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Workpiece	positioning	into	a	machine’s	workspace	has	become	a	simple	task.	
Advanced	CNC	machines	are	equipped	with	 standardized	clamping	 systems,	
allowed	workpiece	dimensions	are	listed	in	the	machine’s	documentation	and	
tolerance	levels	of	the	end	produced	parts	are	known.	This	gives	users	plenty	
of	 information	and	good	confidence	that	they	are	choosing	the	best	machine	
for	a	specific	task.	For	more	universal	machines	 like	 industrial	robots	this	 is	
not	the	case.	Due	to	their	flexibility	industrial	robots	can	be	an	alternative	to	
specialized	CNC	machines,	 but	when	a	 specific	 task	 should	be	 executed,	 im‐
portant	 information	 is	 missing.	 For	 a	 standard	 industrial	 robot	 the	mecha‐
nisms	layout,	its	dimensions	and	its	reachable	workspace	is	known,	but	accu‐
racy	 levels	 over	 the	 robot’s	 workspace	 are	 not.	 If	 a	 workpiece	 should	 be
milled	 within	 certain	 accuracy	 limits	 the	 robot’s	 documentation	 offers	 no
information	on	how	close	it	can	be	located	to	the	borders	of	the	robot’s	work‐
space.	This	article	deals	with	the	mentioned	problem	with	a	novel	methodolo‐
gy.	 Based	 on	 experimental	 data	we	 found	 that	 a	 standard	 6	 DOF	 industrial	
robot’s	reachable	workspace	can	be	divided	into	two	regions,	one	with	suita‐
ble	milling	accuracy	and	another	with	rapidly	decreasing	milling	accuracy.	To	
isolate	 the	 suitable	 accuracy	 region	 a	 regional	 non‐dominated	 sorting	 algo‐
rithm	 was	 developed	 and	 an	 accuracy	 contour	 separating	 the	 regions	 was	
extracted.	In	the	second	part	of	the	article	a	genetic	search	algorithm	based	on	
regional	 non‐dominated	 sorting	 was	 applied	 to	 find	 the	 biggest	 arbitrary	
shaped	workpiece’s	size,	position	and	orientation	in	the	suitable	milling	accu‐
racy	region	of	the	robot’s	workspace.	
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1. Introduction 

Using	 industrial	 robots	 for	 less	 common	 tasks	 is	 becoming	 increasingly	 interesting	 among	 re‐
searchers,	as	due	to	their	flexibility,	machining	could	become	a	more	regular	application	for	in‐
dustrial	robots.	To	reach	the	level	where	robot	machining	becomes	an	acceptable	alternative	to	
CNC	machining,	robot	machining	accuracy	needs	to	be	analysed,	understood	and	improved.	The	
main	reasons	for	inaccuracies	in	robot	machining	were	classified	and	divided	into	three	groups	
by	 Kubela	 et	 al.	 [1]	 as	 environmental	 errors,	 robot	 dependent	 errors	 and	 process	 dependent	
errors.	Robot	dependent	errors	were	further	divided	into	geometrical,	non‐geometrical	and	sys‐
tem	errors.	Their	study	on	wood	milling	showed	that	the	most	significant	errors	are	the	result	of	
robots	reverse	motion,	causing	end	product	shape	inaccuracies	in	range	from	0.3–0.5	mm.	Geo‐
metric	error	compensation	has	been	studied	by	Wu	et	al.	[2],	who	added	a	fifth	step	to	the	usual	
robot	 calibration	 approach,	 used	 to	 achieve	 the	 desired	 robot	 positioning	 accuracy.	 The	 pro‐
posed	steps	 include	modelling,	design	of	experiments,	measurement,	 identification,	and	 imple‐
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mentation.	Their	goal	was	to	improve	the	standard	approach,	so	that	a	minimum	number	of	ex‐
periments	 is	 required	 for	 robot’s	 calibration.	With	 the	 proposed	 calibration	 technique	 an	 im‐
proved	positioning	accuracy	was	achieved	in	absolute	range	of	up	to	0.17	mm.	Greater	position‐
ing	accuracy	was	measured	by	Józwik	et	al.	[3],	who	used	a	high	speed	camera	to	investigate	the	
effect	of	direction	of	 approach	on	positioning	accuracy.	 In	 their	experiment	 the	authors	 found	
that	positioning	inaccuracy	is	raising	with	robot’s	continuous	operation.	Accuracy	improvement	
in	continuous	motion	of	a	welding	robot	was	achieved	by	Marônek	et	al.	[4]	by	insertion	of	addi‐
tional	points	into	the	robot’s	trajectory.	Due	to	technological	reasons	constant	speed	needs	to	be	
maintained	during	welding.	With	help	of	experiments	the	authors	found	better	trajectory	match‐
ing	at	higher	movement	speeds.	Jezeršek	et	al.	[5]	developed	a	system	for	automatic	trajectory	
generation	for	robotic	welding	based	on	robotic	 laser	scanning.	Accuracy	 levels	comparable	to	
traditional	visually	based	trajectory	generation	methods	were	achieved,	but	teaching	times	were	
shortened	more	than	30‐times.	A	system	for	optical	accuracy	evaluation	of	robots	in	static	and	
dynamic	operation	mode	was	 set	up	by	Papa	and	Torkar	 [6].	 In	 their	 experiment	 the	 authors	
found	the	same	subpixel	accuracy	in	both	modes.	

