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We propose a general, simple and practical technique, named Distributed Leafs Pruning (DLP), which can
be combined with every distance vector routing algorithm based on shortest paths, allowing to reduce the
total number of messages sent by that algorithm. We combine the new technique with three algorithms
known in the literature: DUAL, which is loop-free and is part of CISCO’s widely used EIGRP proto-
col; DUST, which has been shown to be effective on networks with power law node degree distribution,
although it suffers of looping; LFR, which has been very recently introduced, is loop-free and has been
shown to be very effective on real networks. We give experimental evidence that these combinations lead
to an important gain in terms of the number of messages sent by DUAL, DUST and LFR, on networks
having a power-law node degree distribution. We also notice that, in many cases the use of DLP deter-
mines a gain in terms of the maximum and the average space occupancy per node.

Povzetek: Članek predlaga novo metodo DLP, ki jo je moč integrirati v poljuben algoritem za iskanje
najkrajših poti v omrežjih.

1 Introduction

Shortest paths is surely one of the most important and stud-
ied combinatorial problems in the literature. In particular,
the problem of computing and updating efficiently all-pairs
shortest paths in a distributed network whose topology dy-
namically changes over the time is considered crucial in
today’s communication networks. The solutions found in
the literature for this problem can be classified as distance-
vector and link-state algorithms.

In a distance-vector algorithm, a node needs to know and
possibly to store the distances from each of its neighbors to
every other node in the network. This information is used
to compute the distance and the next node in the shortest
path to each destination, which are stored in a data structure
usually called routing table. Most of the distance-vector so-
lutions for the distributed shortest paths problem proposed
in the literature (e.g., see [5, 8, 13, 14, 16, 21, 22, 24]) rely
on the classical Distributed Bellman-Ford method (DBF
from now on), originally introduced in the Arpanet [17],
which is still used in real networks and implemented in the
RIP protocol. DBF has been shown to converge to the cor-
rect distances if the link weights stabilize and all cycles

have positive lengths [3]. However, the convergence can be
very slow (possibly infinity) due to the well-known looping
and count-to-infinity phenomena. A loop is a path induced
by the routing table entries, such that the path visits the
same node more than once before reaching the destination.
A node “counts to infinity” when it increments its distance
to a destination until it reaches a predefined maximum dis-
tance value.

In a link-state algorithm, as for example the OSPF proto-
col widely used in the Internet (e.g., see [18]), a node must
know the entire network topology to compute its distance
to any network destination (usually running the centralized
Dijkstra’s algorithm for shortest paths). Link-state algo-
rithms are free of the looping and count-to-infinity prob-
lems. However, if a network change occurs, each node
needs to receive up-to-date information on the entire net-
work topology. This is achieved by broadcasting each
change of the network topology to all nodes [18] and by
using a centralized dynamic algorithm for shortest paths,
as for example that in [12].

In the last years, there has been a renewed interest in de-
vising new light-weight distributed shortest paths solutions
for large-scale Ethernet networks (see, e.g., [9, 11, 19, 23,
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25, 26]), where distance-vector algorithms seem to be an
attractive alternative to link-state solutions when scalabil-
ity and reliability are key issues or when the memory power
of the nodes of the network is limited.

1.1 Related work

Notwithstanding this increasing interest, the most impor-
tant distance vector algorithm is still DUAL (Diffuse Up-
date ALgorithm) [13], which is free of the looping and
count-to-infinity phenomena, thus resulting an effective
practical solution (it is in fact part of CISCO’s widely
used EIGRP protocol). Another distance vector algorithm
is DUST (Distributed Update of Shortest paThs), which
has been first introduced in [6] and successively developed
in [7]. Compared with DUAL, DUST suffers of the loop-
ing and count-to-infinity phenomena, even though it has
been designed to heuristically reduce the cases where these
phenomena occur. However, DUST uses an amount of data
structures per node which is much smaller than those of
both DBF and DUAL. In [6, 7] the practical performance
of DBF, DUAL, and DUST have been measured in terms
of both number of messages, and space occupancy per node
on both realistic and artificial instances of the problem. An-
other distance vector algorithm, named LFR (Loop Free
Routing), has been recently proposed in [10]. Compared
with DUAL, LFR has the same theoretical message com-
plexity but it uses an amount of data structures per node
which is much smaller than that of DUAL, and slightly
higher than that of DUST. Moreover, in [10] LFR has been
experimentally shown to be a good compromise between
the number of messages sent and the memory requirements
per node with respect to DUAL on both realistic and arti-
ficial instances of the problem.

1.2 Results of the paper

In this paper, we provide a new general, simple, and prac-
tical technique, named Distributed Leafs Pruning (DLP),
which can be combined with every distance-vector algo-
rithm for shortest paths with the aim of overcoming some
of their main limitations in large scale networks (high num-
ber of messages sent, high space occupancy per node, low
scalability, poor convergence). This technique has been de-
vised to be effective mainly in networks having a power-
law node degree distribution, which are able to model many
real-world networks such as the Internet, the World Wide
Web, citation graphs, and some social networks [1]. The
main idea of DLP relies on the following observations: a
network with power-law node degree distribution with n
nodes typically has a very small average node degree and
a high number of nodes with unitary degree; any shortest
path from a node with unitary degree v to any other node
of the network has necessarily to pass through the unique
neighbor of v in the network, and hence v does not provide
any useful information for the distributed computation of
shortest paths.

