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The article discusses simple algorithms used for the 
evaluation of 3D positions of points within a borehole and 
the accuracy of 3D positions of points within a borehole. 
The kinds of boreholes discussed are typically from 1500 
m to 3000 m deep, and are dug for the purposes of 
exploration and extraction of oils, gases and geothermal 
water. The algorithm used to evaluate 3D positions of 
points within a borehole is based on a gradual application 
of an approximation of the curve of the borehole between 
two successive points within the borehole, using a circular 
arc. The position of the second point belonging to the pair 
of successive points is calculated based on the chord of the 
circular arc (the length of the chord, direction angle and 
inclination angle) between the two points. The algorithm 
used to evaluate the accuracy of 3D positions is based upon 
a theory regarding function accuracy developed within the 
field of mining measurements and geodesy. Both algorithms 
are easily implemented in spreadsheet programs, as well as 
visualised and modelled in CAD programs.

vrtina, 3D-položaj, natančnost, krivulja, smerni kot

V članku je prikazan algoritem, ki se uporablja za oceno 
in natančnost ocene 3D-položajev točk v globokih vrtinah. 
Globoke vrtine med 1500 in 3000 metri se vrtajo za 
raziskovanje ter pridobivanje nafte, plina in geotermalne 
vode. Algoritem, ki se uporablja za oceno določanja 
položaja točke v globoki vrtini, temelji na postopnem 
pristopu, pri katerem korak za korakom določamo približek 
krivulje vrtine med dvema zaporednima točkama globoke 
vrtine. Položaj druge točke izmed para zaporednih točk 
je izračunan na podlagi krožnega loka (dolžina tetive, 
smernega kota in kota nagiba). Ocena natančnosti naslednje 
točke je izračunana po zakonu o prenosu varianc in 
kovarianc. Algoritem se lahko uporablja v programih za 
tabelarične izračune in pri prikazu oziroma modeliranju 
s programi CAD.
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1 INTRODUCTION

The aim of the article is to evaluate 3D positions and the accuracy of 3D positions of points within 
a borehole and, in order to accomplish this aim, an algorithm for the evaluation of 3D positions of 
points within a borehole needs to be found. An algorithm of this kind may be idealised as a sort of 
empirical curve, and such an idealised empirical curve may either be approximated by an exact curve 
or, ideally, expressed by an exact curve, so that the two are identical, a task that is made all the more 
difficult by the fact that neither the empirical curve nor its type are known, as well as the fact that a 
limited number of points provides only information (in the form of measurements) that indirectly 
describes the position, tangent orientation and length of a curve at and leading up to a given point. 
It is possible to obtain only a limited number of measurements describing the position of points 
within a borehole and, due to a borehole’s poor accessibility, it is impossible to perform various dif-
ferent types of measurements, as it is possible to do on the surface. The measurements carried out on 
a borehole, in order to obtain information regarding 3D positions of points within the borehole, are 
not continuous, but discrete, which is why, in attempting to reach our aim of evaluating 3D posi-
tions and the accuracy of 3D positions of points within a borehole, we decided to find the simplest 
possible discrete algorithm to describe the borehole. We dismantled the curve of a borehole, breaking 
it down into parts, all of which were then approximated by the simplest possible (circular) curve, as 
one would approximate a curve with the aid of infinitesimal calculus (seeing as measurements car-
ried out every 10 m on a borehole that is 1474 m long are appropriately proportioned for such an 
approach). These parts along the curve of the borehole were then cumulated, following the logic of 
integral calculus. The algorithm used for the evaluation of positions of points within a borehole was 
then followed by an algorithm used for the evaluation of accuracy of positions of points within the 
borehole. Both algorithms have been thoroughly tested upon the borehole, as is depicted in detail 
(Rošer, 2008).

As convergence of an integral value towards another value is demonstrated through the lessening of 
gradients in integral calculus, the increase in sum also experiences a drop, demonstrating that even 
when gradients are decreased, cumulative growth of coordinates is also decreased at the final point 
in a curve. The gradient decreases from 50 m to 30 m, to 20 m, to 10 m, as does simultaneously the 
relative difference of coordinates of the final point within the borehole, i.e. the quotient of intensity 
of vectors, the position of the final point (calculated to two gradients) and combined length of the 
borehole.

