

ISSN 2590-9770

The Art of Discrete and Applied Mathematics 3 (2020) #P2.04 https://doi.org/10.26493/2590-9770.1271.e54 (Also available at http://adam-journal.eu)

On the Terwilliger algebra of a certain family of bipartite distance-regular graphs with $\Delta_2 = 0$

Štefko Miklavič* D, Safet PenjiㆠD

University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia

Received 27 September 2018, accepted 4 January 2019, published online 10 August 2020

Abstract

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$ and valency $k \geq 3$. Let X denote the vertex set of Γ , and let A_i $(0 \le i \le D)$ denote the distance matrices of Γ . We abbreviate $A := A_1$. For $x \in X$ and for $0 \le i \le D$, let $\Gamma_i(x)$ denote the set of vertices in X that are distance i from vertex x.

Fix $x \in X$ and let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by $A, E_0^*, E_1^*, \dots, E_D^*$, where for $0 \le i \le D$, E_i^* represents the projection onto the *i*th subconstituent of Γ with respect to x. We refer to T as the *Terwilliger algebra* of Γ with respect to x. By the *endpoint* of an irreducible T-module W we mean min $\{i \mid E_i^*W \neq 0\}$.

In this paper we assume Γ has the property that for $2 \le i \le D-1$, there exist complex scalars α_i, β_i such that for all $y, z \in X$ with $\partial(x, y) = 2$, $\partial(x, z) = i$, $\partial(y, z) = i$, we have $\alpha_i + \beta_i |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)| = |\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z)|$.

We study the structure of irreducible T-modules of endpoint 2. Let W denote an irreducible T-module with endpoint 2, and let v denote a nonzero vector in E_2^*W . We show that $W = \text{span}(\{E_i^* A_{i-2} E_2^* v \mid 2 \le i \le D\} \cup \{E_i^* A_{i+2} E_2^* v \mid 2 \le i \le D - 2\}).$

It turns out that, except for a particular family of bipartite distance-regular graphs with D=5, this result is already known in the literature. Assume now that Γ is a member of this particular family of graphs. We show that if Γ is not almost 2-homogeneous, then up to isomorphism there exists exactly one irreducible T-module with endpoint 2 and it is not thin. We give a basis for this T-module.

Keywords: Distance-regular graphs, Terwilliger algebra, irreducible modules.

Math. Subj. Class. (2020): 05E30, 05C50

E-mail addresses: stefko.miklavic@upr.si (Śtefko Miklavič), safet.penjic@iam.upr.si (Safet Penjić)

^{*}The author acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0285 and research projects N1-0032, N1-0038, N1-0062, J1-5433, J1-6720, J1-7051, J1-9108, J1-9110).

[†]The author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0285 and Young Researchers Grant).

1 Introduction

Throughout this introduction let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$ and path-length function ∂ . Let X denote the vertex set of Γ . For $x \in X$ and $0 \leq i \leq D$, let $\Gamma_i(x)$ denote the set of vertices in X that are distance i from vertex x, and let T = T(x) denote the Terwilliger algebra of Γ with respect to x (see Section 2 for formal definitions).

It is known that there exists a unique irreducible T-module with endpoint 0, and this module is thin [8, Proposition 8.4]. Moreover, Curtin showed that up to isomorphism Γ has exactly one irreducible T-module with endpoint 1, and this module is thin [4, Corollary 7.7].

We now discuss the irreducible T-modules of endpoint 2. It turns out that the structure of these modules is particularly nice if we assume that Γ has the following combinatorial property: for $2 \le i \le D-1$, there exist complex scalars α_i , β_i such that for all $y, z \in X$ with $\partial(x,y)=2$, $\partial(x,z)=i$, $\partial(y,z)=i$, we have

$$\alpha_i + \beta_i |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)| = |\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z)|.$$

Irreducible modules of endpoint 2 of these graphs were studied extensively, see [10, 11, 12, 13, 15]. We are motivated by the fact that the above equation holds if Γ is Q-polynomial.

Assume that Γ has the above mentioned combinatorial property. We show that if W is an irreducible T-module with endpoint 2 and v is a nonzero vector in E_2^*W , then

$$W = \operatorname{span} \big(\{ E_i^* A_{i-2} E_2^* v \mid 2 \le i \le D \} \cup \{ E_i^* A_{i+2} E_2^* v \mid 2 \le i \le D - 2 \} \big).$$

Except for a particular family of bipartite distance-regular graphs with D=5, this result is already known in the literature. To define this particular family we introduce a certain parameter Δ_2 in terms of the intersection numbers of Γ by $\Delta_2=(k-2)(c_3-1)-(c_2-1)p_{22}^2$. It turns out that $\Delta_2\geq 0$ and that $\Delta_2=0$ implies $c_2\in\{1,2\}$ or $D\leq 5$. The above mentioned family of bipartite distance-regular graphs with D=5 is exactly the family of such graphs with $\Delta_2=0$. Assume now that Γ is such a graph. We show that if Γ is not almost 2-homogeneous, then up to isomorphism there exists exactly one irreducible T-module with endpoint 2, and this module is not thin. We give a basis for this T-module. If Γ is almost 2-homogeneous, then the structure of irreducible T-modules with endpoint 2 is described in [7].

2 Preliminaries

In this section we review some definitions and basic results concerning distance-regular graphs. See the book of A. E. Brouwer, A. M. Cohen and A. Neumaier [2] for more background information.

Let $\mathbb C$ denote the complex number field and let X denote a nonempty finite set. Let $\operatorname{Mat}_X(\mathbb C)$ denote the $\mathbb C$ -algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in $\mathbb C$. Let $V=\mathbb C^X$ denote the vector space over $\mathbb C$ consisting of column vectors whose coordinates are indexed by X and whose entries are in $\mathbb C$. We observe $\operatorname{Mat}_X(\mathbb C)$ acts on V by left multiplication. We call V the *standard module*. We endow V with the Hermitean inner product $\langle \ , \ \rangle$ that satisfies $\langle u,v\rangle=u^t\overline{v}$ for $u,v\in V$, where t denotes transpose and $\overline{\ }$ denotes complex conjugation. Recall that

$$\langle u, Bv \rangle = \langle \overline{B}^t u, v \rangle \tag{2.1}$$

for $u, v \in V$ and $B \in \operatorname{Mat}_X(\mathbb{C})$. For $y \in X$ let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. Note that

$$\{\hat{y} \mid y \in X\}$$
 is an orthonormal basis for V .