In order to check the effectiveness of DLP, we combined
it with DUAL, DUST, and LFR, by obtaining three new
algorithms named DUAL-DLP, DUST-DLP, and LFR-
DLP, respectively. Then, we implemented the six algo-
rithms in the OMNeT++ simulation environment [20], a
network simulator which is widely used in the literature.
As input to the algorithms, we considered the same in-
stances of networks with a power-law node degree distri-
bution used in [6, 7, 10], that is the Internet topologies of
the CAIDA IPv4 topology dataset [15] (CAIDA - Cooper-
ative Association for Internet Data Analysis is an associa-
tion which provides data and tools for the analysis of the
Internet infrastructure), and the random topologies gener-
ated by the Barabási-Albert algorithm [2]. The results of
our experimental study can be summarized as follows: the
application of DLP to DUAL, DUST and LFR provides a
significant improvement in the global number of sent mes-
sages with respect to the original algorithms, and in many
cases an improvement also in the maximum and in the av-
erage space occupancy per node. In particular, the ratio
between the number of messages sent by DUAL-DLP and
DUAL is within 0.12 and 0.48; the ratio between the num-
ber of messages sent by DUST-DLP and DUST is within
0.04 and 0.81; the ratio between the number of messages
sent by LFR-DLP and LFR is within 0.36 and 0.51. Con-
cerning the space occupancy, we have observed a gain in
the maximum case for DUAL and LFR, and in the aver-
age case for DUAL.

1.3 Structure of the paper
The paper is organized as follows. In Section 2 we intro-
duce some useful notation and definitions used in the pa-
per. In Section 3 we describe the Distributed Leafs Pruning
technique. In Section 4 we describe the combination of
DLP with DUAL, DUST, and LFR. In Section 5 we give
experimental evidence of the effectiveness of DLP. Finally,
in Section 6 we give some concluding remarks and outline
future research directions.

2 Background
We consider a network made of processors linked through
communication channels that exchange data using a mes-
sage passing model, in which: each processor can send
messages only to its neighbors; messages are delivered to
their destination within a finite delay but they might be de-
livered out of order; there is no shared memory among the
nodes of the network; the system is asynchronous, that is,
a sender of a message does not wait for the receiver to be
ready to receive the message.

2.1 Graph notation
We represent the network by an undirected weighted graph
G = (V,E,w), where V is a finite set of nodes, one
for each processor, E is a finite set of edges, one for
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each communication channel, and w is a weight function
w : E → R+ ∪ {∞} that assigns to each edge a real
value representing the optimization parameter associated
to the corresponding channel. We assume that the graph
is connected. An edge in E that links nodes u, v ∈ V is
denoted as {u, v}. Given v ∈ V , N(v) denotes the set
of neighbors of v. The maximum degree of the nodes in
G is denoted by maxdeg. A path P in G between nodes
u and v is denoted as P = (u, ..., v). The weight of P
is the sum of the weights of the edges in P . A shortest
path between nodes u and v is a path from u to v with the
minimum weight. The distance d(u, v) from u to v is the
weight of a shortest path from u to v. Given two nodes
u, v ∈ V , the via from u to v is the set of neighbors of
u that belong to a shortest path from u to v. Formally:
via(u, v) ≡ {z ∈ N(u) | d(u, v) = w(u, z) + d(z, v)}.
Given a time t, we denote as wt(), dt(), and viat() the
edge weight, the distance, and the via at time t, respec-
tively. We denote a sequence of k update operations on the
edges of G by C = (c1, c2, ..., ck). Assuming G0 ≡ G, we
denote as Gi, 0 ≤ i ≤ k, the graph obtained by applying
the operation ci to Gi−1. The operation ci either inserts a
new edge in Gi, or deletes an edge of Gi, or modifies (ei-
ther increases or decreases) the weight of an existing edge
in Gi. We consider the case in which C is a sequence of
weight increase and weight decrease operations, that is op-
eration ci either increases or decreases the weight of edge
{xi, yi} by a quantity εi > 0. The extension to delete and
insert operations is straightforward, in fact deleting an edge
{x, y} is equivalent to increase w(x, y) to +∞, and insert-
ing an edge {x, y} with weight α is equivalent to decrease
w(x, y) from +∞ to α.

2.2 Distance-vector algorithms
We consider the generic routing problem between all the
nodes of a network, in which each node needs to find a
shortest path to each other node. This problem can be
tackled in different ways. The most reliable, robust and
used approach is that based on distributed all-pairs short-
est paths. We are interested in the practical case of a
dynamic network in which an edge weight change (in-
crease/decrease) can occur while one or more other edge
weight changes are under processing. A processor v of the
network might be affected by a subset of these changes.
As a consequence, v could be involved in the concurrent
executions related to such changes.

Distance-vector routing algorithms based on shortest-
paths usually share a set of common features. In detail,
given a graph G = (V,E,w), a generic node v of G:

– knows the identity of every other node of G, the iden-
tity of all its neighbors and the weights of the edges
incident to it;

– maintains and updates its own routing table that has
one entry for each s ∈ V , which consists of at least
two fields: Dt[v, s], the estimated distance between v

and s at time t, and VIAt[v, s], the neighbor used to
forward data from v to s at time t;

– handles edge weight increases and decreases either
by a single procedure (see, e.g., [13]), which we de-
note as WEIGHTCHANGE, or separately (see, e.g.,
[7]) by two procedures, which we denote as WEIGHT-
INCREASE and WEIGHTDECREASE;

– requests information to its neighbors and receives
replies by them through a specific exchange of mes-
sages (see, e.g., message query in [13] or message
get.feasible.dist in [10]) and propagates a variation to
the estimated routing information as follows: (i) if v
is performing WEIGHTCHANGE, then it sends to its
neighbors a message, from now on denoted as update;
a node that receives this kind of message executes
procedure UPDATE. (ii) if v is performing WEIGHT-
INCREASE or WEIGHTDECREASE, then it sends to
its neighbors message increase or decrease, respec-
tively; a node that receives increase/decrease exe-
cutes procedure INCREASE/DECREASE, respectively.

2.3 Power-Law networks
Networks having a power-law node degree distribution,
from now on referred as “power-law networks”, are very
important in practice and includes many of the currently
implemented communication infrastructures, like the In-
ternet, the World Wide Web, some social networks, and
so on [1]. Practical examples of power-law networks
are the Internet topologies of the CAIDA IPv4 topology
dataset [15], and the artificial instances generated by the
Barabási-Albert algorithm [1].