To	predict	 a	mechanism’s	 accuracy,	different	dexterity	 related	performance	measures	have	
been	 introduced	 in	 the	 past.	 Manipulating	 ability	 of	 end‐effector	 of	 robotic	 mechanisms	 was	
studied	by	Yoshikawa	[7]	and	a	manipulability	index	was	introduced.	Manipulability,	defined	as	
determinant	of	the	Jacobian	matrix	of	a	robotic	mechanism	is	proposed	as	a	robot’s	performance	
indicator.	Other	dexterity	measures	based	on	determinant	of	the	Jacobian	matrix	like	condition	
number	and	monotone	manipulability	were	proposed,	as	summarized	by	Gotlih	et	al.	[8].	In	their	
study	 authors	 demonstrated	 application	 of	 velocity	 anisotropy	 on	 a	 real	 industrial	 robot	 and	
introduced	 a	 four	 dimensional	 robotic	 workspace	 for	 visualisation	 of	 robot’s	 manipulability.	
Problems	of	linking	performance	measures	to	a	robot’s	accuracy	were	exposed	by	Merlet	[9].	In	
his	experiment	only	the	robot’s	manipulability	index	has	shown	the	same	trend	as	its	measured	
accuracy,	but	no	connection	between	manipulability	and	accuracy	was	established.	To	overcome	
unit	based	inconsistency,	transition	from	kinematic	to	dynamic	performance	measures	was	pro‐
posed	and	a	power	manipulability	index	was	introduced	by	Mansouri	and	Ouali	[10].	The	power	
manipulability	index	is	a	combination	of	kinematic	and	static	parameters	and	includes	transla‐
tional	and	rotational	components.	The	authors	showed	that	power	manipulability	is	a	homoge‐
nous	tensor	insensitive	to	physical	units	change.	

Optimization	of	robotic	systems	with	algorithms	based	on	performance	measures	was	stud‐
ied	by	many	authors.	Dynamic	performance	measures	were	 found	 to	be	more	significant	 than	
kinematic	by	Vosniakos	and	Matsas	[11].	The	authors	used	genetic	algorithm	for	optimal	posi‐
tioning	of	a	predefined	milling	path	into	a	robot’s	workspace.	They	found	out	that	with	applica‐
tion	of	genetic	algorithm	an	improvement	in	robot’s	manipulability	and	a	reduction	in	joint	tor‐
ques	can	be	achieved.	Genetic	algorithm	was	also	used	for	robot’s	path	planning	to	avoid	colli‐
sion	of	robot’s	structure	with	obstacles	 in	 its	workspace	[12].	Another	approach	of	robot	path	
planning	 considering	 a	 mechanical	 power	 index	 and	 an	 obstacle	 avoidance	 index	 in	 a	 multi‐
criteria	optimization	problem	was	suggested	by	R.	dos	Santos	et	al.	[13].	To	overcome	local	min‐
ima	authors	have	used	a	two‐phase	optimization	process	and	the	sequential	linear	programming	
method.	 Results	 showed	 good	 agreement	with	 Pareto	 optimality	 as	 better	 obstacle	 avoidance	
caused	an	increase	in	power	consumption.	A	multi‐criteria	path	planning	algorithm	for	robotic	
laser	 cutting	was	developed	by	Dolgui	 and	Pashkevich	 [14]	 and	 implemented	 in	 an	 industrial	
software	 package,	 yielding	 significant	 reduction	 in	 process	 planning	 and	 changeover	 time	 for	
end	users.	A	three	step	optimization	procedure	for	workpiece	positioning	 into	a	robot’s	work‐
space	was	proposed	by	Lin	et	al.	[15].	The	authors	developed	an	approach	based	on	manipulabil‐
ity	and	stiffness	indexes	and	introduced	a	deformation	index	to	refine	the	final	workspace	maps,	
where	contour	lines	dividing	the	robot’s	workspace	into	sub	regions	indicate	optimal	workpiece	
positioning	locations.		

To	position	a	workpiece	into	a	robot’s	refined	workspace	precisely,	it	is	necessary	to	extract	
individual	contour	lines.	Techniques	for	contour	extraction	are	mainly	associated	with	computer	
vision	and	 shape	detection	and	are	used	 in	various	engineering	 fields.	An	approach	 for	work‐
piece	 localization	 and	 its	 shape	 deviations	 from	 nominal	 geometry	 in	 robotic	 deburring	 was	
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proposed	by	Kuss	et	al.	[16].	A	point	cloud	of	a	CAD	model	was	compared	with	a	point	cloud	rep‐
resenting	a	real	workpiece	in	a	robot’s	workspace.	The	best	matching	point	clouds	were	used	to	
generate	workpiece	contours	and	trajectories	for	the	deburring	process.	In	their	experiment	the	
authors	used	a	milling	robot	equipped	with	a	stereo	camera	 for	shape	sensing	and	achieved	a	
significant	improvement	in	deburring	quality.	A	robotic	cell	for	optical	workpiece	detection	was	
developed	 by	 Klancnik	 et	 al.	 [17].	 The	 authors	 used	 neural	 networks	 for	 system	 calibration	
where	 the	 relation	 between	 captured	 pictures	 and	 the	 robot’s	 coordinate	 system	was	 learnt.	
Numerous	tests	proved	the	system	adequate	for	use	in	practice.	Karimi	and	Nategh	[18]	intro‐
duced	contour	maps	to	graphically	estimate	kinematic	errors	in	hexapod	machines	for	an	opti‐
mal	workpiece	setup.	The	authors	developed	an	analytical	model	for	kinematic	error	estimation	
with	 an	 average	 11	 %	 discrepancy	 from	 experimental	 results.	 Contour	 line	 generation	 from	
short	line	segments	with	a	genetic	algorithm	based	method	was	proposed	by	Wei	et	al.	[19].	An	
automatic	octree	based	algorithm	 for	 façade	and	opening	contour	detection	 from	point	clouds	
obtained	with	terrestrial	laser	scanning	was	developed	by	Truong‐Hong	and	Laefer	[20]	where	a	
knowledge	 database	was	 used	 for	 contour	 validation.	 Relative	 errors	 of	maximum	 3	%	were	
found	 between	 measured	 drawings	 and	 the	 reconstructed	 models.	 A	 method	 for	 building	
boundary	 identification	 based	 the	 Delaunay	 triangulation	 was	 developed	 by	 Awrangjeb	 and	
Guojun	 [21].	 By	 defining	 a	maximum	point	 to	 point	 distance	 the	 algorithm	proved	 capable	 of	
detecting	concave	edges	and	holes	of	any	point	cloud	shape.	