Let $\Gamma=(X,\mathcal{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge set \mathcal{R} . Let ∂ denote the path-length distance function for Γ , and set $D:=\max\{\partial(x,y)\mid x,y\in X\}$. We call D the diameter of Γ . For a vertex $x\in X$ and an integer i let $\Gamma_i(x)$ denote the set of vertices at distance i from x. For an integer $k\geq 0$ we say Γ is regular with valency k whenever $|\Gamma_1(x)|=k$ for all $x\in X$. We say Γ is distance-regular whenever for all integers h,i,j $(0\leq h,i,j\leq D)$ and for all vertices $x,y\in X$ with $\partial(x,y)=h$, the number

$$p_{ij}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x and y. The p_{ij}^h are called the *intersection numbers* of Γ .

For the rest of this paper we assume Γ is distance-regular with diameter $D \geq 4$. Note that $p_{ij}^h = p_{ji}^h$ for $0 \leq h, i, j \leq D$. For convenience set $c_i := p_{1,i-1}^i \, (1 \leq i \leq D),$ $a_i := p_{1i}^i \, (0 \leq i \leq D),$ $b_i := p_{1,i+1}^i \, (0 \leq i \leq D-1),$ $k_i := p_{ii}^0 \, (0 \leq i \leq D),$ and $c_0 = b_D = 0$. By the triangle inequality the following hold for $0 \leq h, i, j \leq D$: (i) $p_{ij}^h = 0$ if one of h, i, j is greater than the sum of the other two; (ii) $p_{ij}^h \neq 0$ if one of h, i, j equals the sum of the other two. In particular $c_i \neq 0$ for $1 \leq i \leq D$ and $b_i \neq 0$ for $0 \leq i \leq D-1$. We observe that Γ is regular with valency $k = k_1 = b_0$ and that

$$c_i + a_i + b_i = k$$
 $(0 \le i \le D).$ (2.2)

Note that $k_i = |\Gamma_i(x)|$ for $x \in X$ and $0 \le i \le D$. By [2, p. 127],

$$k_i = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i} \qquad (1 \le i \le D). \tag{2.3}$$

Recall Γ is bipartite whenever $a_i = 0$ for $0 \le i \le D$. Setting $a_i = 0$ in (2.2) we find

$$b_i + c_i = k \quad (0 \le i \le D). \tag{2.4}$$

The following formulae for the bipartite case will be useful.

Lemma 2.1 ([2, Lemma 4.1.7]). Let Γ denote a bipartite distance-regular graph with diameter $D \ge 4$ and valency $k \ge 3$. Then

$$p_{2i}^{i} = \frac{c_i(b_{i-1}-1) + b_i(c_{i+1}-1)}{c_2} \quad (1 \le i \le D-1), \qquad p_{2D}^{D} = \frac{k(b_{D-1}-1)}{c_2}.$$

We recall the Bose-Mesner algebra of Γ . For $0 \leq i \leq D$ let A_i denote the matrix in $\mathrm{Mat}_X(\mathbb{C})$ with (x,y)-entry

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i \end{cases} (x,y \in X).$$
 (2.5)

For notational convenience, we define A_i to be the zero matrix for all integers i<0 or i>D. We call A_i the ith $distance\ matrix$ of Γ . We abbreviate $A:=A_1$ and call this the adjacency matrix of Γ . We observe (i) $A_0=I$; (ii) $\sum_{i=0}^D A_i=J$; (iii) $\overline{A_i}=A_i$ ($0\leq i\leq D$); (iv) $A_i^t=A_i$ ($0\leq i\leq D$); (v) $A_iA_j=\sum_{h=0}^D p_{ij}^hA_h$ ($0\leq i,j\leq D$), where I (resp. J) denotes the identity matrix (resp. all 1's matrix) in $\mathrm{Mat}_X(\mathbb{C})$. Using these facts we find A_0,A_1,\ldots,A_D is a basis for a commutative subalgebra M of $\mathrm{Mat}_X(\mathbb{C})$. We call M the $Bose-Mesner\ algebra\$ of Γ . It turns out that A generates M [1, p. 190].

3 Terwilliger algebra

Let Γ denote a distance-regular with diameter $D \geq 4$ and valency $k \geq 3$. We first recall the dual idempotents of Γ . To do this fix a vertex $x \in X$. We view x as a "base vertex". For $0 \leq i \leq D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\operatorname{Mat}_X(\mathbb{C})$ with (y,y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i \end{cases} (y \in X).$$

We call E_i^* the *i*th dual idempotent of Γ with respect to x [16, p. 378]. We observe (ei) $\sum_{i=0}^{D} E_i^* = I$; (eii) $\overline{E_i^*} = E_i^*$ ($0 \le i \le D$); (eiii) $E_i^{*t} = E_i^*$ ($0 \le i \le D$); (eiv) $E_i^* E_j^* = \delta_{ij} E_i^*$ ($0 \le i, j \le D$). By these facts $E_0^*, E_1^*, \ldots, E_D^*$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $\text{Mat}_X(\mathbb{C})$. We call M^* the dual Bose-Mesner algebra of Γ with respect to x [16, p. 378]. For $0 \le i \le D$ we have

$$E_i^*V = \operatorname{span}\{\widehat{y} \mid y \in X, \ \partial(x,y) = i\},\$$

so $\dim E_i^*V = k_i$. We call E_i^*V the *i*th subconstituent of Γ with respect to x. Note that

$$V = E_0^* V + E_1^* V + \dots + E_D^* V \qquad \text{(orthogonal direct sum)}. \tag{3.1}$$

Moreover E_i^* is the projection from V onto E_i^*V for $0 \le i \le D$.