The CAIDA dataset is collected by a globally distributed
set of monitors. The monitors collect data by sending probe
messages continuously to destination IP addresses. Des-
tinations are selected randomly from each routed IPv4/24
prefix on the Internet such that a random address in each
prefix is probed approximately every 48 hours. The current
prefix list includes approximately 7.4 million prefixes. For
each destination selected, the path from the source monitor
to the destination is collected, in particular, data collected
for each path probed includes the set of IP addresses of the
hops which form the path and the Round Trip Times (RTT)
of both intermediate hops and the destination.

A Barabási–Albert topology is generated by iteratively
adding one node at a time, starting from a given connected
graph with at least two nodes. A newly added node is con-
nected to any other existing nodes with a probability that
is proportional to the degree of the existing nodes. In Fig-
ure 1 we show the power-law node degree distribution of a
CAIDA network (a) and of a Barabási-Albert network (b).

3 The new technique
The main goal of Distributed Leafs Pruning (DLP) is to
reduce the number of messages sent by a generic distance-
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Figure 1: Power-law node degree distribution of: a CAIDA graph with 8000 nodes and 11141 edges (a); a Barabási-Albert
graph with 8000 nodes and 12335 edges (b).

vector algorithm. DLP has been designed to be efficient
mainly in power-law networks. The idea underlying DLP
is very simple and it is based on the following observations:

– a power-law network with n nodes typically has av-
erage node degree much smaller than n and a num-
ber of nodes with unitary degree which is generally
high. For example, the graphs of the CAIDA IPv4
topology dataset have average node degree approxi-
mately equal to n/2000, and a number of nodes with
unitary degree approximately equal to n/2;

– nodes with unitary degree do not provide any useful
information for the distributed computation of short-
est paths. In fact, any shortest path from a node with
degree one v to any other node of the network has nec-
essarily to pass through the unique neighbor of v in the
network.

To describe the technique we need to introduce some
preliminary definitions. Given an undirected weighted
graph G = (V,E,w), the core of G is the graph Gc =
(Vc, Ec, wc) which represents the maximal connected sub-
graph of G having all nodes of degree greater than one. A
node v ∈ V is a central node if v ∈ Vc, otherwise v is a
peripheral node. An edge of G that links two central nodes
is a central edge, an edge that links a central node with a
peripheral node is a peripheral edge. For each peripheral
node u, the unique central node v adjacent to u is called the
owner of u.

3.1 Data structures
Given a generic distance-vector algorithm A, DLP requires
that a generic node ofG stores some additional information
with respect to those required by A. In particular, a node
v needs to store and update information about central and
peripheral nodes and edges ofG. To this aim, v maintains a
data structure called Classification Table, denoted as CTv ,
which is an array containing one entryCTv[s], for each s ∈
V , representing the list of the peripheral neighbors of s. A
central node is not present in any list of CTv . A peripheral

node is present in CTv[s], for exactly one s ∈ V , and s is
its owner. Each list contains at most maxdeg entries and
the sum of the sizes of all the lists is always smaller than n.
Hence the space overhead per node due to CTv is O(n).

3.2 Properties

The main purpose of DLP is to force distributed compu-
tation to be carried out only by the central nodes. The pe-
ripheral nodes receive updates about routing information
passively from the respective owners, without starting any
kind of distributed computation. Then, the larger is the set
of the peripheral nodes of the network, the bigger is the
improvement in the global number of messages sent by the
algorithm. The following lemma introduces some basic re-
lationships between the paths that link central and periph-
eral nodes.

Lemma 3.1. Given an undirected weighted graph G =
(V,E,w), and its core Gc = (Vc, Ec, wc), let {p, c} be a
peripheral edge such that c ∈ Vc at time t. The following
relations hold:

– dt(x, p) = dt(x, c) + wt(c, p), ∀ x ∈ V \ {p};

– viat(x, p) = viat(x, c), ∀ x ∈ V \ {p}.

Proof. By contradiction, let us assume that dt(x, p) 6=
dt(x, c) + wt(c, p) for a certain x ∈ V \ {p}. Then, two
cases can occur: if dt(x, p) < dt(x, c)+wt(c, p), it follows
that there exists, at time t, another path from node x to node
p that does not include node c, which is a contradiction, as
p is a peripheral node and has a unique adjacent node at
time t; on the other hand, if dt(x, p) > dt(x, c) + wt(c, p)
it follows that dt(x, p) is not the weight of a shortest path,
which is again a contradiction. 2

Some useful additional relationships can be derived from
Lemma 3.1. In particular, if between the time instants ti
and ti+1 the weight of the edge {p, c} between a periph-
eral node p and his corresponding owner c changes, that is
wti(p, c) 6= wti+1(p, c), then p can update its own routing
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table towards each node of the network x ∈ V simply by
computing:

dti+1(p, x) = dti(p, x) + wti+1(p, c)− wti(p, c), (1)

viati+1(p, x) = {c}. (2)

In a similar way, if a generic node of the network x ∈ V ,
between the time instants ti and ti+1, receives an update
about a weight change in the path towards a generic cen-
tral node c (that is, dti+1(x, c) 6= dti(x, c)), then the nodes
involved in the change are x, c and the peripheral neigh-
bors of c, if they exists. By Lemma 3.1, these nodes can
update their estimated routing tables by computing, for all
peripheral nodes p with owner c:

dti+1(x, p) = dti(x, p) + dti+1(x, c)− dti(x, c), (3)

viati+1(x, p) = viati+1(x, c). (4)

