VSEBINA – CONTENTS PREGLEDNI ZNANSTVENI ^LANKI – REVIEW ARTICLES Plazemska sterilizacija bakterij s kisikovo plazmo Oxygen plasma sterilization of bacteria D. Vujo{evi}, Z. Vranica, A. Vesel, U. Cvelbar, M. Mozeti~, A. Drenik, T. Mozeti~, M. Klanj{ek-Gunde, N. Hauptman . . . . . . . . . . . . 227 IZVIRNI ZNANSTVENI ^LANKI – ORIGINAL SCIENTIFIC ARTICLES A comparison of experimental results and computations for cracked tubes subjected to internal pressure Primerjava eksperimentalnih rezultatov in izra~una za cevi z razpoko, ki so obremenjeni z notranjo razpoko J. Capelle, I. Dmytrakh, J. Gilgert, Ph. Jodin, G. Pluvinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Fatigue problems of transmission belts: a viscoelastic analysis of the strain-accumulation process Problem utrujanja pogonskih jermenov: viskoelasti~na analiza procesa akumuliranja deformacije I. Emri, J. Kramar, A. Nikonov, U. Florjan~i~, A. Hribar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 A micro-macro analysis of the tool damage in precision forming Mikro-makroanaliza po{kodb orodja za natan~no kovanje T. Rodi~, J. Korelc, A. Pristov{ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 The stability of cast alloys and CVD coatings in a simulated biomass-combustion atmosphere Stabilnost zlitin in CVD-prevlek v simulirani atmosferi zgorevanja biomas D. A. Skobir, M. Spiegel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Nastanek LaCrO3 med zgorevalno sintezo LaCrO3 formation during combusttion synthesis K. Zupan, M. Marin{ek, S. Pejovnik, T. Hrobat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Dinami~ne mehani~ne lastnosti elastomernih kompozitov s polnili nanovelikosti Dynamic mechanical properties of elastomeric composites with nano-scale fillers Z. [u{teri~, T. Kos, M. [u{tar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Fracture toughness of a high-strength low-alloy steel weldment @ilavost loma zvara visokotrdnega malolegiranega jekla J. Tuma, N. Gubeljak, B. [u{tar{i~, B. Bundara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Solidification and fracture of an as-cast Ni alloy Strjevanje in prelom lite nikljeve zlitine M. Torkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 STROKOVNI ^LANKI – PROFESSIONAL ARTICLES Laboratory accreditation – confidence in the activities of conformity assessment of products Laboratorijska akreditacija- zaupanje v aktivnost ocene ustreznosti proizvodov A. Klobodanovi}, M. Oru~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 LETNO KAZALO, LETNIK 40, 2006 – INDEX, VOLUME 40, 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 ISSN 1580-2949 UDK 669+666+678+53 MTAEC9, 40(6)225–285(2006) MATERIALI IN TEHNOLOGIJE LETNIK VOLUME 40 [TEV. NO. 6 STR. P. 225–285 LJUBLJANA SLOVENIJA NOV.-DEC. 2006 D. VUJO[EVI] ET AL.: PLAZEMSKA STERILIZACIJA BAKTERIJ S KISIKOVO PLAZMO PLAZEMSKA STERILIZACIJA BAKTERIJ S KISIKOVO PLAZMO OXYGEN PLASMA STERILIZATION OF BACTERIA Danijela Vujo{evi}1, Zoran Vranica1, Alenka Vesel 2, Uro{ Cvelbar2, Miran Mozeti~2, Aleksander Drenik2, Tatjana Mozeti~3, Marta Klanj{ek-Gunde4, Nina Hauptman4 1Center za medicinsko mikrobiologijo, In{titut za zdravje Crne gore, Ljubljanska bb, 8100 Podgorica, ^rna gora 2Laboratorij za plazmo F4, Institut "Jo`ef Stefan", Jamova 39, 1000 Ljubljana, Slovenija 3Srednja zdravstvena {ola, Poljanska 61, 1000 Ljubljana, Slovenija 4Kemijski in{titut, Hajdrihova 19, 1000 Ljubljana, Slovenija alenka.vesel@ijs.si Prejem rokopisa – received: 2006-08-16; sprejem za objavo – accepted for publication: 2006-11-13 Prikazane so osnovne zna~ilnosti reaktivnih plazem in njihova uporabnost za sterilizacijo razli~nih materialov. Kisikova plazma uni~uje in razgrajuje mikroorganizme (tj. bakterije) z UV–sevanjem, kemijsko razgradnjo in lokalnim ogrevanjem. V prispevku kratko opi{emo vse tri na~ine delovanja plazme na mikroorganizme in ugotavljamo primernost razli~nih metod za sterilizacijo zraka in trdih materialov s poudarkom na sterilizaciji biokompatibilnih materialov. Pri uporabi sterilizacije s kisikovo plazmo se moramo zavedati nekaterih omejitev in te`av, ki pri tem nastopajo. Klju~ne besede: sterilizacija, plazma, kisik, bakterija, spore The main reactive plasma characteristics are presented with their applications for sterilization of different materials. Oxygen plasma destroys and erodes microorganism with UV radiation, chemical reactions and local heating. Tree mechanisms of interaction with microorganism are described. Advantages of plasma sterilization for air sterilization and solid materials including biocompatible materials are discussed, baring in mind the limitations and disadvantages of the same method. Key words: sterilization, plasma, oxygen, bacteria, spore 1 UVOD Sterilizacija razli~nih materialov je eden od najstarej{ih problemov v medicini in biologiji. Zdravniki so `e v starem veku ugotovili, da se rane celijo veliko hitreje, ~e obveze in podobni material pred uporabo izpostavijo son~nemu obsevanju. Mnogo pozneje so ugotovili, da komplikacije pri po{kodbah povzro~ajo dolo~eni mikroorganizmi. Ti so lahko plesni, bakterije in virusi. Za u~inkovito zdravljenje po{kodb bolezni in napak je treba zagotoviti sterilnost uporabljenih mate- rialov. Tako kot je raslo znanje o povzro~iteljih oku`b, je raslo tudi znanje o prepre~evanju oku`b. Ugotovljeno je bilo, da je za prepre~itev oku`b klju~nega pomena uni~enje mikroogranizmov, ki oku`be povzro~ajo. Iz tega spoznanja se je rodila panoga, ki jo danes imenujemo sterilizacija. Sterilizacija pomeni popolno uni~enje vseh mikroorganizmov, ki so ali bi lahko bili na dolo~enem materialu. Ker prav vseh mikroorganizmov pogosto ni mogo~e uni~iti, danes velja nekoliko bla`ji standard: material je steriliziran, ~e je koncentracija mikroorganizmov na dolo~enem materialu zmanj{ana za faktor 106. Sterilizacija je ve~ni problem medicine, saj mnogih materialov preprosto ne moremo sterilizirati. Primer je npr. medicinska postelja. V zadnjem ~asu je problem sterilizacije postal {e posebej pere~ ne le zaradi potencialnih gro`enj teroristov z biolo{kim oro`jem, ampak tudi zaradi uvajanja novih materialov, ki niso primerni za sterilizacijo s klasi~nimi postopki. Na tem mestu omenjamo predvsem razli~ne biokompatibilne materiale, ki se `e danes uporabljajo v sodobni medicini, kot so razli~ne proteze in implanti, in katerih uporaba se bo v naslednjih letih in desetletjih v razvitih dr`avah {e mo~no pove~ala. Znanost o sterilizacija je torej z novimi zahtevami in gro`njami dobila nove izzive, katerim se klasi~ni postopki za sterilizacijo ne morejo postaviti po robu. Popolnoma jasno je, da bo treba razviti nove, u~inkovite metode za sterilizacijo razli~nih trdnih materialov, pa tudi plinov, skupaj z zrakom. Za sterilizacijo se sedaj najve~ uporabljata termi~na in kemi~na metoda. Pri termi~ni sterilizaciji izpostavimo vzorce visoki temperaturi – navadno za prenos toplote uporabimo vodno paro, ki je segreta na okoli 130 °C. Voda je odli~en medij za prenos toplote, saj je izparilna toplota izredno visoka. Teko~o vodo s primernim grelnikom uparimo, pare pa se potem kondenzirajo na povr{ini vzorcev, pri ~emer se sprosti izparilna toplota. Tako je prenos toplote bistveno hitrej{i, kot ~e bi ogrevali vzorce s suhim zrakom. Pomanjkljivost metode je prav visoka temperatura – mnogi materiali je ne prenesejo. Predstavljajmo si samo, da bi poskusili s to metodo sterilizirati `ivila – vzorci bi se preprosto skuhali. Prav tako metoda ni primerna za sterilizacijo velikih prezra~evalnih sistemov, saj jih je prakti~no nemogo~e ogreti na 130 °C. Druga metoda je kemi~na. Vzorce izpostavimo zelo strupenemu plinu. Najbolj{i je etilen dioksid. Pri tem ni MATERIALI IN TEHNOLOGIJE 40 (2006) 6 227 UDK 539.2:533.9 ISSN 1580-2949 Pregledni znanstveni ~lanek/Review article MTAEC9, 40(4)227(2006) treba vzorcev dodatno ogrevati, saj je plin izredno strupen in deluje `e pri sobni temperaturi. Tudi ta metoda ni primerna za sterilizacijo prezra~evalnih sistemov, ker bi poleg bakterij pomrla {e vsa druga bitja, ki bi pri{la v stik s plinom. Tak{ne nesre~e so se `e zgodile tudi v bolni{nicah. Sterilizacijo lahko dose`emo tudi z razli~nimi sevanji. Na voljo so vsa sevanja, katerih osnovni kvanti imajo zadostno energijo – ve~jo od 4 eV. Pri elektro- magnetnem sevanju lahko uporabimo UV-, X- in g-`arke. V praksi se najve~ uporablja UV-sevanje, saj poznamo mo~ne izvire: nizkotla~ne plazme. Poleg elektromagnetnega sevanja lahko uporabimo tudi curke hitrih delcev. Najve~ se uporabljajo elektroni, pospe{eni do energije okoli 1 MeV. Sterilizacijo s sevanjem najve~ uporabljajo v `ivilski industriji, medtem ko za uni~e- vanje bakterij v ve~jih sistemih ni primerna, saj je s to metodo prakti~no nemogo~e enakomerno obdelati velike povr{ine. V zadnjem ~asu so raziskovalci ugotovili, da bi lahko prednosti termi~nega, kemijskega in sevalnega na~ina sterilizacije zdru`ili tako, da bi kot sterilizacijski medij uporabili plazmo. Plazma je namre~ mo~an izvir UV-sevanja, obenem pa v njej nastajajo z vidika mikroorganizmov zelo strupeni radikali, ki so bolj ali manj kratko`ivi. 2 PLINSKA PLAZMA Plinska plazma je stanje plina, v katerem v splo{nem ne veljajo osnovni zakoni plinske termodinamike (slika 1). To pomeni, – da temperatura kot termodinamska veli~ina sploh ni definirana; – da je popre~na kineti~na energija plinskih delcev ("kineti~na temperatura") za razli~ne delce v plinu razli~na; – da je popre~na porazdelitev stanj plinskih delcev ("notranja temperatura") za razli~ne delce v plinu razli~na. Na Zemlji tak{nega stanja plina ni najti, lahko pa ga ustvarimo v laboratorijih. Najpogostej{a metoda za pre- hod plina v stanje plazme je elektri~na plinska razelek- tritev. Plini pri navadnih pogojih sicer ne prevajajo elektri~nega toka, pri dolo~enih okoli{~inah pa ste~e skozi plin tok, ki je posledica migracije elektronov in plinskih ionov med elektrodama. To se najpogosteje zgodi pri plinu pri nizkem tlaku med dvema elektro- dama. V elektri~nem polju med elektrodama se pospe{ujejo tako elektroni kot pozitivni ioni, vendar pa pozitivni ioni pri elasti~nih trkih z molekulami plina izgubijo preve~ energije, da bi lahko sodelovali pri vzdr`evanju plazme. Pozitivni ioni v razelektritvi tako skrbijo le za prostorski naboj, ki prepre~uje hitro difuzijo elektronov na stene posode, medtem ko elektroni pri trkih z molekulami povzro~ajo prehod plina v stanje plazme. Elektroni pri trkih z nevtralnimi molekulami povzro~ajo reakcije, ki so za primer kisika prikazane na tabeli 1. Tabela 1: Prikaz najpomembnej{ih reakcij, ki potekajo v kisikovi plazmi Table 1: Some most important reactions in the oxygen plasma O2 + e– ® O2+ + 2e– O + e– ® O+ + 2e– O2 + e– ® O+ + O + 2e– O + e– ® O* + e– O2 + e– ® O+ + O+ + 3e– O* + e– ® O+ + 2e– O2+ + e– ® O+ + O + e– O2 + e– ® O2* + e– O2 + e– ® O + O + e– O2 + e– ® O2– + 2e– O2+ + e– ® O + O O2+ + O2– ® O3 + O Posledica prevajanja elektri~nega toka skozi plin je torej vzbujanje molekul v visoka vzbujena stanja. Pogosto se zgodi, da v plazmi sploh niso prisotne plinske molekule, temve~ prevladujejo disociirana (nascentni kisik) in ionizirana stanja. Plazme, v katerih je koncentracija navadnih molekul O2 precej manj{a od koncentracije vzbujenih delcev, imenujemo reaktivne plazme. Povpre~na notranja energija plinskih delcev v reaktivnih plazmah pogosto dosega ve~ elektron-voltov, kar ustreza povpre~ni notranji temperaturi delcev okoli 50.000 °C! 3 OSNOVNI MEHANIZMI STERILIZACIJE S PLAZMO S plazemsko sterilizacijo so se pri~eli ukvarjati {ele pred dobrim desetletjem1. Prvi poskusi so bili opravljeni z vodikovim peroksidom. O~itno gre torej za mehak prestop iz ~iste kemijske sterilizacije v kombinirano plazemsko. Vodikov peroksid je mo~an oksidant in je `e sam brez plazme dober sterilizant. Plazmo so uporabili predvsem za detoksifikacijo sistema po opravljeni sterilizaciji s peroksidom. Kasneje so se raziskavam pridru`ili kemiki in fiziki, in plazemska sterilizacija je do`ivela nov zagon. Za za~etek so ugotovili, da lahko podobne ali bolj{e uspehe kot s peroksidom dose`ejo z razli~nimi popolnoma netoksi~nimi plini: voda, kisik, vodik, argon, helij, du{ik. Ugotovili so, da je hitrost in u~inkovitost sterilizacije mo~no odvisna od plazemskih parametrov, kot so temperatura elektronov, gostota pozitivnih in negativnih ionov, gostota metastabilnih atomov in molekul, vrsta in koncentracija radikalov... Danes je plazemska sterilizacija ena najbolj inten- zivnih raziskovalnih podro~ij2-15. Oglejmo si osnovne mehanizme, ki omogo~ajo sterilizacijo v plazmi. 3.1Radiacijske po{kodbe. Plazma je mo~an izvir UV-sevanja. Absorpcija UV-`arkov v tkivu povzro~a razpad kompleksnih organskih molekul in s tem po~asno uni~evanje `ivega tkiva. Z UV-obsevanjem pa je `al te`ko odstraniti razpadne produkte, ki so lahko tudi toksi~ni. Radiacijske po{kodbe povzro~a tudi obstreljevanje vzorcev z energijskimi ioni, vendar pa je zna~ilna kineti~na energija ionov prenizka, da bi ioni prodrli skozi bakterijsko ovoj- nico. 3.2Kemijske po{kodbe. Plazma je vir razli~nih vzbujenih molekul in radikalov, ki so kemijsko zelo aktivni. D. VUJO[EVI] ET AL.: PLAZEMSKA STERILIZACIJA BAKTERIJ S KISIKOVO PLAZMO 228 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Kot primer si oglejmo kisikovo plazmo. V njej nastajajo pozitivni in negativni ioni, enoelektronsko vzbujene molekule, ozon in nevtralni kisikovi atomi. Nekateri delci (npr. negativni ioni) se kemijsko ve`ejo na kompleksne organske molekule in povzro- ~ajo njihov razpad na manj{e molekule. Nevtralni kisikovi atomi se navadno ne ve`ejo na molekule, ampak povzro~ijo takoj{njo oksidacijo. Reakcijski produkt je CO ali H2O, ki se v vakuumu desorbirata s povr{ine. Proces je podoben gorenju, le da poteka oksidacija `e pri sobni temperaturi. 