We now recall the Terwilliger algebra of Γ . Let T = T(x) denote the subalgebra of $\operatorname{Mat}_X(\mathbb{C})$ generated by M, M^* . We call T the *Terwilliger algebra of* Γ with respect to x [16, Definition 3.3]. Recall M is generated by A, so T is generated by A and the dual idempotents. We observe T has finite dimension. By construction T is closed under the conjugate-transpose map so T is semisimple [16, Lemma 3.4(i)].

By a T-module we mean a subspace W of V such that $BW \subseteq W$ for all $B \in T$. Let W denote a T-module. Then W is said to be irreducible whenever W is nonzero and W contains no T-modules other than 0 and W.

By [9, Corollary 6.2] any T-module is an orthogonal direct sum of irreducible T-modules. In particular the standard module V is an orthogonal direct sum of irreducible T-modules. Let W, W' denote T-modules. By an isomorphism of T-modules from W to W' we mean an isomorphism of vector spaces $\sigma:W\to W'$ such that $(\sigma B-B\sigma)W=0$ for all $B\in T$. The T-modules W, W' are said to be isomorphic whenever there exists an isomorphism of T-modules from W to W'. By [4, Lemma 3.3] any two nonisomorphic irreducible T-modules are orthogonal. Let W denote an irreducible T-module. By [16, Lemma 3.4(iii)] W is an orthogonal direct sum of the nonvanishing spaces among $E_0^*W, E_1^*W, \ldots, E_D^*W$. By the endpoint of W we mean $\min\{i \mid 0 \le i \le D, E_i^*W \ne 0\}$. By the diameter of W we mean $|\{i \mid 0 \le i \le D, E_i^*W \ne 0\}| - 1$. We say W is thin whenever the dimension of E_i^*W is at most 1 for $0 \le i \le D$.

The following matrices of $\operatorname{Mat}_X(\mathbb{C})$ will be useful later in the paper.

Definition 3.1. Let Γ denote a distance-regular with diameter $D \geq 4$ and valency $k \geq 3$. Fix $x \in X$ and let $E_i^* = E_i^*(x)$ $(0 \leq i \leq D)$ and T = T(x). We define matrices L = L(x), R = R(x) by

$$L = \sum_{h=1}^{D} E_{h-1}^* A E_h^*, \qquad R = \sum_{h=0}^{D-1} E_{h+1}^* A E_h^*.$$

Note that A=L+R [4, Lemma 4.4] and $L^t=R$. We call L and R the lowering matrix and the raising matrix of Γ with respect to x, respectively. Observe that L and R are contained in T.

Definition 3.2 ([7, Definition 3.2]). Let Γ denote a distance-regular with diameter $D \geq 4$ and valency $k \geq 3$. Fix $x \in X$. For $1 \leq i \leq D$ we define matrices $\Lambda_i = \Lambda_i(x)$ in $\mathrm{Mat}_X(\mathbb{C})$ by

$$(\Lambda_i)_{zy} = \left\{ \begin{array}{cc} |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)|, & \text{if } \partial(x,y) = 2, \partial(x,z) = \partial(y,z) = i, \\ 0, & \text{otherwise} \end{array} \right.$$

for $z, y \in X$.

4 The scalars Δ_i and γ_i

Let Γ denote a distance-regular graph with diameter $D \geq 4$ and valency $k \geq 3$. From now on we assume that Γ is bipartite. In this section we introduce certain scalars Δ_i and γ_i $(2 \leq i \leq D-1)$ which we find useful.

Definition 4.1. Let Γ denote a distance-regular with diameter $D \geq 4$ and valency $k \geq 3$. Then for $2 \leq i \leq D-1$ we define

$$\Delta_i = (b_{i-1} - 1)(c_{i+1} - 1) - (c_2 - 1)p_{2i}^i$$

and

$$\gamma_i = \frac{c_i(b_{i-1} - 1)}{p_{2i}^i}$$

(observe that $p_{2i}^i > 0$ by [3, Lemma 11]).

By [3, Theorem 12] we have $\Delta_i \geq 0$ for $2 \leq i \leq D-1$. Moreover, the scalars Δ_i and γ_i are related as follows.

Lemma 4.2 ([3, Theorem 13]). Let Γ denote a distance-regular with diameter $D \ge 4$ and valency $k \ge 3$ and fix an integer $2 \le i \le D - 1$. Then the following (i),(ii) are equivalent.

- (i) $\Delta_i = 0$.
- (ii) For all $x, y, z \in X$ with $\partial(x, y) = 2$, $\partial(x, z) = i$, $\partial(y, z) = i$,

$$|\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)| = \gamma_i.$$

If $\Delta_i=0$ for $2\leq i\leq D-2$, then Γ is called *almost 2-homogeneous*, see [7]. In this case the structure of irreducible T-modules is well understood, so we will assume that Γ is not almost 2-homogeneous. In the rest of the paper we therefore consider the following situation.

Notation 4.3. Let $\Gamma=(X,\mathcal{R})$ denote a bipartite distance-regular graph with diameter $D\geq 4$, valency $k\geq 3$ and intersection numbers b_i,c_i , which is not almost 2-homogeneous. Let A_i $(0\leq i\leq D)$ be the distance matrices of Γ , and let V denote the standard module for Γ . We fix $x\in X$ and let $E_i^*=E_i^*(x)$ $(0\leq i\leq D)$ and T=T(x) denote the dual idempotents and the Terwilliger algebra of Γ with respect to x, respectively. We assume

that for $2 \le i \le D-1$, there exist complex scalars α_i , β_i such that for all $y, z \in X$ with $\partial(x,y)=2,\ \partial(x,z)=i,\ \partial(y,z)=i$, we have

$$\alpha_i + \beta_i |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)| = |\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z)|.$$

Let matrices L = L(x), R = R(x) and $\Lambda_i = \Lambda_i(x)$ $(1 \le i \le D)$ be as in Definitions 3.1 and 3.2. Let scalars Δ_i , γ_i $(2 \le i \le D - 1)$ be as in Definition 4.1.