2. Material and methods 

An	experiment	to	evaluate	the	effect	of	different	performance	measures	on	robot	milling	accura‐
cy	was	 set	 up	by	Veber	 [22]	 in	 his	master’s	 thesis.	 A	 standard	6	DOF	 industrial	milling	 robot	
equipped	with	a	milling	tool	and	a	clamping	table	was	selected	for	the	experiment	and	the	sys‐
tem	was	calibrated.	To	reduce	 influence	of	human	errors	each	experiment	was	repeated	three	
times.	Workpieces	 of	 polymer	 composite	material	with	 low	hardness	were	 selected	 to	 reduce	
inaccuracies	caused	by	cutting	 forces.	According	 to	 the	robot’s	manufacturer,	workpiece	hard‐
ness	should	not	exceed	35	N/mm2	and	deviations	in	range	of	±	0.12	mm	should	be	expected	due	
to	 the	 robot’s	 rigidity.	With	 all	 inaccuracy	 causes	 controlled,	measured	 inaccuracies	were	 ex‐
pected	to	be	influenced	mainly	by	the	robot’s	dexterity.	

	 In	the	experiment	 five	milling	locations	were	selected	and	at	each	location	three	work‐
pieces	were	milled	 in	 three	sequential	runs.	The	positioning	of	 the	workpieces	 is	presented	 in	
Table	1,	where	x,	y,	z	represent	distances	in	X,	Y	and	Z	direction	from	the	robot’s	base	coordinate	
system	and	d	is	the	resulting	absolute	distance.	

Edge	and	circular	pocket	milling	operations	were	performed	on	each	workpiece.	End	shapes	
were	then	measured	with	a	coordinate	measuring	machine.	Measurement	results	compared	to	
nominal	values	are	presented	in	Table	2.	

	
Table	1	Initial	positions	of	the	measured	workpieces	

Pos.	 x	(mm)	 y (mm) z (mm) d	(mm)
1	 1940	 1053 610 2207	
2	 2060	 ‐498 610 2060	
3	 1283	 0 610 1376	
4	 1515	 821 610 1723	
5	 1811	 ‐709 610 1945	

	
Table	2	Robot	milling	measurement	results 

Pos.	
Experiment	1	 Experiment	2 Experiment	3	

Nominal	value	(mm)	 Nominal value	(mm) Nominal	value	(mm)
20	 80	 20 80 20	 80

1	 20.134	 80.122	 20.136 80.122 20.134	 80.124
2	 20.166	 80.143	 20.167 80.142 20.167	 80.143
3	 20.477	 80.522	 20.476 80.523 20.476	 80.523
4	 20.165	 80.134	 20.166 80.134 20.165	 80.136
5	 20.155	 80.134	 20.155 80.134 20.155	 80.134
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3. Results and discussion 

For	 result	 analysis	 absolute	 errors	 for	measured	 diameters	 and	 edge	 lengths	were	 calculated	
and	a	normalized	distance	parameter	(NDS)	expressed	in	percent	was	introduced.	NDS	was	cal‐
culated	as	the	distance	of	a	workpiece	from	the	robot’s	base	coordinate	system	divided	by	the	
maximum	distance	the	robot	could	reach	with	a	vertical	tool	orientation.	

Fig.	 1	 reveals	 highest	 absolute	 errors	 at	milling	 position	3,	 located	 close	 to	 50	%	NDS.	 For	
workpieces	located	at	63	%	NDS	and	above,	absolute	errors	are	almost	constant	and	do	not	ex‐
ceed	0.2	mm,	which	 is	close	 to	 the	 inaccuracy	caused	by	the	robot’s	rigidity.	 In	range	between	
51	%	 and	 63	%	NDS,	milling	 inaccuracy	 quickly	 raises.	 Due	 to	 high	measurement	 consistency	
indicated	by	 low	result	variation,	human	and	cutting	 force	based	 inaccuracies	can	be	excluded	
and	the	quick	decrease	of	accuracy	at	milling	position	3	can	be	attributed	to	the	robot’s	dexterity.	

Fig.	2	shows	result	point	deviations	from	a	normal	distribution.	Measurement	results	are	rep‐
resented	by	sample	quantiles,	while	theoretical	quantiles	represent	a	standard	normal	distribu‐
tion.	For	both	measured	quantities	the	highest	deviations	are	found	at	highest	inaccuracies.	This	
indicates	 a	 nonlinear	 dependency	 between	workpiece	 distance	 from	 the	 robot’s	 base	 and	 the	
robot’s	milling	 accuracy,	 based	 on	which	 a	 sharp	 boundary	 separating	 the	 robot’s	workspace	
into	two	milling	accuracy	regions	is	expected.	

