the world. It was built under the Coruh River Basin master plan. This plan includes 30 dams. The Deriner project was begun in 1998 and completed in 2013 and has a designed maximum storage capacity of 1.970 million m3. The height of the Deriner Dam is 249 m and its crest length is 720 m, with the crest width of the crown Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-203 | | 213 | |64/2| GEODETSKI VESTNIK ^ cantilever measuring 12 m. The dam provides a significant amount of energy to Turkey. With its four LJU d vertical energy generation units, the dam is estimated to produce 2,300 GWh of electrical energy annually. Figure 1: Location of Artvin and the Deriner Dam. The geodetic deformation network consists of twelve reference and seven object points used to monitor the displacements via GNSS. Figure 2 presents the location of the reference and object points in the study area. Figure 2: Reference and object points shown in Google Earth (Image ©2020 Maxar Technologies). | 204 | Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-213 | GEODETSKI VESTNIK Four measurement operations were performed on the geodetic deformation network (May 2016, November 2016, May 2017, and August 2017). Each measurement operation was carried out on 2 consecutive days. Static GNSS observations were conducted in the points of this geodetic deformation network. The observation duration was set for at least two hours and one hour for the reference and object points. The elevation cut-off angle and the data-sampling rate was set to 15° and 10 sec, respectively. Four HiPer Pro and four GR5 receivers were used for all periods. Attention was paid to use GNSS receivers at the same points in all measurement periods. The GNSS receivers installed on a concrete pillar can be seen in Figure 3. Figure 3: GNSS receivers on reference points 117 (left) and 104 (right). The GNSS measurements were post-processed via the Magnet Tools 5.1 software. The Cartesian coordinate differences and cofactor matrices of these differences were then obtained. This software can give geocentric Cartesian coordinates in the World Geodetic System 1984 (WGS84) datum. In order to see the real direction of the displacement, all WGS84 geocentric Cartesian coordinates had to be transformed into the local topocentric coordinate system. The point 1139 was chosen as the origin of the topocentric coordinate system. For more information about the transformation procedure, one may refer to Yigit (2016). Each period was adjusted separately using the free network adjustment technique. The Huber M-estimation method was used to determine the outlying observation(s) (Huber, 1981). Since the vertical displacements in Konakoglu et al. (2020) were found to be erroneous, the vertical displacements were not analysed in this study. Water levels were about 389 m in May 2016, 377 m in November 2016, 364 m in May 2017, and 374 m in August 2017. Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z J FUNKCIJAMI | ANALYSIS OF DAM ROBUST WEIGHT FUNCTIONS | 198-213 | I 205 | |64/2| GEODETSKI VESTNIK ^ 4 RESULTS AND DISCUSSION ¡= To determine the displaced points in the Deriner Dam geodetic deformation network, a comparative 2 analysis was carried out using ten different robust weight functions. The May 2016 period was taken as § the reference period. First, the horizontal displacements (d) and test values (T) were calculated. Subse- qc quently, the test values were compared with the F-distribution table to determine whether or not the cc displacements of the points were significant. The results of the reference and object points for the periods gf May-November 2016, May 2016-May 2017, and May 2016-August 2017 are given in Tables 1, 2, >3 and 3, respectively. The stable or unstable expression of a point is shown in the decision column in the H tables. If the point had significantly changed, the (✓) sign denotes "unstable"; otherwise, the (x) sign g indicates "stable". Test values (T) are also given in Figures 4, 5, and 6 for the periods May-November £ 2016, May 2016-May 2017, and May 2016-August 2017, respectively. According to the results of the deformation analyses performed with different robust weight functions during the period between May and November 2016 (Table 1), the number of points determined as unstable included: 9 points with the Andrews, Beaton-Tukey, Cauchy, and Danish methods, 10 points with the Huber method, 14 points with the L1 method, 15 points with the German-McClure and Hampel methods, and 16 points with the Fair and L1-L2 methods. The Fair, German-McClure, ^ Hampel, L1, and L1-L2 methods found almost the same number of points to be unstable during this period. According to the results of the deformation analyses performed with different robust weight functions during the period between May 2016 and May 2017 (Table 2), the number of points determined as unstable included: 10 points with the Andrews, Beaton-Tukey, Cauchy, Danish, German-McClure, Hampel and L1 methods, 11 points with the Huber method, and 12 points with the Fair and L1-L2 methods. All robust methods determined the number of unstable points to be between 10 and 12 during this period. According to the results of the deformation analyses performed with different robust weight functions during the period between May 2016 and August 2017 (Table 3), the number of points determined as unstable included: 7 points with the Cauchy, Danish, Hampel, and Huber methods, 9 points with the Fair method, German-McClure, and L1 methods, 10 points with the Andrews method, 12 points with the Beaton-Tukey method, and 15 points with the L1-L2 method. The Andrews, Beaton-Tukey, Cauchy, and Danish robust methods detected nearly the same number of unstable points, except for the period between May 2016 and August 2017. The reason for this difference may be that the test values of the unstable points in the period between May 2016 and August 2017 were very close to each other, but below the tolerance value. By comparing the results of all the robust weight functions, the values of the displacement magnitudes calculated with the L1-L2 method were generally found to be higher than those of the other methods. Thus, this method detected many more unstable points compared with the other methods. This can be clearly seen from the calculated test values shown in Tables 1, 2, and 3. Significant displacements were seen at object points 1115, 1121, and 1127, which are in the middle of the dam crest. Considering all the GNSS measurements performed in all periods, the largest horizontal | 206 | Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-213 | GEODETSKI VESTNIK |64/2| displacement (i.e., 2.60 cm) was experienced at object point 1121 at the middle of the dam crest. It was also seen that the horizontal displacements gradually decreased towards the right and left abutments. Despite this decrease, the horizontal displacements for object points 1103 and 1139 reached an average of 6-7 mm between the periods of May 2016 and May 2017. This may demonstrate that the left and right abutment sections of the dam were not rigid between these periods. Starting from May 2016 up to May 2017, the reservoir water level had dropped about 25 m. That was the reason for the excessive displacement on the left and right abutments. Although there was an increased difference in the reservoir water level from May 2016 to May 2017, a slowdown was observed in the displacements of the object points at the middle part of the dam. Between the periods of May 2016 and November 2016, the horizontal displacements for object points 1103 and 1139 did not exceed about 3-4 mm in any of the models except L1 and L1-L2. According to the results of the deformation analyses performed with different robust weight functions, the reference point 102 was determined as unstable in all period comparisons. Moreover, for the period between May 2016 and May 2017 reference point, 112 was detected to be unstable based on the results of all methods. The reference points are thought to act for another reason, considering that they are not affected by the water load. The amounts of horizontal displacement for the periods May 2016-November 2016 and May 2016-August 2017 are very similar. The reason for this situation may be that the November 2016 and August 2017 periods had almost the same water levels. Figure 4: Calculated test values May 2016-November 2016. Figure 5: Calculated test values May 2016-May 2017. Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-207 | | 213 | |64/2| GEODETSKI VESTNIK cc -< cc cc -i cc çç Figure 6: Calculated test values May 2016-August 2017. Table 1: Deformation analysis with the ten robust weight functions for May 2016 - November 2016. Beaton-Tukey Cauchy Fair German-McClure Hampel L1 L1-L2 PN d 101 0.26 102 0.93 104 0.18 105 0.11 107 -0.09 108 -0.09 109 -0.05 111 -0.06 112 -0.07 116 0.29 117 -0.10 118 -0.08 1103 -0.06 1109 0.79 1115 2.00 1121 2.24 1127 1.69 1133 1.08 1139 -0.22 Dec. ✓ ✓ x d 0.33 0.99 0.25 0.18 x -0.02 x -0.02 x 0.02 x 0.01 x 0.00 x 0.35 ✓ -0.03 x -0.01 x 0.01 x 0.85 2.07 2.30 1.76 1.15 -0.15 d 0.25 0.92 0.17 0.10 -0.10 -0.10 -0.06 -0.07 -0.08 0.28 -0.11 -0.08 -0.07 0.78 1.99 2.23 1.68 1.07 Dec. ✓ ✓ x d Dec. 0.25 ✓ 0.91 0.17 0.09 -0.10 -0.10 -0.06 -0.07 -0.09 0.27 -0.12 -0.09 -0.08 0.77 1.99 2.22 1.68 1.07 d Dec. 0.14 x 0.80 ✓ 0.06 x -0.01 x -0.21 ✓ -0.21 ✓ d Dec. 0.16 x 0.82 ✓ 0.08 x 0.01 x -0.19 ✓ -0.19 ✓ -0.17 ✓ -0.15 x -0.18 ✓ -0.16 ✓ -0.19 ✓ -0.17 ✓ 0.16 ✓ 0.18 ✓ -0.22 ✓ -0.20 ✓ -0.20 ✓ -0.18 ✓ -0.18 ✓ -0.16 ✓ 0.66 1.88 2.11 1.57 0.96 0.68 1.90 2.13 1.59 0.98 d Dec. 0.10 x 0.77 ✓ 0.03 x -0.05 x -0.25 x -0.25 ✓ -0.20 ✓ -0.21 ✓ -0.23 ✓ 0.13 x -0.26 ✓ -0.23 ✓ -0.22 0.63 1.85 2.08 1.54 0.92 -0.22 ✓ -0.23 ✓ -0.34 ✓ -0.32 ✓ -0.37 ✓ d 0.35 1.02 0.27 0.20 0.00 0.00 0.04 0.03 0.02 0.38 -0.01 0.01 0.03 0.88 2.09 2.33 1.78 1.17 -0.13 Dec. ✓ ✓ ✓ ✓ x x x d Dec. 0.09 x 0.75 ✓ 0.01 x -0.06 x -0.26 ✓ -0.26 ✓ -0.22 x -0.23 ✓ -0.24 ✓ 0.11 x -0.27 ✓ -0.25 ✓ -0.23 ✓ 0.61 ✓ d Dec. -0.12 x 0.54 ✓ -0.20 x -0.27 ✓ -0.47 ✓ -0.47 ✓ -0.43 ✓ -0.44 ✓ -0.45 ✓ -0.10 x -0.48 ✓ -0.46 ✓ -0.44 ✓ 1.83 2.06 1.52 0.91 0.40 1.62 1.86 1.31 0.70 -0.39 ✓ PN = Point Number, d = horizontal displacements (cm), Dec. = Decision, the (✓) sign denotes "unstable", the (x) sign indicates "stable" * * * x x X | 208 | Berkant Konakoglu | ANALIZA DEFORMACIJE JEZU Z ROBUSTNIMI UTEŽNIMI FUNKCIJAMI | ANALYSIS OF DAM DEFORMATION WITH ROBUST WEIGHT FUNCTIONS | 198-213 | GEODETSKI VESTNIK | 64/2 | Table 2: Deformation analysis with the ten robust weight functions for May 2016 - May 2017. Andrews Beaton-Tukey Cauchy German-McClure Hampel PN d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. 101 0.07 y 0.06 y 0.05 y 0.05 y -0.01 y 0.04 y -0.04 y 0.01 y 0.01 y -0.15 y 102 2.19 ✓ 2.18 ✓ 2.17 ✓ 2.17 ✓ 2.11 ✓ 2.15 ✓ 2.07 ✓ 2.13 ✓ 2.13 ✓ 1.96 ✓ 104 0.02 y 0.01 y 0.00 y 0.00 y -0.06 y -0.02 y -0.10 y -0.04 y -0.04 y -0.21 y 105 -0.04 y -0.05 y -0.06 y -0.06 y -0.12 y -0.07 y -0.15 y -0.10 y -0.10 y -0.26 ✓ 1 o Ch enc 107 -0.09 y -0.10 y -0.11 y -0.11 y -0.17 y -0.12 y -0.20 y -0.15 y -0.15 y -0.31 ✓ 108 -0.38 ✓ -0.39 y -0.40 ✓ -0.40 ✓ -0.46 ✓ -0.41 ✓ -0.49 ✓ -0.44 ✓ -0.44 ✓ -0.60 ✓ * 111 -0.17 0.79 ✓ -0.17 0.78 ✓ 0.77 ✓ 0.77 ✓ 0.71 ✓ 0.76 ✓ 0.68 ✓ 0.73 ✓ 0.73 ✓ -0.39 0.57 ✓ 116 0.01 y 0.01 y 0.00 y 0.00 y -0.34 -0.06 y -0.30 -0.02 y -0.38 -0.10 y -0.33 -0.05 y -0.33 -0.04 y -0.21 y 117 118 -0.17 y -0.17 y -0.19 y -0.18 y 0.13 -0.25 ✓ 0.17 -0.20 y -0.28 y 0.15 -0.23 ✓ 0.15 -0.23 y -0.39 ✓ 1103 1109 -0.55 0.22 ✓ y -0.56 0.22 ✓ y -0.57 0.21 ✓ y -0.57 0.21 ✓ y -0.63 0.15 ✓ y -0.58 0.19 ✓ y -0.66 0.11 ✓ y -0.61 0.16 ✓ y -0.61 0.16 ✓ y -0.77 0.00 ✓ y J o 1115 1121 1.07 ✓ 1.06 ✓ 1.19 1.05 ✓ 1.05 ✓ 1.13 0.99 ✓ 1.04 ✓ 0.96 ✓ 1.15 1.01 ✓ 1.15 1.01 ✓ 0.99 0.85 ✓ o 1133 0.64 ✓ 0.63 ✓ 0.62 ✓ 1.05 0.62 ✓ 0.56 ✓ 1.03 0.61 ✓ 0.95 0.52 ✓ 0.58 ✓ 0.58 ✓ 0.41 ✓ 1139 -0.67 ✓ -0.67 ✓ -0.68 ✓ -0.68 ✓ -0.74 ✓ -0.70 ✓ -0.78 ✓ -0.73 ✓ -0.73 ✓ -0.89 ✓ PN = Point Number, d = horizontal displacements (cm), Dec. = Decision, the (✓) sign denotes "unstable", the (x) sign indicates "stable" Table 3: Deformation analysis with the ten robust weight functions for May 2016-August 2017. Andrews Beaton-Tukey Cauchy Danish German-McClure Hampel Huber PN d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. d Dec. 102 2.75 ✓ 2.89 ✓ -0.23 2.71 ✓ 2.74 ✓ -0.34 2.60 ✓ 2.65 ✓ 2.70 ✓ 2.72 ✓ 2.45 ✓ 2.27 ✓ 105 0.15 0.02 X 0.15 X X -0.02 X X 0.01 X X -0.13 X ✓ -0.09 X ✓ -0.03 X ✓ -0.02 X X -0.15 -0.28 X ✓ -0.33 -0.46 ✓ ✓ c 2 enc 107 108 0.29 ✓ X 0.43 ✓ X 0.26 X X 0.28 X X -0.39 0.15 X X -0.35 0.19 X X 0.25 X X 0.26 X X 0.00 X X -0.18 X ✓ ■z. 111 0.31 ✓ X 0.13 0.45 ✓ ✓ 0.27 X X 0.30 X X 0.16 X X 0.21 X X 0.26 X X 0.28 X X -0.31 0.01 X X -0.17 X ✓ 116 -0.05 X X 0.09 X ✓ -0.08 X X 0.13 -0.06 X X -0.19 X X -0.15 X X -0.09 X X -0.08 X X -0.34 X X -0.52 ✓ X 117 118 0.26 ✓ 0.40 ✓ 0.22 X 0.15 0.25 X 0.11 X 0.16 X 0.22 X 0.23 X -0.04 X -0.22 X 1103 1109 0.72 ✓ 0.86 ✓ -0.23 0.68 ✓ 0.71 ✓ -0.34 0.57 ✓ -0.30 0.62 ✓ 0.67 ✓ -0.23 0.69 ✓ 0.42 X 0.24 ✓ .3 o P 1115 1121 2.34 2.46 ✓ 2.47 2.60 ✓ 2.30 2.42 ✓ 2.33 2.45 ✓ 2.19 2.31 ✓ 2.36 ✓ 2.42 ✓ 2.31 2.43 ✓ 2.16 ✓ 1.98 ✓ O 1133 2.30 1.24 ✓ 1.38 ✓ 1.21 ✓ 1.23 ✓ 2.15 1.09 ✓ 1.14 ✓ 1.20 ✓ 1.21 ✓ 0.94 ✓ 0.77 ✓ 1139 -0.42 ✓ -0.28 ✓ -0.46 ✓ -0.43 ✓ -0.57 ✓ -0.52 ✓ -0.47 ✓ -0.45 ✓ -0.72 ✓ -0.90 ✓ ■ k + 1 discrete points on the boundary of the mapping area as a system of equations presented with (10). ln(^) = £ ■ Pj - ln j=0 cos(p,.; J1 - e2f ■ sin2(^,) i = 1,2,3,..., n (10) With the constant linear scale, K assigned to the boundary of the mapping area, and with enough discrete points on the boundary, one can determine values of polynomial coefficients a. using the least square method. Knowing the coefficients of the symmetrical harmonic polynomial makes it possible to calculate the values of the linear scale c for all the points of the mapping region using equation (11), and meridian convergence y with equation (12) according to Nestorov (1996). In equation (11), e is the base of the natural logarithm. lf (ii) (12) j=0 As already mentioned above, the four independent mapping characteristics in every point are needed for the complete map projection definition (Meshcheryakov, 1968). For the conformal mapping, it is enough to know two independent mapping characteristics, since the linear scale along the meridian m and the linear scale along the parallel n are both equal to the linear scale c, i.e. m = n = c and also the angle between a meridian and a parallel always remains right (0= n/2). Therefore, two mapping characteristics c and y, defined with equations (11) and (12), satisfy the Meshcheryakov's theorem, and one can determine unique equations of the direct and inverse mapping and also functions of all other mapping characteristics. 2.2 Equations for direct mapping When deriving equations of direct mapping based on isometric latitude (q) and longitude (l), x = x(q, l), J = y(q> l) the following two facts were taken into account: 1. The rectangular coordinates in the plane, x and y, are conjugated harmonic functions of isometric coordinates, and one can use an analytic function that determines the conformal mapping in the form of a harmonic polynomial: n y = X 4 • P_ j + • Qj j=1 (13) n X = y A. ■ P -B -Q ¿—i j j j j=1 Ivan Nestorov, Milan Kilibarda, Dragutin Protic | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPTIMAL CONFORMAL PROJECTION FOR PAN-EUROPEAN | 218 | MAPPING | 214-226 | GEODETSKI VESTNIK |64/2| where A. and B. are real coefficients, and P. and Q are real and imaginary parts of this harmonic polynomial. (14) 2. For conformai mapping, it is known (Bugayevskiy, 1974; Pedzich, 2005; Tutic, 2009) to be valid: x^ = v• cos(/), xl =-v • sin(/) J. =v•sin (/), Ji =v•cos (r) where x , x,,y ,y, are partial derivatives of the mapping function, Y is the meridian convergence and the function vis previously given by expression (2). The polynomial real coefficients, A. and B , can be determine using partial derivatives of the expression (13) by isometric latitude q. y., =ÏL4 ■( P ), + B and X based on known y and x coordinates, also known as inverse mapping, authors suggesting established numerical methods since the equations for the direct mapping are derived numerically. 2.3 Numerical distortion criteria for projection optimization Since the idea of the CAMPREL is to find a projection satisfying both Chebyshev's (presented in the first subsection above) and variational criteria, this subsection presents numerical measures (distortion parameters) for projection optimization used to satisfy the lateral criterion. The "best projection" in a variational sense would, therefore, have minimal values of all these parameters. All presented measures are based on linear distortion4. Besides maximal and minimal linear scales, c_max and c_min, the following measures were also utilized: 1. Jordan's total distortion criteria (Kavrayskiy, 1958): E) =—— ff(c-1)2 • da• dP (21) ' 2 n PJ J X 1 P 0 For the case of the finite number of points, the simplified form can be used (Nestorov, 1996): Ej (K -1)2 (22) 2. Jordan-Kavraysky's total distortion criteria (Kavrayskiy, 1958): E)k =—-J J (ln c)2 • da • dP (23) 2 •P P 0 And in the simplified form of the above formula for the finite number of points (Nestorov, 1996): E = JK Z (ln , )2 (24) When defining the projection quality criteria, it should be borne in mind that map projections generally cause inevitable distortions of the lengths, angles, and areas of the original surface, but also that mapping is possible in which eliminated either angular distortions (conformal projections) or distortions of area (equivalent projections). However, linear distortions are always present. Therefore, the overall measure of projection quality must contain linear distortions, namely linear distortions throughout the mapping area. In other words, the basic factor in defining the selection criteria and the quality of the projection should