With reference to Notation 4.3, pick $2 \le i \le D-1$ and assume that $\Delta_i \ne 0$. By [12, Theorem 5.4] scalars α_i and β_i are uniquely determined and given by

$$\alpha_{i} = \frac{c_{i}(c_{i}-1)(b_{i-1}-c_{2}) - c_{i}c_{i-1}(b_{i}-1)(c_{2}-1)}{c_{2}\Delta_{i}},$$

$$\beta_{i} = \frac{c_{i}(c_{i+1}-c_{i})(b_{i-1}-1) - b_{i}(c_{i+1}-1)(c_{i}-c_{i-1})}{c_{2}\Delta_{i}}.$$
(4.1)

If $\Delta_i = 0$, then scalars α_i and β_i are not uniquely determined. For example, if $\Delta_2 = 0$, then one of the possible values for α_2 and β_2 is $\alpha_2 = 0$, $\beta_2 = 1$. Note however that by Lemma 4.2 this is not the only possible solution.

5 Some products in T

With reference to Notation 4.3, in this section we compute some products of matrices of T. We start by recalling the following results.

Lemma 5.1 ([14, Lemma 6.1]). With reference to Notation 4.3, for $0 \le h, i, j \le D$ and $y, z \in X$ the (y, z)-entry of $E_h^* A_i E_j^*$ is 1 if $\partial(x, y) = h$, $\partial(y, z) = i$, $\partial(x, z) = j$, and 0 otherwise.

Lemma 5.2 ([14, Lemma 6.5]). With reference to Notation 4.3, for $0 \le h, i, j, r, s \le D$ and $y, z \in X$ the (y, z)-entry of $E_h^* A_r E_i^* A_s E_j^*$ is $|\Gamma_i(x) \cap \Gamma_r(y) \cap \Gamma_s(z)|$ if $\partial(x, y) = h$, $\partial(x, z) = j$, and 0 otherwise.

Lemma 5.3 ([7, Lemma 3.3]). With reference to Notation 4.3, we have

$$\Lambda_1 = E_1^* A E_2^*, \qquad \Lambda_i = E_i^* A_{i-1} E_1^* A E_2^* - c_2 E_i^* A_{i-2} E_2^* \qquad (2 \le i \le D).$$

In particular, $\Lambda_i \in T \ (1 \leq i \leq D)$.

Theorem 5.4. With reference to Notation 4.3 the following holds for $3 \le i \le D$:

$$LE_i^* A_{i-2} E_2^* = b_{i-1} E_{i-1}^* A_{i-3} E_2^* + (c_{i-1} - \alpha_{i-1}) E_{i-1}^* A_{i-1} E_2^* - \beta_{i-1} \Lambda_{i-1}.$$
 (5.1)

Proof. Pick $z, y \in X$ and an integer $3 \le i \le D$. We show that (z, y)-entries of both sides of (5.1) agree. Note that by the property (eiv) of Section 3 and Lemma 5.2,

$$(LE_i^*A_{i-2}E_2^*)_{zy} = \begin{cases} |\Gamma_i(x) \cap \Gamma_{i-2}(y) \cap \Gamma_1(z)| & \text{if } \partial(x,y) = 2, \partial(x,z) = i-1, \\ 0 & \text{otherwise.} \end{cases}$$
(5.2)

It follows from (5.2), Lemma 5.1 and Definition 3.2 that the (z, y)-entries of both sides of (5.1) are 0 if $\partial(x, y) \neq 2$ or $\partial(x, z) \neq i - 1$. Assume now $\partial(x, y) = 2$ and $\partial(x, z) = i - 1$.

Observe that by the triangle inequality we have that $\partial(z,y) \in \{i-3,i-1,i+1\}$. We consider each of these three cases separately.

Case 1: $\partial(x,y)=2$, $\partial(x,z)=i-1$ and $\partial(z,y)=i-3$. Note that in this case we have $(LE_i^*A_{i-2}E_2^*)_{zy}=b_{i-1}$ by (5.2). By Lemma 5.1 and Definition 3.2 the (z,y)-entries of both sides of (5.1) agree.

Case 2: $\partial(x,y)=2,$ $\partial(x,z)=i-1$ and $\partial(z,y)=i-1$. Observe that by (5.2) we have

$$(LE_i^* A_{i-2} E_2^*)_{zy} = c_{i-1} - |\Gamma_1(z) \cap \Gamma_{i-2}(x) \cap \Gamma_{i-2}(y)|$$

= $c_{i-1} - (\alpha_{i-1} + \beta_{i-1} | \Gamma_{i-2}(z) \cap \Gamma_1(x) \cap \Gamma_1(y)|).$

By Lemma 5.1 and Definition 3.2 the (z, y)-entries of both sides of (5.1) agree.

Case 3: $\partial(x,y) = 2$, $\partial(x,z) = i-1$ and $\partial(z,y) = i+1$. By (5.2), Lemma 5.1 and Definition 3.2 the (z,y)-entries of both sides of (5.1) are 0.

6 Irreducible T-modules with endpoint 2

With reference to Notation 4.3, let W denote an irreducible T-module with endpoint 2. In this section we find a spanning set for W.

Definition 6.1. With reference to Notation 4.3, let W denote an irreducible T-module with endpoint 2 and let v denote a nonzero vector in E_2^*W . For $0 \le i \le D$, define

$$v_i^+ = E_i^* A_{i-2} E_2^* v, \qquad v_i^- = E_i^* A_{i+2} E_2^* v.$$

Note that $v_2^+ = v$, $v_i^+ = 0$ if i < 2, and $v_i^- = 0$ if i < 2 or i > D - 2.