	

Fig.	1	Absolute	errors	for	diameter	(left)	and	edge	length	(right)	versus	normalized	distance 
	

	

Fig.	2	Absolute	error	deviations	for	diameter	(left)	and	for	edge	length	(right)	

3.1 Accuracy contour for robot milling 

In	order	to	extract	the	suitable	milling	accuracy	region	from	the	robot’s	workspace,	a	connection	
between	accuracy	and	dexterity	was	established.	Because	of	the	unit	based	inconsistency	of	ma‐
nipulability	[10]	we	did	not	 intend	to	 find	a	model	connecting	accuracy	with	dexterity	over	 its	
complete	range,	 instead	we	only	equated	accuracy	and	manipulability	at	a	constant	value.	The	
dexterity	measure	defined	by	Yoshikawa	[7]	was	found	to	be	the	most	reliable	and	was	therefore	
used	 in	 our	 analysis.	By	 assuming	 that	 same	manipulability	 causes	 same	milling	 accuracy,	we	
were	 able	 to	 extrapolate	 a	milling	 accuracy	 boundary	 value	 to	 the	 robot’s	 three	 dimensional	
workspace	to	create	a	spatial	accuracy	contour,	separating	the	region	of	suitable	milling	accura‐
cy	from	the	region	of	quickly	reducing	milling	accuracy.	
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As	an	example	a	standard	6	DOF	robot,	described	by	Denavit‐Hartenberg	(DH)	notation,	given	
in	Table	3	was	chosen.	

With	inverse	kinematics	the	robot’s	joint	angles	and	dexterity	values	at	all	five	milling	posi‐
tions	were	found.	Tool	orientation	during	milling	was	parallel	to	the	robot’s	main	Z	axis,	there‐
fore	Θ4	and	Θ6	 joints	were	considered	constant.	Additionally,	all	workpieces	were	projected	to	
the	Y	=	0	plane,	 so	 that	 rotation	about	 robot’s	 first	 axis	Θ1	was	also	 considered	constant.	As	a	
result	only	Θ2,	Θ3	and	Θ5	contributed	to	dexterity	calculation.		

Normalized	dexterity	(ND)	was	introduced	as	actual	dexterity	divided	by	the	highest	dexteri‐
ty	of	the	mechanism.	ND	is	expressed	in	percent	(Eq.	1).	

ܦܰ ൌ
ܬݐ݁݀

maxሺ݀݁ܬݐሻ
∙ 100	 (1)

Table	4	shows	relative	joint	angles	and	ND	values	of	the	robot	at	all	five	milling	positions.	Ro‐
bot’s	initial	angle	positions	were	Θ1	=	Θ2	=	Θ3	=	Θ6	=	0°,	Θ4	=	180°	and	Θ5	=	90°.	

Results	presented	in	Tables	2	and	4	reveal	that	the	rapid	decrease	in	accuracy	happens	be‐
tween	22	%	and	45	%	normalized	dexterity.	Based	on	our	conclusion	that	one	region	with	suita‐
ble	milling	accuracy	exists	and	that	the	transition	between	the	suitable	accuracy	region	and	the	
rapidly	 decreasing	 accuracy	 region	 is	 sharp,	 40	 %	 normalized	 dexterity	 was	 chosen	 as	 the	
boundary	value	for	accuracy	contour	generation.	

Fig.	 3	 shows	 the	 clamping	 table	 covered	by	normalized	dexterity	 contours	 for	 vertical	 tool	
orientation.	Workpieces	at	actual	milling	positions	are	represented	by	black	squares	scaled	by	5.	
	

Table	3	DH	notation	of	the	discussed	robot 
Link	 d	(mm)	 a	(mm) α (°) θ (°) Range	(°)
0	 0 0 0 0 0	
1	 750 350 90 0 +/‐185
2	 0 1250 0 0 0/‐146
3	 0 ‐55 90 90 +155/‐119
4	 1100	 0 90 180 +/‐350
5	 0 0 90 90 +/‐125
6	 0 0 0 0 +/‐350

Tool	tip	 A B C D E	

	
Table	4	Joint	angles	and	ND	at	milling	positions 

Pos.	 Θ1	(°)	 Θ2	(°)	 Θ3 (°) Θ4 (°) Θ5 (°) Θ6	(°)	 ND (%)
1	 0	 37.8	 17.2 180 125 0	 81.8
2	 0	 43.0	 6.0 180 130 0	 72.6
3	 0	 62.0	 ‐35.7 180 153.8 0	 22.2
4	 0	 53.0	 ‐15.8 180 142.8 0	 46.1
5	 0	 46.6	 ‐1.8 180 135.2 0	 63.9

Fig.	3	Top	view	of	workpieces	on	clamping	table	with	dexterity	contours	
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To	generate	the	accuracy	contour,	regions	in	the	robot’s	workspace	with	at	last	40	%	normalized	
dexterity	were	isolated.	As	revolution	about	the	robot’s	first	axis	does	not	affect	its	dexterity	it	
was	 possible	 to	 consider	 only	 the	 workspace	 cross	 section	 and	 revolve	 results	 to	 three‐
dimensional	 space	 afterwards.	 According	 to	 this	 simplification	 a	 two‐	 dimensional	 restricted	
workspace	 was	 created,	 only	 containing	 points	 with	 normalized	 dexterity	 values	 40	%	 and	
above.	For	a	more	general	solution	tool	orientation	was	considered	free.	