2 METHODS

2.1 Measuring in Order to Determine Position

Figure 1 depicts angle measurements within a borehole. The positive orientations of the X–axis, Y–axis 
and Z–axis are northwards, eastwards and downwards (from the surface), respectively, and all positive 
orientations are to be presumed as such for the duration of the article.
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Figure 1: The direction and deflection angles. 

In order to be able to determine the position of a point within a borehole, three measurements are 
carried out:

1. Magnetic azimuth (Nguzen, 1996), i.e. the direction angle (of a tangent) (λ) – the horizontal 
angle between the magnetic north pole and horizontal projection of the line of maximum 
drop; the deflection from the vertical (Figure 1). When a borehole is ideally vertical, this 
angle is insignificant, i.e. is of any value, i.e. when its value is altered, the results (the 
evaluation of the position and accuracy of the evaluation of the position) are not altered. 
The direction angle is not equal to magnetic azimuth, and theoretically, magnetic azimuth 
is defined as the angle of magnetic decline. When measurements are done with magnetic 
tools, it is magnetic azimuth that is measured, and when measurements are done with 
gyroscopic tools, it is the difference between direction angles that is measured. In the first 
case, incoming data describes an indirectly observed direction angle (the magnetic azimuth 
is measured and then attributed to an angle of magnetic decline), and in the second case, 
incoming data describes a directly observed direction angle. In both cases, incoming data 
consists of a direction angle.

2. Inclination (angle) (Nguzen, 1996), i.e. the inclination angle of a borehole from the vertical 
(ϕ) – the deflection angle of a tangent to the curve of the borehole in a given point (Figure 1).

3. Length of the borehole (Nguzen, 1996), i.e. the length of the curve of the borehole (the length 
of the wireline (s) from the starting point (borehole head) of the borehole and up to the point of 
measurement). It ought not be confused with the vertical depth of the borehole, which is obtained 
with the aid of the length of the curve of the borehole, as well as with the aid of direction angles 
and deflection angles of the borehole.

All three measurements in a point, PM, can be depicted as a measurement vector:

 ( )T
M M M Msφ λ=a  (1)
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2.2 The Task of Evaluating a 3D Position

It has previously been mentioned that measurements within a borehole are discrete, and are conducted 
along the length of a borehole at a predetermined smaller length along its curve. This smaller length is 
given the notation of measurement gradient k and its size is important only in the sense that the gradient 
is infinitesimal in length in relation to the length of the entire curve of the borehole. As long as the infini-
tesimal nature of one length in relation to the other is respected, the gradient may be changed during the 
drilling process. Whether or not this is recommended is discussed in the discussion section of the article.

In accordance with the set of measurements aT
M, it is necessary to evaluate the 3D position of the final 

point within a borehole. The evaluation of the position of the final point within a borehole is a condensed 
means of evaluating the position of all points within a borehole, but will not be discussed in this article, 
as the method discussed in this article provides the means to evaluate of all points within a borehole on 
which observations are conducted. It is possible to obtain a realistic depiction of the problem using an 
experimental set of measurements, as have been provided in the Table 1.
Table 1: Measurements of points within a borehole (deep log inclination measurements Ormoz–1g , 2005).

id ϕ [°] λ [°] s [m] id ϕ [°] λ [°] s [m] id ϕ [°] λ [°] s [m]