3.3 Distributed Leafs Pruning
The application of DLP to a distance vector algorithm A
induces a new algorithm denoted as A-DLP. The global
behavior of A-DLP can be summarized as follows. While
in a classic routing algorithm every node performs the same
code thus having the same behavior, in A-DLP central
and peripheral nodes have different behaviors. In partic-
ular, central nodes detect changes concerning both central
and peripheral edges while peripheral nodes detect changes
concerning only peripheral edges. If the weight of a cen-
tral edge {u, v} changes, then node u (v, respectively) per-
forms the procedure provided by A for that change only
with respect to central nodes for the distributed compu-
tation of the shortest paths between all the pairs of cen-
tral nodes. During this computation, if u (v, respectively)
needs information by its neighbors, it asks only to neigh-
bors in the core (see Figure 3(a)). Once u (v, respectively)
has updated its own routing information, it propagates the
variation to all its neighbors through the update, increase
or decrease messages of A (Figure 3(b)). When a generic
node x receives an update, increase or decreasemessage
concerning node s, it stores the current value of D[x, s] in a
temporary variable Dold[x, s]. Now, if x is a central node,
then it handles the change and updates its routing infor-
mation by using the proper procedure of A (UPDATE, IN-
CREASE, or DECREASE) and propagates the new informa-
tion to its neighbors (see Figure 3(c)). Otherwise, x handles
the change and updates its routing information towards s by
using Lemma 3.1 and the data received from its owner. At
the end, x calls the procedure UPDATEPERIPHERALS re-
ported in Figure 2 using s and Dold[x, s] as parameters. If
the routing table entry of s is changed (line 1), then the in-
formation about the peripheral neighbors of s, if they exist,
is updated by using Equations 3 and 4 (lines 3–4).

If a weight change occurs in a peripheral edge
{u, p}, then the central node u sends message
p_change(p, w(u, p), u) to each of its neighbors (Fig-
ure 4(a)), while p sends a p_change(p, w(u, p), u)

Event: node v invokes procedure
UPDATEPERIPHERALS(s, Dold[v, s])

Procedure: UPDATEPERIPHERALS(s, Dold[v, s])

1 if D[v, s] 6= Dold[v, s] then
2 foreach k ∈ CTv[s] do
3 D[v, k] := D[v, k] + D[v, s]− Dold[v, s]
4 VIA[v, k] := VIA[v, s]
5 update any auxiliary data structures of A

Figure 2: Procedure UPDATEPERIPHERALS.

Event: node x receives the message
p_change(p, w(u, p), u) from y

Procedure: PERIPHERALCHANGE(p, w(u, p), u)

1 if w(u, p) 6= (D[x, p]− D[x, u]) then
2 if x ≡ p then
3 foreach s ∈ V \ {x} do
4 D[x, s] := D[x, s]− D[x, u] + w(u, p)
5 VIA[x, p] := u
6 update any auxiliary data structures of A
7 else
8 D[x, p] := D[x, u] + w(u, p)
9 VIA[x, p] := VIA[x, u]

10 update any auxiliary data structures of A
11 foreach k ∈ N(x) \ {y, p} do
12 send p_change(p, w(u, p), u) to k

Figure 5: Procedure PERIPHERALCHANGE.

message to its owner u. When a generic node x receives
message p_change from a node y, it simply performs
procedure PERIPHERALCHANGE of Figure 5, which is
a modified flooding algorithm to forward the message
over the network (Figure 4(b)). Procedure PERIPHER-
ALCHANGE first verifies at line 1 whether the message
was already received by applying Lemma 3.1. If the
message does not provide updated information, it is
discarded. Otherwise, the procedure needs to update
the data structures at x. We distinguish two cases: if x
coincides with p, then the procedure updates the routing
table for all the nodes s ∈ V , by using Equations 1 and 2
(see Lines 2-6). Otherwise (x 6= p), the procedure simply
updates the routing table entry concerning p by using
Lemma 3.1 (Lines 8-10). At this point, the procedure
propagates the information about the change, forwarding
message p_change to all the neighbors, except to nodes u
and possibly p (Lines 11–12).

In what follows we provide the correctness proof of A-
DLP which clearly depends on the correctness of A that is
assumed. In particular, we proof the correctness of A-DLP
for a single weight change operation. The extension to the
case of multiple weight changes is straightforward.

Theorem 3.2. Given a graph G = (V,E,w), let c be a
weight change operation on G, occurring at a certain time
tc. For each pair of nodes v, s ∈ V that change their
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Figure 4: (a) Node u, as a consequence of a weight change on edge {u, p}, sends message p_change (P) to all its
neighbors; (b) Node x receiving a message P, propagates it to the whole network.

distance as a consequence of c, there exists a time instant
tf ≥ tc such that for each t ≥ tf , D[v, s](t) = dtc(v, s).

Proof. The proof is by case analysis on the two possible
types of weight change operations on the edges: (i) central;
(ii) peripheral. In what follows, we assume that the algo-
rithm is correct at every time t0 < tc, and given any data
structure X of A-DLP, we denote by X(t) the content of X
at time instant t.

Case (i). If the weight of a central edge {x, y} changes
at time tc, then node x (y, respectively) performs the pro-
cedure provided by A for the distributed computation of
the shortest paths, only with respect to central nodes. In
this step, the correctness of A-DLP follows from the cor-
rectness of A. In fact, the only difference between the be-
havior of A-DLP and that of A is that x (y, respectively)
does not ask to peripheral nodes information concerning
s, which are, for topological reasons, un-useful. Hence,
the correctness of A guarantees that, for each central node
s ∈ V , there exists a time tf ≥ tc in which A-DLP sets
D[x, s](tf ) = dtc(x, s) (D[y, s](tf ) = dtc(y, s)) and this
value does not change anymore.

Once x (y, respectively) has updated its own routing in-

formation toward a central node s, it propagates the vari-
ation to all its neighbors through the update, increase or
decrease messages of A, which carries D[x, s](tf ), that is
the correct value dtc(x, s).

When a generic node v receives an update, increase or
decreasemessage concerning a central node s, it stores the
current value of D[v, s](t0) = dt0 [v, s] in a temporary vari-
able Dold[v, s]. Now, if v is a central node, then it handles
the change and updates its routing information by using
the proper procedure of A (UPDATE, INCREASE, or DE-
CREASE) and propagates the new information to its neigh-
bors. Also in this case, the correctness of A-DLP follows
by the correctness of A.