be the distribution of linear distortion over the entire mapping area. Ulan Kilibarda, Dragutin Protič | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPT | 220 | MAPPING | 214-226 | i = 1 GEODETSKI VESTNIK | 64/2 | 3. Range of linear distortions: RLD = c_max - c_min 4. Relative linear scale: RLS = c max - c min c_max 5. The ratio of maximal and minimal linear scales: RMMS = c (25) (26) (27) -=c 6. Ratio of logarithms of maximal and minimal linear scales: ln(c max) RLMMS = ^^-- ln(c_min) 7. Range of absolute linear distortions: RALD = d_absmax - d_absmin 8. Average absolute linear distortion: n ^ abs(dt) AALD = - 9. Root mean square of linear distortions: RMSALD = Z d2 (28) (29) (30) (31) where c, a, P, dP, d_max, d_min, d_absmax, and d_absmin are respectively: linear scale, azimuth, the area of mapping, a differential element of the area, maximal linear distortion, minimal linear distortion, the absolute value of maximal linear distortion and the absolute value of minimal linear distortion. c n i=i n 3 CAMPREL PROJECTION FOR THE AREA OF PAN-EUROPEAN MAPPING 3.1 Methodology for finding the CAMPREL projection To find the CAMPREL projection for pan-European mapping area - the area bounded by parallels of 27°N and 71°N and meridians of 30°W and 45°E, (Annoni et al., 2001) - the task is to determine the degree (k) of the harmonic polynomial («,) and the constant value of the linear distortion along the area border (K) for which all numerical criteria presented in section 2.3 would be minimized. A computer program that generates and tests Chebyshev's projection variants were developed for this task. Based on the boundary parallels and meridians, the program varies the degree of the harmonic polynomial (k), the constant value of the linear distortion along the area border (K), and the number of points on the contour of the region (n), all from expression (10), to create projection variants. It increases the degree of Ivan Nestorov, Milan Kilibarda, Dragutin Protic | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPTIMAL CONFORMAL PROJECTION FOR PAN-EUROPEAN MAPPING | 214-226 | | 221 | |64/2| GEODETSKI VESTNIK ^ the harmonic polynomial (k) until the difference of the calculated total distortion (based on formulas (22) LJ_I cd and (24)) for the two successive degrees of the harmonic polynomials is less than 3x10 . For the initial Se value of the constant linear scale along the boundary meridians and parallels (K), a value of 1.00700 was g taken and varied to 1.00710 in steps of0.00002. This range is based on the estimation that the maximum £ positive linear distortion is expected to be approximately equal to the maximum negative linear distortion. 23 The number of boundary points (n) varied from 36 to 60 until their number ceased to affect the accuracy Cl_ of calculation of linear scales along the boundary meridians and parallels. The points along the border 3 were evenly distributed. In total, the program generates 210 Chebyshev's projection variants. For every variant, the program then calculates numerical criteria measures to test the projection quality (dis-S tortion parameters): Jordan's total distortion (EJ), Jordan-Kavraysky's total distortion (EJ), maximal linear ^ scale (c_max), minimal linear scale (c_min), range of linear distortions (RLD), relative linear scale (RLS), the ratio of maximal and minimal linear scales (RMMS), the ratio of logarithms of maximal and minimal linear scales (RLMMS), maximal linear distortion (d_max), minimal linear distortion (d_min), maximal absolute linear distortion (d_absmax), minimal absolute linear distortion (d_absmin), range of absolute linear distortions (RALD), average absolute linear distortion (AALD), and root mean square of absolute linear distortion (RMSALD). Each numerical measure is based on 3420 evenly distributed grid points (cross-sections of meridians and parallels for every degree of latitude and longitude) over the area of interest. en All variant cases are tested in less than one minute of CPU time. 3.2 The optimal CAMPREL projection and its comparison to ETRS-LCC projection From the 210 projection variants, Table 1 gives Chebyshev's coefficients, a0 - a10, for the optimal CAMPREL projection designed for the pan-European mapping area. The total distortions of the projection have minimum values, and the absolute maximum positive linear distortion is approximately equal to the absolute maximum negative linear distortion value. The optimal variant has the degree of the harmonic polynomial 10, the constant linear scale along the border is 1.00706, and 60 evenly distributed points on the boundary of the mapping area are used to define the coefficients. The precision ofvalues presented in Table 1 is limited to the accuracy of the numerical methods used to generate the variant. Authors believe that the precision here is more than sufficient for the purpose of mapping in the scales smaller or equal to 1:500,000. Table 1: Chebyshev's coefficients of the optimal CAMPREL projection for Pan-European area. j a . 0 -0.567667536 1 -0.783326923 2 -0.083929018 3 0.011493356 4 0.055463877 5 -0.019925516 6 0.003009703 7 0.003545522 8 -0.006029762 9 0.000535393 10 -0.003798708 Ivan Nestorov, Milan Kilibarda, Dragutin Protic | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPTIMAL CONFORMAL PROJECTION FOR PAN-EUROPEAN | 222 | MAPPING | 214-226 | GEODETSKI VESTNIK | 64/2 | The numerical quality criteria measures (distortion parameters) for ETRS-LCC projection and the optimal CAMPREL projection were calculated from a grid of points for each degree of latitude and longitude within the pan-European mapping area. In total, 3420 points were used. The results are presented in Table 2. All distortion parameters are convincingly better for the CAMPREL projection compared to the ETRS-LCC. The Jordan's and Jordan-Kavraysky's distortion ratios of the two projections show that the CAMPREL projection is almost twice as good (the ratio is over 180%). Similarly, both mean values of linear distortion, average (AALD) and mean square (RMSALD), show the same outperformance. It should also be noted that the linear distortion range is about 39.17% better with the CAMPREL projection compared to the ETRS-LCC, as well as the absolute linear distortion range, which is improved for 55.70%. The linear distortion of the ETRS-LCC ranges from -0.034374 to 0.043704, while at CAMPREL projections symmetrically ranges from -0.028069 to 0.028069. With the CAMPREL projection, the maximum absolute linear distortion of conformally mapped pan-European area, therefore, drops to 0.028069. Table 2: Numerical quality criteria measures (distortion parameters) for the ETRS-LCC and CAMPREL projections. CRITERIA/PROJECTION ETRS-LCC CAMPREL ETRS-LCC/CAMPREL Number of points: 3420 3420 - Jordan's total distortion - EJ 1.481778 0.821865 180.29% Jordan-Kavrayskiy's total distortion - EJK 1.488330 0.826696 180.03% Maximal linear scale - c_max 1.043704 1.028034 101.52% Minimal linear scale - c_min 0.965626 0.971931 99.35% Range of linear distortions - RLD 0.078078 0.056103 139.17% Relative linear scale - RLS 7.48% 5.46% 137.08% Ratio of maximal and minimal linear scales - RMMS 1.080857 1.057723 102.19% -=c Ratio of logarithms of maximal and minimal linear scales -RLMMS -1.222914 -0.971120 125.93% Maximal linear distortion - d_max 0.043704 0.028034 155.90% Minimal linear distortion - d_min -0.034374 -0.028069 122.46% Maximal absolute linear distortion - d_absmax 0.043704 0.028069 155.70% Minimal absolute linear distortion - d_absmin 0.000000 0.000000 - Range of absolute linear distortions - RALD 0.043704 0.028069 155.70% Average absolute linear distortion - AALD 0.022567 0.011804 191.19% Root mean square of absolute linear distortion - RMSALD 0.025338 0.014054 180.29% Figure 1 and 2 shows linear scale isocole maps and absolute linear distortion isocole maps for the ETRS-LCC and CAMPREL projections. These maps were generated from the values of linear scales, and absolute linear distortions in the grid of 3420 points used to calculate numerical criteria measures in Table 2. When comparing projections in each figure, it is evident that the values of distortions are overall smaller in the CAMPREL projection compare to the ETRS-LCC, as it was indicated in Table 2. From the maps, one can also notice different distortion pattern of the CAMREL projection compares to the established ETRS-LCC. In the ETRS-LCC, the linear distortion changes only in one direction, south-to-north, Ivan Nestorov, Milan Kilibarda, Dragutin Protic | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPTIMAL CONFORMAL PROJECTION FOR PAN-EUROPEAN MAPPING | 214-226 | | 223 | |64/2| GEODETSKI VESTNIK ^ and with fast decrease when approaching the standard parallels. In the CAMREL projection, the linear LJ_I cd distortion changes radially and relatively evenly, in all directions, following the form of the border of the ^ mapping area. This pattern is part of a very important feature of the CAMPREL projection that should 3s be emphasized: the CAMPREL is an adaptive projection (Nestorov 1996 and 1997). What this means is yj that the distortion and its isocoles adapts and follow the boundary of the mapping region, which results in linear distortions optimally distributed and stretched within the subject area. Figure 1: Isocole map of linear scale distribution (multiplied by 1000) for the ETRS-LCC projection (left), and for the optimal CAMPREL projection (right). Figure 2: Isocole map of absolute linear distortion (multiplied by 1000) for the ETRS-LCC projection (left), and for the optimal CAMPREL projection (right). 