O 0.0 0.0 0.00

1 4.7 247.2 613.00 31 14.6 145.9 906.16 61 13.2 215.6 1197.11

2 4.7 250.9 622.97 32 14.6 145.7 915.84 62 13.3 221.9 1206.84

3 4.7 256.8 632.93 33 14.6 145.2 925.51 63 13.3 227.6 1216.58

4 4.8 261.9 642.90 34 14.6 144.7 935.19 64 13.3 234.1 1226.31

5 4.7 264.7 652.86 35 14.6 144.5 944.87 65 13.3 240.6 1236.04

… … … … … … … … … … … …

26 13.6 148.7 857.77 56 13.2 180.6 1148.43 86 13.3 38.4 1440.18

27 14.1 148.2 867.45 57 13.2 186.0 1158.17 87 13.3 51.5 1449.91

28 14.6 147.8 877.13 58 13.2 193.2 1167.90 88 13.3 60.6 1459.64

29 14.6 147.3 886.81 59 13.2 200.8 1177.64 89 13.4 71.1 1469.37

30 14.6 146.6 896.48 60 13.2 208.8 1187.38 90 13.4 81.3 1474.23

2.3 Dismantling the Task of Evaluating a 3D Position

The algorithm suggested in the article dismantles the problem into a series of similar, ‘smaller’ problems 
i.e. tasks. This process begins with two successive points, J and K, in which two observation vectors, aJ 
and aK, have successively been obtained. The 3D evaluation of the position of point J is known, and of 
point K unknown, thus making the first task that the position of point K be determined.

2.4 Taking on the ‘Smaller’ Task

In order to get to the evaluation of the position of point K, it is necessary to be familiar with the part of 
the curve of the borehole in the interval from point J to point K. Due to the fact that the entire curve is 
divided into a sequence of practically infinitesimal parts between successive points, these infinitesimal 
parts may be practically approximated with the aid of any exact curve as long as the curve meets other 
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‘natural’ conditions, natural conditions in this case referring to conditions in which what holds true for 
measurement vectors must also hold true for exact curves. The simplest of such curves is a straight line, 
which unfortunately does not meet the natural conditions requirement, seeing as the measured direction 
angles and deflection angles (from the vertical) are not always equal in between successive points. The next 
exact curve that could be used as an approximation of a part of an empirical curve between successive 
points within a borehole is a circle, i.e. a circular arc could be used as an approximation of a part of an 
empirical curve within a borehole. It may also happen that the direction angles and deflection angles 
(from the vertical) are equal in between successive points, in which case those parts of the empirical 
curve within the borehole ought to be approximated by straight lines, but such cases do not present a 
theoretical conundrum, as circular arcs also encompass straight lines, in cases in which the definition 
of a circular arc is given in a way that also encompasses one with an infinite radius. Such a case can be 
dealt with very practically in the algorithm, so that parts of the empirical curve within the borehole are 
approximated with the aid of a circular arc whenever either direction angles, deflection angles or both 
are of differing values upon successive points, and approximated with a straight line when they are not. 
A borehole such as that for which an algorithm needs to be found is presented in Figure 2.

Figure 2:  A part of the curve of a borehole around successive points J and K.

Angular measurements in the points of the borehole represent the tangents (in relation to the curve of 
the borehole) in said points. The two successive points on the curve and the two successive tangents 
upon the points on the curve define the plane of the curve of the borehole between said successive 
points. The part of the curve of the borehole between the two successive points is approximated by a 
circular arc. Figure 3 depicts the plane between the successive points, as well as the construction of a 
solution in such a plane.
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Figure 3: The plane of the curve of the borehole between successive points.

With the aid of the measurements from the length of the borehole to two successive points, the length 
of the arc of the borehole may be calculated, i.e. the length of the arc LJK of the circle cJK, as well as the 
difference between the length of the borehole measured in successive points:

 JK K JL s s= − . (2)

The length of the arc between successive points is equal to the size of the gradient.

The coordinates of the starting point (the mouth) of the borehole are known. The first ‘small’ task, based 
upon the coordinates of the starting point, measurement vectors in the starting point and measurement 
vectors in the following point, is to determine the coordinates of its successive point. The successive 
point is algorithmically treated as the starting point (the evaluations of the coordinates of which are 
known), and based upon the measurement vectors in this point and its successive point, coordinates of 
the successive point are determined. This process continues for every following pair of successive points 
until the final (ending) point of the borehole.