To	isolate	contour	points	of	the	restricted	workspace	a	regional	non‐dominated	sorting	algo‐
rithm	was	developed.	The	algorithm	searches	for	non‐dominated	minimum	points	defined	by	x	
and	z	in	the	restricted	workspace	point	cloud,	which	represent	to	the	robot’s	tool	tip	positions	in	
X	 and	 Z	 direction	 relative	 to	 the	 robot’s	 base	 coordinate	 system.	 Extracted	 two‐	 dimensional	
contour	points	form	the	outer	boundary	of	the	subspace	in	the	robot’s	complete	workspace,	in‐
side	which	milling	with	suitable	accuracy	is	possible.	Pseudocode	of	the	algorithm	is	presented	
in	Fig.	4.	 IC	 stands	 for	 iteration	 count,	RC	 stands	 for	 region,	LE	 stands	 for	number	of	 local	 ex‐
tremes	and	Q1‐Q4	are	bool	variables	representing	quadrant	1‐4.	MA	stands	for	mirror	axis,	NnD	
stands	for	non‐dominated	and	AC	stands	for	accuracy	contour.	Initialization	values	are	present‐
ed	in	Table	5.	

	To	find	the	first	non‐dominated	front	in	the	restricted	workspace,	which	corresponds	to	the	
first	 iteration	 in	Fig.	 4,	 regular	non‐dominated	 search	 algorithm	was	 applied.	 In	 the	 following	
iterations	 the	 restricted	workspace	was	mirrored	 over	 each	 axis	 to	 expose	 outer	 regions	 and	
isolate	front	points	contributing	to	the	final	accuracy	contour.	Due	to	the	shape	of	the	restricted	
workspace	shown	in	Fig.	5,	local	extreme	points	in	X	and	Z	direction	had	to	be	found	in	order	to	
generate	an	equally	dense	contour.	In	our	case	one	local	extreme	point	was	defined	in	initializa‐
tion	 dividing	 the	 concave	 region	 into	 two	 refined	 regions,	 but	 an	 arbitrary	 refinement	 level	
would	be	possible	if	necessary.	The	refined	regions	were	restricted	by	squares	ranging	from	the	
existing	 regions	 contour’s	 end	 point	 to	 the	 enclosed	 local	 extreme	 point.	 The	 relevant	mirror	
axis	for	each	refined	region	was	determined	based	on	the	adjacent	region’s	mirror	axis	and	the	
transformation	Table	6,	where	Q1‐Q4	represent	square	quadrants	in	XZ	plane	(Fig.	5)	sequenced	
clockwise	starting	at	the	top	right	corner.	
	

1	 Initialization.	
2	 If	IC	<	5:	
3	 	 If	IC	=	1	∨	Q3	=	1:	MA	=	None,	NnD	sort,	Q3	=	0,	IC	+	1,	go	to	step	2.	
4	 	 If	IC	=	2	∨	Q4	=	1:	MA	=	X,	NnD	sort,	Q4	=	0,	IC	+	1,	go	to	step	2.	
5	 	 If	IC	=	3	∨	Q2	=	1:	MA	=	Z,	NnD	sort,	Q2	=	0,	IC	+	1,	go	to	step	2.	
6	 	 If	IC	=	4	∨	Q1	=	1:	MA	=	X	∧	MA	=	Z,	NnD	sort,	Q1	=	0,	IC	+	1,	go	to	step	2.	
7	 Else:		
8	 	 If	RC	=	0:	
9	 	 	 If	LE	>	0:	RC	=	1,	go	to	step	7.	
10	 	 	 If	LE	=	0:	Go	to	step	13.	
11	 	 If	0	<	RC	<	LE	+	1:	RC	boundaries.	Find	mirror	axes.	Q	(1‐4)	=	1,	RC	=	RC	+	1,	go	to	step	2.	
12	 	 If	RC	=	LE	+	1:	Go	to	step	13.	
13	 Join	NnD	regions	into	suitable	accuracy	contour.	

	

Fig.	4 Pseudocode	for	accuracy	contour	generation	
	

Table	5	Regional	non‐dominated	sorting	algorithm	variables	and	initial	values	
Regional	NnD	–	variables	 Unit Value	
Iteration	count	(IC)	 ‐ 1	
Region	count	(RC)	 ‐ 0	
Local	extremes	(LE)	 ‐ 1	
Quadrants	(Q1‐Q4)	 ‐ 0	
	

Table	6	Transformation	table	for	refined	region	definition	
Quadrant	 Change	direction Quadrant	

Q1	  Q2	
Q2	  Q1	
Q3	  Q4	
Q4	  Q3	
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Fig.	5	Cross	section	of	robot’s	complete	(left)	and	restricted	dexterous	workspace	(right)	with	
																							projected	workpiece	positions	and	accuracy	contour	
	

After	a	refined	region	was	mirrored	over	the	relevant	axis,	the	non‐dominated	sorting	algo‐
rithm	was	applied	to	extract	 the	regions	contour	points.	Finally,	all	partial	results	were	 joined	
into	the	accuracy	contour.	