3.3 Termi~ne po{kodbe. Mnogi plazemski delci imajo precej{njo potencialno energijo. Pri relaksaciji delcev na povr{ini se spro{~a precej{nja energija. Druga, {e pomembnej{a metoda ogrevanja bakterije je oksida- cija s kisikovimi atomi (glej zgornjo alinejo), ki je izredno eksotermna reakcija. Zato bakterija v reak- tivni plazmi v hipu (pogosto manj kot v 1 s) prepro- sto zgori. Te`je je ogreti bakterije v porah in na drugih nedostopnih mestih. Podrobneje si oglejmo primer kemijskega jedkanja bakterijske ovojnice v kisikovi plazmi. V zunanjem ovoju endospor so ogljikovi obro~i vezani s kisikovo vezjo: Anionski radikal O2– iz plazme reagira s kisikovo vezjo: Nastala struktura nadalje reagira z molekulo vode: Kompleksna molekula tako razpade na dve manj{i. Nastali kisikov atom lahko spet reagira z negativnim ionom, kar bi lahko pomenilo vzdr`evanje cikla, dokler se atomi ne bi izgubili pri kak{ni druga~ni reakciji. Razmerje med {tevilom razcepljenih vezi in adsorbiranih radikalov O2– naj bi bilo po trditvi nekaterih avtorjev (Ref 13) kar od 100 do 1000. Morebiti so avtorji spregledali {e kak{no drugo mo`nost cepitve vezi, vsekakor pa opisani primer lepo ponazarja kemijsko plazemsko razgradnjo celi~ne stene mikrobov. Oglejmo si {e primer termi~nega uni~evanja mikro- bov v plazmi. Temperatura plina je sobna, ogrevamo le bakterije. V prvem pribli`ku vzamemo bakterijo za oval, ki je name{~en na podlagi. V tem primeru je toplotni stik med bakterijo in podlago zanemarljiv. Bakterijo obdelaj- mo s plazmo, kakr{no sicer uporabljamo za razma{~eva- nje elektronskih komponent in plazemsko aktivacijo16,17. Gre za visoko disociirano kisikovo plazmo, ki jo ustvarimo v radiofrekven~i (RF) ali mikrovalovni (MW) razelektritvi. Gostota toka kisikovih atomov (j) na povr{ino bakterije je reda 1024 m–2 s–1. Verjetnost za oksidacijo18 (reakciji Corg + O ® CO in 2Horg + O ® H2O) je pri sobni temperaturi med 0,01 in 0,1. Z indeksom "org" smo ozna~ili organsko vezan ogljik in vodik. Reakciji sta eksotermni – energija, ki se sprosti, je skoraj 10 eV na kisikov atom. Gostota energijskega toka (P) je torej: P = j · h · W kjer je j gostota toka delcev na povr{ino bakterije, h verjetnost za oksidacijo in W spro{~ena energija na atom, ki reagira na povr{ini. Z vstavitvijo numeri~nih vrednosti dobimo: P = 1024 m–2 s–1 × 0,01 × 10–18 J = 104 W m–2 Sprememba notranje energije bakterije je enaka produktu gostote energijskega toka in povr{ine bakterije, enaka pa je tudi produktu mase, specifi~ne toplotne kapacitete in spremembi temperature bakterije: DW = P · S = m · cp · DT/Dt Sprememba temperature bakterije v ~asovni enoti je torej: DT/Dt = (P · S)/(m · cp) = 10 4 K/s Pri tem smo vzeli za povr{ino bakterije S = 1 µm2, maso m = 10–15 kg in specifi~no toplotno kapaciteto cp = 1000 J kg–1 K–1. Izoliranim bakterijam na gladki podlagi se torej v kisikovi plazmi slabo pi{e. Bakterije, ki lebdijo v plinu, s plazmo uni~imo `e v nekaj stotinkah sekunde, za tiste na podlagi pa potrebujemo ve~ ~asa. Pri zgornjem izra~unu smo namre~ predpostavili, da je bakterija toplotno izo- lirana, v resnici pa je povr{ina, s katero se dotika podlage, vendarle kon~no velika. Termi~no uni~evanje bakterij s kisikovo plazmo je torej odli~na metoda, ~e so bakterije dobro izpostavljene plazmi. Pri tem velja {e enkrat omeniti, da je okolica na sobni temperaturi. Ogrevamo samo bakterije. @al se mnoge bakterije zadr`ujejo v re`ah, kjer je toplotni stik s podlago bolj{i, predvsem pa je v re`ah te`ko zagotoviti zadostno koncentracijo atomov kisika. Zaradi tega je zna~ilni ~as za sterilizacijo v kisikovi plazmi reda velikosti ene ure. 4 KRITI^NA OCENA PLAZEMSKE STERILIZACIJE Sterilizacija biokompatibilnih materialov zaenkrat tehnolo{ko {e ni zadovoljivo re{ena. Tudi raziskave s plazemsko sterilizacijo teh materialov {e niso privedle do komercializacije tega postopka. Bistvena te`ava je v tem, da je s plazemskega vidika biokompatibilni material zelo podoben mikroogranizmom, ki jih je treba uni~iti. ^e je plazma zadosti agresivna, da lahko jedka mikro- organizme, je navadno tudi dovolj agresivna, da jedka podlago. V tem smislu samo kemijsko jedkanje ne more prinesti zadovoljive sterilizacije. Tudi samo UV–sevanje ni posebej primerno za sterilizacijo biokompatibilnih materialov, saj po{koduje tudi podlago. Zaradi tega je sedaj ve~ina raziskav za sterilizacijo biokompatibilnih D. VUJO[EVI] ET AL.: PLAZEMSKA STERILIZACIJA BAKTERIJ S KISIKOVO PLAZMO MATERIALI IN TEHNOLOGIJE 40 (2006) 6 229 materialov s plazmo osredinjena na kombinirano delovanje vseh treh bistvenih na~inov sterilizacije s plazmo. Biokompatibilni materiali imajo pogosto dovolj gladko povr{ino, da je termi~ni stik med bakterijami in povr{ino razmeroma slab (slika 2). Zaradi tega lahko v splo{nem ra~unamo, da je temperatura bakterije ve~ja od podlage. Pri povi{ani temperaturi postane pomembno kemijsko jedkanje. Znano je namre~, da je hitrost oksidacije organskih materialov z nekaterimi plinskimi radikali mo~no odvisna od temperature. @e nekoliko (reda nekaj 10 °C) povi{ana temperatura lahko povzro~i porast verjetnosti za oksidacijo tudi za ve~ velikostnih redov. Sterilizacija biokompatibilnih materialov se zaplete, ~e imamo na povr{ini tanko plast, na kateri so bakterije (slika 3). Neposredna hladna sterilizacija ni mogo~a, saj se z jedkanjem bakterij na povr{ini dogaja tudi erozija tanke plasti, ki je navadno bolj odporna proti eroziji z atomi. Posledice zelo kratke obdelave povr{ine so prikazane na slikah 4 in 5, kjer se poleg ovojnice bakterije pri~ne degradacija plasti. ^e je plast debelej{a, se sorazmerno pove~a dol`ina obdelovanja, ki lahko traja tudi ve~ ur. Razlog za to je izogibanje lokalnemu segrevanju, ki ga povzro~ajo rekombinacije delcev na povr{ini. Ker temperatura za polimerne materiale, iz katerih so narejeni nekateri implantati, ne sme presegati temperature 100 °C, je treba reakcije omejevati s hlajenjem plinskega toka molekul, ki v vakuumski posodi odna{ajo odve~no toploto s povr{ine. Zaradi tega smo omejeni na pulzno delovanje, pri ~emer hladimo vzorec v intervalih. Plazemsko sterilizirani vzorci imajo po sterilizaciji pove~ano povr{insko energijo, kjer so na povr{ini nastale polarne in razcepljene vezi, ki so dovzetne za vezavo katerega koli materiala. To je zelo ugodna lastnost za vezavo materiala z tkivi, ki se tak{nega materiala bolje oprimejo. D. VUJO[EVI] ET AL.: PLAZEMSKA STERILIZACIJA BAKTERIJ S KISIKOVO PLAZMO 230 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Slika 4: Slika spor "Bacillus subtilis" po uni~enju s kisikovo plazmo pri obdelavi s 5 pulzi po 10 s Figure 4: SEM picture of the spores of Bacillus subtilis after being destroyed by the oxygen plasma treatment in 5 pulses for 10 s Slika 2: Aktivna bakterija Bacillus subtilis slikana z elektronskim mikroskopom (SEM) pri 10.000-kratni pove~avi Figure 2: SEM picture of an active bacteria Bacillus subtilis Slika 3: Spore "Bacillus subtilis" na podlagi v tanki plasti Figure 3: Spores of Bacillus subtilis on the substrate Slika 1: Primer kisikove plazme, ki nastane z radiofrekven~nim vzbujanjem v steklenem reaktorju 30 l Figure 1: An example of RF oxygen plasma created in a glass reactor with the volume of 30 l Bistvene raziskave, ki danes potekajo v svetu na temo plazemske sterilizacije, so namenjene ugotavljanju vpliva plazemskih parametrov na hitrost sterilizacije in na po{kodovanje biokompatibilnih materialov. V idealnem primeru bi plazma popolnoma uni~ila bakte- rije, podlaga pa sploh ne bi bila po{kodovana. Idealne re{itve verjetno ne bomo nikdar dosegli, lahko pa se idealu pribli`amo s pravilno izbiro plazemskih para- metrov. Pri tem mislimo predvsem na primerno koncen- tracijo razli~nih plazemskih radikalov. Znano je namre~, da razli~ni radikali razli~no reagirajo z mikroorganizmi in podlagami. Te`ava je le v tem, da je na dana{njem nivoju znanja zelo te`ko individualno spreminjati koncentracije radikalov. ^e `elimo npr. povi{ati koncen- tracijo ionov, se navadno pove~a tudi koncentracija atomov in vzbujenih molekul. Mo`na re{itev je posredna uporaba plazme. Namesto plazme, ki vsebuje razli~ne radikale, uporabimo stanja plina po prehodu skozi plazmo. Splo{ni izraz za tak{na stanja plina je "afterglow". Plin vodimo najprej skozi plazmo, da dose`emo visoko koncentracijo vseh radikalov. Pozneje pa s katalizo na izbranih povr{inah relaksiramo samo dolo~ene radikale, druge pa pustimo bolj ali manj nedotaknjene. Tako lahko v kon~ni fazi pridobimo tak{no stanje plina, v katerem imamo prak- ti~no samo eno vrsto radikalov. @al je tudi poznanje selektivne relaksacije plazemskih radikalov na povr{inah {e vedno izredno pomanjkljivo. Pri sterilizaciji mikroorganizmov s plazmo nastopa {e vrsta te`av, ki se v literaturi redko omenja. Na tem mestu omenjamo samo najpomembnej{e: (1) zagotavljanje enakomernosti plazme, (2) generiranje plazme v porah, (3) toksi~ni plini v plazmi in (4) toksi~ni plini kot reakcijski produkti. Ker je hladna plazma neravnovesno stanje plina, je prakti~no nemogo~e zagotoviti homogenost plazme v celotnem plazemskem reaktorju. Posledica tega je neenakomernost sterilizacije. Podro~ja, kjer je plazma mo~nej{a (vsebuje ve~ radikalov ali pa je energija radikalov pove~ana) se hitro sterilizirajo, podro~ja, kjer je plazma {ibkej{a, pa se sterilizirajo po~asneje. Tisti predeli, kjer je sterilizacija `e potekla, so brez potrebe izpostavljeni radikalom, ki pogosto povzro~ajo ne`elene spremembe tudi na materialih, ki jih steriliziramo. Podro~ja, izpostavljena {ibkej{i plazmi, pa se sterilizi- rajo po~asneje in lahko tudi po dolgotrajni izpostavi plazmi vsebujejo `ive mikroorganizme ali vsaj spore. Problem nehomogenosti plazme je izredno pere~ in sedaj {e ni zadovoljive re{itve. Ve~ina plinskih razelektritev, s katerimi je mogo~e generirati plazme, namre~ ustvarja nehomogeno plazmo ali pa plazmo z nezadovoljivo koncentracijo radikalov. To je posledica osnovnih procesov v plinskih razelektritvah, v katere se na tem mestu ne spu{~amo. Da bi premostili problem neho- mogenosti, so raziskovalci po svetu razvili razli~ne razelektritve, ki omogo~ajo vsaj pribli`no enakomernost plazme. Pri nizkih tlakih je plazma v marsikateri razelektritvi pribli`no enakomerna, vendar pa vsebuje premajhno gostoto radikalov za uspe{no sterilizacijo. Druga skrajnost je uporaba plazme pri navadnem zra~nem tlaku, kjer je koncentracija radikalov zadostna, razmeroma hladno plazmo pa je sicer mogo~e generirati z enosmerno ali nizkofrekven~no razelektritvijo z dielektri~no pregrado (angle{ko: dielectric-barrier glow discharge), vendar pa je tak{na plazma pogosto nehomo- gena, vselej pa izrazito neizotropna in s tega vidika popolnoma neuporabna za sterilizacijo predmetov z zapleteno obliko. Ve~ina raziskovalcev zato i{~e re{itve v uporabi razelektritev pri grobem vakuumu, kjer je plazma za silo izotropna in vsebuje zadostno koncentra- cijo radikalov. Ker plazma vselej vsebuje ionizirane delce, ki s prostorskim nabojem zastirajo elektri~no polje, so za generiranje plazme z visoko koncentracijo radikalov pri grobem vakuumu najprimernej{e visoko- frekven~ne razelektritve, pri katerih je omogo~eno pribli`no enakomerno vzbujanje radikalov po celotnem volumnu. Sedaj je najbolj perspektivna radio–frekven~na induktivno sklopljena razelektritev, ki jo uporabljamo tudi v na{ih laboratorijih. Generiranje plazme v porah ali ozkih re`ah je te`ava, na katero so opozorili fiziki, davno preden so se pojavile prve ideje o sterilizaciji materialov s plazmo. Plazma namre~ slabo prodira v pore. Zna~ilno se koncentracija radikalov hitro zmanj{uje z globino pore. Za to sta odgo- vorna dva procesa: majhna koncentracija energijskih radikalov v porah, kar vodi k zmanj{anju generiranja radikalov, in relaksaciji radikalov na notranjih stenah por. Prvi pojav je mogo~e popolnoma izni~iti z uporabo dodatne razelektritve, ki delujejo po principu votle katode: v pori, ki jo nabijemo negativno proti plazmi, se zaradi prostorskega naboja ustvari mo~an radialni gradient elektri~nega polja, ki povzro~i nihanje elektronov v pori. Posledica tega je lokalna oja~itev plazme, ki lahko izni~i pojave, ki sicer prepre~ujejo normalno koncentracijo radikalov. ^e so materiali, ki jih nameravamo sterilizirati, elektri~no prevodni, lahko z D. VUJO[EVI] ET AL.: PLAZEMSKA STERILIZACIJA BAKTERIJ S KISIKOVO PLAZMO MATERIALI IN TEHNOLOGIJE 40 (2006) 6 231 Slika 5: Pove~ava spore, ki ka`e u~inkovitost kisikove plazme pri eroziji ovojnice spore, kjer jedkamo prete`no s kisikovimi atomi Figure 5: SEM picture of one spore showing the efficiency of oxygen plasma treatment. The spore’s protective layer is eroded by its etching mainly with the oxygen atoms created in the plasma dodatno razelektritvijo z votlo katodo dose`emo odli~ne rezultate. Te`ava je v tem, da ve~ina materialov, ki jih `elimo sterilizirati s plazmo, ni elektri~no prevodna. V teh primerih si z razelektritvijo z votlo katodo ne moremo prav ni~ pomagati. Delno lahko pojav oja~itve plazme v porah izolatorjev nadomestimo z uporabo radiofrekven~nega nabijanja materiala, kar pa je sedaj {e vedno v fazi znanstvenih eksperimentov. Navadno radiofrekven~no nabijanje ne vodi k pojavu oja~itve razelektritve v votli katodi. Naslednja te`ava pri plazemski sterilizaciji je zna~ilnost vseh plazem. V njih vselej nastajajo toksi~ni plini. Vrsta tak{nih plinov in njihova koncentracija je vselej odvisna od vrste plazme. V ~isti kisikovi plazmi ne najdemo posebej toksi~nih plinov. Izjema je ozon, katerega koncentracija je odvisna od vrste razelektritve. Koncentracija ozona v kisikovi plazmi lahko dose`e prostorninski dele` 10 %, kar je ve~ velikostnih redov nad dovoljeno koncentracijo. V tehnolo{kih procesih je navadno te`ko dose~i obdelavo materialov s ~istim kisikom. ^etudi je zagotovljena laboratorijska ~istota kisika iz jeklenke (ve~ kot 99,999 %), je v procesni komori vselej residualna atmosfera, ki pogosto vsebuje du{ik in vodno paro. V plazmi kisik reagira z obema plinoma in tvori du{ikove okside in vodikov peroksid. Posebej to velja za razelektritve pri navadnem zra~nem tlaku, kjer je vsaj delno me{anje kisika z zrakom obi~ajen pojav. Pri plazemski sterilizaciji poleg plinov, zna~ilnih za plazmo v ne~istem kisiku, nastajajo tudi drugi radikali, ki so lahko bistveno bolj toksi~ni od ozona, du{ikovih oksidov in vodikovega peroksida. Interakcija kisika z ogljikovodiki (ki so prete`na sestavina `ivih bitij) je navadno nepopolna oksidacije: namesto CO2 (ki je produkt popolne oksidacije) ve~inoma nastaja CO, ki je toksi~en plin. Poleg obilice vodikovega peroksida, ki je prav tako posledica nepopolne oksidacije ogljiko- vodikov, nastajajo med plazemsko oksidacijo organskih materialov tudi nekateri drugi toksi~ni plini. Poleg du{ikovih oksidov so to lahko bolj kompleksne mole- kule, kamor spada tudi vodikov cianid, poleg tega pa tudi `veplov oksid in podobni plini. Plazemska obdelava organskih snovi torej lahko vodi k sintezi razli~nih plinov, ki so ve~inoma toksi~ni, vendar pomenijo nizek volumenski dele` (manj od 10 %). Te`ava je {e ve~ja pri uporabi zraka za sterilizacijo. V tem primeru je koncen- tracija razli~nih (pogosto zelo toksi~nih) plinskih molekul, ki vsebujejo C, N, H in druge elemente, lahko velika. Plazemska sterilizacija torej kot ve~ina plazemskih procesov vodi k sintezi razli~nih toksi~nih plinov in radikalov. Le-ti se delno absorbirajo v vakuumski ~rpalki (~e proces poteka v pri zni`anem tlaku), v splo{nem pa bi lahko postali resen problem. Z uporabo katalizatorjev za toksi~ne pline je mogo~e ta problem bistveno zmanj{ati ali celo odpraviti19. 5 SKLEP Opisali smo osnovne mehanizme sterilizacije s plazmo. Plazemska sterilizacija temelji na termi~nih, kemijskih in radiolo{kih efektih. V vsakem primeru lahko najdemo dovolj agresivno plazmo, s katero steriliziramo poljubne materiale. Te`ava nastopi tedaj, ko `elimo sterilizirati temperaturno ob~utljive biokom- patibilne materiale. V tem primeru je treba izbrati tak{no plazmo, ki je dovolj reaktivna, da uni~i bakterije, vendar {e vedno dovolj ne`na, da ne po{koduje podlage. Zaradi nasprotnosti obeh zahtev je tak{no plazmo pogosto zelo te`ko generirati, in to je verjetno razlog, zaradi katerega plazemska sterilizacija {e ni komercializirana. Zahvala Ta ~lanek je rezultat skupnega dela slovenskih in ~rnogorskih raziskovalcev pri projektu BI-SCG/04-05-{t. 28 v okviru SLO-CG znanstveno-tehni~nega sodelo- vanja. 