In order to develop an algorithm for the evaluation of coordinates of points on the curve of a borehole, 
it can be taken that these coordinates (the positioning vector, the ending vector) are the first pair of 
successive points, and are known:

 ( )T
J J JX Y Z=J  (3)
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Many algorithms exist that could, based on the positioning vector J of point J, measurement vector aJ at 
point J and measurement vector aK at point K, evaluate the positioning vector (coordinates) K of point 
K. In the article, only one of the methods is presented, and it is based on the determination of the vector 

JK=T


, as well as the unit circle c1, i.e. the constant relationship between the concentric circles true ct 

and unit c1, and the constant relationship that therefore holds true for all elements tied to these circles.

In this method, a local coordinate system is placed into the centre of a circle (point CJK), the origin of 
which is exactly in point CT

JK, local = (0  0  0), the units of which are equal and the axes of which are par-
allel to the axes of the global coordinate system. Vector hJ in point HJ, parallel to vector bJ, and vector 

J JK JC P=p


, also parallel to vector bJ, are constructed. Vector J JK JC P=p


 is of an intensity equal to 

|pJ| = 1, while the intensity of vector hJ is significant only in that it is positive, |hJ| > 0. A tangent in 
point J, while transforming into a tangent in point K, turns for an angle of ωJK. Because the lines [CJK J]  
and [CJK K] are normal to bJ and bK, respectively, it is also true that:

 J JK K JKH C H ω∠ =  (4)

because vectors pJ and pK are parallel to tangents bJ and bK, respectively, it is also true that:

 J JK K JKP C P ω∠ =  (5)

It follows that:

1) Vectors J KH H


 and J KP P


 are of equal intensity:

 JK J K J Kt H H P P= =
 

 (6)

2) The ratio between intensities TJK and tJK of vectors JK JK=T


 and tJK is equal to the ratio of belonging 

arcs JKL JK
∩

=  and JK J Kl H H
∩

, as well as to the ratio of radii rJK and r1 = 1.

 JK JK
JK JK

JK JK

T L
R r

t l
= = =  (7)

Local coordinates of the point PJ, i.e. the local positioning vector of point PJ, are:

 ( ) ( ) , ,  ,  , cos sin sin sin cosT
J J local J local J local J local J J J J JP X Y Z λ φ λ φ φ= = =p . (8)

Local coordinates of the point PK, i.e. the local positioning vector of PK, is:

 ( ) ( ) ,  ,  ,  , cos sin sin sin cosT
K K local K local K local K local K K K K KP X Y Z λ φ λ φ φ= = =p . (9)

Vectors TJK, tJK, JK JKC P


 and ,JK n JKC P


 are parallel to one another:

 ,   JK JK JK JK JK n JKC P C PT t
 

 (10)

Vector JK JKC P


 , which is the local positioning vector of PJK of point PJK, is equal to the sum of vectors 

pJ and pK:
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3 13 1 3 1

JK J K
×× ×

= +P p p . (11)

Vector ,JK n JKC P


 , which is the local positioning vector of  Pn,JK of point Pn,JK, is the normalized vector 

of PJK:

 ,
JK

n JK T
JK JK

=
•

P
P

P P
. (12)

Vector J KP P


 is equal to the difference between vectors pK and pJ:

 J K K JP P = −p p


. (13)

The intensity of vector J KP P


 is equal to the intensity tJK of vector JK J KH H=t


:

 
T

JK J K J Kt P P P P= •
 

 (14)

The law of cosines is applied to triangle ∆CJKHJHK or to triangle ∆CJKPJPK:

 
2 2

cos 1 arccos 1
2 2
JK JK

JK JK JK

t t
lω ω

 
= − → = − = 

 
 (15)

From which the ratio between the chord and its arc is easy to determine: 

 JK
JK JK

JK

L
R r

l
= =  (16)

The radius of the true circle has been calculated, and from the same J, the intensity of the true chord is 
also calculated:

 JK JK JKT t R=  (17)

As vectors TJK and Pn,JK are parallel to one another, and as vector Pn,JK is the unit vector, vector TJK:

 , JK JK n JKT=T P  (18)

In the end, the positioning vector of point K is:

 JK= +K T J  (19)

2.5 The Case in Which an Arc ‘Transforms’ into a Straight Line

It is possible to mathematically prove the following statements by using limits; nevertheless, we are going 
to use the obvious premise that when the two statements below hold true for a circle:

 ,    K j K jλ λ φ φ= =  (20)

is ‘deformed’ into a straight line, and the circle arc is ‘deformed’ into a line:
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 , JK JK n JKL=T P  (21)

 ,
2

2
JK J J

n JK JT
J J J JJK JK

= = = =
• ••

P p p
P p

p p p pP P
 (22)

  JK JK JL=T p  (23)

The algorithm for the evaluation of 3D positions of points thus needs to be upgraded and enhanced for 
use in cases where the following two statements hold true:

 ( ) ( )test  ,    testK j K jtrue trueλ λ φ φ= = = =  (24)

Taking on the ‘Large’ Task

It is only necessary to apply the algorithm for solving the ‘small’ task in ordered pairs of successive points, 
and the 3D position of the final point will also be evaluated.

2.6 The Order of Calculations

In order to achieve an easier application of the algorithm, the following chronological order of calculations 
within the algorithm is suggested (the case of the final point). 

 1 4.86 mJK K JL s s= − =  (25)

 2 ( ) ( )cos sin sin sin cos 0.035054 0.229081 0.972776T
K K K K K Kλ φ λ φ φ= =p  (26)

 3 ( )0.040013 0.009828 0.000000JK K J= − = −p p p  (27)

 4 T

JK JK JK
0.041t p p= • =  (28)

 5 
2

arccos 1 0.041
2
JK

JK JK
t

l ω
 
 = = − =
 
 

 (29)

 6 117.947  mJK
JK JK

JK

L
R r

l
= = =  (30)

 7 4.860 mJK JK JKT t R= =  (31)

 8 ( )0.110122 0.448335 1.945552JK J K= + =P p p  (32)

 9 ( ), 0.055072 0.224215 0.972982JK
n JK T

JK JK

= =
•

P
P

P P
 (33)

 10 ( ), 0.268 1.090 4.728JK JK n JKT= =T P  (34)

 11 ( )78.579 10.129 1453.106JK= + = − −K T J  (35)
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3 RESULTS

In the Table 2, the positions of all points have been calculated, taking into account that the coordinate 
origin is also the starting point of the borehole.
Table 2: Positions of points within a borehole.

id x [m] y[m] z [m] id x [m] y[m] z [m] id x [m] y[m] z [m]

O 0.00 0.00 0.00

1 –9.74 –23.16 –612.31 31 –42.08 –12.84 –901.42 61 –103.57 13.51 –1183.62

2 –10.03 –23.93 –622.25 32 –44.10 –11.47 –910.79 62 –105.31 12.12 –1193.09

4 –10.26 –24.71 –632.18 33 –46.11 –10.09 –920.15 63 –106.89 10.54 –1202.57

5 –1041 –25.52 –642.11 34 –48.10 –8.69 –929.51 64 –108.31 8.81 –1212.04

… … … … … … … … … … … …

26 –30.02 –20.47 –845.13 55 –90.93 16.67 –1126.75 85 –84.48 –17.85 –1410.50

27 –31.94 –19.32 –854.55 56 –93.15 16.77 –1136.22 86 –82.58 –16.68 –1419.97

28 –33.91 –18.11 –863.95 57 –95.37 16.65 –1145.71 87 –81.01 –15.11 –1429.44

29 –35.95 –16.84 –873.33 58 –97.56 16.28 –1155.18 88 –79.76 –13.26 –1438.91

30 –38.01 –15.53 –882.69 59 –99.68 15.63 –1164.66 89 –78.85 –11.22 –1448.38

31 –40.05 –14.20 –892.05 60 –101.69 14.70 –1174.15 90 –78.58 –10.13 –1453.11

As an example of an evaluation of the position of one point (and the relationship of one pair of points), 
the final pair of points has been evaluated and is presented in section 2.6.