On	the	left	side	of	Fig.	5	complete	dexterous	workspace	cross	section	with	accuracy	contour	
and	five	workpiece	positions	is	shown.	Blue	dots	represent	singularity	points,	which	are	regions	
with	lowest	dexterity,	green	and	yellow	dots	represent	transition	regions	with	medium	dexterity	
and	 red	 dots	 represent	 regions	 with	 highest	 dexterity.	 Accuracy	 contour	 is	 marked	 with	 a	
dashed	black	line.	Workpieces	are	presented	in	the	projected	plane	and	scaled	by	5.	The	plot	on	
the	right	side	shows	the	suitable	milling	accuracy	region	with	normalized	dexterity	values	40	%	
and	above,	 the	accuracy	contour	and	all	 five	projected	workpiece	positions.	For	accuracy	con‐
tour	generation	only	the	bigger	point	cloud	was	considered	as	the	revolution	about	the	robot’s	
main	Z	axis	covers	complete	360	°.	

Now,	the	tool	orientation	effect	becomes	visible.	Dexterity	contours	corresponding	to	a	fixed	
tool	axis	shown	in	Fig.	3	are	different	from	dexterity	contours	shown	in	Fig.	5,	where	tool	orien‐
tation	was	considered	free.	Free	tool	orientation	enables	another	degree	of	freedom,	which	in‐
creases	the	size	of	the	suitable	region.	By	allowing	free	tool	orientation,	also	the	workpiece	clos‐
est	to	robot’s	base	is	located	inside	the	suitable	milling	accuracy	region,	meaning	that	all	work‐
pieces	could	be	milled	with	suitable	accuracy,	regarding	their	size	and	assuming	correct	tool	and	
technology	selection.	

3.2 Optimization of workpiece positioning 

With	the	separation	of	the	robot’s	workspace	into	two	milling	quality	regions,	it	is	interesting	to	
find	the	size,	position	and	orientation	of	the	biggest	workpiece	that	can	be	milled	with	suitable	
accuracy.	As	 the	 three	dimensional	workspace	of	 the	robot	 in	consideration	can	be	created	by	
revolving	 its	 cross	 section	about	 its	main	Z	axis,	 it	 is	obvious	 that	 the	biggest	workpiece	with	
eight	corner	points	is	a	parallelepiped.	
	 Genetic	algorithm	was	applied	as	the	search	tool	for	the	biggest	parallelepiped.	The	algorithm	
was	set	up	as	an	extension	of	the	regional	non‐dominated	sorting	algorithm	used	to	create	the	
accuracy	contour.	Pseudocode	of	the	algorithm	is	presented	in	Fig.	6	where	IC	stands	for	itera‐
tion	count,	MI	for	maximum	number	of	iterations,	PC	for	population	count,	PS	for	population	size	
and	CC	for	convergence	criteria.	GA	stands	for	genetic	algorithm,	RP	for	reference	point	and	NnD	
stands	for	non‐dominated.		

The	algorithm	requires	correct	 initialization	as	shown	in	Fig.	6.	Maximum	allowed	iteration	
number,	 population	 size,	 reproduction,	 crossover	 and	mutation	 frequency,	 mutation	 strength	
and	convergence	criteria	were	declared	initialization	variables.	Maximum	number	of	iterations	
defines	the	maximum	allowed	loop	repetitions,	population	size	defines	the	quantity	of	parallele‐
pipeds	generated	in	one	iteration,	reproduction	frequency	defines	the	quantity	of	individuals	to	
be	transferred	to	the	next	generation,	crossover	frequency	defines	the	fraction	of	individuals	to	
participate	in	gene	exchange	and	mutation	frequency	defines	the	number	of	individuals	to	mu‐
tate	with	a	magnitude	of	geometrical	change	defined	by	mutation	strength.	Convergence	criteria	
is	an	early	exit	criteria.	Values	used	for	initialization	are	presented	in	Table	7.		
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1	 Initialization.	
2	 If	IC	=	1:	Boundaries	for	first	generation,	go	to	step	5.	
3	 If	1<	IC	<	MI:	Boundaries	for	non‐first	generation,	GA	mechanics,	go	to	step	5.	
4	 If	IC	=	MI:	Go	to	step	12.	
5	 Generate	parallelepipeds,	add	RP	to	restricted	workspace	list,	NnD	sort.	
6	 If	RP	is	on	front:	Discard	parallelepiped,	go	to	step	2.	
7	 Else:	Add	parallelepiped	to	population.		
8	 If	PC	<	PS:	Go	to	step	2.	
9	 Else:		
10	 	 IC	=	IC	+1,		
10	 	 	 If	CC	=	True:	Go	to	step	12.	
11	 	 	 Else:	Go	to	step	2.	
12	 Find	global	best.	

	

Fig.	6	Pseudocode	of	the	genetic	search	algorithm	
	

Table	7	Search	algorithm	variables	and	their	initial	values	
GA	‐	variables	 Unit Value	
Max.	iteration	number	(MI)	 ‐ 100	
Population	size	(PS) ‐ 20	
Reproduction	frequency	(RF)	 % 10	
Crossover	frequency (CF)	 % 60	
Mutation	frequency	(MF)	 % 30	
Mutation	strength	(MS)	 ‐ 0.1	
Convergence	criteria (CC)	 ‐ 10	