Otherwise, if v is a peripheral node whose owner is
a central node c, then v handles the change and updates
its routing information towards s by setting, at a certain
time tf greater than tc ≥ t0, D[v, s](tf ) = D[c, s](tf ) +
wtc(v, c), where D[c, s](tf ) = dtc(c, s) is the received cor-
rect value. Hence, by Lemma 3.1 A-DLP properly assigns
D[v, s](tf ) = dtc(v, s), and the statement of the theorem is
true also in this case.

After updating the routing information toward the cen-
tral node s, v calls procedure UPDATEPERIPHERALS, re-
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ported in Figure 2, using s and Dold[v, s] as parameters,
whose aim is to update, if needed, the routing informa-
tion about the non-central nodes whose owner is s, if they
exist. If the routing table entry of s is changed (line 1),
then v sets, at a certain time tF ≥ tf , for each periph-
eral node y whose owner is s, D[v, y](tF ) = D[v, y](tf ) +
D[v, s](tf ) − Dold[v, s](tf ). This assignment statement,
by Lemma 3.1, is clearly correct and guarantees that
D[v, y](tF ) = dtc(v, y) since: (i) D[v, y](tf ) = dt0(v, y);
(ii) D[v, s](tf ) is the received value equal to dtc(v, s); (iii)
Dold[v, s](tf ) = dt0 [v, s]. Hence, also in this case A-DLP
is correct.

Case (ii). If a weight change occurs in a periph-
eral edge {u, p}, then the central node u sends message
p_change(p, wtc(u, p), u) to each of its neighbors (Fig-
ure 4(a)), while p sends a p_change(p, wtc(u, p), u) mes-
sage to its owner u.

When a generic node x receives message p_change
from a node y, at a certain time t, it simply performs pro-
cedure PERIPHERALCHANGE of Figure 5, which is a mod-
ified flooding algorithm to forward the message over the
network (Figure 4(b)). Procedure PERIPHERALCHANGE
first verifies at line 1 whether the message was already re-
ceived by applying Lemma 3.1. If the message does not
provide updated information, it is discarded.

Otherwise, the procedure needs to update the data struc-
tures at x. We distinguish two cases: if x coincides
with p, then the procedure updates the routing table for
all the nodes s ∈ V , by setting, at a certain time tf
greater than t, for all the nodes s ∈ V , D[x, s](tf ) =
D[x, s](t) − D[x, u](t) + wtc(u, x), which is correct, again
by Lemma 3.1, and guarantees that D[x, s](tf ) = dtc(x, s)
as D[x, s](t) = dt0(x, s) and D[x, u](t) = dt0(x, u) =
wt0(x, u). Therefore, A-DLP is correct in this case.

If x 6= p, then the procedure simply updates the rout-
ing table entry concerning p by setting, at a certain time tf
greater than t, D[x, p](tf ) = D[x, u](t) + wtc(u, p), where
D[x, u](t) = dtc(x, u) and wtc(u, p) is the correct received
value of the weight of edge (u, p). It follows that x again
by Lemma 3.1 correctly assigns D[x, p](tf ) = dtc(x, p). At
the end, the change is forwarded through the network by
sending a message p_change to all the neighbors, except
to nodes u and possibly p. Therefore, A-DLP is correct in
in all cases. 2

4 Combinations
In this section we briefly describe algorithms DUAL,
DUST, and LFR, and how they can be combined with
DLP.

4.1 Combination of DLP with DUAL

DUAL (Diffuse Update ALgorithm) [13] stores, for each
node v and for each destination s, the routing table where
the two fields are the distance D[v, s] and the feasible suc-

cessor S[v, s], respectively. In order to compute S[v, s],
DUAL requires that each node v is able to determine, for
each destination s, a set of neighbors called the Feasible
Successor Set, denoted as FSS[v, s]. To this aim, each node
v stores, for each u ∈ N(v), the distance D[u, s] (the topol-
ogy table) from u to s and computes FSS[v, s] by choos-
ing neighbors which satisfy SNC, a condition, introduced
in [13], that guarantees the algorithm to be loop-free. In de-
tail, node u ∈ N(v) satisfies SNC if the estimated distance
D[u, s] from u to s is smaller than the estimated distance
D[v, s] from v to s. If a neighbor u ∈ N(v), through which
the distance from v to s is minimum, is in FSS[v, s], then u
is chosen as feasible successor. When a node v experiences
a weight change operation in one of the adjacent edges, it
executes procedure WEIGHTCHANGE, in order to update
FSS[v, s].

DUAL includes an important sub-routine, named
Diffuse-Computation, which is performed by a generic
node v, when FSS[v, s] does not include the node u ∈
N(v) through which the distance from v to s is mini-
mum. The Diffuse-Computation works as follows: node v
sends queries to all its neighbors with its distance through
S[v, s] by using message query. From this point on-
wards v does not change its feasible successor to s un-
til the Diffuse-Computation terminates. When a neigh-
bor u ∈ N(v) receives a query, it tries to determine
if a feasible successor to s, after such update, exists.
If so, it replies to the query by sending message reply
containing its own distance to s. Otherwise, u contin-
ues the Diffuse-Computation: it sends out queries and
waits for the replies from its neighbors before replying
to v’s original query. In [13] it has been proved that the
Diffuse-Computation always terminates. When a node re-
ceives messages reply by all its neighbors it updates its dis-
tance and feasible successor, with the minimal value ob-
tained by its neighbors and the neighbor that provides such
distance, and finishes the Diffuse-Computation. At the end
of a Diffuse-Computation, a node sends message update
containing the new computed distance to its neighbors. A
generic node that receive an update message handled it
by performing procedure UPDATE. In order to guarantee
mutual exclusion in case of multiple weight change oper-
ations, DUAL uses a finite state machine to process these
multiple updates sequentially.