3.1 Practical Verification of the Algorithm

All point coordinates, based upon all observed vectors, have been calculated and are presented in Table 
2. It is of interest to us to evaluate how calculations would have been different had we decided upon 
an interval twice as large, i.e. had we observed measurement vectors only in every second point, or in 
every third point, or in every fifth. How taking into account each ‘first’ point or only each ‘second’ each 
‘third’ or each ‘fourth’ would have yielded differing values and percentages in terms of the length of the 
borehole is presented in Table 3.

Table 3: Practical differences in the evaluation of position.

I X Y Z D D/send

[m] [m] [m] [m] %

1 –78.85 –11.22 –1448.38 0.00 0.00

2 –77.26 –14.11 –1439.09 9.85 0.67

3 –77.27 –15.77 –1429.69 19.30 1.31

4 –78.01 –16.23 –1419.10 29.71 2.01

3.2 The Evaluation of Accuracy of 3D Positions of Points in a Borehole

All measurements are riddled with errors:

1. Gross errors, which we try to eliminate through control while conducting measurements,
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2. Systematic errors, the influence of which we attempt to remove or reduce to a negligible value and
3. Random errors, the influence of which upon the arguments of functions we cannot remove, 

but can reduce, reaching a higher degree of accuracy with the aid of the Gauss–Markov process.

In this article, we will not discuss gross errors. We will touch upon random errors and the evaluation of 
their influence upon the determination of positions of points within a borehole, but will not discuss the 
theory behind random errors, which an interested reader will be able find more of in various academic 
texts (Strang, 1997). We will, however, determine that the approximation of an empirical curve of a 
borehole by circular arcs and straight lines is a systematic error, the effect of which has been reduced to 
a negligible value. We begin with a noted formula for the evaluation of the accuracy of vector ζ, which 
is a function of vector q:

 ( )Tζ ζ= q  (36)

If it is true that:

 qqJ JζζΣ = ⋅Σ ⋅  (37)

if the variance–covariance matrix of vector q is:

 

1 1 1 1 11 1 1 1

1 1 1

1
1 1

2

2

2
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I J J J n J J J J n J n
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q q q q q q q q qq q q q q q

q q q q q q q q q q q q q q q
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qq
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r r
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σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

×

Σ Σ Σ

Σ Σ Σ =

Σ Σ Σ

           =               

Σ

 

 

  

  

 

 

  

  

 

 

. (38)

The variance–covariance matrix Σqq is symmetrical, and its elements are:

 
K J J Kq q q qΣ = Σ  (39)

J = 1(1)n are the evaluations of standard deviations of the measurement vector qJ, and rqJqK
 are the cor-

relation coefficients between the measurement vectors qJ and qK. 1(1)n means 1 of the steps from 1 to n.

With the above in mind, the variance–covariance matrix Σζζ of vector ζ is:

 qqζζΣ = ⋅Σ ⋅J J  (40)

With the aid of which the evaluations of accuracy for all (11) parameters can be calculated.

In our case, the values of the standard deviations of measurements were:

  

0.1

0.1
0.1 ms

φ

λ

σ

σ
σ

= ±

= ±
= ±



  (41)

An example of the evaluation of accuracy of the position of one point (and the evaluation of the accuracy 
of the relationship between one pair of points) is examined, using the final pair of points. All the Jacobi’s 
matrix J are derived in the reference (Rošer, 2008):
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 1 2 2 2
; 0.002 m

JK JK JKL L Lσ = Σ =  (42)

 2 ;
3 3

0.000217 0.001415 0.000341
0.001415 0.009246 0.002228
0.000341 0.002228 0.000537

K K
×

 −
 

Σ = − 
 − − 

p p  (43)

 3 ;
3 3

0.001210 0.004315 0.001071
0.004315 0.017716 0.004361
0.001071 0.004361 0.001074

JK JK

×

 −
 

Σ = − 
 − − 

p p  (44)

 4 2 2
; 0.012

JK JK JKt t tσ = Σ =  (45)