6 LITERATURA 1 M. C. Krebs, P. Becasse, D. Verjat, J.C. Darbot, Int. J. Pharm., 160 (1998), 75–81 2 M. Mozeti~, T. Mozeti~, P. Panjan, Vakuumist, 21 (2001), 10–12 3 A. Vesel, M. Mozeti~, Vakuumist, 23 (2003), 9–14 4W. Bar, G. M. de Bar, A. Naumann, S. Rusch-Gerdes, Amer. J. Infec. Contr., 29 (2001), 306–311 5M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, L. H. Yahia, Int. J. Pharm., 226 (2001), 1–21 6 S. D. Ferreira, W. S. Dernell, B. E. Powers, R. A. Schochet, C. A. Kuntz, S. J. Withrow, R. M. Wilkins, Clin. Orth. Rel. Res., 388 (2001), 233–239 7M. Moisan, J. Barbeau, J. Pelletier, Du Vide, 56 (2001), 15–28 8 S. Cariou-Travers, J. C. Darbord, Du Vide, 56 (2001), 34–46 9 P. Koulik, S. Krapivina, A. Saitchenko, M. Samsonov, Du Vide, 56 (2001), 117–125 10 D. A. Mendis, Physica Scripta T89 (2001), 173–175 11 C. E. Holy, C. Chen, J. E. Davies, M. S. Shoichet, Biomater., 22 (2001), 25–31 12 R. Ben Gadri , J. R. Roth, T. C. Montie, K. Kelly-Wintenberg, P. P. Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, Z. Y. Chen, Surf. Coat. Techol., 131 (2000), 528–542 13 A. Kakligin, P. Koulik, S. Krapivinina, G. Norman, E. Petrov, A. Ricard, M. Samsonov, Proc. 13th Int. Coll. Plasma Processes, (2001), 28–32 14 T. K. Subramanyam, R. Schwefel, P. Awakovitz, Proc. 13th Int. Coll. Plasma Processes, (2001), 33–36 15 M. Moisan, J. Barbeau, J. Pelletier, N. Philip, B. Saoudi, Proc. 13th Int. Coll. Plasma Processes, (2001), 12–18 16 A. Vesel, M. Mozeti~, Vacuum, 61 (2001), 373–377 17 D. Babi~, I. Poberaj, M. Mozeti~, Rev. Sci. Instr., 72 (2001), 4110–4114 18 M. Mozeti~, A. Zalar, P. Panjan, M. Bele, S. Pejovnik, R. Grmek, Thin Solid Films, 376 (2000), 5–8 19 M. Mozeti~, G. A. Evangelakis, U. Cvelbar, Plazemska sterilizacija preto~nega zraka, SI21448. Urad za intelektualno lastnino Republike Slovenije (2004) D. VUJO[EVI] ET AL.: PLAZEMSKA STERILIZACIJA BAKTERIJ S KISIKOVO PLAZMO 232 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 J. CAPELLE ET AL.: A COMPARISON OF EXPERIMENTAL RESULTS AND COMPUTATIONS ... A COMPARISON OF EXPERIMENTAL RESULTS AND COMPUTATIONS FOR CRACKED TUBES SUBJECTED TO INTERNAL PRESSURE PRIMERJAVA EKSPERIMENTALNIH REZULTATOV IN IZRA^UNA ZA CEVI Z RAZPOKO, KI SO OBREMENJENI Z NOTRANJO RAZPOKO Julien Capelle1, Igor Dmytrakh2, Joseph Gilgert1, Philippe Jodin1, Guy Pluvinage1 1Laboratoire de Fiabilité Mécanique, ENIM & Université de Metz, Île du Saulcy F-57045 Metz cedex, France 2Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine, (KPhMI), Department of Physical Fundamentals of Fracture and Strength of Materials, Lviv, Ukraine jodin@univ-metz.fr A cylindrical pipe that is used for gas transportation is mainly submitted to stresses originating from internal pressure. Other stresses are due to weight and the unexpected movements of supports and/or the ground. The first give rise to circumferential stresses, the second to longitudinal bending stresses. Here, we study the case of pipes that are joined by welding. This weld is an eventual source of defects, where cracks can originate. But there are other kinds of defects that can come from corrosion pits or accidental notches caused by diving machines, or in the case of work on the pipe. In this last case, the notch corresponds to a reduction of the section, which is enhanced by the stress-concentration factor. The objective of this work is to compare the prediction of finite-element computations with fracture experiments on such notched pipes. The results are given in terms of stress-concentration factors and show some discrepancy with the experimental results. As the mechanical properties have been measured on standard plane specimens, a transfer problem to curved structures is suspected to be at the origin of the difference, because with the dimensions of the pipe it is not possible to have standard and curved specimens in the same direction of rolling, and the mechanical properties of this pipe are different in the circumferential and transverse directions. Key words: pressure pipe, notch fracture mechanics, transferability V valjasti cevi za pretok plina so napetosti zaradi notranjega pritiska. Druge napetosti nastanejo zaradi gravitacije in nepri~akovanih premikov podpor ali zemlji{~a. Prve napetosti so obodne, druge pa podol`ne in upogibne. V tem delu obravnavamo primer cevi, ki so povezane z varjenjem. Zvar je eventualni vir napak, na katerih nastanejo razpoke. Druge vrste napak lahko nastanejo zaradi korozijskih zajed ali odrgnin, ki jih povzro~ijo gradbeni stroji ali nastanejo `e pri izdelavi cevi. V tem primeru zareza ustreza zmanj{anju prereza, napetost pa je pove~ana zaradi zarezne koncentracije napetosti. Cilj tega dela je primerjava napovedi na podlagi izra~una z metodo kon~nih elementov s preizkusi preloma cevi z napako. Rezultati izra~unov, ki so predstavljeni v obliki faktorja intenzitete napetosti, se ne ujemajo popolnoma z rezultati preizkusov. Ker se mehanske lastnosti dolo~ijo pri standardnih ravninskih preizku{ancih, predpostavljamo, da je vzrok za razliko prenos na ukrivljeno strukturo. Zaradi izmer cevi ni mogo~e izdelati standardnih in ukrivljenih preizku{ancev v enaki smeri valjanja in so mehanske lastnosti cevi druga~ne v obodni kot v pre~ni smeri. Klju~ne besede: cev pod pritiskom, mehanika loma, prenos 1 INTRODUCTION The computation of circumferential stress, also called hoop stress, in cylindrical pipes subjected to internal pressure is well known, and the general relationship is given as follows: σ θ = ⋅p r t i (1) where sθ is the hoop stress, pi is the internal pressure, r is the radius of the tube and t is the thickness of the tube. This relationship is valid if t ≤ r/10, in other cases the relationship (1) is corrected as: σ θ = ⋅ − ⋅ +             a p b a b r 2 2 2 2 2 1i ( ) (2) where a is the internal radius, b is the external radius, r is the radius of the computed point in the cylinder wall and pi is the internal pressure. These relationships are accurate enough to design pressure pipes if no defect is present in the tube. But, if the tube is realized by welding, misalignment or lack of penetration can occur, or if there are corrosion pits, or if the diving equipment causes damage to the external envelope of the tube, a reduction of section occurs and the stress is increased as a consequence. However, the reduction of section is not the only effect that causes a stress increase, and the notch-concentration-factor effect brings the majority of the increase. The objective of this work was to compute the actual hoop stress when an external notch is present and to compare with a fracture test under gas pressure that was made with the three coded methods, i.e., the ASME B31 G, the modified ASME B31 G and the DNV RP-F101. This work is based on a study of the pipeline and has resulted in several publications and presentations at international congresses 1,2. MATERIALI IN TEHNOLOGIJE 40 (2006) 6 233 UDK 539.42:621.774.2 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 40(6)233(2006) 2 CODED METHODS 2.1 ASME B31 G 3 This is a code for evaluating the remnant strength of corroded pipelines. It is a supplement of the ASME B31 code for pressure piping. The code was developed in the late nineteen-sixties and early seventies at the Battelle Memorial Institute and provides a semi-empirical proce- dure for the assessment of corroded pipes. Based on an extensive series of full-scale tests on corroded pipe sections, it was concluded that line pipe steels have an adequate toughness and that the toughness is not a significant factor. The failure of blunt corrosion flaws is controlled by their size and the flow stress or yield stress of the material. The input parameters include the pipe’s outer diameter (Dext) and the wall thickness (t), the specified minimum yield strength (SMYS), the maximum allowable operating pressure (MAOP), the longitudinal extent of corrosion (2c) and the defect depth (a). According to this code, a failure equation for the corroded pipelines is proposed by means of the data from a bursting experiment and expressed by consi- dering the two conditions below: • First, the maximum hoop stress cannot exceed the yield strength of the material. • Second, short corrosion defects are projected with a parabolic shape, and long corrosion defects are projected with a rectangular shape on the shape of a rectangular one (Figure 1 and 2). The failure pressure equation for a corroded pipeline with a parabolic defect is: 08 2 4 2 . c D D text ext          ≤ (3) P t D a/t a/t /Mult y ext = ⋅ ⋅ ⋅ − −     2 11 1 066 1 066 ( . ) . ( ) . ( ) σ  (4) with M c D D t = +           1 08 2 2 . ext ext (5) M is the so-called bulging factor. 2.2 Modified ASME B31 G This includes the modified flow stress and the bulging factor. The flow stress sult is taken as: σ σult yMPa/ .= +11 69 (6) where sy is the yield strength. Two cases are considered: Case 1 2 50 2 c D D text ext          ≤ (7) P t D a/t a/t /Mult y ext = ⋅ + ⋅ ⋅ − −   2 11 69 1 085 1 085 ( . ) . ( ) . ( ) σ    (8) The bulging factor is equal to: M c D D t c D = +          −  1 0 6275 2 0 003375 2 2 . . ext ext ext        4 2 D t ext (9) Case 2 2 50 2 c D D text ext          > (10) P t D t a/t a/t /Qult ult ext = ⋅ ⋅ − ⋅ − −       2 1 1 ( ) ( ) ( ) σ (11) The bulging factor is equal to: M c D D t = +           3 3 0 032 2 2 . . ext ext (12) It is necessary to recall that the ASME B31G is limited to low stress-concentration factors and internal pressure loading conditions. The assessment procedure considers the maximum depth and the longitudinal extent of the corroded area, but ignores the circumferential extent and the actual profile. If the corroded region is found to be unacceptable, B31G allows the use of a more rigorous analysis or a hydrostatic pressure test in order to determine the pipe’s remaining strength. Alternatively, a lower maximum allowable operating pressure may be imposed. 2.3 DNV RP-F101 4 This is the first comprehensive and extensive code on pipeline-corrosion defect assessment. It prepares guidance on the pipeline under internal pressure and combined loading. Furthermore, it provides a codified formulation for pressure and bending and area depth. DNV RP-101 proposes two methods to find the failure pressure. The first method is named the partial safety factor, and the second is classified as the allowable stress design. The allowable-stress-design method that considers non-interacting defects is discussed here. To pursue the design procedure via DNV RP-101 it is necessary to determine the loading type (pressure only J. CAPELLE ET AL.: A COMPARISON OF EXPERIMENTAL RESULTS AND COMPUTATIONS ... 234 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Figure 2: Corrosion defects projected with a rectangular shape Slika 2: Korozijske po{kodbe, predstavljene s pravokotno obliko Figure 1: Corrosion defects projected with a parabolic shape Slika 1: Korozijske po{kodbe, predstavljene s paraboli~no obliko and combined loading), and consequently the failure pressure can be obtained as: P t D t a/t a/t /Qult ult ext = − ⋅ − −       2 1 1 σ ( ) ( ) (13) where Q is the correction factor: Q D t = +      1 0 31 1 . ext (14) According to this code, the failure pressure should not exceed the maximum allowable stress design operating pressure (MAOP); otherwise, the corroded pipe will have to be repaired or replaced before returning to service. 3 FINITE-ELEMENT COMPUTATION 3.1 Meshing the model The model tube is a rolled steel cylindrical pipe with an external diameter of 219.1 mm and a thickness of 6.1 mm. A quasi-semi-ellipsoidal notch represents an accidental external defect. The major axis of the ellipsoid is parallel to the axis of the tube and the length of the notch is 30.5 mm. The depth of the notch is 3.05 mm and the width is also 3.05 mm. The radius of the notch tip is 0.15 mm, as shown in Figures 3 and 4. As the defect has two perpendicular planes of symmetry, only a quarter of the whole structure was meshed. A schematic view of the notched tube is given in Figure 4. For our computations, the CAST3M pro- gramme was used. Such a structure is not very easy to model exactly, as the very small notch-tip radius implies very strong geometrical constraints. Figure 5 shows the mesh of an ellipsoidal notch with the approximate notch radius. Due to the program’s constraints, simple linear elements were used. 3.2 Boundary conditions and loading As the model represents a quarter of the whole structure, and no pressure effect on the ends is assumed, symmetrical boundary conditions were applied on each section of the models. The loading is applied as a 15 MPa uniform pressure on the internal face of the tube. 3.3 Material behaviour and properties The material constituting the tube is rolled steel. A Young’s modulus of 203000 MPa was deduced from previous tests on a "Roman-tiles-type" specimen 5. J. CAPELLE ET AL.: A COMPARISON OF EXPERIMENTAL RESULTS AND COMPUTATIONS ... MATERIALI IN TEHNOLOGIJE 40 (2006) 6 235 Figure 5: Details of the mesh at the notch Slika 5: Detajl mre`e pri zarezi Figure 4: Plan of the grinding part Slika 4: Na~rt bru{enja Figure 3: Notch on the pipe Slika 3: Zareza na cevi The yield strength was estimated to be 528 MPa. The Ludwik's law will make it possible to introduce the actual behaviour of the steel into its plastic range, where the hardening parameter is n = 0.0446, and the resistance coefficient is K = 587.3 MPa. σ ε= K np (15) 3.4 Post-processing of results The results of the computations were given in terms of the hoop stress distribution on the ligament surface between the notch tip and the inner surface of the tube. The figures were obtained with the help of the home- made SCILAB® programme. 4 RESULTS 4.1 Finite-element computations The results are shown in Figure 6. The hoop stress field is represented over the mesh where it is computed. The hottest point is on the small axis of the ellipsoid. But the hoop stress does not take into account the degree of triaxiality, when the ligament is reduced, just under the small axis of the ellipse. Consequently, the Von Mises stress was computed and represented in Figure 7. It is clear that if the stress level far from the notch is about the same as the hoop stress at the same place, the stress along the notch tip and, particularly at the deepest point of the notch, is much higher. For comparison, the hoop stress is computed using the relationships (1) and (2). The results are the following: • (1): hoop stress at mid thickness: 174.6 MPa • (2): hoop stress at inner face: 174.7 MPa • (2): hoop stress at outer face: 164.7 MPa From the FE computation (Figure 8) we can extract the values of the hoop stress on the outer face, far from the notch, 148.5 MPa, and on the inner face, 189.9 MPa. The value at the mid thickness is, therefore, 169.2 MPa. This value is quite similar to that obtained for the usual analytical relationships of cylindrical tubes (174.6 MPa). This validates the FE computation. For this particular notch we have estimated the stress-concentration factor using the relationship: K ep max, pl G, pl = σ σ (16) In this case, we obtain: K ep = = 386 186 2 07. (17) 4.2. Experimental results Some tubes containing a notch with the dimensions given here were loaded with a gas up to failure. With the ground tubes the fracture occurs under a pressure of about 12 MPa. Only two results are available, but they give fracture pressures that are close together. These results seem to be in agreement with the tests carried out by a South Korean team6, although these tests used a J. CAPELLE ET AL.: A COMPARISON OF EXPERIMENTAL RESULTS AND COMPUTATIONS ... 