DUAL can be combined with DLP as described in
Section 2. In addition, the generic procedures reported
in Figure 2 and 5, are modified, by using the data
structures of DUAL, to generate two specific proce-
dures, called DUAL-PERIPHERALCHANGE and DUAL-
UPDATEPERIPHERALS. The main changes can be summa-
rized as follows: (i) in Procedure PERIPHERALCHANGE
(at Lines 5 and 9) and in Procedure UPDATEPERIPHER-
ALS (at Line 4) the data structure VIA is replaced by
the data structure S; (ii) in Procedure UPDATEPERIPHER-
ALS, Line 5 is removed, as the auxiliary data structures
of DUAL, like e.g. the FSM data structures or the topol-
ogy table, are used only in the single distributed computa-
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tion phase and hence it is not necessary to store them with
respect to peripheral nodes; (iii) in Procedure PERIPHER-
ALCHANGE, Line 6 is removed for the same reason while
at Line 10 the auxiliary data structures of DUAL are up-
dated, as s is a central node, according to the algorithm.

4.2 Combination of DLP with DUST

DUST maintains only the routing table described in Sec-
tion 2 and, for each node v and for each source s, VIA[v, s]
contains the set VIA[v, s] ≡ {vi ∈ N(v) | D[v, s] =
w(v, vi) + D[vi, s]}. Algorithm DUST starts every time
an operation ci on edge (xi, yi) occurs. Operation
ci is detected only by nodes xi and yi. If ci is a
weight increase (weight decrease) operation, xi performs
procedure WEIGHTINCREASE (WEIGHTDECREASE) that
sends message increase(xi, s) (decrease(xi, s, D[xi, s])) to
yi for each s ∈ V . Node yi has the same behavior of xi.
If a node v receives message decrease(u, s, D[u, s]), then
it performs procedure DECREASE, that relaxes edge (u, v).
In particular, if w(v, u) + D[u, s] < D[v, s], then v updates
D[v, s] and VIA[v, s], and propagates the updated values to
nodes in N(v). If w(v, u) + D[u, s] = D[v, s], then u is a
new estimated via for v with respect to s, and hence v adds
u to VIA[v, s]. If a node v receives increase(u, s), then it
performs procedure INCREASE which checks whether the
message comes from a node in VIA[v, s]. In the affirma-
tive case, v removes u from VIA[v, s]. As a consequence,
VIA[v, s] may become empty. In this case, v computes
the new estimated distance and via of v to s. To do this,
v asks to each node vi ∈ N(v) for its current distance,
by sending message get-dist(v, s) to vi. When vi receives
get-dist(v, s) by v, it performs procedure SENDDIST which
sends D[vi, s] to v, unless one of the following two condi-
tions holds: (i) VIA[vi, s] ≡ {v}; (ii) vi is updating its rout-
ing table with respect to destination s. In this case vi sends
∞ to v. When v receives the answers to the get-dist mes-
sages by all its neighbors, it computes the new estimated
distance and via to s. If the estimated distance is increased,
v sends an increase message to its neighbors. In any case,
v sends to its neighbors decrease, to communicate them
D[v, s]. In fact, at some point, v could have sent ∞ to a
neighbor vj . Then, vj receives the message sent by v, and
it performs procedure DECREASE to check whether D[v, s]
can determine an improvement to the value of D[vj , s].

DUST can be combined with DLP, by modifying its
behavior as described Section 2. In addition, the generic
procedures reported in Figures 2 and 5, are modified, by
using the data structures of DUST, to generate two spe-
cific procedures, called DUST-PERIPHERALCHANGE and
DUST-UPDATEPERIPHERALS. The main changes can
be summarized as follows: (i) in Procedure PERIPHER-
ALCHANGE (at Lines 5 and 9) and in Procedure UPDATE-
PERIPHERALS (at Line 4) the data structure VIA is mod-
ified to be a set instead of a single value variable; (ii)
since DUST does not use any additional data structures,
in Procedure PERIPHERALCHANGE Lines 6 and 10 are re-

moved and in Procedure UPDATEPERIPHERALS Line 5 is
removed.

4.3 Combination of DLP with LFR

LFR stores, for each node v, the estimated distance D[v, s]
and the feasible via, FVIA[v, s], that is the node through
which the distance to s is minimum and which satisfies
SNC. In addition, node v maintains for each s ∈ V , the
following data structures: ACTIVEv[s], which represents
the state of node v with respect to a certain source s, in de-
tail, v is in active state and ACTIVEv[s] = true, if and only
if it is trying to update FVIA[v, s] after a generic weight
change operation occurred on edge {v,FVIA[v, s]}; the
upper bound distance UD[v, s] which represents the dis-
tance from v to s through FVIAv[s], in particular, if v is ac-
tive UD[v, s] is always greater than or equal to D[v, s], oth-
erwise they coincide. In addition, in order to compute loop-
free values of FVIA[v, s], node v stores a temporary data
structure tempD which is allocated only when needed, that
is when v is active with respect to s, and it is deallocated
when v turns back in passive state with respect to s. The
entry tempD[u, s] contains UD[u][s], for each u ∈ N(v).