	
	 To	generate	a	parallelepiped	a	random	corner	point	and	two	edge	lengths	describing	a	paral‐
lelogram	 in	 the	Y	=	0	plane	were	created.	The	 third	dimension	was	added	by	extrusion	of	 the	
parallelogram	in	Y	direction.	For	the	first	iteration	different	boundary	conditions	to	restrict	par‐
allelepiped’s	sizes	closely	to	the	allowed	region	were	used	as	for	the	following	iterations.	In	the	
first	iteration	parallelepiped’s	sizes,	positions	and	orientations	were	generated	by	Eqs.	2‐8:	

ݔ ൌ ݔሼ݈ܴܽ݁݉݀݊ܽݎ  500, ௫ݔ െ 500ሽ	 (2)

ݕ ൌ 0	 (3)

ݖ ൌ ݖሼ݈ܴܽ݁݉݀݊ܽݎ  500, ௫ݖ െ 500ሽ	 (4)

݈ ൌ ,ሼ0݈ܴܽ݁݉݀݊ܽݎ 1ሽ ∙
௫ݔ െ ݔ

2
	 (5)

݈ ൌ ,ሼ0݈ܴܽ݁݉݀݊ܽݎ 1ሽ ∙
௫ݖ െ ݖ

2
	 (6)

݈ ൌ ,ሼ0݈ܴܽ݁݉݀݊ܽݎ 1ሽ ∙
௫ݔ െ ݔ

2
	 (7)

߮ ൌ ,ሼ0݈ܴܽ݁݉݀݊ܽݎ 	ሽߨ (8)

where	x,	y,	z	are	the	biggest	parallelogram’s	corner	point	coordinates,	φ	is	its	orientation	about	
the	Y	axis	and	la,	lb	and	lc	are	the	associated	parallelepiped’s	edge	lengths.	xmin,	xmax,	zmin	and	zmax	
are	the	extreme	points	of	the	accuracy	contour	in	X,	Y	and	Z	direction.	As	the	workspace	is	rota‐
tionally	symmetrical	xmin	and	xmax	are	used	as	extreme	points	in	Y	direction	and	only	one	orienta‐
tion	has	to	be	considered	variable.	

After	 a	 parallelepiped	 was	 created	 and	 positioned	 in	 the	 robot’s	 workspace,	 its	 reference	
points	were	added	to	the	restricted	workspace	point	cloud,	whereby	corner	points	of	extruded	
corners	were	projected	to	the	Y	=	0	plane.	Because	of	the	concave	shape	of	the	accuracy	contour	
also	edge	points	had	to	be	checked	by	the	contour	criteria,	therefore	three	equidistant	reference	
points	were	created	on	each	edge	and	added	to	the	restricted	workspace	point	cloud.	Then	re‐
gional	non‐dominated	sorting	was	applied	on	the	extended	point	cloud.	If	a	reference	point	was	
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found	non‐dominated	 it	was	 located	outside	of	 the	allowed	 space	and	a	workpiece	 containing	
such	a	point	would	 fall	outside	of	 the	robot’s	suitable	milling	region.	To	avoid	bad	 individuals	
proceeding	 to	 the	next	 generation,	 every	parallelepiped	 that	 failed	 the	above	 criteria	was	dis‐
carded	and	a	new	one	was	created	instead.	After	as	many	acceptable	parallelepipeds	as	defined	
by	population	size	were	created,	they	were	sorted	by	relevance,	where	bigger	volume	was	con‐
sidered	better.		

For	the	following	iterations	GA	mechanisms	selection,	reproduction,	crossover	and	mutation	
were	applied	to	create	new	generations	of	parallelepipeds.	For	reproduction,	only	the	best	indi‐
viduals	from	the	last	generation	were	used.	If	multiple	individuals	were	tied,	a	random	selection	
among	them	was	made.	In	crossover	each	individual	from	the	last	generation	could	participate	
multiple	times.	To	avoid	reproduction	an	individual	could	never	be	crossed	with	itself	and	at	last	
one	 gene	was	 exchanged	by	 the	parents.	 Eqs.	 9‐15	were	used	 to	 generate	 new	 individuals	 by	
mutation,	 where	 index	 old	 defines	 the	 selected	 variables	 old	 value	 and	 MS	 defines	 mutation	
strength.	Each	individual	from	the	last	generation	could	participate	in	mutation	with	same	prob‐
ability.		

ݔ ൌ ௗݔ  ,ሼെ100݈ܴܽ݁݉݀݊ܽݎ 100ሽ ∙
௫ݔ
ݔ

∙ 	ܵܯ (9)

ܻ ൌ 0	 (10)

ݖ ൌ ௗݖ  ,ሼെ100݈ܴܽ݁݉݀݊ܽݎ 100ሽ ∙
௫ݖ
ݖ

∙ 	ܵܯ (11)

݈ ൌ ݈,ௗ  ,ሼെ100݈ܴܽ݁݉݀݊ܽݎ 100ሽ ∙
௫ݔ

ݔ
∙ 	ܵܯ (12)

݈ ൌ ݈,ௗ  ,ሼെ100݈ܴܽ݁݉݀݊ܽݎ 100ሽ ∙
௫ݖ
ݖ

∙ 	ܵܯ (13)

݈ ൌ ݈,ௗ  ,ሼെ100݈ܴܽ݁݉݀݊ܽݎ 100ሽ ∙
௫ݔ

ݔ
∙ 	ܵܯ (14)

߮ ൌ ߮ௗ  ,ሼ0݈ܴܽ݁݉݀݊ܽݎ ሽߨ ∙ 	ܵܯ (15)