4 CONCLUSION The need for common European spatial datasets induces a strong demand for adopting standard map projections for pan-European mapping. The Lambert conformal conic projection (ETRS-LCC) was chosen for the scales equal or smaller to 1:500.000 that require the conformal mapping of an ellipsoid to a plane. However, if one adopts the general criteria when selecting a projection, which is "to select a projection in which the extreme distortions are smaller than would occur in any other projection used to map the same area" (Maling, 1989), then the general rule for selecting a projection for conformal mapping would be to achieve the least possible linear distortions. This paper proves that this rule has not Ivan Nestorov, Milan Kilibarda, Dragutin Protic | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPTIMAL CONFORMAL PROJECTION FOR PAN-EUROPEAN | 224 | MAPPING | 214-226 | GEODETSKI VESTNIK |64/2| been met with ETRS-LCC projection. It is shown that the CAMPREL projection defined for the area of interest has significantly better characteristics. The maximum absolute linear distortion is 0.028069 compare to the maximum absolute linear distortion of0.043704 for the ETRS-LCC. Also, linear distortion distribution for the CAMPREL projection changes radially and relatively evenly, in all directions, following the form of the area boundary, while in ETRS-LCC, the linear distortion changes just in the direction of south-to-north and with faster decrease approaching the standard parallels. Clearly, the CAMPREL projection designed for pan-European mapping better meets the projection selection criteria. Authors believe that the subject area cannot be better conformally mapped, that is, any other conformal projection will cause a maximum absolute linear distortion greater than 0.028069. They leave to other map projection experts to refute or confirm this claim. Literature and reference: Annoni, A., Luzet, C., Gubler, E., Ihde, J. (Eds). (2001). Map Projections for Europe. Joint Research Centre, EUR 210120 EN. Annoni, A., and Luzet, C. (Eds). (2000). Spatial Reference Systems for Europe. Joint Research Centre, EUR19575 EN. http://www.ec-gis.org/reports/spatial ref.pdf. Annoni, A., Smits, P (2003). Main problems in building European environmental spatial data. International Journal of Remote Sensing, 24 (20), 3887-3902. DOI: https://doi.org/10.1080/0143116031000103763 Bermejo, M., Otero, J. (2005). Minimum conformal mapping distortion according to Chebyshev's principle: a case study over peninsular Spain. Journal of Geodesy, 79 (1-3), 124-134. DOI: https://doi.org/10.1007/s00190-005-0450-5 Bugayevskiy, L. M., Bocharov, A.E. (1974). O primenenii asimetrichnyh ravnougolnnyh proekciy dlya sozdania kart na obsirnie teritorii. Geodeziya i Kartografiya, 11, 61-65. Bugayevskiy, L. M., Snyder, J. P. (1995). Map projections. A reference manual. London: Taylor and Francis. Chebyshev, P L. (1856). Sur la construction des cartesg' eographiques. Reprinted in Ouvres de P.L. Tchebychef: NewYork: Chelsea Pub.Co., 1962. Frankich, K. (1982). Optimization of geographic map projection for Canadian territory. Doctoral dissertation. Barnaby, B. C. Canada: Simon Fraser University. Grave, D. A. (1911). Demonstration d' un theoreme deTchebycheffgeneralise. Journal für die reine und angewandte Mathematik (Crelles Journal), 140, 247-251. DOI: https://doi.org/10.1515/crll.1911.140.247 Habib, M. (2008). Proposal for developing the Syrian stereographic projection. Survey Review, 40 (307), 92-101. DOI: https://doi.org/10.1179/003962608x253547 ciple in the projection of maps. The he ps://doi.org/10.2307/1967302 ISO (2019). ISO 19111:2019, Geographic information - Referencing by coordinates, International Organization for Standardization. https://www.iso.org/ standard/74039.html. Kavrayskiy,V.V.(1958). Isbrannyetrudy I, II, III Matematicheskaya kartografia, Moscow: l, G.W. (1908). Application ofTchebychef's Annals of Mathematics, 10 (2), 23-36. DOI Isdatelstvo Nedra. Maling, D. H. (1989). Measurements from Maps. Oxford: Pergamon Press. Nestorov, I. (1996). Nove optimalne kartografske projekcije. Belgrade: Zadužbina Andrejevic. Nestorov, I. (1997). CAMPREL: A New Adaptive Conformal Cartographic Projection. Cartography and geographic information systems, 24 (4), 221-227. DOI: https:// doi.org/10.1559/152304097782439295 Maling, D. H. (1989). Measurements from Maps. Oxford: Pergamon Press. Meshcheryakov I. A. (1968). Teoreticheskie osnovy matematicheskoi kartografii. Mossow: Isdatelstvo Nedra. Mitrinovic S. D. (1989). Kompleksna analiza. Belgrade: Gradevinska knjiga. Milnor, J. (1969). A Problem in Cartography. The American Mathematical Monthly, 76 (10), 1101-1112. DOI: https://doi.org/10.1080/00029890.1969.12000424 Orihuela, S. (2019). A proposal to include conformal harmonic polynomials in GIS software. Applied Geomatics, 1 1 (4), 331-338. DOI: https://doi.org/10.1007/ s12518-019-00262-x Pedzich, P. (2005). Conformal projection with minimal distortions. XXII International Cartographic Conference, La Coruna, ICA. Tobler,W. (2011). Notes and Comments on the Composition ofTerrestrial and Celestial Maps - translation of J.H.Lambert work. Preface, ESRI Press. Tutic, D.(2010). Konformne projekcije za Hrvatsku s najmanjim apsolutnim linearnim defirmacijama. Geodetski list, 3, 157-173. Tutic', D. (2009). Optimal Conformal Polynomial Projections for Croatia According to the Airy/Jordan Criterion. Kartografijai Geoinformacije, 8 (11), 48-67. Urmayev, N.A.(1947). Metody iziskaniya novyh kartograficheskih proekciy. Moscow: Voyenno-topograficheskyoe upravlenie generalnogo shtaba vooruzhonnyh syl SSSR. Vasilca, D., Badea, A. C., Badea, G. (2019). Comparison between the 1970 stereographic projection and a double-stereographic projection. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, pp. 749-756. lan Kilibarda, Dragutin Protič | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPTIM 214-226 | | 225 | | 64/2 | GEODETSKI VESTNIK Nestorov I., Kilibarda M., Protic D. (2020). The optimal conformal projection for pan-European mapping. Geodetski vestnik, 64 (2), 214-226. DOI: https://doi.org/10.15292/geodetski-vestnik.2020.02.214-226 Assoc. prof. dr. Ivan Nestorov, univ. grad. eng. of geod. University of Belgrade, Faculty of Civil EngineeringDepartment of Geodesy and Geoinformatics Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia e-mail: nestorov@grf.bg.ac.rs Assist. prof. dr. Dragutin Protič, univ. grad. eng. of geod. University of Belgrade, Faculty of Civil EngineeringDepartment of Geodesy and Geoinformatics Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia e-mail: protic@grf.bg.ac.rs Assist. prof. dr. Milan Kilibarda, univ. grad. eng. of geod. University of Belgrade, Faculty of Civil EngineeringDepartment of Geodesy and Geoinformatics Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia e-mail: kili@grf.bg.ac.rs Ivan Nestorov, MIlan Kilibarda, Dragutin Protič | OPTIMALNA KONFORMNA PROJEKCIJA ZA VSEEVROPSKO KARTIRANJE | THE OPTIMAL CONFORMAL PROJECTION FOR PAN-EUROPEAN | 226 | MAPPING | 214-226 | g V GEODETSKI VESTNIK j letn. / Vol. 64 j št. / No. Z j GLOBALNA ANALIZA ATMOSFERSKIH REFRAKCIJSKIH PROFILOV IZ PREKRIVANJ RADIJSKIH SIGNALOV COMSIC GPS GLOBAL ANALYSIS OF ATMOSPHERIC REFRACTIVITY PROFILES FROM COSMIC GPS RADIO OCCULTATION SOUNDINGS j 64/2 j Shaoqi Gong, Cunjie Zhang, Geshi Tang, Yehui Zhang, Jing Han UDK: 528.28:629.052 Klasifikacija prispevka po COBISS.SI: 1.01 Prispelo: 24. 9. 2019 Sprejeto: 8. 6. 2020 DOI: 10.15292/geodetski-vestnik.2020.02.227-240 SCIENTIFIC ARTICLE Received: 24. 9. 2019 Accepted: 8. 6. 