236 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Figure 8: The variation of the hoop stress around the notch. L04 is the ligament line prolonging the small axis of the ellipse, L02 is the notch front line Slika 8: Variacija hoop-napetosti okoli zareze. L04 je ~rta ligamenta podalj{ek male osi elipse, L02 je ~elna ~rta zareze Figure 6: Variation of the hoop stress on the surface of the ligament Slika 6: Variacija hoop-napetosti na povr{ini ligamenta Figure 7: Von Mises stress on the ligament under the notch for different pressures Slika 7: Von Misesova napetost v ligamentu pod zarezo pri razli~nem pritisku pipe in X65 with different dimensions. Moreover, this type of burst test with gas is rare, as are papers on this subject. So it is very difficult to properly compare our results. 5 COMPARISON OF RESULTS If we consider the hoop stress, it appears that the computation gives a maximum value that is less than the yield strength. The hoop stress acts along the circular direction of the tube, but the stress in a perpendicular direction acts in the longitudinal direction of the tube, and the strains in this direction are constrained by the great length of the tube. Consequently, a triaxiality effect is induced, and the stress to be observed is the Von Mises stress (Figure 7). This triaxiality effect induces an over stress to obtain the yield of the material. Here, the overstress factor is t = sVM/sY = 760/528 = 1.44. The maximum value is about 760 MPa for an internal pressure of 12 MPa. Calculated codes give other results: Table 1: Different ultimate pressure Tabela 1: Razli~ne kon~ne napetosti Pult/MPa Error compared between experimental result (%) ASME B31 G 11.3 5.8 Modified ASME B31 G 10.8 10 DNV RP-F101 6.6 45 To take account of the grinding in these calculations, we reduced the value of the ligament under the notch to 2 mm. According to the experimental result, it seems that the ASME B31G code is the closest. The DNV RP-F101 is the most conservative code. 6 CONCLUSION It has been shown in this paper that the construction of a meshed structure that conveniently represents a notched pressure pipe is quite difficult. However, the results of the FE computations give consistent results with respect to the experimental data. To improve the prediction of fracture of the notched pressure pipes it is necessary now to improve the meshing of the notch. Moreover, experiments provided different data that will be compared with further FE computation predictions. 7 REFERENCES 1 J. Capelle, J. Gilgert, G. Pluvinage, Ch. Schmitt: Calcul du facteur de sécurité associé à la ténacité d’un tuyau de faible epaisseur, Paper presented at the conference IFCAM01, (2006) 2 J. Capelle, M. Lebienvenu, G. Pluvinage: Hydrogen effect on fatigue life of a pipe steel, Paper presented at the conference ICMFM XIII, (2006) 3 ASME B31G-1991: Manual for determining the remaining strength of corroded pipelines, The American Society of Mechanical Engineers, New York, USA, (1991) 4 DNV-RP-F101: Corroded pipelines, Det Norske Veritas, 1999 5 G. Pluvinage, J. Capelle: Etude d’un dimensionnement de conduite de gaz basée sur la mécanique de rupture et l’analyse limite, Paper presented at the 5ème Journée de Mécanique de l’Ecole Militaire Polytechnique, 2006 6 J. B. Choi, B. K. Goo, J. C. Kim, Y. J. Kim, W. S. Kim: Develop- ment of limit load solutions for corroded gas pipelines, International Journal of Pressure Vessels and Piping 80 (2003), 121–128 J. CAPELLE ET AL.: A COMPARISON OF EXPERIMENTAL RESULTS AND COMPUTATIONS ... MATERIALI IN TEHNOLOGIJE 40 (2006) 6 237 I. EMRI ET AL.: FATIGUE PROBLEMS OF TRANSMISSION BELTS FATIGUE PROBLEMS OF TRANSMISSION BELTS: a viscoelastic analysis of the strain-accumulation process PROBLEM UTRUJANJA POGONSKIH JERMENOV: viskoelasti~na analiza procesa akumuliranja deformacije Igor Emri, Janez Kramar, Anatolij Nikonov, Ur{ka Florjan~i~, Anton Hribar University of Ljubljana, Faculty of Mechanical Engineering, A{ker~eva 6, 1000 Ljubljana, Slovenia igor.emri@fs.uni-lj.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-10-09 We performed an analysis of the time-dependent behaviour of drive belts under the loading conditions to which they are exposed during normal operation. They are dynamically loaded with a tooth-like periodic (cyclic) load. Within each loading cycle the elastomeric material undergoes a combination of creep and retardation processes. Under certain conditions, the retardation process between two loadings cannot be fully completed. Thus, the material enters the second phase of loading with a residual strain state. Consequently, the strain state starts to accumulate, which leads to hardening of the material, crack formation, and ultimately to the failure of the belt. We recognized that drive belts exhibit the accumulation of strain when exposed to normal operation at certain critical angular velocities. The strain accumulated in each consecutive cycle depends on the geometry of the belt, the angular velocity of the pulleys, the number of completed cycles, and the retardation spectrum of the material. In this paper we discuss the effect of the number of loading cycles to which the material is exposed in the strain-accumulation process. For a given belt geometry the critical angular velocity increases with the number of loading cycles. At the same time the magnitude of the accumulated strain decreases non-linearly as the number of loading cycles increases. Hence, the strain-accumulation process slows down with the increasing number of loading cycles. However, if the belt operates at, or in the close vicinity of, its critical angular velocity, it will almost certainly fail. Since the critical angular velocity is directly related to the retardation time of the material, and the magnitude of the accumulated strain depends on the strength of the corresponding discrete spectrum lines, we can conclude that the time-dependent mechanical properties of the elastomersic material from which the belt is constructed are the most critical parameters for predicting the durability of drive belts and other dynamically loaded elastomeric products. Key words: time-dependent constitutive modelling, power transmission belts, synchronous belts, failure, viscoelastic analysis, strain accumulation, elastomers, time-dependent behaviour, mechanical spectrum V delu predstavljamo viskoelasti~no analizo ~asovno odvisnega vedenja pogonskih jermenov, ki so med obratovanjem motorja dinami~no obremenjeni s kora~no spremembo. V ~asu enega obremenitvenega cikla je posamezna viskoelasti~na komponenta jermena izpostavljena kombiniranemu procesu lezenja in relaksacije. Pri dolo~enih pogojih, ki jih opredeljujeta geometrija jermena in kotna hitrost jermenice, se proces retardacije med dvema obremenitvenima cikloma ne zaklju~i. To pomeni, da material vstopi v naslednjo obremenitveno fazo s preostalo deformacijo. Postopoma se za~ne deformacija akumulirati, kar vodi do utrjevanja materiala, nastanka razpoke in posledi~no do propada jermena. Analiza poka`e, da se akumulacija deformacije v jermenu pojavi pri dolo~enih kriti~nih vrednostih kotne hitrosti. Proces akumuliranja deformacije v vsakem zaporednem obremenitvenem ciklu je odvisen od geometrije jermena, kotne hitrosti jermenice, {tevila zaklju~enih obremenitvenih ciklov in retardacijskega spektra materiala, iz katerega je narejen jermen. Predstavljeno delo obravnava vpliv {tevila obremenitvenih ciklov na proces akumuliranja deformacije v pogonskem jermenu med obratovanjem motorja. Pri dani geometriji jermena kriti~na kotna hitrost nara{~a s pove~evanjem {tevila obremenitvenih ciklov, medtem ko velikost akumulirane deformacije nelinearno pojema, kar ka`e, da se z nara{~anjem {tevila ciklov obremenjevanja proces akumuliranja deformacije upo~asni. Rezultati ka`ejo, da bo jermen med obratovanjem pri kriti~ni kotni hitrosti (oz. v njeni bli`ini) zelo verjetno odpovedal. Z ozirom na to, da je kriti~na kotna hitrost povezana z retardacijskim ~asom materiala in je velikost akumulirane deformacije odvisna od jakosti pripadajo~e diskretne spektralne linije, lahko sklepamo, da so ~asovno odvisne mehanske lastnosti elastomernega materiala, iz katerega je narejen jermen, kriti~ni parameter za napoved trajnosti jermenov in drugih dinami~no obremenjenih elastomernih produktov. Klju~ne besede: ~asovno odvisno konstitutivno modeliranje, pogonski jermeni, utrujanje, propad jermena, viskoelasti~na analiza, akumulacija deformacije, elastomeri, ~asovno odvisno vedenje, mehanski spekter 1 THE LOADING CONDITIONS OF A SYNCHRONOUS BELT The loading conditions of a synchronous belt were determined with the commercial FEM program called ANSYS, assuming the elastic behaviour of all belt components. The belt was pre-stressed with a force F and loaded with a desired torque M so that the pre- stressing force was adequately divided into the strand on the tension side, F1, and the strand on the slack side F2, as schematically shown in Figure 1. The distance between the two pulleys is indicated as l, the radius of both pulleys is R, and the times t1 and t2 indicate when the belt enters and leaves the driving pulley. The driving pulley and the driven pulley were then rotated such that a selected point on the belt would return to its initial position. Such a movement we designated as a complete loading cycle of the belt. For a further analysis of the strain accumulation, we selected the location on the tooth where the shear stress state within the loading cycle, calculated with the FEM program, has the form of an impulse function. This location is indicated as point A in Figure 2a. The corresponding MATERIALI IN TEHNOLOGIJE 40 (2006) 6 239 UDK 539.42:678 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 40(6)239(2006) calculated time-dependent evolution of the stress state is shown in Figure 2b. As a first approximation the shear stress may be modelled as the difference between two step functions with the shear stress intensity t0. Hence, τ τ( ) ( ) ( )t h t= +0 + τ ξ ξ0 1 2 1 1 1{ [ ] [ ]}h t t n h t t n n n N − − − − − − − = = ∑ ( ) ( ) (1) The times t1 and t2 and the duration of one loading cycle x are functions of the geometry and the angular velocity of the belt drive, w. Here, N is the number of cycles to which the belt has been exposed, and t(0) is the shear stress at t = 0. Hence, t1 = (l+πR)/(wR), t2 = (l+2πR)/(wR), and x = (2l+πR)/(wR). 2 ANALYSIS OF THE STRAIN ACCUMULATION The time-dependent strain response of a rubber material can be expressed as 1, γ τ τ ( ) ( ) ( ) ( ) ( ) t J t J t s s s s t = + −∫0 0 ∂ ∂ d (2) where J(t) is the shear creep compliance. Assuming the material is simple and can be modelled with a single spectrum line, the material function is expressed as J(t) = Jg + L1e(–t/l1), where Jg denotes the glassy com- pliance and l1 is the retardation time where the corresponding spectrum line L1 = (l1) is located. Let us analyse the accumulated strain at the end of N completed cycles at t = tN = Nx. Substituting Equation (1) into Equation (2), and considering the geometry of the drive belt as l/R = π, we obtain γ τ ω ( ) ( ) ( )N J N NN=     +0 4π Γ , Γ ΓN n n N N n( ) ( )= = ∑ ∆ 1 (3) where ∆Γ n n L n ( ) exp exp= −       − −           τ ωλ ωλ1 1 0 1 4 3 1 π π( )   (4) denotes the strain accumulation for each consecutive cycle. Equation (3) describes the time-dependent evolution of the strain field in the material when exposed to cyclic loading. Figure 3 shows the strain accumulation in each consecutive cycle, expressed by Equation (4), as a function of lg w for different numbers of completed cycles. From Figure 3 it is clear that the strain accumulation has its maximum at a certain critical angular velocity. The location of the critical angular velocity, wCR(n), can be obtained by equating the two last terms in Equation (4), 1 – exp(–π/wCR(n)l1) = exp[π(4n–3)/wCR(n)l1] (5) The critical angular velocity at which the accumu- lated strain has a peak magnitude is a close form solution of Equation (5) and can be expressed as ω λ CR ( ) ln n n n = − − π 1 4 2 4 3 (6) It is important to note that the critical angular velocity is directly related to the retardation time of the I. EMRI ET AL.: FATIGUE PROBLEMS OF TRANSMISSION BELTS 240 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Figure 3: The effect of different numbers of loading cycles on the strain accumulated in the material Slika 3: Vpliv {tevila obremenitvenih ciklov na akumulacijo defor- macije v materialu , /M P a τ S h ea r S tr es s Figure 2: Shear stresses at point A within a complete loading cycle Slika 2: Spreminjanje stri`ne napetosti v to~ki A v enem obremenit- venem ciklu Figure 1: Schematic diagram of the belt-loading conditions and the geometry Slika 1: Shemati~en prikaz obremenjevanja jermena in njegove geometrije material, which clearly emphasizes the importance of the material’s time-dependent properties. By combining Equations (3) and (6) we obtain the corresponding peak value of the accumulated strain in each loading cycle, ∆Γ n n n L n n n max ( ) ( , )ω τCR = − − −     − 0 1 4 3 1 4 2 4 3 4 2 ; n = 1, 2, 3 ..., N (7) The critical angular velocity and the corresponding peak value of the accumulated strain in each loading cycle as a function of n for l1 = 100 s 2 are shown in Figure 4. From the figure we can clearly see that the critical angular velocity shifts towards higher frequencies for each consecutive loading cycle, and that the relation is almost linear. At the same time the corresponding accumulated strain decreases for each consecutive cycle. Providing the drive belt can operate at the critical angular velocity at all times, the maximum strain that could be accumulated over N cycles would be, Γ Γn n n n N n n L n n n max max( , ) ( , )ω ω = τCR CR= − − −= = ∑∆ 1 0 1 1 4 2 4 3 4 2 4 3 1       − = = ∑ ( )n n n N (8) It is important to stress that lim ( , , ) limmax n n n n L n n n→∞ →∞ = = − − −   ∆Γ ω κ τCR π 0 1 1 4 2 4 3 4 2    −( )4 3n = 0 (9) which means that the strain accumulated during each cycle will tend towards zero value as n ® µ. However lim ( , ) limmax ( n n n N L n n n→∞ →∞ = − − −      ∆Γ ω τCR 0 1 1 4 2 4 3 4 2 4 3 1 n n n N − = = ∑ ) = ∝ (10) which means that if a belt were to operate all the time at the critical angular velocity it would always fail. The total accumulated strain, expressed by Equation (8), as function of the cumulative number of loading cycles is shown in Figure 5. 