	 The	optimization	loop	was	repeated	until	a	parallelepiped	was	found	to	be	the	best	for	same	
iteration	 count	 as	 defined	 by	 convergence	 criteria	 or	 until	 maximum	 iteration	 number	 was	
reached.	On	 completion	 the	algorithm	returned	 the	parallelepiped	with	 the	biggest	 volume	as	
the	optimization	target.	The	biggest	parallelepiped	represents	the	size,	position	and	orientation	
of	the	biggest	workpiece	that	can	be	milled	with	the	chosen	accuracy	with	the	discussed	robot.		
	 In	the	first	run	the	algorithm	did	not	converge	with	the	defined	settings.	Workpieces	still	in‐
creased	in	size	from	generation	to	generation,	indicating	space	for	improvement.	For	this	reason	
an	efficiency	mechanism	was	built	 into	the	code,	generating	a	restart	file	if	maximum	iteration	
number	was	reached	before	convergence	criteria.	From	the	restart	file	a	new	optimization	run	
could	be	started	with	 the	 individuals	 from	the	 last	generation	of	 the	previous	run	adopted	 for	
the	initial	generation	of	the	new	optimization	run.	In	our	case,	six	optimization	runs	were	per‐
formed	to	find	the	target	workpiece.	

Locations	of	two	most	opposite	corner	points	of	the	biggest	workpiece	found	by	the	applied	
genetic	algorithm	are	Ax	=	2000.23	mm,	Ay	=	‐1162.99	mm,	Az	=	1963.87	mm	and	Gx	=	1354.13	mm,	
Gy	=	1162.99	mm,	Gz	=	292.81	mm.	Edge	lengths	la,	lb	and	lc	are	la	=	1002.44	mm,	lb	=	1486.24	mm	
and	lc	=	2325.98	mm,	where	la	is	the	distance	between	two	corner	points	on	the	same	edge	of	the	
parallelepiped	in	X	direction	and	it	 is	rotated	by	angle	φ	about	the	Y	axis	 in	counter	clockwise	
direction	in	front	view,	lb	is	the	distance	between	two	corner	points	on	the	same	edge	of	the	par‐
allelepiped	in	Z	direction	and	it	is	rotated	by	angle	φ	about	the	Y	axis	in	counter	clockwise	direc‐
tion	in	front	view	and	lc	is	the	distance	between	two	corner	points	on	the	same	edge	of	the	paral‐
lelepiped	 in	 Y	 direction.	Workpiece	 rotation	 about	 the	 Y	 axis	 is	φ	 =	 3.37°.	 The	 volume	 of	 the	
workpiece,	calculated	as	the	product	of	its	edge	lengths	is	3.47	×	109	mm3.		
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The	workpiece	is	presented	in	Fig.	7.	Graphics	on	the	left	hand	side	show	workpiece	size,	po‐
sition	and	orientation	in	the	robot’s	complete	workspace,	while	graphics	on	the	right	hand	side	
show	 the	 same	workpiece	 in	 the	 robot’s	workspace	without	 singularities.	Accuracy	 contour	 is	
plotted	in	Y	=	0	plane	only.	Dexterity	in	blend	colours	is	used	for	workspace	presentation,	but	for	
size,	position	and	orientation	 search	only	 the	accuracy	contour	marked	 in	black	was	 relevant.	
For	each	case	figures	are	presented	in	default,	front	and	in	top	view.	
	

	

	

	

	

	

	

	

	

	

	

	

	

Fig.	7 Optimized	workpiece	in	the	robot’s	workspace	with	accuracy	contour:	with	singularity	points	(left),	
												without	singularity	points	(right)	

4. Conclusion 

The	article	demonstrates	a	methodology,	based	on	innovative	algorithms,	to	isolate	a	refined	sub	
region	in	a	robot’s	complete	workspace	that	allows	milling	with	suitable	accuracy.	A	parallelepi‐
ped	 shaped,	 maximum	 sized	 workpiece	 and	 its	 position	 and	 orientation	 in	 a	 robot’s	 refined	
workspace	were	 found	as	an	example,	but	any	arbitrary	shaped	object	or	a	number	of	objects	
can	be	positioned	into	the	refined	region	instead	by	using	the	proposed	method.		



Determination of accuracy contour and optimization of workpiece positioning for robot milling 
 

 The presented methodology can also be applied to robotic mechanisms in different manufac-
turing environments. Instead of defining the accuracy contour by milling measurements, other 
machining processes to create performance contours can be used. Contours for a robot’s posture 
accuracy for grasping and positioning, measurement accuracy contours for tolerance control of 
big welded parts and many more can be created to optimally restrict a robot’s workspace. Some 
analytical performance measures that can be used for contour generation were also discussed in 
this article.  

It is to be noted that complex contour shapes may require a different extraction approach 
than the regional non-dominated sorting algorithm presented in this article. The algorithm could 
be used because of simplicity of the accuracy contour, containing only two inflection points that 
were easy to identify and was tailored for quick contour extraction as it was intended to serve as 
the optimization function for the search algorithm. A general contour extraction algorithm 
would consider each point from the initial point cloud more often and would be less suitable for 
workpiece size and placement optimization. 

Genetic algorithm was applied for workpiece size, position and orientation search, because of 
good results reported for similar problems by other authors. Discard penalty was introduced for 
individuals violating the accuracy contour criteria. Because of the penalty each new iteration 
took longer to complete as workpieces from earlier generations were closer to contour bounda-
ries and discarded more often. An algorithm with faster convergence is being developed, allow-
ing a more general contour generation algorithm to be used as optimization function. 
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