2020 IZVLEČEK ABSTRACT Atmosferska refrakcija je odvisna od temperature, tlaka in vodne pare. Iz GNSS ocenjena refrakcija ima dovolj dobro vertikalno ločljivost in točnost, da jo lahko vključimo v numerične modele napovedi vremena ter uporabimo v meteoroloških in klimatskih raziskavah. V študiji smo ovrednotili razlike med modelom refrakcije, pridobljenim iz sistema COSMIC, in izračuni iz podatkov vertikalne radiosondaže, in sicer za različne višine, geografske širine in letne čase. Analizirali smo časovne in globalne prostorske porazdelitvene vzorce atmosferske refrakcije na podlagi podatkov COSMIC za atmosferske ravni, kjer zračni tlak znaša 925 hPa in 300 hPa. Rezultati so pokazali, da je ocenjena refrakcija v splošnem podobna oceni iz podatkov radiosond. Razlika se značilno manjša z višino, ko je v troposferi tlak nad300 hPa, nad tropopavzo pa so razlike komaj še zaznavne. Izrazite razlike med oceno refrakcije iz podatkov COSMOS oziroma podatkov, pridobljenih z radiosondami, se kažejo s spreminjanjem geografske širine in z letnim časom. Globalna refrakcija COSMIC na višini, kjer je tlak 825 hPa, je najvišja v tropskem pasu ter se manjša proti severni in južni hemisferi. V atmosferi na višini, kjer je tlak 300 hPa, je z refrakcijo ravno nasprotno. Anomalije refrakcije glede na srednjo letno vrednost so večje v januarju in juliju, manjše pa v aprilu in oktobru. Atmospheric refractivity is a function of temperature, pressure and water vapor. The refractivity retrieved from the GNSS radio occultation soundings has fine vertical resolution and high accuracy, so it can be used to improve the accuracy of numerical weather prediction models and in climate and meteorological research. This study evaluates differences of refractivity from the COSMIC against radiosondes (RS) at different atmospheric levels, latitudes and seasons. Then temporal and global spatial distribution patterns of the COSMIC refractivity are analyzed at the atmospheric levels of925 and300 hPa. The results indicate that the COSMIC and RS refractivities are in generally good agreement. The differences between COSMIC and RS refractivity decrease with increasing height in the troposphere above 300 hPa, and the differences are very small above the tropopause. The COSMIC-RS differences exhibit distinct latitudinal and seasonal variation.The global COSMIC refractivity at 925 hPa is the highest in the tropics, and it decreases with increasing latitude in the NH and SH. However, the refractivity at the atmospheric levels of 300 hPa is just the opposite. Refractivity anomalies relative to the annual mean values in January andJuly are significant, whereas the differences are not as large in the transitional seasons of April and October. KLJUČNE BESEDE KEY WORDS atmosferska refrakcija, COSMIC, GPS-radarska prekrivanja, radiosonda, časovna in prostorska porazdelitev atmospheric refractivity, COSMIC, GPS radio occultation, radiosonde, temporal and spatial distribution Shaoqi Gong, Cunjie Zhang, Geshi Tang, Yehui Zhang, Jir ANALYSIS OF ATMOSPHERIC REFRACTIVITY PROFILES GLOBALNA ANALIZA ATMOSFERSKIH REFRAKCIJSKIH PROFILOV IZ PREKRIV C GPS RADIO OCCULTATION SOUNDINGS | 227-240 | JSKIH SIGNALOV COMSIC GPS j GLOBAL j ZZ7 j | 64/2 | GEODETSKI VESTNIK ^ 1 INTRODUCTION E ¡= When an electromagnetic wave travels through the atmosphere, the wave is bent (refracted), and the 2 signal is delayed due to the vertical gradient of density in the atmosphere; this phenomenon has a £ crucially important effect on radar detection, satellite navigation and radio communication systems on qc Earth (Karimian et al., 2011; Tang et al., 2019). Corrections for radio refraction can improve the ac-üj curacy of radar measurements and the performance of communication systems (Jiang and Wang, 2001). s The refractivity is dependent on the air temperature, pressure and humidity (Smith and Weintraub, >3 1953). Hence, the atmospheric refractivity is an essential variable in numerical weather prediction data H assimilation (Kuo et al., 2000). fci The atmospheric refractivity can be retrieved by radar measurements (Zhang et al., 2015; Lopez and Río, 2018), radiosonde soundings (Kapungu et al., 1981; Adeyemi, 2004), ground-based GPS receivers (Bevis et al., 1992; Lowry et al., 2002; Liao et al., 2016), and low Earth orbit (LEO) satellite GNSS RO soundings (Ao et al., 2003; Cucurull et al., 2006). Weather radar has a suitable vertical and horizontal resolution for measuring refractivity, but there are few stations globally. A radiosonde (RS) is a conventional instrument for observing atmospheric profiles; it has a long history and near-global coverage over land, but are usually launched only twice a day. Bevis et al. (1992) first presented an approach to EN retrieve atmospheric water vapor based on ground-based GPS receivers. Lowry et al. (2002) estimated the refractivity structure by establishing a model between ground-based GPS excess phase path and the refractivity. Ground-based GPS receivers have very high temporal resolution with a 5-min interval, however, these receivers are limited to land. Although radio occultation (RO) was recognized as an important potential technology to characterize the atmosphere as early as the 1960s (Phinney and Anderson, 1968; Fjeldbo and Eshleman, 1969), due to the high cost of space-borne transmitters and insufficient accuracy of satellite positioning in the early period, the first LEO satellite (MicroLab-1) with a GPS RO receiver was not launched until 3 April 1995 (Ware et al., 1996). These first RO soundings exhibited fine vertical resolution and high accuracy (within 1 K) for the air temperature and geopotential height of 10~20 m (Poli et al., 2002). Subsequently, many RO missions were successively launched. The German Challenging Minisatellite Payload (CHAMP) and the Argentinean Satélite de Aplicaciones Cientificas-C (SAC-C) were launched in 2000, and approximately 350-500 RO soundings per day were obtained from the two satellites (Wickert et al., 2001; Hajj et al., 2004). The joint US-Taiwan mission FORMOSAT-3/ COSMIC (Formosa Satellite Mission-3/Constellation Observing System for Meteorology, Ionosphere and Climate; hereafter COSMIC) was launched on 14 April 2006 and was just recently (1 May 2020) decommissioned. The mission consisted of a constellation of six identical small satellites and provided about 2000 RO soundings per day from 2006 to 2015 distributed around the globe in near-real-time (Rocken et al., 2000; Anthes, 2011; Ho et al., 2019). Since RO soundings have many advantages including low cost, high accuracy, high vertical resolution, no need for calibration, long-term stability, unaffected by cloud cover or rainfall, and global coverage (Anthes et al., 2000; Anthes, 2011), they have received increased attention for monitoring the climate and predicting the weather. Various types of data such as bending angle, refractivity, temperature, and precipitable water vapor, which are retrieved from RO soundings, are also used increasingly in Shaoqi Gong, Cunjie Zhang, Geshi Tang, Yehui Zhang, Jing Han | GLOBALNA ANALIZA ATMOSFERSKIH REFRAKCIJSKIH PROFILOV IZ PREKRIVANJ RADIJSKIH SIGNALOV COMSIC GPS | GLOBAL | 228 | ANALYSIS OF ATMOSPHERIC REFRACTIVITY PROFILES FROM COSMIC GPS RADIO OCCULTATION SOUNDINGS | 227-240 | GEODETSKI VESTNIK | 64/2 | climate and meteorological studies (Liu and Zou, 2003; Huang et al., 2005; Wee et al., 2008). Kuo et al. (2000) concluded that the bending angles and refractivity were the two best candidates for assimilation and it was demonstrated that the use of these parameters had a significant positive impact on global and regional weather prediction. Cucurull et al. (2006) assessed the impact of simulated COSMIC GPS RO refractivity on operational weather analysis in the Antarctic. Chen et al. (2009) developed a nonlocal observation operator to assimilate COSMIC RO refractivity in the Weather Research and Forecasting Model (WRF) and the three-dimensional variational data assimilation (3DVAR) system. Ha et al. (2014) assimilated GPS RO soundings from COSMIC and CHAMP in the Weather Research and Forecast (WRF) model to analyze and forecast a heavy rainfall event over ^ cc the Korean Peninsula in October 2006. Many studies on the accuracy assessment of RO soundings both COSMIC and other missions have ^ been carried out. Kuo et al. (2004) evaluated the accuracy of refractivity from CHAMP RO soundings. Lohmann (2007) analyzed the errors characteristics from SAC-C RO measurements. Poli et al (2009) assessed the quality of bending angle, refractivity, refractivity lapse rate and temperature from COSMIC RO soundings. Xu et al. (2009) compared the refractivity differences between COSMIC and radiosondes in different altitudes, latitudes and seasons. Anthes (2011) reviewed studies that showed that RO could provide accurate and precise atmospheric profiles of electron density, refractivity, temperature and water vapor by multi-satellite missions CHAMP, SAC-C, GRACE, METOP-A, TerraSAR-X and COSMIC. Chen et al. (2011) estimated the observational errors of refractivity and linear excess phase from COSMIC GPS RO data. Wang et al. (2013) assessed the accuracy of COSMIC RO retrieval products including temperature, specific humidity, water vapor pressure and refractivity by comparing with global radiosonde data. Schreiner et al. (2020) evaluated signal-to-noise ratio of COSMIC-2 soundings from GPS and GLONASS signals and estimated the differences of bending angle and refractivity between COSMIC-2 and other data sets. Since COSMIC RO soundings are of high vertical resolution and accuracy, they can be used to evaluate the quality of measurements from