3 CONCLUSIONS From the presented analysis we can conclude that drive belts will exhibit the accumulation of strain when exposed to normal operation at certain angular velocities. For a given belt geometry the critical angular velocity increases with the number of loading cycles. At the same time the magnitude of the accumulated strain decreases non-linearly as the number of loading cycles increases. Hence, the strain-accumulation process slows down with the increasing number of loading cycles, and will be negligible after a certain number of loading cycles, as shown in Figure 4. However, if the belt operates at, or in the close vicinity of, its critical angular velocity, it will almost certainly fail. The critical angular velocity depends on the material’s retardation time (i.e., the location of the mechanical spectrum), while the magnitude of the accumulated strain depends on the strength of the corresponding discrete spectrum lines. Thus, the time-dependent mechanical properties of the elastomeric material from which the belt is constructed are the most critical parameters for predicting the durability of drive belts and other dynamically loaded elastomeric products. ACKNOWLEDGEMENTS We would like to acknowledge the support provided by the Slovenian Research Agency under the contract L2-66000-0782. The contribution to the numerical calculations, data processing and the preparation of the figures by R. Cvelbar is greatly appreciated. 4 REFERENCES 1 N. W. Tschoegl, The phenomenological theory of linear viscoelastic behavior: an introduction, Springer-Verlag, Berlin Heidelberg, 1989 2 I. Emri, T. Prodan, A measuring system for bulk and shear charac- terization of polymers, Experimental Mechanics 46 (2004), 429–439 I. EMRI ET AL.: FATIGUE PROBLEMS OF TRANSMISSION BELTS MATERIALI IN TEHNOLOGIJE 40 (2006) 6 241 Figure 4: The critical angular velocity and the maximum strain accumulation as a function of the number of loading cycles Slika 4: Kriti~na kotna hitrost in najve~ja akumulirana deformacije v odvisnosti od {tevila obremenitvenih ciklov Figure 5: The total accumulated strain as a function of the cumulative number of loading cycles Slika 5: Celotna akumulirana deformacija v odvisnosti od kumula- tivnega {tevila obremenitvenih ciklov T. RODI^ ET AL.: A MICRO-MACRO ANALYSIS OF THE TOOL DAMAGE IN PRECISION FORMING A MICRO-MACRO ANALYSIS OF THE TOOL DAMAGE IN PRECISION FORMING MIKRO-MAKROANALIZA PO[KODB ORODJA ZA NATAN^NO KOVANJE Toma` Rodi~1,3, Jo`e Korelc2, Anton Pristov{ek3 1Naravoslovnotehni{ka fakulteta, Oddelek za materiale in metalurgijo, A{ker~eva 12, 1000 Ljubljana, Slovenia 2Fakulteta za gradbeni{tvo in geodezijo, Jamova 2, Ljubljana, Slovenia 3C3M, d. o. o, Vandotova 55, 1000 Ljubljana, Slovenia tomaz.rodic@c3m.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-10-05 A micro-macro finite-element model for predicting the cyclic stress-strain response and damage evolution in tool-steel materials is presented. The elasto-plastic constitutive model at the macro-scale combines isotropic and kinematic hardening with continuum damage. This permits relatively precise modelling of the critical regions in the tooling systems over a large number of loading cycles. The macroscopic stress-strain fields are coupled with representative volume elements at the micro-level, where interactions between the primary carbides (M6C, MC, V8C7) and the martensitic matrix are evaluated. This provides a detailed insight into the stress-strain fields at the micro-level and reveals the damage mechanisms at the micro-scale. The performance of the model is demonstrated on an industrial example of a tool for the cold precision forming of metals. Key words: damage, micro-macro, finite element method, tool steels, precision forming of metals Predstavljen je numeri~ni model za analizo cikli~nih napetostno-deformacijskih odzivov in razvoja po{kodb orodnih jekel na razli~nih dimenzijskih skalah po metodi kon~nih elementov. Makroskopski elasto-plasti~ni konstitutivni model povezuje izotropno in kinemati~no utrjevanje s po{kodbami kontinuuma. To omogo~a razmeroma natan~no modeliranje kriti~nih obmo~ij v sistemu orodij za veliko {tevilo obremenitvenih ciklov. Makroskopska napetostno-deformacijska polja so povezana z reprezentativnimi volumenskimi elementi na mikroravni, kjer analiziramo medsebojne vplive med primarnimi karbidi (M6C, MC, V8C7) in martenzitno osnovo. S tem dobimo podroben vpogled v napetostno-deformacijska polja in po{kodbene mehanizme na mikroravni. Uporabnost mikro-makromodela je prikazana na industrijskem primeru orodja za natan~no preoblikovanje kovin v hladnem. Klju~ne besede: po{kodbe, mikro-makro, metoda kon~nih elementov, orodna jekla, natan~no preoblikovanje kovin 1 INTRODUCTION The tooling systems applied in production of cold forged components are repetitively subjected to very high loads. Despite of the high strength materials and prestressing applied to die inserts, these loads often cause local plastic deformation of the dies. Even though the plastic deformations caused by each forming cycle are relatively small they accumulate during the production and can eventually lead to the initiation of fatigue cracks. Once a fatigue crack is initiated it can grow and lead to the failure of tooling system. Statistical investigations show that more than eighty percent of cold forging tools fail in this way. The designers are therefore interested in identifying and optimising those design parameters that have strong impact on the fatigue response of tooling systems. In this work the response is modeled by an elasto-plastic constitutive model, which combines isotropic and kinematic hardening with continuum damage. This permits relatively precise modelling of stress/strain response of tool steels over large number of loading cycles and estimation of accumulated damage. A method for evaluating the sensitivity 1 of damage to material parameters and optimisation 2 can be combined with this approach. 2 CONSTITUTIVE MODEL The elasto-plastic material model developed by Pedersen 3 is considered. This model takes into account simultaneous evolution of isotropic and kinematic hardening and damage. Since the strains in the tool are expected to be small (<1) an additive decomposition of the strain tensor eij into elastic and plastic parts is assumed; ε ε εij ij e ij p= + (1) The elastic stress strain relationship is given by σ εij ijkl kl eL= ⋅ (2) where Lijkl is the tensor of elastic moduli. The summa- tion convention is adopted for repeated indices. It is noted that experimental investigations of tool steel materials do not reveal significant effect of damage on their elastic response. The rate of plastic strain is derived from the normality rule & &ε λ σ p ij f= ∂ ∂ (3) where f is the yield surface and &λ is the plastic multiplier derived from the consistency condition, &f = 0. The flow rule implicitly comprises damage D as follows: MATERIALI IN TEHNOLOGIJE 40 (2006) 6 243 UDK 669.14.018.25:621.73 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 40(6)243(2006) (4) where (5) (6) (7) (8) In the above equations Xij is represents kinematic hardening while the scalars R and k describe isotropic hardening. 2.1 Kinematic hardening The back stress tensor Xij is the centre of the yield surface in stress space, it is defined by the following evolution equations (9) and (10) (11) 2.2 Nonlinear isotropic hardening The scalar k is assumed to be constant while evo- lution equation for R is defined by (12) where b is a material parameter and R8(?,q) represents the limit of isotropic hardening or softening. 2.3 Continuum damage Many different evolution equations have been proposed in the literature to describe irreversible damage development. For the industrial example described in this paper the following equation has been applied (13) where α( )p p p p p d d = ≥ <    1 0 , za , za (14) & & p D = − λ 1 (15) p pD D= =Max( )( )0 (16) D DC p= Max( )( ) (17) 3 COMPUTER IMPLEMENTATION The material model has been implemented into a specialised commercial finite element system 4 by using the code development concept 4-6 shown in Figure 1. The symbolic system 5,6 for automatic code generation is based on the Mathematica package and allows constitutive models, element formulations and response functionals to be described on a highly abstract level. The formulations are automatically processed by computer, to derive consistently linearised element stiffness matrices, loading vectors and sensitivity terms for either direct differentiation method or adjoint method. From these expressions the computer code is automatically generated for different languages including C and FORTRAN; this code can then be integrated into a finite element environment which performs both direct and sensitivity analyses on a global structural level. An optimisation shell is also build around the finite element software to allow automatic optimisation of design parameters. The interactions between the symbolic system, the finite element environment and the optimisation shell are indicated in Figure 1. 4 INDUSTRIAL APPLICATION The computational model has been applied to multi-scale damage analysis an industrial tool (Figure 2a) for production of an automotive precision part 7. In the first step the macro-mechanical tool loads have been T. RODI^ ET AL.: A MICRO-MACRO ANALYSIS OF THE TOOL DAMAGE IN PRECISION FORMING 244 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Figure 1: Code development concept Slika 1: Koncept za razvoj programske kode evaluated by the finite element simulation of the forming process. These loads were then repetitively applied to the working surface of the prestressed die insert. In Figure 2c the macroscopic stress-strain response of the tool at the most critical location is shown for the first fifty forming cycles. These loading cycles were then mapped to the to the representative volume element (RVE) of a high strength powder metalurgical tool steel in order to evaluate stress-strain fields at the micro level where interactions between spherical primary carbides (M6C, MC, V8C7) and martensitic matrix occur. In Figure 2b the stress levels in carbides are shown. The model 8 can be extended to tribological problems where damage and wear of tool surfaces can be evaluated by taking into account stress concentrations due to surface roughness, temperature changes due to dissipation of plastic work and friction, internal stresses at the microstructure due to different thermal expansion of the carbides and the martensitic matrix as well as cooling effects due to the presence of lubricants. 5 REFERENCES 1 S. Stupkiewicz, J. Korelc, M. Dutko, T. Rodi~: Shape sensitivity analysis of large deformation frictional contact problems. Comput. methods appl. mech. eng. 191 (2002) 33, 3555–3581 2 Doltsinis I. St., Rodic T.: Process design and sensitivity analysis in metal forming processes: Computational methods and applications, International Journal for Numerical Methods in Engineering 45 (1999), 661–692 3 Pedersen T. O.: Cyclic plasticity and low cycle fatigue in tool materials. Ph. D. Thesis. DCAMM, Report No. S 82, November 1998 4 www.c3m.si 5 Korelc J.; Automatic generation of finite-element code by simul- taneous optimization of expressions, Theoretical Computer Science, 187 (1997a), 231–248 6 Korelc J.; Automatic generation of numerical codes with intro- duction to AceGen 4.0 symbolic code generator, www.fgg.uni-lj.si/ Symech/ 7 Grønbæk J., Hinsel C.: The importance of optimized prestressing with regard to the tool performance in precision forging (Keynote Paper). Kuzman, K. (Edtr.): 3rd International Conference on Industrial Tools, ICIT 2001, Roga{ka Slatina, April 22-26, 2001 8 A. Ibrahimbegovi}, I. Gre{ovnik, D. Markovi~, S. Melnyk, T. Rodi~: Shape optimization of two-phase material with microstructure, Engineering Computations: International Journal for Computer- Aided Engineering and Software, 22 (2005) 5/6, 1108 T. RODI^ ET AL.: A MICRO-MACRO ANALYSIS OF THE TOOL DAMAGE IN PRECISION FORMING MATERIALI IN TEHNOLOGIJE 40 (2006) 6 245 Figure 2: Micro-macro analysis of an industrial tool for cold precision forming of metals: (a) real macro-micro problem; (b) stress fields in virtual FE model at macro and micro levels; (c) cyclic stress-strain response of RVE of tool steel. Slika 2: Mikro-makroanaliza industrijskega orodja za natan~no preoblikovanje kovin v hladnem: (a) relni makro-mikroproblem; (b) napetostno polje v virtualnem MKE-modelu na makro- in mikroravni; (c) cikli~ni napetostno-deformacijski odziv RVE orodnega jekla D. A. SKOBIR, M. SPIEGEL: THE STABILITY OF CAST ALLOYS AND CVD COATINGS ... THE STABILITY OF CAST ALLOYS AND CVD COATINGS IN A SIMULATED BIOMASS-COMBUSTION ATMOSPHERE STABILNOST ZLITIN IN CVD-PREVLEK V SIMULIRANI ATMOSFERI ZGOREVANJA BIOMAS Danijela A. Skobir1, Michael Spiegel2 1Institute of Metals and Technology, Lepi pot 11, SI-1000 Ljubljana, Slovenia 2Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany danijela.skobir@imt.si Prejem rokopisa – received: 2006-09-29; sprejem za objavo – accepted for publication: 2006-10-13 The corrosion resistance in a biomass-combustion environment was studied for the following materials: cast alloys (Alloy 800, Inconel 617, 1.4910, HCM 12 and P91), Fe-9 % Cr model alloys with and without additions of Al, Si and Mo, and cast alloys coated using the pack-cementation process with Al and Al-Si. The simulated atmosphere for the biomass-combustion environment contained 200 µg/g HCl, volume fractions 13 % CO2, 22 % H2O and 5 % O2. The samples were covered with a salt mixture of mass fractions of 52.4 % KCl and 47.6 % K2SO4 in order to simulate the corrosion beneath the deposits. The specimens were exposed for 1000 h at the test temperature of 550 °C. Keywords: hot corrosion, biomass combustion, CVD-coatings, deposits S korozijskimi preizkusi v simulirani atmosferi za zgorevanje biomas smo raziskovali korozijsko obstojnost naslednjih materialov: lite zlitine (zlitina 800, Inconel 617, 1.4910, HCM 12 in P91), modelne zlitine Fe-9 % Cr z dodatki Al, Si in Mo in brez njih ter lite zlitine, na katere je bila s CVD-postopkom nanesena plast Al oziroma Al-Si. Simulirana atmosfera za zgorevanje biomas je vsebovala 200 µg/g HCl in prostorninske dele`e: 13 % CO2, 22 % H2O in 5 % O2. Vzorci so bili prekriti s solno me{anico z masnima dele`ema 52,4 % KCl in 47,6 % K2SO4 za simulacijo korozije pod depoziti. Preizkusi so potekali pri temperaturi 550 °C, ~as trajanja preizkusov pa je bil 1000 h. Klju~ne besede: visokotemperaturna korozija, zgorevanje biomas, CVD-prevleke, depoziti 1 INTRODUCTION One of the most important problems of modern society is the removal of waste and biomass, stemming mainly from the production of highly developed indu- strial products. An effective and useful way of removing biomass is combustion, connected with the production of steam used for the production of electrical energy. Nowadays, approximately 23 % of the total amount of waste in Europe is burned; the rest is deposited in landfills1,2. In Western Europe, nearly 600 combustion plants are in operation, and the number is still increasing. Until 2010 an increase in the total amount of energy from renewable sources, from 6 % to 12 %, is expected, as well as a substantial increase in the efficiency of thermal power plants. Corrosion is a major issue concerning the limited lifetime of tube materials and the plant efficiency in biomass- and