 5 2 2
; 0.012

JK JK JKl l lσ = Σ =  (46)

 6 2 2 2
; 35.051 m

JK JK JKR R Rσ = Σ =  (47)

 7 2 2
; 0.002

JK JK JKT T Tσ = Σ =  (48)

 8 ;
3 3

0.001210 0.004315 0.001071
0.004315 0.017716 0.004361
0.001071 0.004361 0.001074

JK JK
×

 −
 

Σ = − 
 − − 

P P  (49)

 9 
, ,;

3 3

0.001 0.004 0.001
0.004 0.018 0.004
0.001 0.004 0.001

n JK n JK
×

 −
 

Σ = − 
 − − 

P P  (50)

 10 ;
3 3

0.029 0.102 0.025
0.102 0.419 0.102
0.025 0.102 0.025

JK JK
×

 −
 

Σ = − 
 − − 

T T  (51)

 11 ;
3 3

94.653 29033 12.917
29.033 63.760 2.416

12.917 2.416 7.741
×

 −
 

Σ = − − 
 − 

K K  (52)

3.3 Standard Deviations of the Position Parallel to Coordinate Axes and the Ellipsoid of 
Standard Deviations 

The structure of matrix ΣK;K is:

 

2

2
;

3 3 2

X XY X Y XZ X ZXX XY XZ

XY YY YZ XY X Y Y YZ Y Z

XZ YZ ZZ XZ X Z YZ Y Z Z

σ ρ σ σ ρ σ σ

ρ σ σ σ ρ σ σ

ρ σ σ ρ σ σ σ
×

  Σ Σ Σ   
 Σ = Σ Σ Σ = 
  Σ Σ Σ     

K K  (53)

In the case of the final point, it is:
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 ( )9.729  m 7.985  m 2.782  mX Y Zσ σ σ= ± = ± = ±  (54)

For each and every point within the borehole, standard deviations of the position parallel to the coor-
dinate axes can and ought to be followed up on in the same way, but it is also significant to follow up 
on the main standard deviation of position and orientation, i.e. of the elements. The value of the axes 
of the ellipsoid of standard deviations (Strang, 1997) and of the orientations of the axes of the ellipsoid.

The values, i.e. the sizes of the main axes of the ellipsoid of standard deviations are, in the case of the 
final point:

 ( ) ( ) ( );EigenValues 10.66  m 6.84 m 2.41 ma b c = Σ =K K  (55)

The orientations of the ellipsoid of errors are their eigenvectors:

 ( ) ( );EigenVectorsa b c = ΣK K

  

 (56)

In the case of the final point:

  
0.855489 0.493919 0.155504
0.504664 0.862534 0.036736
0.115983 0.109905 0.987152

a b c
     −
     

= − = − =     
     − −     

  

. (57)

The eigenvalues and eigenvectors have been determined with the aid of Microsoft Excel and with the aid 
of the UDF (User Defined Function) eigenWsymTensorRank2 from the Addis eigentensorrank2.xla, 
which we have developed ourselves, and which is freely available. The ellipsoid of standard deviations 
is presented in Figure 4.

Figure 4: The ellipsoid of standard deviations of the final point in the borehole .

4 DISCUSSION

The model of a borehole can be expanded from a dotted one to a dotted–chorded one for all uses such 
as, for example, visualization, where, due to their infinitesimal nature, it is not important whether a 
part of the curve of the borehole is represented by an arc or a chord. Should the borehole need to be 
presented using a string of circular arcs, the methodology applied in this work would render the task 
very simple. The algorithm used assures us that all position vectors of every one of the points in the 
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borehole are evaluated, as opposed to the final points only. If we take a closer look, the first interval is 
613 m and the last 4.86 m, with all the intermittent intervals taking a value from 9.67 m to 9.97 m. The 
practical convergence to the evaluation of the 3D position of the final point of the borehole would have 
been better had the calculations been started with the first point being the zero value, i.e. the point at 
a distance of 613 m in place of the starting point. It had instead been decided not to follow this course 
of action in order to illustrate that the algorithm may also be used in such situations, which are not rare 
in practice. In cases where every ‘first’ point is used, the first interval usually represents 41.58% of the 
entire length of the borehole, the last interval 0.33% , and all the other intervals from 0.66% to 0.68%.