other instruments. He et al. (2009) assessed the performance of radiosonde for temperature measurements using COSMIC RO data. Ho et al. (2010, 2017) evaluated the systematic biases of water vapor and temperature from radiosonde measurements using COSMIC RO soundings. However, there have been very few studies of COSMIC refractivity compared to radiosonde refractivity on a global basis. In this study, COSMIC RO refractivities were first matched with RS data in the range of 2 h and 300 km. Subsequently, daily refractivity at different atmospheric levels in January, April, July and October 2014 were compared with corresponding radiosonde data. Then the differences between COSMIC and RS refractivity at different heights, latitudes and seasons were determined. Finally, the temporal and spatial distribution patterns of COSMIC refractivity in the globe were considered. This paper is organized as follows: Section 2 presents the data used in the analysis and the preprocessing methods; Section 3 discusses the COSMIC-RS refractivity differences at different heights, latitudes and seasons, and the temporal and spatial distribution patterns of COSMIC refractivity in the globe; Section 4 provides the summary and conclusions. Shaoqi Gong, Cunjie Zhang, Geshi Tang, Yehui Zhang, Jing Han | GLOBALNA ANALIZA ATMOSFERSKIH REFRAKCIJSKIH PROFILOV IZ PREKRIVANJ RADIJSKIH SIGNALOV COMSIC GPS | GLOBAL ANALYSIS OF ATMOSPHERIC REFRACTIVITY PROFILES FROM COSMIC GPS RADIO OCCULTATION SOUNDINGS | 227-240 | | 229 | |64/2| GEODETSKI VESTNIK cc ■2.0.CG,2 Phinney, R. A., Anderson, D. L. (1968). On the Radio Occultation Method for Studying Planetary Atmospheres. Journal Geophysical Research, 73 (5), 1819-1927. DOI: https://doi.org/10.1029/ja073i005p01819 Poli, P, Joiner, J., Kursinski, E. R. (2002). 1DVAR Analysis ofTemperature and Humidity Using GPS Radio Occultation Refractivity Data. Journal of Geophysical Research, 107, 4448. DOI: https://doi.org/10.1029/2001JD000935 Poli, P, Moll, P, Puech, D., Rabier, F., Healy, S. B. (2009). Quality Control, Error Analysis, and Impact Assessment of FORMOSAT-3/COSMIC in Numerical Weather Prediction. Terrestrial Atmospheric & Oceanic Sciences, 20(1), 101—113.DOI: https://doi.org/10.3319/TAO.2008.01.21.02(F3C) Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S., Ware, R., Gorbunov, M., Schreiner, W., Feng, D., Herman, B., Kuo, Y. H., Zou, X. (1997). Analysis and Validation of GPS/MET Data in the Neutral Atmosphere. Journal of Geophysical Research, 102 (D25), 29849-29866. DOI: https://doi.org/10.1029/97jd02400 Rocken, C., Kuo, Y. H., Schreiner, W., Hunt, D., Sokolovskiy, S., McCormick, C. (2000). COSMIC System Description.Terrestrial Atmospheric & Oceanic Sciences, 11(1), 21-52. DOI: https://doi.org/10.3319/TAO.2000.11.1.21(COSMIC) Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S., Hunt, D. C. (2007). Estimates of the Precision of GPS Radio Occupations from the COSMIC/ FORMOSAT-3 Mission. Geophysical Research Letters, 34 (4). DOI: https://doi. org/10.1029/2006GL027557 Schreiner, W. S., Weiss, J. P., Anthes, R. A., Braun, J., Chu, V., Fong, J., Hunt, D., Kuo, Y. H., Meehan, T., Serafino, W., Sjoberg, J., Sokolovskiy, S., Talaat, E., Wee, T. K., Zeng, Z. (2020). COSMIC-2 radio occultation constellation: First results. Geophysical Research Letters, 47, e2019GL086841. DOI: https://doi. org/10.1029/2019GL086841 Smith, E. K., Weintraub, S. (1953). The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proceedings of the IRE, 41, 1035-1037. DOI: https://doi.org/10.1109/jrproc.1953.274297 Sokolovskiy, S. (2003). Effect of Superrefraction on Inversions of Radio Occultation Signals in the Lower Troposphere. Radio Science, 38 (3). DOI: https://doi. org/10.1029/2002rs002728 Staten, P. W., Reichler, T. (2009). Apparent precision of GPS radio occultation temperatures. Geophysical Research Letters, 36, L24806. DOI: https://doi. org/10.1029/2009GL041046 Sun, B., Reale, A., Seidel, D. J., Hunt, D. C. (2010). Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. Journal of Geophysical Research, 115, D23104. DOI: https://doi.org/10.1029/2010JD014457 Shaoqi Gong, Cunjie Zhang, Geshi Tang, Yehui Zhang, Jir ANALYSIS OF ATMOSPHERIC REFRACTIVITY PROFILES GLOBALNA ANALIZA ATMOSFERSKIH REFRAKCIJSKIH PROFILOV IZ PREKRIV C GPS RADIO OCCULTATION SOUNDINGS | 227-240 | JSKIH SIGNALOV COMSIC GPS | GLOBAL I 239 | I 64/2 j GEODETSKI VESTNIK Tang, W. L., Cha, H., Wei, M., Tían, B., Ren, X. C. (2019). An Atmospheric Refractívíty Inversion Method Based on Deep Learning. Results in Physics, 12, 582-584. ÈË DOI: https://doi.org/10.1016/j.rinp.2018.12.014 H Wang, J., Carlson, D. J., Parsons, D. B., Hock, T. F., Lauritsen, D., Cole, H. L., Beierle, ^ K., Chamberlain, E. (2003). Performance of Operational Radiosonde Humidity oc Sensors in Direct Comparison with a Chilled Mirror Dew-Point Hygrometer anc Its Climate Implication. Geophysical Research Letters, 30 (16), DOI: https://doi. ^ org/10.1029/2003gl016985 5E Wang, J. H., Zhang, L. Y., Dai, A.G. (2005). Global Estimates ofWater-Vapor-Weighted MeanTemperature of the Atmosphere for GPS Applications. Journal of Geophysical Ü Research, 110, D21101, DOI: https://doi.org/10.1029/2005JD006215 S Wang, B. R., Liu, X. Y., Wang, J. K. (2013). Assessment of COSMIC radio occultation oc retrieval product using global radiosonde data. Atmospheric Measurement Techniques, 6, 1073-1083. DOI: https://doi.org/10.5194/mt-6-1073/2013 Ware, R., Exner, M., Feng, D. Gorbunov, M., Hardy, K., Herman, B., Kuo, Y., Meehan, T. Melbourne, W., Rocken, C., Schreiner, W. ,Sokolovskiy, S., Solheim, F Zou, X. Anthes, R., Businger, S., Trenberth, K. (1996). GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results. Bulletin of the Americar Meteorological Society, 77 (1), 19-40. DOI: https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO,2 Wee, T. K., Kuo,Y. H. D., Bromwich, H., Monaghan, A. J. (2008). Assimilation of GPS Radio Occultation Refractivity Data from CHAMP and SAC-C Missions over High Southern Latitudes with MM5 4DVAR. Monthly Weather Review, 136, 2923-2944. DOI: https://doi.org/10.1175/2007mwr1925.! Wickert, J., Reigber, C., Beyerle, G., Konig, R., Marquardt, C., Schmidt, T., Grunwaldt L., Galas R., Meehan, T., Melbourne,W. G., Hocke K. (2001). Atmosphere Sounding by GPS Radio Occultation: First Results from CHAMP. Geophysical Research Letters, 28, 3263-3266. DOI: https://doi.org/10.1029/2001gl013117 Xu, X., Luo, J., Shi, C. (2009). Comparison of COSMIC Radio Occultation Refractivity Profiles with Radiosonde Measurements. Advances in Atmospheric Sciences, 26 (6), 1137-1145. DOI: https://doi.org/ 10.1007/s00376-009-8066-y Gong S., Zhang C., Tang G., Zhang Y., J. Han (2020). Global analysis of atmospheric refractivity profiles from COSMIC GPS radio occultation soundings. Geodetski vestnik, 64 (2), 227-240. DOI: https://doi.org/10.15292/geodetski-vestnik.2020.02.227-240 ShaoqiGong School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China (Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province, Sanya, 570203, China; National Climate Center, China Meteorological Administration, Beijing, 100081, China) e-mail: shaoqigong@163.com Cunjie Zhang* National Climate Center, China Meteorological Administration, Beijing, 100081, China (and Key laboratory for Cloud Physics of China Meteorological Administration, Beijing, 100081, China) e-mail: zhangcj@cma.gov.cn * Corresponding author Geshi Tang* School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China e-mail: tanggeshi@nuist.edu.cn Yehui Zhang School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China e-mail: zhangyehui@nuist.edu.cn Jing Han Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province, Sanya, 570203, China e-mail: hanjing8361@163.com Shaoqi Gong, Cunjie Zhang, Geshi Tang, Yehui Zhang, Jir | 240 | ANALYSIS OF ATMOSPHERIC REFRACTIVITY PROFILES GLOBALNA ANALIZA ATMOSFERSKIH REFRAKCIJSKIH PROFILOV IZ PREKRIV C GPS RADIO OCCULTATION SOUNDINGS | 227-240 | JSKIH SIGNALOV COMSIC GPS j GLOBAL GEODETSKI VESTNIK | 64/2 | TEKMOVANJE BARV V COMPETITION OF COLOURS VEKTORSKIH KARTICAH IN VECTOR CARDS | a DI N O Joc Triglav 1 UVOD Karte vektorjev kot kartice zaupanja so bile podrobneje predstavljene v prejšnji številki Geodetskega vestnika (Triglav, 2020). ,Tekmovanje barv' iz naslova pa poteka od začetka leta 2008, ko smo pri zemlji-škokatastrskih točkah (v nadaljevanju ZK-točke) v zemljiškem katastru začeli poleg D48/GK-koordinat evidentirati tudi D96/TM-koordinate in s tem spremljati vektorje transformacijskih koordinatnih odstopanj. V naslednjih letih smo večkrat preverili vmesne rezultate ,tekmovanja' ter si s ciljnimi ukrepi GURS-ovega urada za geodezijo načrtno in sistematično prizadevali, da bi bili ti vektorji čim manjši. Tako smo iz vsedržavne odsekoma afine trikotniške transformacije 3.0 z množico terenskih meritev prišli do izboljšane in terensko bistveno zanesljivejše ,pripete' trenutne različice 4.0. V kontekstu tega članka in slik v njem tekmovanje barv pomeni, da smo se z vsemi močmi, ki smo jih objektivno imeli na voljo, zavzemali, da bi bila močan številčni zmagovalec tekmovanja ,modra' ekipa vektorjev, navijali smo tudi za ,zeleno' ekipo, medtem ko smo si za ekipe vektorjev drugih ,barv' želeli predvsem, da bi nam z dobrim geodetskim strokovnim delom uspelo čim bolj zmanjšati število vektorjev v njih in da bi bili tudi čim manjši. 