waste-incineration plants. In biomass-fired plants, high contents of potassium and chlorine are present in the combustion environment, causing early failure of the thermal components, such as superheater tubes3,4. Solid and/or liquid chloride salts, together with their vapours, can destroy the protective surface oxide scales of high-temperature materials, even at tempera- tures well below the melting points of the salts2, 5-7. Rapid corrosion results from the complicated chemical reactions between tube materials and the gaseous species (HCl, SO2, etc.) and, especially, the low melting point of the eutectic salts of heavy metals (Sn, Pb, Zn) and alkali-metal (K, Na) chlorides, as well as sulfates2, 8-10. The most corrosive species in the flue gas is HCl. There is generally more HCl than SO2; however, the HCl/SO2 ratio strongly depends on the waste being burned. A generally accepted model for chlorine-induced corrosion in waste- and biomass-fired boilers is the 'active oxidation' mechanism, first observed and described by Lee and McNallan11. The chlorine is produced by the catalytic oxidation of HCl according to Deacon reaction (Eq. 1) as well as by the reaction of the salt with the oxide scale of the pre-oxidized metal, according to Eq. 2 and 3: 2HCl + 1/2O2 = H2O + Cl2 (1) 2NaCl + Fe2O3 + 1/2O2 = Na2Fe2O4 + Cl2 (2) 2NaCl + Cr2O3 + 1/2O2 = Na2Cr2O4 + Cl2 (3) The chlorine diffuses through the cracks and pores of the oxide scale to the metal/scale interface, reacting to form FeCl2(s): Fe + Cl2 = FeCl2(s) → FeCl2(g) (4) As the vapor pressure of the chloride is 10–4 bar at 500 °C, it evaporates and the volatile chloride diffuses MATERIALI IN TEHNOLOGIJE 40 (2006) 6 247 UDK 620.193:669.14:669.245 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 40(6)247(2006) outwards through the oxide scale. At the oxide/gas interface the reaction to Fe2O3 takes place, releasing chlorine again: 2FeCl2(g) + 3/2O2 = Fe2O3 + 2Cl2 (5) The growth of the Fe2O3 in the cracks and pores of the oxide destroys the scale and the corrosive gas can react with the unprotected metal. Hence, a scale is produced on the metal substrate, which is not passivating and, for this reason, the mechanism was nominated as active oxidation. The mechanism of this oxidation is schematically presented in Figure 1. The chlorine plays a catalytic role in this corrosion process because it is not consumed. In-depth thermogravimetric studies on the mechanism of active oxidation were carried out by Reese and Grabke12, showing that the evaporation of FeCl2(g) from the metal/scale interface is the rate-determining step in NaCl-induced corrosion. In order to increase the efficiency of combustion plants it is necessary to develop effective protective coatings for vital components in hostile combustion environments. 2 EXPERIMENTAL In this study, bare metals, CVD coatings and model alloys were tested in a simulated biomass-combustion atmosphere. The chemical composition of the cast alloys is presented in Table 1. All of these alloys are based on iron, except for Inconel 617, which is a nickel-based alloy. With the goal to decrease the surface degradation that occurs on exposure to high temperatures and corrosive atmospheres the cast alloys were coated using the pack-cementation process. The results of the exposure tests of uncoated as well as coated alloys were compared. The pack-cementation process is essentially an in-situ chemical vapour deposition (CVD) process, which is used to deposit Al or some other elements (Al-Si, Al-Cr and Al-B) onto metal substrates to form aluminide diffusion coatings. The substrates to be coated were placed in a sealed or semi-sealed container together with a powder mixture that consists of metal elements to be deposited (diffusion element), a halide activator (NH4Cl) and an inert filler (Al2O3). The substrates can be buried in, or placed above, the powder mixture. The sealed container is heated under a protective atmosphere of Ar to a temperature between 650–1200 °C and held there for a specified time. At these coating temperatures the halide activators react with the metal elements in the powder mixture and form a series of metal-halide vapour species such as AlCl, AlCl2, AlCl3 and Al2Cl613. The coating is formed via reduction reactions of the metal-halide vapours at the substrate surface and subsequent solid-state diffusion between the metal elements and the substrate. For this reason, the coatings produced by using this process are also termed diffusion coatings. Additionally, Fe-9 % Cr model alloys with and without additions of Al, Si and Mo were tested under the same conditions. The chemical composition of the model alloys is presented in Table 2. All the materials were machined into specimens with dimensions of about (10 × 10 × 2) mm, then ground with 400 # and 600 # SiC paper, cleaned in a ultrasonic bath D. A. SKOBIR, M. SPIEGEL: THE STABILITY OF CAST ALLOYS AND CVD COATINGS ... 248 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Figure 1: Schematic model of the mechanism of "active oxidation" Slika 1: Shematski prikaz modela "aktivne oksidacije" Table 1: Chemical composition of the cast alloys (w/%) Tabela 1: Kemijska sestava litih zlitin (w/%) Alloy Cr Ni Fe Mn Mo Al Co Si V Alloy 800 19–23 30–34 bal <1.5 - 0.1–0.6 - 0.5 - Inconel 617 20–24 bal max 3 max 1 8–10 - 10–15 max 1 - 1.4910 16–18 12–14 bal <2 2–2.5 - - <0.75 - HCM 12 11.2 0.66 bal 0.50 0.86 - - - 0.25 P 91 8.6 0.26 bal 0.41 0.93 - - 0.3 0.21 Table 2: Chemical composition of the model alloys (w/%) Tabela 2: Kemijska sestava modelnih zlitin (w/%) Alloy Fe Cr Mo Al Si VI811 bal 9 - 2.5 2.5 VI813 bal 9 10 - - VI814 bal 9 10 2.5 2.5 VI815 bal 9 5 2.5 2.5 of acetone and weighed. After drying, each sample was covered with a salt mixture of mass fractions 52.4 % KCl and 47.6 % K2SO4 to simulate the corrosion beneath deposits. The exposure experiments were performed in a flue-gas, using a horizontal furnace equipped with a quartz working tube. The furnace was connected to gas-mixing equipment; however, the N2–5 % O2–200 µg/g HCl mixture was supplied as a premixed commercial gas. The gas was dried by passing it through columns filled with P2O5 before entering the furnace. Because of the large constant-temperature zone it was possible to test 20 samples at the same time. The exposure experiments were carried out at 550 °C. The extent of the corrosion was determined by measuring the mass loss after 1000 h of reaction after the removal of the corrosion products by chemically etching in a KMnO4-NaOH solution at 80 °C. After exposure, metallographic cross-sections were prepared by dry grinding the samples in order to prevent the dissolution of the chloride products from the scale. Scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX) were used to study the morphology and the chemical composition of the corrosion products. 3 RESULTS AND DISCUSSION Figure 2 shows the extent of the corrosion on the investigated alloys, expressed in terms of mass change in mg/cm2. The model alloys, VI814 and VI815, show a relatively small mass loss for the samples in the biomass-combustion environment due to their high content of Al, Si and Mo. The corrosion layer on the SEM micrograph of a cross-section of the VI815 alloy (Figure 3a) is very thin, about 52 µm. The corrosion layer consists of an Fe-rich layer and closer to the metal there is a scale interface, with an increasing amount of Cr, Al, Si and Mo being detected. The inner part is a Cr-rich layer with a large amount of Cl (Figure 3b). Slightly worse corrosion behavior was shown by the VI811 alloy, whereas the VI813 alloy with a high Mo content was almost completely corroded. The analysis of the deposited layer of the VI813 alloy shows that the corrosion layer consists of two sublayers and is very thick, about 622 µm (Figure 4a). In the upper layer is the remainder of the salt on the top, and below an Fe-oxide was formed, where no chromium was found. The underneath layer is the layer of the inner corrosion products. Figure 4b shows a detailed view of the internal oxidation zone, which is relatively deep and therefore responsible for the large mass loss. The outer part of the scale of inner corrosion products is an Fe-rich layer, and towards the metal-scale interface an increasing content of Cr, Cl and Mo and no sulphur were detected. From Figure 2 it can also be seen that the corrosive attack on the nickel-based Inconel 617 alloy and on the 800 alloy with the high Ni content is much smaller than on the iron-based cast alloys. From Figure 5a it is clear that the corrosion layer on the exposed Inconel 617 is extremely thin, only about 3.6 µm, which shows that this alloy is just slightly corroded. The corrosion layer consists of two layers (Figure 5b): the first layer is the Ni-rich layer, and the second is the Cr-rich layer below. No chlorides were detected in this layer. The corrosion layer for the cast P91 alloy (Figure 6a), which has the lowest corrosion resistance among the D. A. SKOBIR, M. SPIEGEL: THE STABILITY OF CAST ALLOYS AND CVD COATINGS ... MATERIALI IN TEHNOLOGIJE 40 (2006) 6 249 Figure 3: SEM micrograph from a metallographic cross-section of the VI815 model alloy after corrosion beneath the KCl-K2SO4 salt mixture in N2-5 % O2-200 µg/g HCl at 550 °C for 1000 h. (a) overview image; (b) detailed image of the internal part of the corrosion layer Slika 3: SEM-posnetek metalografskega prereza za modelno zlitino VI815 po koroziji pod solno me{anico KCl-K2SO4 v N2-5 % O2-200 µg/g HCl pri 550 °C in po 1000 h. (a) pregledna slika; (b) detajlna slika notranjega dela korozijske plasti Figure 2: Mass loss of the materials exposed in a flue gas for 1000 h at 550 °C and covered with the KCl-K2SO4 salt mixture Slika 2: Sprememba mase preizku{ancev po 1000-urnem korozijskem preizkusu na 550 °C pod depozitom solne me{anice KCl-K2SO4 D. A. SKOBIR, M. SPIEGEL: THE STABILITY OF CAST ALLOYS AND CVD COATINGS ... 250 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Figure 7: SEM micrograph from a metallographic cross-section of Al-coated Inconel 617 alloy after corrosion beneath the KCl-K2SO4 salt mixture in N2-5 % O2-200 µg/g HCl at 550 °C for 1000 h. (a) overview image; (b) detailed image of the internal part of the corrosion layer Slika 7: SEM-posnetek metalografskega prereza za zlitino Inconel 617, prevle~eno z Al po koroziji pod solno me{anico KCl-K2SO4 v N2-5 % O2-200 µg/g HCl pri 550 °C in po 1000 h. (a) pregledna slika; (b) detajlna slika notranjega dela korozijske plasti Figure 5: SEM micrograph from a metallographic cross-section of the Inconel 617 alloy after corrosion beneath the KCl-K2SO4 salt mixture in N2-5 % O2-200 µg/g HCl at 550 °C for 1000 h. (a) overview image; (b) detailed image of the internal part of the corrosion layer Slika 5: SEM-posnetek metalografskega prereza za zlitino Inconel 617 po koroziji pod solno me{anico KCl-K2SO4 v N2-5 % O2-200 µg/g HCl pri 550 °C in po 1000 h. (a) pregledna slika; (b) detajlna slika notranjega dela korozijske plasti Figure 4: SEM micrograph from a metallographic cross-section of the VI813 model alloy after corrosion beneath the KCl-K2SO4 salt mixture in N2-5 % O2-200 µg/g HCl at 550 °C for 1000 h. (a) overview image; (b) detailed image of the internal part of the corrosion layer Slika 4: SEM-posnetek metalografskega prereza za modelno zlitino VI813 po koroziji pod solno me{anico KCl-K2SO4 v N2-5 % O2-200 µg/g HCl pri 550 °C in po 1000 h. (a) pregledna slika; (b) detajlna slika notranjega dela korozijske plasti Figure 6: SEM micrograph from a metallographic cross-section of the P91 alloy after corrosion beneath the KCl-K2SO4 salt mixture in N2-5 % O2-200 µg/g HCl at 550 °C for 1000 h. (a) overview image; (b) detailed image of the internal part of the corrosion layer Slika 6: SEM-posnetek metalografskega prereza za zlitino P91 po koroziji pod solno me{anico KCl-K2SO4 v N2-5 % O2-200 µg/g HCl pri 550 °C in po 1000 h. (a) pregledna slika; (b) detajlna slika notranjega dela korozijske plasti cast alloys, is much thicker (244 µm) than that on the Inconel 617. On the SEM micrograph, again an Fe-rich layer was detected on the top, and an increasing amount of Cr and Cl was detected towards the metal-scale interface (Figure 6b). The exposure tests of Al-coated Inconel 617 and Al-Si-coated 800 alloy did not show any improvement in corrosion resistance compared to the uncoated material (Figure 2). In the case of the Inconel 617, coated with Al, there is almost no corrosion layer formed (Figure 7a). The aluminised layer (Figure 7b) has the chemical composition 36.2 % Al, 35.4 % Ni, 13.7 % Cr, 7.3 % Co, 6.6 % Mo and 0.77 % Fe. Just below this layer an enrichment of Cr was detected. The chemical composition of this layer is 33.9 % Cr, 4.6 % Al, 27.6 % Ni, 11.6 % Co and 19.1 % Mo. Below this layer is the metal substrate. For all the other coated cast alloys an improvement in the corrosion resistance was observed (Figure 2). Figures 8a and b show the corrosion layer of the P91 alloy, coated with Al-Si. In spite the fact that the Al-Si coatings were not as thick as the Al coatings (the Al coatings were about 80 µm and Al-Si about 30–40 µm) no significant differences in the corrosion resistance were observed. 4 CONCLUSIONS Exposure tests were carried out to compare the corrosion resistance of several iron- and nickel-based alloys, as well as the same alloys coated with Al, Al-Si and Fe-9 % Cr model alloys beneath a salt mixture of KCl and K2SO4 in N2–5 % O2 atmosphere with the addition of 200 µg/g HCl. In this atmosphere, which is typical for a biomass-combustion environment, active oxidation by the HCl and alkali-chlorides plays a major role in the corrosion of this material. The results showed that among the model alloys (Fe-9Cr) the most corrosion-resistant are the VI814 and VI815 alloys, due to their large amount of Al, Si and Mo. In the group of cast alloys, the Inconel 617 nickel-based alloy has the best corrosion resistance, followed by the 800 alloy, which also contains quite large amounts of Ni. The Inconel 617 alloy coated with Al, and the 800 alloy coated with Al-Si do not show any improvement in corrosion resistance compared to the uncoated alloys. It can therefore be summarized that the alloying elements Ni, Mo, Al and Si have a beneficial effect on the corrosion resistance of the model and cast alloys. The coatings on the alloys that do not include these alloying elements do not improve the corrosion resistance. The formation of deposits significantly contributes to the corrosion by solid and liquid salts (i.e., chlorides and sulphates). ACKNOWLEDGEMENTS This work was carried out within the SUNASPO- Research Training Network at the Department of Interface Chemistry and Surface Engineering of the Max-Planck-Institut für Eisenforschung GmbH, Düssel- dorf, Germany. The author would like to thank PD Dr. Michael Spiegel for the opportunity of working in the field of High Temperature Corrosion, and especially for his support. The financial support of the European Commission is gratefully acknowledged. 