The algorithm starts when the weight of an edge {xi, yi}
changes. As a consequence, xi (yi, respectively) per-
forms procedure WEIGHTCHANGE, that sends to yi (xi,
respectively) an update message carrying the value D[xi, s]
(D[xi, s], respectively). Messages received at a node with
respect to a source s are stored in a queue and processed in
a FIFO order to guarantee mutual exclusion. If an arbitrary
node v receives an update message from u ∈ N(v), then
it performs procedure UPDATE in which, basically, v com-
pares the received value D[u, s] + w(u, v) with D[v, s] in
order to determine whether v needs to update its estimated
distance and its estimated FVIA[v, s]. The update proce-
dure works as follows. If node v is active, the processing
of the message is postponed by enqueueing it into the FIFO
queue associated to s. Otherwise, if D[v, s] > D[u, s] +
w(u, v), then v performs a relaxing phase, updating both
D[v, s] and FVIA[v, s], while if D[v, s] > D[u, s] +w(u, v),
node v performs a phase called Local-Computation in
which it sends a get.dist to all its neighbor in order to know
the corresponding estimated distances towards s. Each
neighbor u ∈ N(v) immediately replies to the get.dist
message with its UD[u, s]. When v receives these val-
ues, it tries to determine whether a new FVIA[v, s] ex-
ists, by comparing the received distances with D[v, s]. If
this phase succeeds, node v updates its routing informa-
tion and propagates the change, Otherwise, node v initi-
ates a distributed phase, named Global-Computation. It
sets UD[v, s] = UD[FVIA[v, s], s] + w(v,FVIA[v, s]) and
sends to all its neighbors a get.feasible.dist message, carry-
ing UD[v, s]. A node k ∈ N(v) that receives such a mes-
sage first verifies whether FVIA[k, s] = v or not. In the
first case, it replies immediately to v and terminates. In the
second case, it performs the Local-Computation and possi-
bly the Global-Computation, in order to update its routing
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information and to reply to v. Note that this distributed pro-
cedure can involve all the nodes of the network. Finally, if
D[v, s] = D[u, s] + w(u, v), that is there exists more than
one shortest path from v to s, the message is discarded and
the procedure ends.

LFR can be combined with DLP, by modifying its be-
havior as described Section 2. In addition, the generic pro-
cedures reported in Figures 2 and 5, are modified, by using
the data structures of LFR, to generate two specific pro-
cedures, called LFR-PERIPHERALCHANGE and DUST-
UPDATEPERIPHERALS. The main changes can be summa-
rized as follows: (i) in Procedure PERIPHERALCHANGE
(at Lines 5 and 9) and in Procedure UPDATEPERIPHER-
ALS (at Line 4) the data structure VIA is replaced by the
data structure FVIA; (ii) in Procedure UPDATEPERIPHER-
ALS, Line 5 is removed, as the auxiliary data structures of
LFR, like e.g. tempD or the state ACTIVE, are used only in
the distributed computation phases and hence it is not nec-
essary to store them with respect to peripheral nodes; (iii)
in Procedure PERIPHERALCHANGE, Line 6 is removed for
the same reason while at Line 10 the auxiliary data struc-
tures are updated, as s is a central node, according to the
algorithm.

5 Experimental analysis

In this section, we present the experimental evaluation
we performed in order to check the practical effective-
ness of DLP. In particular, we combined DLP with
DUAL, DUST and LFR and then we implemented, in
C++, and tested both the the original algorithms and the
new combinations, namely DUAL-DLP, DUST-DLP and
LFR-DLP.

In what follows, we report the results of such experi-
mental study. Our experiments have been performed on
a workstation equipped with a Quad-core 3.60 GHz Intel
Xeon X5687 processor, with 12MB of internal cache and
24 GB of main memory and consist of simulations within
the well-known OMNeT++ 4.0p1 environment [20]. The
software has been compiled with GNU g++ compiler 4.4.3
under Linux (Kernel 2.6.32).

OMNeT++ is an object-oriented modular discrete event
network simulator, useful to model protocols, telecommu-
nication networks, and other distributed systems. An OM-
NeT++ model consists of hierarchically nested modules,
that communicate through message passing. In our model,
we defined a basic module node to represent a node in the
network. A node v has a communication gate with each
node in N(v). Each node can send messages to a destina-
tion node through a channel which is a module that con-
nects gates of different nodes (both gate and channel are
OMNeT++ predefined modules). In our model, a channel
connects exactly two gates and represents an edge between
two nodes. We associate two parameters per channel: a
weight and a delay. The former represents the cost of the
edge in the graph, and the latter simulates a finite but not

null transmission time.

5.1 Executed tests

As input to the algorithms we used both real-world and ar-
tificial instances of the problem. In detail, we used real-
world networks of the CAIDA IPv4 topology dataset [15]
and random networks generated by the Barabási-Albert al-
gorithm [2], subject to randomly generated sequences of
edge update operations.

Concerning CAIDA instances, we parsed the files pro-
vided by CAIDA to obtain a weighted undirected graph
GIP where a node represents an IP address contained in
the dataset (both source/destination hosts and intermediate
hops), edges represent links among hops and weights are
given by Round Trip Times. As the graph GIP consists of
almost 35000 nodes, we cannot use it for the experiments,
as the amount of memory required to store the routing ta-
bles of all the nodes isO(n2 ·maxdeg) for any implemented
algorithm. Hence, we performed our tests on connected
subgraphs of GIP , with a variable number of nodes and
edges, induced by the settled nodes of a breadth first search
starting from a node taken at random. We generated a set of
different tests, each test consists of a dynamic graph char-
acterized by a subgraph of GIP (we denoted each n nodes
subgraph of GIP with GIP−n) and a set of k random edge
updates, where k assumes values in {5, 10, . . . , 200}. An
edge update consists of multiplying the weight of a ran-
dom selected edge by a percentage value randomly chosen
in [50%, 150%]. For each test configuration (a dynamic
graph with a fixed value of k) we performed 5 different ex-
periments (for a total amount of 200 runs) and we report
average values.

Concerning Barabási–Albert instances, we randomly
generated a set of different tests, where a test consists of a
dynamic graph characterized by a n nodes Barabási–Albert
random graph, denoted as GBA−n and a set of k random
edge updates, where k assumes values in {5, 10, . . . , 200}.
Edge weights are non-negative real numbers randomly cho-
sen in [1, 10000]. Edge updates are randomly chosen as in
the CAIDA tests. For each test configuration (a dynamic
graph with a fixed value of k) we performed 5 different ex-
periments (for a total amount of 200 runs) and we report
average values.