2 TEKMOVANJE ... V tem prispevku so zato s stanjem koordinat ZK-točk ob prehodu v novi koordinatni sistem D96/TM kot primer z nekaj diagrami na kratko podani zbirni rezultati po numerični in grafični obdelavi podatkov ZK-točk za vse katastrske občine (v nadaljevanju k. o.) na območju geodetske pisarne Murska Sobota. Rezultati izračuna in razvrstitve vektorjev po kategorijah velikosti so zbrani v skupni preglednici za vse katastrske občine (slika 1). Vir podatkov za preglednico so izračuni programov GeoPro 3.0 in Vektorji. Podatki, zbrani v preglednici, pa so potem vir za izdelavo zbirnih diagramov, ki so prikazani v nadaljevanju. Krožni diagram razvrstitve vektorjev koordinatnih odstopanj ZK-točk v velikostne razrede (slika 2) je izdelan iz podatkov od četrtega do osmega stolpca v zadnji vrstici preglednice na sliki 1. Zbirni palični diagram za prikaz relativnega razmerja med ZK-točkami brez vektorjev in ZK-točkami z vektorji za posamične k. o. (slika 3) je izdelan iz podatkov tretjega stolpca ter vsote podatkov od četrtega do osmega stolpca preglednice za vsako k. o. I 241 | | 64/2 | GEODETSKI VESTNIK o -i N O O cc -< cc -< cc gp murska sobota - velikosti vektorjev koordinatnih odstopanj (e,l$ - (ge.gn) po k o. stanje po transformaciji zk točk iz koordinatnega sistema d48/gk v d96/tm Šifra Število ZK točk po posameznih kategorijah velikosti vektorjev v metrih k.o. Ime k.o. V=tJ 0.f)5, nam bo vedno bližja. To pa je cilj, za katerega se je res vredno potruditi!« I 248 | GEODETSKI VESTNIK | 64/2 | Literatura in viri: OGU Murska Sobota (2020). Obdelava koordinatnih podatkov ZK-točk v programskih Triglav, J. (2020). Kartica vektorjev kot kartica zaupanja. Geodetski vestnik, 64 (1), orodjih GeoPro 3.0 in Vektorji. Območna geodetska uprava Murska Sobota. 105-113. http://www.geodetski-vestnik.eom/64/1/gv64-1_triglav.pdf, pridobljeno 25. 5. 2020. N O dr. Joc Triglav, univ. dipl. inž. geod. Območna geodetska uprava Murska Sobota Murska Sobota, Lendavska ulica 18, SI-9000 Murska Sobota e-naslov: joc.triglav@gov.si I 249 | | 64/2 | GEODETSKI VESTNIK DELNA AVTOMATIZACIJA PARTIAL AUTOMATION I BRISANJA PORUŠENIH STAVB OF LEVELLED BUILDINGS IS I ERASURE o cc -< cc Andreja Švab Lenarčič, Joc Triglav 1 UVOD Na Geodetskem inštitutu Slovenije za Geodetsko upravo RS vsako leto izvedejo avtomatsko identifikacijo stavb (AIS). Identifikacija temelji na analizi vsakokratnih podatkov zadnjega cikličnega aerosnemanja in snemanja lidar. Leta 2017 je bila AIS izvedena tudi za območje OGU Murska Sobota. Statistično so rezultati te analize že bili prikazani v Geodetskem vestniku (Triglav, 2018). V navedenem članku je avtor opozoril predvsem na veliko količino stavb, ki potrebujejo popravek (nove, spremenjene ali porušene stavbe), nizko razpoložljivost kadra in časa ter uporabo »rokomatike« ob hkratnem obstoju primernih algoritmov umetne inteligence. Ker se bo na enakem območju letos izvedla nova analiza AIS na DOF5 2019, smo se na OGU Murska Sobota odločili, da vsaj delno avtomatiziramo, sistematiziramo in organiziramo postopke urejanja evidenc porušenih stavb, s ciljem brisanja čim večjega števila porušenih stavb, evidentiranih v AIS 2017. V razpravi opisujemo metode dela, rezultate in način brisanja stavb. 2 PROSTORSKA ANALIZA Prostorsko analizo smo izvedli v programu QGIS. Uporabili smo naslednje prostorske podatke: — zemljiškokatastrski prikaz (ZKP), grafične in opisne podatke zemljiškega katastra; — kataster stavb (KS), grafične in opisne podatke slojev tloris in centroide; — točke, identificirane kot ,porušena stavba', v okviru projekta Avtomatska identifikacija stavb (AIS); — register prostorskih enot, hišne številke (HŠ); — register nepremičnin, stavbe (REN); — digitalni ortofoto 5 (DOF5), stanje 2019. Podatke AIS smo prevzeli z namenskega zavihka na intranetni strani geodetske uprave. Vse druge podatke smo prenesli s spletne strani eGeodetski podatki na portalu Prostor (eGP, 2020). Za prikaz sloja DOF5 smo uporabili spletni servis WMS. Primer hkratnega prikaza slojev je prikazan na sliki 1. Izvajali smo klasične prostorske analize, kot so: izbor glede na lokacijo, izbor poligonov pod točkami, število točk znotraj poligona, združevanje atributov (glede na lokacijo) idr. I 250 | GEODETSKI VESTNIK | 64/2 | Slika 1: Sloji za analizo v QGIS: točke AIS porušenih stavb (rdeča), ZKP (zelena), KS (oranžna) in HŠ (zeleni trikotnik s hišno številko). Z zeleno so ploskovno obarvani parcelni deli, ki pripadajo isti parceli. Vijolično so dodatno ploskovno obarvani parcelni deli, ki ležijo pod obrisi stavb iz KS. Prvi rezultat analize je bila preglednica, namenjena sodelavcem za sistematični pregled stanja podatkov v povezanih evidencah za parcelo z označeno brisano stavbo (primer v preglednici 1). Iz preglednice so enostavno razvidne zbrane informacije, ki so za izvedbo naloge najbolj potrebne. Preglednica je bila v celoti izdelana s samodejnim postopkom v QGIS, končno oblikovanje smo izvedli v programu Excel. V preglednico smo vključili: — podatke o parcelnem delu (iz ZKP) za vsak del parcele, ki leži pod točko AIS: šifra k. o., šifra in ime vrste rabe, površina, številka parcele in številka stavbe; — podatke o točki AIS: šifra k. o. in številka stavbe; če parcelni del vsebuje točko AIS, je atribut ne-ničelna vrednost; — podatke iz katastra stavb (KS): številka stavbe na posameznem parcelnem delu; — podatke o hišni številki (iz RPE), če jo parcelni del ima; — podatke o letu izgradnje stavbe (iz REN). Preglednice smo naredili ločeno za vsako k. o. v OGU MS. Preglednica 1: Izsek končne preglednice za parcelo, ki je grafično prikazana na sliki 1. Navedeni so vsi deli parcele, na kateri je točka AIS (porušena stavba). Za posamezen parcelni del so zapisani atributi iz različnih baz podatkov. Iz ZKP: šifra k. o., šifra in ime vrste rabe, površina, številka parcele in številka stavbe. Iz AIS: šifra k. o. in številka stavbe. Iz katastra stavb: številka stavbe. Iz Registra prostorskih enot: hišna številka. Iz REN: leto izgradnje. ZKP AIS KS HŠ REN SIFKO SIVRAB IMEVRAB POVRSINA PARCELA STA_STEV KO-STST STST HŠ LETO 108 201 STANOVANJSKA STAVBA 122 170 0 108 221 ZPS PRED 2006 87 170 68 108-68 68 1990 108 221 ZPS PRED 2006 152 170 69 69 21 1987 108 211 DVORIŠČE 718 170 0 I 251 | |64/2| GEODETSKI VESTNIK on O DI r-^i Zapisala: Anka Lisec, za Zvezo geodetov Slovenije cc Q e-naslov: anka.lisec@fgg.uni-lj.si Zveza geodetov Slovenije LJUBLJANSKO GEODETSKO DRUŠTVO NOVICA LJUBLJANSKEGA GEODETSKEGA DRUŠTVA_ 26. TRADICIONALNO SREČANJE NA KRIMU Tudi letos je naše tradicionalno srečanje ob obeležju koordinatnega izhodišča prve katastrske izmere na območju Slovenije minilo v prav posebnem ozračju. Lani, ko smo slavili petindvajset let, odkar je Ljubljansko geodetsko društvo (LGD) ob koči na vrhu Krima postavilo obeležje, je društvo ob visokem jubileju pripravilo slovesnost, na katero je povabilo vse slovenske geodete. Letošnje srečanje pa je bilo, v izrazitem nasprotju z opisano slovesnostjo, bolj spontane narave. Po tem, ko so zaradi grožnje z okužbo s koronavirusom oziroma boleznijo covid-19 aktivnosti dva meseca mirovale, je izvršni odbor društva v skladu s priporočili NIJZ oziroma veljavnimi ukrepi vlade Republike Slovenije na redni seji 25. maja 2020 soglasno sprejel naslednji sklep: Sliki 1 in 2: Utrinka s Krima (Foto: Milan Brajnik in Miha Muck). I 278 | GEODETSKI VESTNIK | 64/2 | »26. tradicionalno srečanje geodetov ob obeležju na Krimu ne bo organizirano zaradi grožnje z okužbo s ^ IE COVID-19. Člani IO bodo v ožjem sestavu obiskali obeležje in pozdravili eventualne člane društva, ki bi t; k obeležju dostopili individualno oziroma z družinskimi člani, društvo zagotovi prigrizek in napitke. Na spletu in z e-poštnim obveščanjem bo IO objavil neformalno vabilo oziroma najavo prisotnosti članov gc IO ob obeležju v soboto dne 6. 6. 2020 med 11.00 in 13.00.