5 REFERENCES 1 Statistisches Bundesamt Wiesbaden (1992), Statistik der öffentlichen Abfallbeseitigung von 1990 2 Spiegel M.: Materials and Corrosion 50 (1999), 373–393 3 Sander B.: Biomass and Bioenergy 122 (1997), 177 4 Nielsen H. P., Frandsen F. J., Dam-Johansen K. and Baxter L. L.: Prog Energy Combust Sci. 26 (2000), 283 5 Grabke H. J.: Incinerating municipal and industrial waste in Bryers (ed.), Hemisphere Publ. Corp., (1991), 161–176 6 Li Y. S., Niu Y. and Wu W. T.: Mater. Sci. Eng A345 (2003), 64 7 Shinata Y.: Oxid. Met. 27 (1987), 315 8 Montgomery M. and Karlsson A.: Materials and Corrosion 50 (1999), 579 9 Miller P. D. and Krouse H. H.: Corrosion 28 (1972), 274 10 Grabke H. J., Reese E. and Spiegel M.: Corros. Sci. 37 (1995), 1023 11 Lee Y. Y., McNallan M. J.: Metallurg. Trans. 18A (1987), 1099 12 Reese E., Grabke H. J.: Materials and Corrosion 43 (1992), 547 13 Xiang Z. D., Burnell-Gray J. S. and Datta P. K.: Journal of Material Science 36 (2001), 5673 D. A. SKOBIR, M. SPIEGEL: THE STABILITY OF CAST ALLOYS AND CVD COATINGS ... MATERIALI IN TEHNOLOGIJE 40 (2006) 6 251 Figure 8: SEM micrograph from a metallographic cross-section of the P91 alloy, coated with Al-Si after corrosion beneath the KCl-K2SO4 salt mixture in N2-5 % O2-200 µg/g HCl at 550 °C for 1000 h. (a) overview image; (b) detailed image of the internal part of the corrosion layer Slika 8: SEM-posnetek metalografskega prereza za zlitino P91, prevle~eno z Al-Si po koroziji pod solno me{anico KCl-K2SO4 v N2-5 % O2-200 µg/g HCl pri 550 °C in po 1000 h. (a) pregledna slika; (b) detajlna slika notranjega dela korozijske plasti K. ZUPAN ET AL.: NASTANEK LaCrO3 MED ZGOREVALNO SINTEZO NASTANEK LaCrO3 MED ZGOREVALNO SINTEZO LaCrO3 FORMATION DURING COMBUSTTION SYNTHESIS Klementina Zupan, Marjan Marin{ek, Stane Pejovnik, Teja Hrobat Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo, A{ker~eva 5, 1000 Ljubljana, Slovenija klementina.zupan@fkkt.uni-lj.si Prejem rokopisa – received: 2006-01-23; sprejem za objavo – accepted for publication: 2006-10-09 Med vrsto postopkov mokre kemije, s katerimi posku{ajo zagotoviti v produktu ve~jo homogenost na atomskem nivoju, ve~jo ~istost ter ve~jo aktivnost prahov, je zgorevalna sinteza iz raztopin tista metoda, ki v zadnjem ~asu hitro pridobiva na pomenu. Pri zgorevalni sintezi lantanovega kromita lahko izhajamo iz kovinskih nitratov, izbiramo pa lahko med razli~nimi reducenti (tetraformaltrisazin-TFTA, urea, glicin citronska kislina). V prispevku primerjamo nastanek lantanovega kromita med kalcinacijskim postopkom in v procesu zgorevalne sinteze iz citratno-nitratnega gela. Pri obeh postopkih smo pogoje za pripravo intermediatov izbrali na osnovi razultatov termi~ne analize reakcijskih zmesi. Sestavo faz ter morfologijo vmesnih in kon~nih produktov smo dolo~ali z rentgensko pra{kovno in SEM-analizo. Klju~ne besede: zgorevalna sinteza, lantanov kromit, nastanek Several methods for the low-temperature synthesis of LaCrO3 have been developed to achieve the compositional homogeneity, purity and activity of powders including combustion synthesis from the solutions. The reaction mixtures usually employ metal nitrates and different reducing agents, e.g., TFTA (teraformal trisazine), urea, glycine, and citric acid. In the present work the formation of LaCrO3 in the calcining and in the combustion process was compared. In both procedures, intermediate formation temperatures were determined by thermal analysis. The intermediates and the final products were characterized by X-ray powder diffraction and by scanning electron microscopy. Key words: combustion synthesis, lanthanum chromite, formation 1 UVOD Lantanov kromit spada zaradi svojih dobrih lastnosti (obstojnost pri visokih temperaturah, elektri~na prevod- nost) med spojine za pripravo materialov za elektrodo ali vmesnik v visokotemperaturnih gorivnih celicah s trdnim elektrolitom. Vmesnik med seboj povezuje posamezne dele gorivne celice (katoda / trdni elektrolit / anoda). Uporabljajo ga tudi kot grelni element ali oblogo v visokotemperaturnih pe~eh1. Materiale na osnovi lantanovega kromita navadno pripravljamo s kalcinacijsko metodo iz oksidov, hidro- ksidov in karbonatov s ponavljanjem operacij mletja in `ganja. Hitrost reakcij v trdnem je omejena z difuzijo, zato v novej{em ~asu za pripravo teh materialov preizku{ajo in uvajajo t. i. metode mokre kemije, npr. sol-gel-postopki2, koprecipitacijska metoda3, metoda trdnih raztopin prekurzorjev4, zgorevalna sinteza5 in druge metode. V primerjavi z enostavno reakcijo zgorevalne sinteze v trdnem je potek zgorevalne sinteze iz raztopin veliko bolj komleksen. Kljub {tevilnim raziskavam in enostav- nemu osnovnemu principu pogosto ostane nepojasnjen. Pri reakciji (ena~ba 1) trdnih komponent A in B v trdno komponento AB z dovolj visokim tali{~em se reakcijska toplota redoks reakcije porabi izklju~no za nastanek enofaznega produkta in njegovo segrevanje. Pri zgore- valni sintezi iz raztopin pa se reakcijska toplota ne porablja le za nastanek in segrevanje kon~nih produktov (ena~ba 2), ampak tudi za vse transformacije in fazne spremembe, ki v sistemu potekajo. Med zgorevalno sintezo iz citratno-nitratnega gela lahko poteka ve~ zaporednih ali vzporednih reakcij6, ~eprav jih med samo sintezo ne lo~imo zaradi eksotermnosti in avtokatalitske narave procesa. Predvsem pa nanje poka`e analiza vmesnih in kon~nih produktov. Pri tovrstnih sintezah moramo ra~unati tudi s toplotnimi izgubami ter temperaturnimi gradienti v reakcijski zmesi A+ B→ AB (1) 3La(NO3)3 + 3Cr(NO3)3 + 5H8C6O7 = 3LaCrO3 + + 30CO2 + 9N2 + 20H20 (2) Da bi razjasnili potek sinteze lantanovega kromita iz citratno-nitratnega gela, je bilo smiselno, da raziskave izvajamo v nedopiranem sistemu (LaCrO3), kjer je {tevilo kristalnih faz, ki med reakcijo nastajajo, ~im manj{e. Nastanek lantanovega kromita smo posku{ali pojasniti z analizo vmesnih produktov reakcije. Za primerjavo smo lantanov kromit sintetizirali s kalcinacijo iz lantanovega hidroksida in kromovega oksida. 2 EKSPERIMENTALNO DELO Gele, intermediate ter kon~ni produkt smo pripravili iz citratno-nitratnih za~etnih snovi. Reakcijske zmesi smo pripravili tako, da smo kovinske nitrate lantana in kroma raztopili v minimalni koli~ini vode ter dodali vodno raztopino citronske kisline. Molsko razmerje med citronsko kislino in nitratnimi ioni je bilo 0,18. Reak- cijsko zmes smo prenesli v 500-mililitrsko bu~ko ter jo MATERIALI IN TEHNOLOGIJE 40 (2006) 6 253 UDK 546.654:54.057 ISSN 1580-2949 Izvirni znanstveni ~lanek/Original scientific article MTAEC9, 40(6)253(2006) su{ili pri temperaturi 60 °C in ni`jem tlaku (vodna ~rpalka 2,7 kPa). Po su{enju smo citratno-nitratni gel uporabili za pripravo vmesnih produktov. Segrevali smo miligramske koli~ine gelov do izbranih temperatur (170 °C, 310 °C, 380 °C, 600 °C in 800 °C) ter tako prepre~ili, da bi reakcija potekla avtokatalitsko do konca. Lantanov kromit smo pripravili tudi po kalcinacijskem postopku iz lantanovega hidroksida in kromovega oksida. Obe komponenti smo zatehtali v ustreznem mol- skem razmerju ter zmes ob dodatku etanola homogeni- zirali v ahatni ferilnici. Nato smo reakcijsko zmes stisnili v tablete (60 MPa, Φ = 6 mm) ter jih `gali 4 h pri izbranih temperaturah (600 °C, 800 °C, 1000 °C). Lastnosti reaktantov ter reakcijskih zmesi smo spremljali s termi~no analizo s termoanalizatorjem Mettler 3000. Rentgensko pra{kovno analizo vzorcev smo izvedli z difraktometrom tipa D4 ENDEAVOR X-ray Diffractometer (Bruker). Morfologijo vmesnih in kon~nih produktov smo spremljali z vrsti~nim elektron- skim mikroskopom JEOL T300. 3 REZULTATI IN DISKUSIJA TG/DTG-analizo smo uporabili za dolo~anje ter- mi~nih lastnosti reakcijskih zmesi za kalcinacijski postopek in za zgorevalno sintezo. V primeru kalcinacij- skega postopka smo analizirali tudi izhodni komponenti lantanov hidroksid ter kromov oksid (Slika 1). Pri segrevanju kromovega oksida v izbranem temperaturnem obmo~ju med 20 °C in 950 °C pri~ako- vano ni opaziti spremembe mase, nasprotno od lantano- vega hidroksida, ki izgublja maso v ve~ stopnjah. V prvi se pretvori oksid v hidroksid. Dejanska izguba mase je 9,3 % in je v skladu s teoreti~no izra~unano vrednostjo 9,5 %. Druga stopnja naj bi ustrezala nastanku lantano- vega oksida,7 vendar v na{em primeru ta reakcija pote~e v temperaturnem intervalu med 440 °C in 740 °C, ko se izguba mase 4,6 % dobro ujema s teoreti~no izgubo 4,7 %. V reakcijski zmesi LCkalc je potek do temperature 600 °C enak kot pri lantanovem hidroksidu, ko pri~ne masa nara{~ati. Nastaja z lantanom bogata faza La2CrO6 pri reakciji oksidov s kisikom. Nad temperaturo 750 °C vzorec ponovno izgublja maso, kar pripisujemo reakciji La2CrO6 s Cr2O3. Po podatkih Kikkikawe in soavtorjev8 lantanov kromit pri kalcinacijskem postopku nastaja nad temperaturo 900 °C, pri hidrazinskem postopku pa v temperaturnem intervalu med 780 °C in 840 °C. Pri na{i sintezi iz hidroksida in oksida je temperatura nastanka ni`ja, kar je lahko posledica razlik v za~etni stopnji priprave reakcijske zmesi in s tem nekoliko spremenje- nega mehanizma nastanka perovskitne faze. Citratno-nitratni gel prav tako izgublja maso v ve~ stopnjah. Prvi dve sta posledica reakcije med nitratnimi ioni in citronsko kislino, tretja pa je gorenje organskega ostanka z zrakom, kar smo `e obravnavali v pretklih raziskavah9. Pri temperaturi 530 °C kristalizira lantanov kromat (LaCrO4). Nad temperaturo 744 °C poteka reakcija razpada lantanovega kromata po reakciji: LaCrO4 →LaCrO3 + ½O2 (3) Z rentgensko strukturno analizo vmesnih in kon~nih produktov smo dolo~ili zaporedje nastanka faz pri obeh sinteznih postopkih. Pri vzorcu LCkalc smo sestavo kristalnih faz dolo~ili po kalcinaciji pri 600 °C, saj pri temperaturah, ni`jih od te, najprej pote~e pretvorba lantanovega hidroksida v oksid. Vzorec je slabo krista- liziran in vsebuje z lantanom bogato fazo La2CrO6 ter Cr2O3 ter LaCrO4. Po kalcinaciji pri 800 °C je v vzorcu le perovskitna modifikacija. Citratno-nitratni geli (Gel018) so po segrevanju do 170 °C, 310 °C in 380 °C amorfni, po segrevanju do 600 °C pa je v njih le LaCrO4 v monoklinski modifikaciji. Po segrevanju do 800 °C vzorec Gel018 vsebuje le perovskitno modifikacijo lantanovega kromita. Rezultati rentgenske pra{kovne analize so skladni s termi~no analizo in ka`ejo na razliko v mehanizmu nastanka lantanovega kromita pri obeh uporabljenih sinteznih metodah. LaCrO4 v vzorcu LCkalc po kalcinaciji pri 600 °C dopu{~a mo`nost, da lantanov kromit nastaja po dveh mehanizmih. Po prvem nastaja lantanov kromit v reakciji faze, bogate z lantanom (La2CrO6), s kromovim oksidom, v drugi pa z razpadom LaCrO4. Po podatkih iz literature v reakciji lantanovega hidroksida z amorfnim kromovim oksidom prevladuje K. ZUPAN ET AL.: NASTANEK LaCrO3 MED ZGOREVALNO SINTEZO 254 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Slika 1: a) TG- in b)DTG-analize Cr2O3, La(OH)3 in reakcijskih zmesi LCkalc ter Gel018 v zraku Figure 1: a) TG and b) DTG curves of Cr2O3, La(OH)3 and reaction mixtures LCkalc and Gel018 in air prvi mehanizem8. Navzo~nost LaCrO4 v produktih, pripravljenih s kalcinacijo, je mo`na zaradi uporabe etanola pri pripravi reakcijske zmesi. Reducent prepre- ~uje oksidacijo kroma iz 3+ v 6+ ter s tem prepre~uje nastanek lantanovega kromita izklju~no preko vmesnega La2CrO6. Pri zgorevalni sintezi blizu stehiometrijskega citratno-nitratnega razmerja je mehanizem nastanka lantanovega kromita vezan na reakcijo razpada lanta- novega kromata (ena~ba 3). V predhodnih raziskavah smo perovskitno fazo potrdili v vseh vzorcih, priprav- ljenih z zgorevalno sintezo za citratno nitratna razmerja c/n od 0,18 do 0,2810. Druge faze pa so bile vezane na obliko reakcijske zmesi pri zgorevalni sintezi. Pri sintezi v plasti je stik med delci gela nepopoln, v produktu je podobno kot pri kalcinacijskem postopku navzo~ tudi La2CrO6, ki lahko nastane zaradi temperaturnih gradientov in zaradi kratkih ~asov pri temperaturi sinteze. Tabela 1: Kristalne faze v intermediatih, pripravljenih s kalcina- cijskim postopkom in iz citratno-nitratnega gela Table 1: Crystalographic modifications in intermediates prepared by calcining and citrate-nitrate Vzorec Tkalcinacije °C Glavne kristalne faze Gel018 170 amorfen Gel018 310 amorfen Gel018 380 amorfen Gel018 600 LaCrO4 Gel018 800 LaCrO3 LCkalc 600 La2CrO6,Cr2O3, LaCrO4 LCkalc 800 LaCrO3 Slika 3 prikazuje vzorca LCkalc in Gel018 po toplotni obdelavi pri temperaturah 600 °C in 800 °C. Vzorec LCkalc, kalciniran pri 600 °C, je v obliki mikrometrskih zrn, ki se deloma povezujejo v aglomerate, medtem ko je vzorec LCkalc po kalcinaciji pri 800 °C sestavljen prete`no iz aglomeratov, ve~jih od 2 µm. V tempera- turnem intervalu od 600 °C do 800 °C se La2CrO6 in LaCrO4 pretvorita v perovskitno modifikacijo, kar pa se ne izra`a v spremembi morfologije. Vzorec Gel018, segret do 600 °C, ima zna~ilno cevasto zgradbo volumi- noznih aglomeratov, ni pa opaziti izrazitej{e zrnate strukture. Pri segrevanju vzorca Gel018 do 800 °C enako kot pri kalcinacijskem postopku nastane perovskitna modifikacija, ki jo spremlja o~itna sprememba morfo- logije vzorca. Vzorec sestavljajo zrna velika do 0,5 µm, ki niso povezana v aglomerate. Skladno z drugimi metodami karakterizacije se razlika v mehanizmu na- stanka lantanovega kromita pri kalcinacijskem postopku in pri zgorevalni sintezi izra`a tudi pri morfologiji. 4 SKLEP Nastanek lantanovega kromita pri zgorevalni sintezi iz citratno-nitratnega gela smo posku{ali pojasniti z analizo vmesnih produktov reakcije. Za primerjavo smo lantanov kromit sintetizirali s kalcinacijo iz lantanovega hidroksida in kromovega oksida. V reakcijski zmesi kalcinacijskega postopka so termi~ne lastnosti do temperature 600 °C enake kot pri lantanovem hidroksidu, ki v tem temperaturnem inter- valu izgublja vodo. Nara{~anje mase, ki sledi, je povezano z nastankom z lantanom bogate faze La2CrO6 pri reakciji kovinskih oksidov s kisikom. Nad tempera- turo 750 °C vzorec ponovno izgublja maso, kar pripisu- jemo reakciji La2CrO6 s Cr2O3. Temperatura nastanka lantanovega kromita je v na{em primeru ni`ja od pri~a- kovane, kar je lahko posledica razlik v pripravi reakcijske zmesi pri kalcinacijskem postopku. V citratno-nitratnih gelih pri segrevanju sledi ve~ stopenj. V prvih dveh te~eta reakciji med nitratnimi ioni in citronsko kislino, tretja pa je gorenje organskega K. ZUPAN ET AL.: NASTANEK LaCrO3 MED ZGOREVALNO SINTEZO MATERIALI IN TEHNOLOGIJE 40 (2006) 6 255 Slika 3: Posnetki vzorcev LCkalcin in Gel018 po razli~ni toplotni obdelavi Figure 3: SEM micrographs samples LCkalcin in Gel018 after different thermal treatment Slika 2: Pra{kovni posnetki LCkalc in gela018 po kalcinaciji pri 600 °C Figure 2: Phase development of samples LCkalc and Gela018 during thermal treatment at 600 °C ostanka z zrakom. Kromatna faza kristalizira pri tempe- raturi 530 °C, nad temperaturo 744 °C pa razpada do kromita. Mehanizem nastanka lantanovega kromita se pri sinteznih metodah kalcinacije in zgorevalne sinteze razlikuje. Pri zgorevalni sintezi lantanov kromit nastane v reakciji razpada lantanovega kromata. Ta je tudi v vzorcu, pripravljenem s kalcinacijo po segrevanju pri 600 °C, kar ka`e na to, da lantanov kromit nastaja po dveh mehanizmih. Pri prvem nastaja v reakciji faze, bogate z lantanom (La2CrO6), s kromovim oksidom, pri drugem pa z razpadom LaCrO4. Navadno pri rekacijeh hidroksidov z oksidi prevladuje prvi mehanizem. 