Lemma 6.2 ([5, Corollary 9.3(i), Theorem 9.4]). With reference to Definition 6.1, the following (i)–(iv) hold.

- (i) $E_i^* A_i E_2^* v = -(v_i^+ + v_i^-) \ (2 \le i \le D).$
- (ii) $Rv_i^+ = c_{i-1}v_{i+1}^+ \ (2 \le i \le D-1)$ and $Rv_D^+ = 0$.
- (iii) $Lv_i^- = b_{i+1}v_{i-1}^- \ (2 \le i \le D-2).$
- (iv) $Lv_{i+1}^+ Rv_{i-1}^- = b_i v_i^+ c_i v_i^- \ (1 \le i \le D 1).$

Lemma 6.3. With reference to Definition 6.1, the following (i)–(iii) hold.

- (i) $\Lambda_i v = -c_2 v_i^+ \ (2 \le i \le D).$
- (ii) $Lv_2^+ = 0$ and

$$Lv_i^+ = (b_{i-1} - c_{i-1} + \alpha_{i-1} + c_2\beta_{i-1})v_{i-1}^+ - (c_{i-1} - \alpha_{i-1})v_{i-1}^-$$

for $3 \le i \le D$.

(iii)
$$Rv_i^- = (c_2\beta_{i+1} - c_{i+1} + \alpha_{i+1})v_{i+1}^+ + \alpha_{i+1}v_{i+1}^-$$
 for $2 < i < D - 2$.

Proof. (i) Immediate from Lemma 5.3 and Definition 6.1.

- (ii) Note that $Lv_2^+=0$ as the endpoint of W is 2. To obtain the result for Lv_i^+ ($3 \le i \le D$) apply (5.1) to v and use Definition 6.1, Lemma 6.2(i) and (i) above.
 - (iii) Immediately by (ii) above and Lemma 6.2(iv).

Theorem 6.4. With reference to Definition 6.1,

$$W = \mathrm{span}\{v_2^+, v_3^+, \dots, v_D^+, v_2^-, v_3^-, \dots, v_{D-2}^-\}.$$

Proof. Denote $W'=\operatorname{span}\{v_2^+,v_3^+,\ldots,v_D^+,v_2^-,v_3^-,\ldots,v_{D-2}^-\}$ and note that $W'\subseteq W$. We now show that W=W'. Note that $E_i^*v_j^+=\delta_{ij}v_j^+$ for $2\leq j\leq D$ and $E_i^*v_j^-=\delta_{ij}v_j^-$ for $2\leq j\leq D-2$. Therefore, W' is invariant under the action of E_i^* for $0\leq i\leq D$. Observe also that W' is invariant under the action of L by Lemma 6.2(iii) and Lemma 6.3(ii), and also invariant under the action of L by Lemma 6.2(iii) and Lemma 6.3(iii). As L=L0, L=L1, L=L2, L=L3, L=L4, L=L5, L=L5,

Corollary 6.5. With reference to Definition 6.1, we have

$$\dim (E_{D-1}^* W) \le 1, \qquad \dim (E_D^* W) \le 1.$$

Proof. Immediately from Theorem 6.4.

As already mentioned, the result from Theorem 6.4 is already known in the literature, except for the case D=5 and $\Delta_2=0$, see [11, 12, 15]. In the rest of the paper we study this case in detail. If D=5 and $\Delta_2=\Delta_3=0$, then Γ is almost 2-homogeneous, contradicting our assumption in Notation 4.3. Therefore, we have that $\Delta_3\neq 0$.

7 Case $\Delta_2 = 0$ and $\Delta_3 \neq 0$

With reference to Notation 4.3, in this section we study graphs with $\Delta_2 = 0$ and $\Delta_3 \neq 0$. We first have the following observation.

Lemma 7.1. With reference to Definition 6.1, assume that $\Delta_2 = 0$ and $\Delta_3 \neq 0$. Then the following (i), (ii) hold.

(i)
$$c_3 = \frac{(c_2^2 - c_2 + 1)k - c_2(c_2 + 1)}{k + c_2^2 - 3c_2}.$$

(ii)
$$\alpha_3 = 0, \qquad \beta_3 = \frac{c_2(k-2)}{k + c_2^2 - 3c_2}.$$

Proof. (i) Solve $\Delta_2 = 0$ for c_3 . Note that $k + c_2^2 - 3c_2 = (c_2 - 1)(c_2 - 2) + k - 2 > 0$ as $k \ge 3$.

(ii) Use Definition
$$4.1$$
, (4.1) and (i) above.

Lemma 7.2. With reference to Definition 6.1, assume that $\Delta_2 = 0$ and $\Delta_3 \neq 0$. Then

$$E_2^* A_2 E_2^* v = -\frac{c_2(k-2)}{k + c_2^2 - 3c_2} v.$$

Proof. Let $\Gamma_2^2 = \Gamma_2^2(x)$ denote the graph with vertex set $\widetilde{X} = \Gamma_2(x)$ and edge set $\widetilde{R} = \{yz \,|\, y,z \in \widetilde{X}, \partial(y,z) = 2\}$. The graph Γ_2^2 has exactly k_2 vertices and it is regular with valency p_{22}^2 ([6, Lemma 3.2]). Let \widetilde{A} denote the adjacency matrix of Γ_2^2 . The matrix \widetilde{A} is symmetric with real entries. Therefore \widetilde{A} is diagonalizable with all eigenvalues real. Note that eigenvalues for $E_2^*A_2E_2^*$ and \widetilde{A} are the same.

Since $\Delta_2=0$, we know $E_2^*A_2E_2^*$ has exactly one distinct eigenvalue η on E_2^*W by [6, Theorem 4.11, Corollary 4.13, Lemma 5.3]. Thus, every nonzero vector in E_2^*W is an eigenvector for $E_2^*A_2E_2^*$ with eigenvalue η . By [6, Lemmas 5.4, 5.5] we find $\eta=-\frac{c_2}{\gamma_2}$. The result now follows from Definition 4.1 and Lemma 7.1(i).