« V navedenem terminu se je ob obeležju zbralo 36 članov društva, ki smo v prijetnem ozračju obujali ^ spomine na dosedanje aktivnosti, pa tudi snovali nove podvige. Brez posebnih napovedi so bile upora- § E bljene tradicionalne dostopne smeri: 1. POHOD (daljša različica), od Doma v Iškem vintgarju, pohod po gozdni markirani poti na vrh ši Krima, Ah = 750 m; 2. POHOD od križišča ceste Preserje-Rakitna in ceste na Krim, pohod po gozdni cesti na vrh Krima, Ah = 300 m; 3. KOLESARJENJE, ki običajno poteka od križišča ceste Preserje-Rakitna in ceste na Krim, kjer se začne vožnja po 8-kilometrski makadamski cesti na vrh Krima, pa je tokrat članica (sicer tradicionalna udeleženka) pričela kar v Ljubljani in končala neposredno ob točilnem pultu v sami koči (kamor smo se zatekli pred dežjem). Izvršni odbor društva se trudi, da bi navkljub vrsti neznank in tudi dvomov zagotovil pogoje za nadaljevanje strokovno-družabnega dela. Udeleženci, ki so neorganizirano pristopili k sicer res uveljavljeni aktivnosti, so vsi po vrsti izražali zadovoljstvo ob ponovnem snidenju in tudi željo po skorajšnji izvedbi nadaljnjih srečanj. Razpoloženja ni pokvarila niti ploha, ki nas je prepodila pod dežnike in nadstreške, nekaj kapljic pa smo zapodili tudi po grlu z željo po zdravem nadaljevanju leta za vse nas! Sliki 3 in 4: Udeleženci med živahnim klepetom (Foto: Miha Muck). Nove aktivnosti so pred nami, člane pozivamo, da spremljajo obvestila na spletni strani društva in poštna sporočila, s katerimi društvo tradicionalno zanesljivo obvešča o novostih. Kmalu nasvidenje! Zapisal: Milan Brajnik, predsednik društva, za Ljubljansko geodetsko društvo e-naslov: milan.brajnik@gis.si I 279 | DRUŠTVENE NOVICE I NEWS FROM SOCIETIES I ^ GEODETSKI VESTNIK | 64/2 | DIPLOMI IN MAGISTERIJI NA ODDELKU ZA GEODEZIJO § ULFGG I 111 OD 1. 2. 2020 DO 30. 4. 2020 I MAGISTRSKI STUDIJSKI PROGRAM DRUGE STOPNJE GEODEZIJA IN GEOINFORMATIKA Ana Lončaric Izdelava realistične upodobitve gradu Mokrice in okolice Mentor: doc. dr. Dušan Petrovič Somentor: asist. dr. Klemen Kozmus Trajkovski URL: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=114870 Matic Planinšek Geodetski monitoring pomikov kontrolnih točk na pregradi zadrževalnika Vogršček Mentor: izr. prof. dr. Tomaž Ambrožič URL: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=115939 Martina Rakuša Razvoj metode povezovanja grafičnih in opisnih podatkov o zemljiščih za vzpostavitev večnamenskega katastra Mentorica: izr. prof. dr. Anka Lisec Somentorja: doc. dr. Marjan Čeh, dr. Joc Triglav URL: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=114955 VISOKOSOLSKI STROKOVNI STUDIJSKI PROGRAM PRVE STOPNJE TEHNIČNO UPRAVLJANJE NEPREMIČNIN Robi Dolenc Vzpostavitev nivelmanske mreže za spremljanje pomikov pri izgradnji objekta Šumi Mentor: izr. prof. dr. Tomaž Ambrožič Somentor: asist. Gašper Štebe URL: https://repozitorij.uni-lj.si/!zpisGradiva.php?id=114456 Rok Jelenovič Analiza kakovosti zakoličevanja z uporabo GNSS Mentor: prof. dr. Bojan Stopar Somentor: doc. dr. Oskar Sterle URL: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=114457 Vir: Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo UL FGG Za študijski referat: Teja Japelj I 281 | |64/2| GEODETSKI VESTNIK STRAN ZA POPRAVKE, ERRATA GEODETSKI VESTNIK ŠT. 1, LETNIK 64 Stran z napako Vrstica z napako Namesto Naj bo 5 19 Veton Hamza, Tomaž Ambrožič, Bojan Stopar Veton Hamza, Bojan Stopar, Tomaž Ambrožič 68 3 Veton Hamza, Tomaž Ambrožič, Bojan Stopar Veton Hamza, Bojan Stopar, Tomaž Ambrožič 68-88 Noga Veton Hamza, Tomaž Ambrožič, Bojan Stopar | DEFORMACIJSKA ANALIZA PO POSTOPKU CASPARY | DEFORMATION ANALYSIS: THE CASPARY APPROACH | 68-88 | Veton Hamza, Bojan Stopar, Tomaž Ambrožič | DEFORMACIJSKA ANALIZA PO POSTOPKU CASPARY | DEFORMATION ANALYSIS: THE CASPARY APPROACH | 68-88 | 78 21 Hamza V., Ambrožič T., Stopar B. (2020). Deformation Analysis: the Caspary Approach. Geodetski vestnik, 64 (1), 68-88. Hamza V., Stopar B., Ambrožič T. (2020). Deformation Analysis: the Caspary Approach. Geodetski vestnik, 64 (1), 68-88. 88 4 Hamza, V., Ambrožič T., Stopar B. (2020). Deformacijska analiza po postopku Caspary. Deformation Analysis: the Caspary Approach Hamza, V., Stopar B., Ambrožič T. (2020). Deformacijska analiza po postopku Caspary. Deformation Analysis: the Caspary Approach. I 282 | GEODETSKI VESTNIK | 64/2 | / V7tW\ 48 --- Zveza geodetov Slovenije in Ljubljansko geodetsko društvo najavljata nov termin izvedbe strokovnega posveta 48. Geodetski dan z delovnim naslovom Geodezija za kakovostne odločitve v prostoru in času, ki bo v četrtek, 17. septembra 2020, v prostorih Domus Medica na Dunajski cesti v Ljubljani. V skladu s priporočili vlade RS in pozivom ministra za zdravje o odpovedi javnih prireditev v zaprtih prostorih je organizator odpovedal izvedbo 48. Geodetskega dneva v predvidenem marčevskem terminu! Nastop višje sile nam je narekoval odgovorno ravnanje in skrb za zdravje udeležencev, kar ostaja eno od osnovnih vodil našega delovanja! Podrobnejše podatke o prireditvi še naprej spremljajte na spletnem mestu posveta www.geodetskidan.si. Z nami ostajajo predavatelji in naši sponzorji, vsem se zahvaljujemo za podporo! Vljudno vabljeni! Predsednica programskega odbora Predsednik Zveze geodetov Slovenije Predsednik organizacijskega odbora dr. Mihaela Triglav Čekada mag. Blaž Mozetič Milan Brajnik The Association of Surveyors of Slovenia and the Ljubljana Surveyors Society announce the new term of performance of the 48th Slovenian Land Surveying Day with the working title Geodesy and Quality of Geospatial Data for Good Decision-making, to be held on 17 September 2020, at Domus Medica Congress Center in Ljubljana, Slovenia. For more information, please visit the website www.geodetskidan.si. The lecturers and our sponsors remain with us, and we thank everyone for their support. You are cordially invited to attend. Chair of the Programme Committee President of the Association of President of the Organisation Committee Mihaela Triglav Čekada, PhD Surveyors of Slovenia Milan Brajnik Blaž Mozetič, MS I 283 | |64/2| GEODETSKI VESTNIK o UVODNI POZDRAVI IN PLENARNA PREDAVANJA / WELCOME SPEECHES, PLENARY LECTURES s= pozdravni govori / welcome speeches Plenarni predavanji / Plenary lectures - moderator doc. dr. Mihaela Triglav Čekada (Gl) Prelomne (geo)tehnologije in njihovi vplivi / Disruptive (geo)technologies and their impacts Prof. Dr. Joep Crompvoets (EuroSDR in KU Leuven, Belgija / EuroSDR in KU Leuven, Belgium) Nove tehnologije za boljšo uporabnost uradnih prostorskih podatkov / New technologies for better usability of official geospatial data Dr. Ing. Markus Seifert (Geodetska uprava Bavarske, Nemčija / Landesamt fur Digitalisierung, Breitband und Vermessung, Bavaria, Germany) PREDAVANJA II / LECTURES II - moderator Peter Prešeren (GURS) Korektna uporaba letalnikov v geodeziji / Correct application of UAVs in geodesy Dr. Dejan Grigillo, dr. Dušan Petrovič, dr. Klemen Kozmus Trajkovski, dr. Tilen Urbančič, dr. Mojca Kosmatin Fras (UL Fakulteta za gradbeništvo in geodezijo / University of Ljubljana, Faculty of Civil and Geodetic Engineering) Nova evropska pravila v zvezi z uporabo brezpilotnih zrakoplovov / New European rules on unmanned aircraft Ana Hožič (Javna agencija za civilno letalstvo RS / Civil Aviation Agency Slovenia) Vzpostavitev in vzdrževanje prostorskih letalskih podatkov in informacij / Establishment and maintenance of spatial aviation data and information Primož Kete (Geodetski inštitut Slovenije / Geodetic Institute of Slovenia) GeoBIM - izzivi za geodezijo in geoinformatiko / GeoBIM - challenges for surveying and geoinformatics Alen Šraj (Igea d.o.o.), Jernej Tekavec, dr. Anka Lisec (UL Fakulteta za gradbeništvo in geodezijo / University of Ljubljana, Faculty of Civil and Geodetic Engineering) Koordinatni sistemi kot temelj za kakovostne odločitve v prostoru / Coordinate systems as a basis for good decision making in physical space Mag. Klemen Medved, Sandi Berk (Geodetska uprava Republike Slovenije / Surveying and Mapping Authority of the Republic of Slovenia), dr. Božo Koler, dr. Oskar Sterle, dr. Bojan Stopar (UL Fakulteta za gradbeništvo in geodezijo / University of Ljubljana, Faculty of Civil and Geodetic Engineering) PREDAVANJA III / LECTURES III - moderator doc. dr. Alma Zavodnik Lamovšek (UL FGG) Modeli vrednotenja 2020 / Valuation Models 2020 Mag. Martin Smodiš (Geodetska uprava Republike Slovenije / Surveying and Mapping Authority of the Republic of Slovenia) Funkcionalne regije v Sloveniji / Functional regions in Slovenia Dr. Samo Drobne (UL Fakulteta za gradbeništvo in geodezijo / University of Ljubljana, Faculty of Civil and Geodetic Engineering) Uporaba ocene zmogljivosti komunalne infrastrukture pri pripravi prostorskih aktov / Using the estimated capacity of municipal infrastructure in the drafting of spatial planning acts Ajda Kafol Stojanovič (Geodetski inštitut Slovenije / Geodetic Institute of Slovenia), dr. Daniel Koželj, dr. Maruška Šubic Kovač (UL Fakulteta za gradbeništvo in geodezijo / University of Ljubljana, Faculty of Civil and Geodetic Engineering) eGraditev/ eConstruction Jurij Mlinar, Jan Brezec, dr. Nikolaj Šarlah (Ministrstvo za okolje in prostor RS / Ministry of the Environment and Spatial Planning), Martina Strniša (Geodetska uprava Republike Slovenije / Surveying and Mapping Authority of the Republic of Slovenia) Evidentiranje nepremičnin - novi predpisi in informacijske rešitve / Real estate registration - new regulations and information solutions Mag. Ema Pogorelčnik, Franc Ravnihar (Geodetska uprava Republike Slovenije / Surveying and Mapping Authority of the Republic of Slovenia) I 284 | GEODETSKI VESTNIK j 64/2 j S O r-^i