5.2 Analysis

We performed experiments on subgraphs of GIP and on
Barabási-Albert graphs having 1200, 5000 and 8000 nodes.
The results of our experiments are quite similar on these
different instances and then we report only the results on
graphs with 8000 nodes. These results are shown in Figures
6, 7, and 8, concerning the number of messages sent, and
in Table 1 concerning the space occupancy per node.

In detail, in Figure 6, 7, and 8 we report the number
of messages sent by DUAL and DUAL-DLP, DUST and
DUST-DLP, and LFR and LFR-DLP, respectively, on a
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Figure 6: Number of messages sent by DUAL and DUAL-DLP on GIP−8000 (a) and GBA−8000 (b).
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Figure 7: Number of messages sent by DUST and DUST-DLP on GIP−8000 (a) and GBA−8000 (b).

CAIDA graph having 8000 nodes and 11141 edges (a) and
on a Barabási-Albert graphs having 8000 nodes and 12335
edges (b), when the number k of edge updates ranges from
5 to 200. These figures show in general that the combi-
nation of DLP with DUAL, DUST and LFR provides a
significant improvement in the global number of messages
sent by these algorithms.

Regarding GIP−8000, we can observe what follows. In
the tests of Figure 6(a), the ratio between the number of
messages sent by DUAL-DLP and DUAL is within 0.12
and 0.46 which means that the number of messages sent
by DUAL-DLP is between 12% and 46% that of DUAL.
In the tests of Figure 7(a), the ratio between the number of
messages sent by DUST-DLP and DUST is within 0.30
and 0.81. In the tests of Figure 8(a), the ratio between the
number of messages sent by LFR-DLP and LFR is within
0.36 and 0.51.

Regarding GBA−8000, we can observe what follows. In
the tests of Figure 6(b), the ratio between the number of
messages sent by DUAL-DLP and DUAL is within 0.23
and 0.48. In the tests of Figure 7(b), the ratio between the
number of messages sent by DUST-DLP and DUST is
within 0.04 and 0.43. In the tests of Figure 8(a), the ratio
between the number of messages sent by LFR-DLP and
LFR is within 0.38 and 0.47.

In summary, from our data follows that the algorithms
integrating DLP send, on average, 0.42 (0.34, respectively)

times the number of messages sent by the original algo-
rithms on GIP−8000 (GBA−8000, respectively), which rep-
resents a substantial improvement in the practical applica-
tions where these algorithms are used.

To conclude our analysis, we have considered the space
occupancy per node, which is summarized in Table 1,
where we report the maximum and the average space oc-
cupancy per node of each algorithm, and the memory over-
head required by the combination of that algorithm with
DLP.

Note that DUAL requires a node v to store, for each des-
tination, the estimated distance given by each of its neigh-
bors and a set of variables used to guarantee loop-freedom,
DUST only needs the estimated distance of v and the set
VIA, for each destination and LFR requires to store, for
each node v, the estimated distance of v and the feasi-
ble via to each source s, that is the node through which
the distance to s is minimum, plus other variables needed
to guarantee loop-freedom. Since in the sparse graphs we
considered it is not common to have more than one via to
a destination, the memory requirement of DUST is much
smaller than that of DUAL, and smaller than that of LFR.
Note also that the space occupancy of the data structure
needed to implement DLP is not a function of the degree
of the graph and is always bounded, in the worst case, by
n. However, our experiments show that the use of DLP
induces, in most of the cases, a clear improvement also in
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Figure 8: Number of messages sent by LFR and LFR-DLP on GIP−8000 (a) and GBA−8000 (b).

the maximum and in the average space requirements per
node (see Table 1). This is due to the fact, that the over-
head induced by the data structures needed to implement
DLP, in most of the cases is overcome by the fact that
DLP allows nodes to avoid to store some data concerning
peripheral nodes, and the number of peripheral nodes in the
networks used for the experiments is quite high. In partic-
ular, we can observe what follows. Concerning DUST, the
combination with DLP determines an overhead which is al-
ways around 20% of the space occupancy of DUST, both
in the maximum and in the average cases. This is due to the
fact that DUST needs a really small amount of space and
hence the data structures of DLP have a certain impact in
the space occupancy of DUST. Concerning DUAL (LFR),
we can observe that the use of DLP induces a gain in the
maximum space occupancy per node which is around 38%
(27%) onGIP−8000 and around 45% (31%) onGBA−8000.
Notice that, the improvement is more evident in the case
of DUAL, as its maximum space occupancy per node is
by far higher than that of LFR. Concerning DUAL, this
behavior is confirmed also in the average case, where the
use of DLP induces a gain around 23% on GIP−8000 and
around 27% on GBA−8000. On the contrary, our data show
that the average space occupancy per node of LFR-DLP is
slightly greater than that of LFR and that the use of DLP
hence induces an overhead in the average space occupancy
per node which is around 6% in GIP−8000 and around 7%
in GBA−8000. This is due to the fact that the average space
occupancy of LFR is quite low by itself and that, in this
case, the space occupancy overhead needed to store theCT
data structure is greater than the space occupancy reduction
induced by the use of DLP.

6 Conclusions and future work

We have proposed a simple and practical technique, which
can be combined with every distance vector routing algo-
rithm based on shortest paths, allowing to reduce the total
number of messages sent by that algorithm and the aver-
age space occupancy per node. We have combined the new
technique with DUAL, DUST, and the recent LFR. We

have given experimental evidence that these combinations
lead to an important gain in terms of both the number of
messages sent and the space occupancy per node.

Some research directions deserve further investigation:
(i) to extend DLP in some way, for example considering
nodes of small degree (greater than one) as peripherals; (ii)
to know how DLP is scalable to bigger networks than those
considered in this paper; (iii) to perform simulations on dif-
ferent power-law models, as for example the Generalized
Linear Preference model (GLP) [4], which have particular
properties that could impact on the performances of DLP.
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