Corollary 7.3. With reference to Definition 6.1, assume that $\Delta_2 = 0$ and $\Delta_3 \neq 0$. Then

$$v_2^- = \frac{b_2(c_2 - 1)}{k + c_2^2 - 3c_2} v_2^+.$$

Proof. By Lemma 6.2(i) and Lemma 7.2 we have

$$-v_2^+ - v_2^- = E_2^* A_2 E_2^* v = -\frac{c_2(k-2)}{k + c_2^2 - 3c_2} v_2^+.$$

The result follows. \Box

Corollary 7.4. With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. Then

$$W = \operatorname{span}\{v_2^+, v_3^+, v_4^+, v_5^+, v_3^-\}. \tag{7.1}$$

Proof. Immediately from Theorem 6.4 and Corollary 7.3.

Observe that by (3.1) vectors $v_2^+, v_3^+, v_4^+, v_5^+$ are linearly independent, provided they are non-zero.

8 Some scalar products

With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. Our goal for the rest of this paper is to find a basis for W. In this section we compute the norms of vectors $v_3^+, v_4^+, v_5^+, v_3^-$ in terms of the intersection numbers of Γ and $\|v\|$. Note that by [10, Lemma 6.4] we have $\Delta_4\neq 0$ as well. The assumptions of [10, Lemma 6.4] are somehow different from assumptions of Notation 4.3. However, the proof of [10, Lemma 6.4] works just fine also under assumptions of Notation 4.3.

Lemma 8.1. With reference to Definition 6.1, assume that $\Delta_2 = 0$ and $\Delta_3 \neq 0$. Then

$$||v_3^+||^2 = \frac{b_2(b_2 - c_2)}{k + c_2^2 - 3c_2} ||v||^2.$$

In particular, if $D \ge 5$ then $v_3^+ \ne 0$.

Proof. By Lemma 6.2(ii), (2.1) and Definition 3.1 we have

$$||v_3^+||^2 = \langle v_3^+, v_3^+ \rangle = \langle Rv_2^+, v_3^+ \rangle = \langle v_2^+, Lv_3^+ \rangle.$$

The result now follows from Lemma 6.3(ii), Corollary 7.3 and since $\alpha_2 = 0$, $\beta_2 = 1$. Now assume that $v_3^+ = 0$. Observe that this implies $b_2 = c_2$. If $D \ge 5$ then by [2, Proposition 4.1.6](i),(ii) we have $c_2 \le c_3 \le b_2$, and so $c_2 = c_3$. But then $c_2 = 1$ by Lemma 7.1(i), and so $k = b_2 + c_2 = 2$, a contradiction.

Lemma 8.2. With reference to Definition 6.1, assume that $\Delta_2 = 0$ and $\Delta_3 \neq 0$. Then

$$\langle v_3^+, v_3^- \rangle = \frac{b_2 b_4 (c_2 - 1)}{k + c_2^2 - 3c_2} ||v||^2.$$

Proof. By Lemma 6.2(ii), (2.1) and Definition 3.1 we have

$$\langle v_3^+, v_3^- \rangle = \langle Rv_2^+, v_3^- \rangle = \langle v_2^+, Lv_3^- \rangle.$$

П

The result now follows from Lemma 6.2(iii) and Corollary 7.3.

Lemma 8.3. With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. Then

$$||v_4^+||^2 = \frac{b_2((b_3 - 1)b_2 - c_3(c_2 - 1)b_4)}{c_2(k + c_2^2 - 3c_2)}||v||^2.$$

In particular, $v_4^+ = 0$ if and only if $c_2 \neq 1$ and $b_4 = b_2(b_3 - 1)/(c_3(c_2 - 1))$.

Proof. By Lemma 6.2(ii), (2.1) and Definition 3.1 we have

$$\langle v_4^+, v_4^+ \rangle = \frac{1}{c_2} \langle R v_3^+, v_4^+ \rangle = \frac{1}{c_2} \langle v_3^+, L v_4^+ \rangle.$$

The formula for $||v_4^+||^2$ now follows from Lemma 6.3(ii), Lemma 7.1, Lemma 8.1 and Lemma 8.2.

It is clear that $v_4^+=0$ if $c_2\neq 1$ and $b_4=b_2(b_3-1)/(c_3(c_2-1))$. Therefore assume now that $v_4^+=0$. It follows that $(b_3-1)b_2=c_3(c_2-1)b_4$. If $c_2=1$, then also $b_3=1$ and $c_3=1$ by Lemma 7.1(i). But then $k=c_3+b_3=2$, a contradiction. Therefore $c_2\neq 1$ and the result follows.

Lemma 8.4. With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. Then

$$||v_3^-||^2 = \left(\frac{(c_2 - 1)(c_4 - 1)b_2}{k + c_2^2 - 3c_2} + \frac{(k - 1)\Delta_3}{b_2 - 1}\right) \frac{b_2 b_4 ||v||^2}{c_2(kc_2 - k - c_2) + b_2}.$$

Proof. By Lemma 6.2(iv), (2.1) and Definition 3.1 we have

$$c_3\langle v_3^-, v_3^- \rangle = b_3\langle v_3^+, v_3^- \rangle + \langle Rv_2^-, v_3^- \rangle - \langle v_4^+, Rv_3^- \rangle.$$

The result now follows from Lemmas 6.3(iii), 7.1, 8.2 and 8.3, Corollary 7.3 and (4.1).

Corollary 8.5. With reference to Definition 6.1, assume that D = 5, $\Delta_2 = 0$ and $\Delta_3 \neq 0$. Then the following (i), (ii) hold.

- (i) $v_3^- \neq 0$.
- (ii) v_3^+, v_3^- are linearly independent.

Proof. (i) Note that $(c_2-1)(c_4-1)b_2/(k+c_2^2-3c_2) \ge 0$ and that $(k-1)\Delta_3/(b_2-1) > 0$ by [3, Theorem 12]. Moreover, it is easy to see that $c_2(kc_2-k-c_2)+b_2>0$. The result follows.