The algorithm is complete because it ensures that the accuracy of measurement within the borehole is 
included as well as the accuracy of positioning of the starting point within the borehole.

5 CONCLUSION

We had two aims in mind writing the article, the primary being the evaluation of 3D positions of points 
within a borehole and the secondary being the evaluation of the accuracy of 3D positions of points within 
a borehole, and both have been successfully accomplished. 

In order to determine their position in a borehole, points within a borehole have had three measurement 
procedures carried out upon them, namely those to do with measuring magnetic azimuth, inclination 
and borehole length. The three measurements carried out on a single point PM can be presented as the 
measurement vector aT

M. The measurements carried out were discrete, and were carried out over the 
length of the borehole at every previously determined smaller length along the curve of the borehole. 
Based on the set of measurements (the set of vectors of measurements aT

M), it was necessary to evaluate 
the 3D position of the final point within the borehole. The algorithm suggested in this article broke the 
task down into a string of similar, ‘small’ tasks. The first small task started with two successive points, 
J and K, that two observation vectors, aJ and aK, had successively been obtained from, as well as with 
the evaluation of the 3D position of point J, but not of point K, the 3D position of which was the first 
unknown that needed to be figured out.

In order to obtain the evaluation of the position of point K, it was necessary to familiarize ourselves with 
the part of the curve of the borehole in the interval from point J to point K and, seeing as the whole 
curve was divided into a string of practically infinitesimal parts between successive points, approximate 
the part from point J to point K, as well as any other part, with the aid of any exact curve, as long as it 
met other ‘natural’ conditions (Nagode et al., 2013). The exact curve chosen for this approximation of 
a portion of the empirical curve between successive points was a circular arc, which can also encompass 
a straight line, as the latter can be said to be a special case of the former, in which the circular arc has 
an infinite radius.

Using such an algorithm, measurements used for the evaluation of 3D positions of points determined 
the length of the arc of the borehole, i.e. the length of the arc LJK of the true circle cJK for two successive 
points. The premise of such an approach was that when the coordinate starting point of a borehole is 
known and the position of the successive point is unknown, it is possible to evaluate the position of the 
unknown point using its pairing with the known point. Following this, the unknown point, which is 
now known, is algorithmically treated as the starting point had been, and, based on measurement vectors 
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in that point, the coordinates of each successive point are determined. In the article, only one algorithm, 

using vector JK=T


 and true ct and unit c1 circles, was presented, although there are other algorithms, 

based on positioning vectors J of point J, measurement vector aJ at point J and measurement vector aK 
at point K, that could also have been used to evaluate the positioning vector K of point K. The algorithm 
ensures that all position vectors of every one of the points in the borehole are evaluated, as opposed to 
those of the final points only. It also ensures that there is a degree of accuracy not only when measuring 
within the borehole, but also when positioning the starting point within the borehole.

The model of the borehole can be expanded, so that a part of its curve is represented by either an arc 
or a chord, depending on what is more desirable for visualization, as due to the negligible length of a 
part of the curve in comparison to the entire curve, it is not important whether any part of the curve is 
represented with the aid of an arc or chord. There is also a possibility of the model being upgraded to a 
point–arc–point–arc model. It is not as important to explore rough or systematic errors in connection to 
the algorithm, aside from noting the approximation of an empirical curve of a borehole by a circular arc 
is systematic error with a negligible effect, but it is important to explore how coincidental errors have an 
effect upon evaluating the accuracy of positions of points within a borehole. It also isn’t as important to 
know the practical details behind the theoretical approach of the article, but it is perhaps worth noting that 
all practical calculations mentioned in the article have been carried out in Microsoft Excel, using specially 
developed UDFs, with all the Excel and AddIn files being accessible through links in the bibliography.
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