(ii) Assume on the contrary that v_3^+, v_3^- are linearly dependent. Let

$$B = \begin{pmatrix} \langle v_3^+, v_3^+ \rangle & \langle v_3^+, v_3^- \rangle \\ \langle v_3^-, v_3^+ \rangle & \langle v_3^-, v_3^- \rangle \end{pmatrix}$$

and note that det(B) = 0. Using Lemmas 8.1, 8.2 and 8.4 one could easily see that the only factor of det(B) which could be zero is

$$c_4k - c_2^3k + 2c_2^2k - 2c_2k + c_2^3c_4 - 2c_2^2c_4 - c_2c_4 + 2c_2^2.$$

Solving this for c_4 and then computing Δ_3 using Definition 4.1, we obtain $\Delta_3 = 0$, a contradiction. This shows that v_3^+, v_3^- are linearly independent.

Lemma 8.6. With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. Then

$$||v_5^+||^2 = \frac{b_4 - c_4 + \alpha_4 + c_2\beta_4}{c_2} ||v_4^+||^2.$$

In particular, $v_5^+ = 0$ if and only if $v_4^+ = 0$ or $b_4 - c_4 + \alpha_4 + c_2\beta_4 = 0$.

Proof. By Lemma 6.2(ii), (2.1) and Definition 3.1 we have

$$\langle v_5^+, v_5^+ \rangle = \frac{1}{c_3} \langle R v_4^+, v_5^+ \rangle = \frac{1}{c_3} \langle v_4^+, L v_5^+ \rangle.$$

The result now follows from Lemma 6.3(ii).

9 A basis

With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. In this section we display a basis for W. We will also show that, up to isomorphism, Γ has a unique irreducible T-module with endpoint 2.

Theorem 9.1. With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. Then the following (i)–(iii) hold.

(i) If $v_5^+ \neq 0$, then the following is a basis for W:

$$v_i^+ \ (2 \le i \le 5), \qquad v_3^-.$$
 (9.1)

(ii) If $v_4^+ \neq 0$ and $v_5^+ = 0$, then the following is a basis for W:

$$v_i^+ (2 \le i \le 4), \qquad v_3^-.$$
 (9.2)

(iii) If $v_4^+ = 0$, then the following is a basis for W:

$$v_i^+ (2 \le i \le 3), \qquad v_3^-.$$
 (9.3)

In particular, W is not thin.

Proof. Note that by (7.1), W is spanned by vectors v_i^+ ($2 \le i \le 5$) and v_3^- . Vector $v_2^+ = v$ is nonzero by definition. Vectors v_3^+ and v_3^- are nonzero by Lemma 8.1 and Corollary 8.5(i), respectively. We prove part (i) of the theorem. Proofs of parts (ii) and (iii) are similar.

If $v_5^+ \neq 0$, then $v_4^+ \neq 0$ by Lemma 8.6. Vectors v_i^+ $(2 \leq i \leq 5)$ and v_3^- are linearly independent by (3.1) and Corollary 8.5(ii). This shows that (9.1) is a basis for W. As $\dim(E_2^*(W)) = 2$, W is not thin. The result follows.

Theorem 9.2. With reference to Definition 6.1, assume that D=5, $\Delta_2=0$ and $\Delta_3\neq 0$. Then Γ has, up to isomorphism, exactly one irreducible T-module with endpoint 2.

Proof. Let U denote an irreducible T-module with endpoint 2, different from W. Fix nonzero $u \in E_2^*U$, and for $2 \le i \le 5$ define

$$u_i^+ = E_i^* A_{i-2} E_2^* u$$

and let $u_3^- = E_3^* A_5 E_2^* u$. It follows from the results of Section 8 and Theorem 9.1 that u_2^+, u_3^+, u_3^- are nonzero and that nonzero vectors in the set $\{u_i^+ \mid 2 \le i \le 5\} \cup \{u_3^-\}$ form a basis for U. Furthermore, it follows from Lemma 8.3 and Lemma 8.6 that $u_4^+ (u_5^+, respectively)$ is nonzero if and only if $v_4^+ (v_5^+, respectively)$ is nonzero.

respectively) is nonzero if and only if v_4^+ (v_5^+ , respectively) is nonzero. Let $\sigma:W\to U$ be defined by $\sigma(v_i^+)=u_i^+$ ($2\le i\le 5$) and $\sigma(v_3^-)=u_3^-$. It follows from the comments above that σ is a vector space isomorphism from W to U. We show that σ is a T-module isomorphism. Since A generates M and $E_0^*, E_1^*, \ldots, E_5^*$ is a basis for M^* , it suffices to show that σ commutes with each of $A, E_0^*, E_1^*, \ldots, E_5^*$. Using the fact that $E_i^*E_j^*=\delta_{ij}E_i^*$ and the definition of σ we immediately find that σ commutes with each of $E_0^*, E_1^*, \ldots, E_5^*$. Recall that A=R+L. It follows from Lemma 6.2, Lemma 6.3 and Corollary 7.3 that σ commutes with A. The result follows.

We would like to emphasize that together with the results in [10, 12, 15], Theorems 9.1 and 9.2 imply the following characterization.

Theorem 9.3. Let $\Gamma = (X, \mathcal{R})$ denote a bipartite distance-regular graph with diameter $D \geq 4$ and valency $k \geq 3$. Assume Γ is not almost 2-homogeneous. We fix $x \in X$ and let $E_i^* = E_i^*(x)$ $(0 \leq i \leq D)$ and T = T(x) denote the dual idempotents and the Terwilliger algebra of Γ with respect to x, respectively. Then the following (i), (ii) are equivalent.

- (i) Γ has, up to isomorphism, exactly one irreducible T-module W with endpoint 2, and W is non-thin with $\dim(E_2^*W)=1$, $\dim(E_{D-1}^*W)\leq 1$ and $\dim(E_i^*W)\leq 2$ for $3\leq i\leq D$.
- (ii) $\Delta_2 = 0$, and there exist complex scalars $\alpha_i, \beta_i \ (2 \le i \le D 1)$ such that

$$|\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z)| = \alpha_i + \beta_i |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)|$$
(9.4)

for all $y \in \Gamma_2(x)$ and $z \in \Gamma_i(x) \cap \Gamma_i(y)$.

With reference to Definition 6.1, assume that $\Delta_2 = 0$ and $\Delta_3 \neq 0$. It is known that this implies $c_2 \in \{1,2\}$, or $D \leq 5$, see [12, Theorem 4.4]. If $c_2 \in \{1,2\}$, then the structure of irreducible T-modules with endpoint 2 was studied in detail in [12, 15]. Therefore, we are mainly interested in the case $c_2 \geq 3$. We have to mention however that we are not aware of any of such a graph. Using a computer program we found intersection arrays

 $\{b_0,b_1,b_2,b_3,b_4;c_1,c_2,c_3,c_4,c_5\}$ up to valency k=20000, which satisfy the following conditions: $c_2\geq 3,\, \Delta_2=0,\, \Delta_3>0,\, \Delta_4>0,\, \gamma_2\in\mathbb{N},\, p_{22}^2\in\mathbb{N}$. None of them passed the feasibility condition $p_{ij}^1\in\mathbb{N}\cup\{0\}$, see the table below.

intersection arrays	feasibility condition
(58, 57, 49, 21, 1; 1, 9, 37, 57, 58)	$p_{23}^1 = 1102/3 \notin \mathbb{N}$
(112, 111, 100, 45, 4; 1, 12, 67, 108, 112)	$p_{34}^1 = 103600/67 \notin \mathbb{N}$
(186, 185, 161, 35, 1; 1, 25, 151, 185, 186)	$p_{23}^1 = 6882/5 \notin \mathbb{N}$
(274, 273, 256, 120, 10; 1, 18, 154, 264, 274)	$p_{23}^1 = 12467/3 \notin \mathbb{N}$
(274, 273, 256, 120, 1; 1, 18, 154, 273, 274)	$p_{23}^1 = 12467/3 \notin \mathbb{N}$
(1192, 1191, 1156, 561, 28; 1, 36, 631, 1164, 1192)	$p_{23}^1 = 118306/3 \notin \mathbb{N}$
(3236, 3235, 3136, 760, 1; 1, 100, 2476, 3235, 3236)	$p_{23}^1 = 523423/5 \notin \mathbb{N}$

ORCID iDs

Štefko Miklavič https://orcid.org/0000-0002-2878-0745 Safet Penjić https://orcid.org/0000-0001-6664-4130

References

- [1] E. Bannai and T. Ito, *Algebraic combinatorics*. *I*, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984, association schemes.
- [2] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-regular graphs*, volume 18 of *Ergebnisse der Mathematik und ihrer Grenzgebiete* (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1989, doi:10.1007/978-3-642-74341-2.
- [3] B. Curtin, 2-homogeneous bipartite distance-regular graphs, *Discrete Math.* 187 (1998), 39–70, doi:10.1016/S0012-365X(97)00226-4.
- [4] B. Curtin, Bipartite distance-regular graphs. I, Graphs Combin. 15 (1999), 143–158, doi:10. 1007/s003730050049.
- [5] B. Curtin, Bipartite distance-regular graphs. II, *Graphs Combin.* 15 (1999), 377–391, doi:10. 1007/s003730050072.
- [6] B. Curtin, The local structure of a bipartite distance-regular graph, *European J. Combin.* **20** (1999), 739–758, doi:10.1006/euic.1999.0307.
- [7] B. Curtin, Almost 2-homogeneous bipartite distance-regular graphs, *European J. Combin.* **21** (2000), 865–876, doi:10.1006/eujc.2000.0399.
- [8] E. S. Egge, A generalization of the Terwilliger algebra, J. Algebra 233 (2000), 213–252, doi: 10.1006/jabr.2000.8420.
- [9] J. T. Go, The Terwilliger algebra of the hypercube, *European J. Combin.* 23 (2002), 399–429, doi:10.1006/eujc.2000.0514.
- [10] M. S. MacLean and S. Miklavič, On bipartite distance-regular graphs with exactly one non-thin *T*-module with endpoint two, *European J. Combin.* 64 (2017), 125–137, doi:10.1016/j. ejc.2017.04.004.
- [11] M. S. MacLean and Š. Miklavič, On bipartite distance-regular graphs with exactly two irreducible T-modules with endpoint two, *Linear Algebra Appl.* 515 (2017), 275–297, doi: 10.1016/j.laa.2016.11.021.

- [12] M. S. MacLean, Š. Miklavič and S. Penjić, On the Terwilliger algebra of bipartite distance-regular graphs with $\Delta_2=0$ and $c_2=1$, *Linear Algebra Appl.* **496** (2016), 307–330, doi: 10.1016/j.laa.2016.01.040.
- [13] M. S. MacLean, Š. Miklavič and S. Penjić, An A-invariant subspace for bipartite distance-regular graphs with exactly two irreducible T-modules with endpoint 2, both thin, J. Algebraic Combin. 48 (2018), 511–548, doi:10.1007/s10801-017-0798-7.
- [14] Š. Miklavič, The Terwilliger algebra of a distance-regular graph of negative type, *Linear Algebra Appl.* 430 (2009), 251–270, doi:10.1016/j.laa.2008.07.013.
- [15] S. Penjić, On the Terwilliger algebra of bipartite distance-regular graphs with $\Delta_2 = 0$ and $c_2 = 2$, Discrete Math. **340** (2017), 452–466, doi:10.1016/j.disc.2016.09.001.
- [16] P. Terwilliger, The subconstituent algebra of an association scheme. I, *J. Algebraic Combin.* 1 (1992), 363–388, doi:10.1023/A:1022494701663.