5 LITERATURA 1 A. Shiryaev, M. D. Nevsasyan, N. Q. Ming, D. Luss, Thermodinamic feasibility of SHS of SOFC materials, J. Mater Synth. and Process, 7 (1999), 83–90 2 S. Bilger, G. Blass and R. Forthmann, Sol-gel Synthesis of Lanthanum Chromite Powder, J. Eur. Ceram. Soc., 17 (1997) 1027–1031 3M. R. De Guire, S. E. Dorris, R. B. Poeppel, S. Morissette, U. Balachandran, Coprecipitation synthesis of doped lanthanum chromite, J. Mater. Res., 8 (1993), 2327–2335 4 K. Vidyasagar, J. Gopalkrishnan, N. Rao, A convenient route for the synthesis of complex metal oxides employing solid solutions precursors, Inor. Chem., 23 (1984), 1206–1210 5 Y Zhang, G. C. Stangle, Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process, J. Mater. Res., 9 (1994) 1997–2004 6 R. Sukumar, A. Das Sharma, S. N. Roy, H. S. Maiti, Synthesis of YBa2Cu3O7-x powder by autoignition of citrate-nitrate gel, J. Mater. Res., 8 (1993), 2761–2766 7 A. Neumann, D. Walter, The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide, Thermochimica Acta, 445 (2006), 200–204 8 T. Kikkiawa, M. Yoshinava, K. Hirota and O. Yamaguchi, Synthesis of LaCrO3 by the Hydrazine Method, J. Mater. Sci. Lett., 14 (1995), 1071–1073 9 K. Zupan, D. Kolar, [tudij citratno-nitratnih gelov za pripravo keramike na osnovi LaCrO3, Kovine zlit. tehnol., 32 (1998), 355–358 10 K. Zupan, S. Pejovnik, J. Ma~ek, Synthesis of nanometer crystalline lanthanum chromite powders by the citrate-nitrate autoignition reaction, Acta Chim. Slov., 48 (2001), 137–145 K. ZUPAN ET AL.: NASTANEK LaCrO3 MED ZGOREVALNO SINTEZO 256 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Z. [U[TERI^ ET AL.: DINAMI^NE MEHANI^NE LASTNOSTI ELASTOMERNIH KOMPOZITOV ... DINAMI^NE MEHANI^NE LASTNOSTI ELASTOMERNIH KOMPOZITOV S POLNILI NANOVELIKOSTI DYNAMIC MECHANICAL PROPERTIES OF ELASTOMERIC COMPOSITES WITH NANO-SCALE FILLERS Zoran [u{teri~, Toma` Kos, Marija [u{tar Savatech, d. o. o., Razvojni in{titut, [kofjelo{ka 6, 4502 Kranj, Slovenija zoran.susteric@sava.si Prejem rokopisa – received: 2006-09-18; sprejem za objavo – accepted for publication: 2006-10-12 V delu je prikazan na~in preu~evanja reolo{kih lastnosti elastomernih kompozitov z organsko modificirano montmorillonitno glino kot nanopolnilom z uporabo deformacijskih, temperaturnih in koli~inskih odvisnosti njihovih dinami~nih mehani~nih funkcij, tj. dinami~nega pro`nostnega modula in modula izgub. Pri tem je uporabljen teoreti~ni model, ki poleg razlage vedenja dinami~nih funkcij omogo~a tudi dolo~itev zna~ilnih energij za deformacijski in toplotni razpad notranje sekundarne strukture teh nanokompozitov. Klju~ne besede: elastomer, glina, nanokompozit, reolo{ke lastnosti The work presents an approach of studying rheological properties of elastomeric composites with organically modified Montmorillonite clay, as nanofiller, by deformational, temperature and content dependence of their dynamic mechanical functions, i.e. the storage and loss moduli. Within this frame a theoretical model has been used, which, apart from elucidation of dynamic functions, also enables determination of characteristic energies for deformational and thermal breakdown of the nanocomposite internal secondary structure. Keywords: elastomer, clay, nanocomposite, rheological properties 1 UVOD V zadnjih nekaj letih se je zanimanje za uporabo nanopolnil, posebno dolo~enih vrst gline1 kot oja~e- valnih in toplotnostabilizacijskih dodatkov elastomerom mo~no pove~alo. Nanopolnila imajo veliko specifi~no povr{ino in zato lahko v elastomerih `e v razmeroma majhnih koli~inah u~inkovito nadomestijo klasi~na aktivna polnila, na primer saje ali siliko. Poleg kemijske sestave, zgradbe, velikosti in povr{inskih zna~ilnosti delcev nanopolnil to dejstvo potrjujejo tudi reolo{ke analize nastalih elastomernih nanokompozitov1,2. To delo podaja rezultate reolo{kega preu~evanja kompozitov iz naravnega kav~uka in organsko modifi- cirane montmorillonitne gline, dobljenih z me{anjem v talini. S sekundarnimi interakcijami delci gline med seboj in s kav~ukovimi molekulami ustvarjajo vezi ter tako sekundarno mre`o. Ker je zaradi povr{insko aktivne gline gostota nastalih vezi velika, so pro`nostni moduli tak{nih mre` pri majhnih deformacijah in zmernih temperaturah visoki. Vendar zaradi {ibkosti sekundarnih vezi z ve~anjem deformacije in/ali temperature za~ne mre`a razpadati v energijsko disipacijskem procesu, kar je reolo{ko mo`no spremljati. V ta namen je posebno primerna periodi~na deformacija z merjenjem kompo- zitovih dinami~nih mehani~nih funkcij, to je dina- mi~nega pro`nostnega modula in modula izgub, v odvis- nosti od deformacije in temperature. Za razumevanje rezultatov je uporabljen statisti~nomehani~ni model3,4, s katerim je omogo~ena tudi dolo~itev zna~ilnih energij mehani~nega in toplotnega razpada mre`e in s tem kvantitativna ozna~ba teh nanovelikostnih u~inkov v elastomerih. 2 TEORETI^NI DEL Z interkalacijo elastomernih molekul v glini in eksfoliacijo delcev gline med me{anjem se zaradi medsebojnih elektrostati~nih interakcij v snovi ustvarijo multifunkcionalne vezi in s tem ustrezna tridimen- zionalna mre`a. Ker so tovrstne interakcije kratkega dosega van der Waalsove vrste, so nastale vezi v primerjavi s kovalentnimi ali ionskimi vezmi {ibke5 z zna~ilnimi energijami v obmo~ju 5–50 kJ mol–1. Mehani~ni in toplotni u~inki zato mo~no vplivajo na stabilnost posledi~ne sekundarne mre`e. @e pri majhnih deformacijskih in/ali temperaturnih dvigih za~nejo vezi in s tem sekundarna mre`a razpadati, kar je jasno razvidno iz poteka dinami~nih mehani~nih funkcij nanokompozita, saj je po teoriji gumene pro`nosti pro`nostni modul sorazmeren z gostoto vezi6, modul izgub pri danih pogojih pa z njeno spremembo. Za tak{ne mre`e pa je pri tem zna~ilno, da se v mirovanju po dolo~enem ~asu reformirajo, kar se sicer pri poru{enih mre`ah s kovalentno vezavo ne zgodi nikoli. MATERIALI IN TEHNOLOGIJE 40 (2006) 6 257 UDK 691.4:620.17 ISSN 1580-2949 Izvirni znanstveni ~lanek/Original scientific article MTAEC9, 40(6)257(2006) 2.1 Vpliv deformacije Na~elno je vseeno, katere vrste oscilirajo~a defor- macija se uporabi pri preu~evanju odvisnosti dinami~nih mehani~nih funkcij nanokompozitov od njene velikosti. Da bi se izognili dolo~enim teoreti~nim in tudi merilnim nerodnostim, zlasti pri velikih deformacijah, je ugoden strig, saj so stri`ni pro`nostni moduli, nasprotno od nateznih ali kompresijskih, dobro definirani v znatno {ir{em deformacijskem obmo~ju7. Tako ima pri majhnih (stri`nih) deformacijah dina- mi~ni (stri`ni) pro`nostni modul kompozita G' visoko vrednost, saj je gostota sekundarnih vezi visoka. Z nara{~ajo~o deformacijo (ker gre za periodi~no defor- miranje, je mi{ljena amplituda stri`ne deformacije g) se zaradi razpadanja vezi njihova gostota manj{a in G' monotono pojema z za~etne proti nizki kon~ni vrednosti, ko je sekundarna mre`a v celoti poru{ena. Ker je razpad sekundarne mre`e disipacijski proces, pa (stri`ni) modul izgub G'' po drugi strani, z za~etne nizke vrednosti naraste in preide maksimum, ko je razpad najmo~nej{i, ter nato pojema, podobno kot G'. Pri tem pa je treba opozoriti tudi na disipacijo energije zaradi notranjega trenja, ki je mo~no odvisna od frekvence in vpliva na vrednost G'', zlasti pri majhnih deformacijah. Defor- macijski potek dinami~nih mehani~nih funkcij pri razpadu sekundarne mre`e je shemati~no prikazan na sliki 1. S statisti~no mehaniko verigastih molekul in stati- stiko razpada sekundarne mre`e je mo`no priti do naslednjih analiti~nih izrazov deformacijske odvisnosti dinami~nih mehani~nih funkcij G'(g) in G''(g)3,4: G'(g) = G'(0) (1+Wrg/RT)exp(–Wrg/RT) (1) G''(g) = G''(gmax) (Wrg/RT)exp(1–Wrg/RT) (2) kjer sta G'(0) in G''(gmax) maksimalni vrednosti dina- mi~nih stri`nih modulov, R plinska konstanta, T tem- peratura in Wr zna~ilna energija za deformacijski razpad sekundarne mre`e, ki jo je mo`no dolo~iti iz ena~b (1) in (2) ter meritev G'(g) in G''(g). Energija Wr je odvisna {e od vsebnosti polnila in temperature, vendar je de- formacijsko neodvisna pri majhnih deformacijah. Z ve~anjem deformacije postane odvisna tudi od slednje Wr = Wr(g): Wr(g) = Wr(¥) + {1/[Wr(0) – Wr(¥)] + g/3RT] –1 (3) kjer sta Wr(0) in Wr(¥)za dano sekundarno mre`o od deformacije neodvisni konstanti s pri~akovanimi vred- nostmi v obmo~ju, zna~ilnem za energije sekundarnih interakcij. Ena~bi (1) in (2) napovedujeta asimptoti~no defor- macijsko pojemanje stri`nih modulov proti ni~li, na- mesto proti nizkima, vendar kon~nima vrednostima G'(¥) in G''(¥). Strogo vzeto bi bilo to treba upo{tevati, v resnici pa je nebistveno, ker sta ti vrednosti zelo majhni in praviloma dose`eni zunaj merilnega obmo~ja prakti~nega pomena. 2.2 Vpliv temperature Pri dani temperaturi sekundarne vezi nastajajo in razpadajo v dinami~nem ravnovesju, tako da njihova povpre~na gostota ostane konstantna. S spremembo temperature se gostota ustali pri drugi vrednosti, ni`ji, ~e je temperatura vi{ja, saj je med spremembo zaradi mo~nej{ega termi~nega gibanja molekul razpad vezi verjetnej{i od nastanka. Za tak{no dogajanje statisti~na mehanika napoveduje termi~no aktivacijsko tempera- turno odvisnost gostote vezi n(T) Arrheniusove oblike: n(T) µ exp(Ea/RT), kjer je Ea aktivacijska energija za to- plotni razpad sekundarne mre`e. Po drugi strani teorija gumene pro`nosti napoveduje premo sorazmernost pro`nostnega modula z gostoto vezi in temperaturo6 G' µ nT. Z upo{tevanjem n(T) za tempe- raturno odvisnost modula izhaja4: G'(T) µ T exp(Ea/RT) (4) Izka`e se, da ta zveza dr`i z visoko natan~nostjo. Vrednosti aktivacijske energije za toplotni razpad mre`e Ea so prav tako v obmo~ju, zna~ilnem za energije sekun- darnih interakcij. Podobna temperaturna odvisnost velja tudi za G'', le da ima aktivacijska energija zaradi notra- njega trenja nekoliko druga~no vrednost. 2.3 Vpliv vsebnosti polnila Glina kot nanopolnilo v elastomeru deluje oja~e- valno, tako zaradi nastanka sekundarnih vezi kot tudi zaradi pove~anega notranjega trenja. Delovanje je obenem toplotno stabilizacijsko, saj vezi omejujejo molekulsko gibljivost. Podrobna analiza poka`e, da je za ne prevelike koncentracije polnila oja~evalni u~inek, izra`en z odvisnostjo dinami~nega pro`nostnega modula kompozita od volumenskega dele`a gline fV, naslednji4: G'(fV) » G'(0) exp(kfV) (5) kjer je k snovna konstanta, zna~ilna za sistem elastomer/ nanopolnilo. Z. [U[TERI^ ET AL.: DINAMI^NE MEHANI^NE LASTNOSTI ELASTOMERNIH KOMPOZITOV ... 258 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Slika 1: Deformacijska odvisnost dinami~nih mehani~nih funkcij nanokompozitov Figure 1: Deformational dependence of nanocomposites’ dynamic mechanical functions 3 EKSPERIMENTALNI DEL Eksperimentalni del zajema pripravo vzorcev nano- kompozitov in merjenje dinami~nih mehani~nih funkcij v razli~nih odvisnostih. 3.1 Snovi in priprava vzorcev Vzorci so bili pripravljeni z me{anjem elastomerne taline z organsko modificirano montmorillonitno glino in premre`evalnim sistemom v gnetilnem me{alniku (Bra- bender Plastograph) 10 min ob za~etni temperaturi glave me{alnika 60 °C in hitrosti 60 r/min, pri ~emer so bile uporabljene naslednje snovi: – naravni kav~uk SMR 10 z viskoznostjo po Mooneyu (ML (1+4) 100 °C) 89 – kemijsko modificirana montmorillonitna glina (Dellite 67G) – nemodificirana glina (Dellite LVF) – premre`evalni sistem (`veplo, cinkov oksid, stearin- ska kislina, TBBS) Tako so bili narejeni kompoziti z 10, 25 in 35 mas- nimi deli gline na 100 delov kav~uka, koli~inska sestava premre`evalnega sistema pa je bila v skladu s stan- dardom ISO 1659. Za odpravo morebitnih notranjih napetosti, nastalih med me{anjem, so vzorci po~ivali najmanj 24 h pred presku{anjem. 3.2 Merjenje Merjenje dinami~nih mehani~nih funkcij je bilo izvedeno z instrumentom Rubber Process Analyser RPA 2000 (Alpha Technologies) v obmo~ju amplitud stri`ne deformacije 0,01–10 ter v temperaturnem obmo~ju 40–100 °C, vse pri frekvenci 0,3 Hz. Ta frekvenca je dovolj nizka, da lahko med meritvijo molekulski deli med topolo{ko sosednjimi vezmi nemoteno spreminjajo svoje konformacije, s ~imer je zagotovljena varnost pred ne`elenimi pojavi, na primer elasti~nim izbruhom8. Predhodno premre`enje (vulkanizacija) vzorcev je bilo izvedeno z istim instrumentom pri temperaturi 160 °C v trajanju do dosega 90-odstotne stopnje premre`enja (t90). 4 REZULTATI IN DISKUSIJA 4.1 Vpliv deformacije Na slikah 2 in 3 sta prikazani dinami~ni mehani~ni funkciji G'(g) in G''(g) kovalentno premre`enih nano- kompozitov z razli~nimi vsebnostmi gline, pri ~emer so to~ke dobljene eksperimentalno, krivulje pa so izra~u- nane z ena~bama (1) in (2). Razmeroma dobro ujemanje modela z eksperimentom je dose`eno v primeru G'(g), ujemanje G''(g) pa je slab{e, in pri nizkih deformacijah ga sploh ni. Razlog je v tem, da model ne zajema notra- njega trenja, ki je pri nizkih deformacijah znatno, pri visokih pa se manj{a. Zaradi tega je ujemanje izra~una- nega G''(g) z izmerjenim nekoliko bolj{e pri vi{jih deformacijah. S slike 2 je razviden mo~an vpliv vsebnosti gline na G'(g) pri nizkih deformacijah. Poleg oja~evalnega u~inka, ki je sicer eksplicitno opisan z ena~bo (5), je opazno hitrej{e pojemanje G' pri deformiranju kompo- zitov z vi{jimi vsebnostmi gline. To je posledica gostej{e sekundarne mre`e, v kateri je povpre~na razdalja med vezmi kraj{a, porazdelitev razdalj pa o`ja kot pri redkej{ih mre`ah. Zato za~ne gostej{a mre`a razpadati pri ni`jih deformacijah in hitreje. To se izra`a tudi v velikostih za mehani~ni razpad zna~ilnih energij Wr(0) (slika 2). Odvisnost od vsebnosti gline pa se z nara{~ajo~o deformacijo manj{a in pri velikih deforma- cijah popolnoma izgine. To je razumljivo, saj je v tem deformacijskem stanju mre`a prakti~no poru{ena in Z. [U[TERI^ ET AL.: DINAMI^NE MEHANI^NE LASTNOSTI ELASTOMERNIH KOMPOZITOV ... MATERIALI IN TEHNOLOGIJE 40 (2006) 6 259 Slika 3: Deformacijska odvisnost modula izgub elastomernih nanokompozitov z razli~nimi vsebnostmi gline pri frekvenci 0,3 Hz in temperaturi 40 °C Figure 3: Deformational dependence of loss modulus for elastomeric nanocomposites of different clay contents at frequency of 0.3 Hz and temperature of 40 °C Slika 2: Deformacijska odvisnost dinami~nega pro`nostnega modula elastomernih nanokompozitov z razli~nimi vsebnostmi gline pri frekvenci 0,3 Hz in temperaturi 40 °C Figure 2: Deformational dependence of storage modulus for elastomeric nanocomposites of different clay contents at frequency of 0.3 Hz and temperature of 40 °C nizke vrednosti zna~ilne energije Wr(¥) so za razli~ne vsebnosti gline enake. Z vidika aktivnih polnil v elastomerih so nekoliko presenetljivi poteki G''(g), predvsem vrednosti G''(gmax), glede na vsebnost gline. Pri kompozitih s sajami ali siliko G''(gmax) z vsebnostjo nara{~a, tako zaradi razpada vezi kot zaradi notranjega trenja. Pri kompozitih z organsko modificirano glino pa velike gostote nastalih sekundarnih vezi o~itno tako omejijo notranje trenje, da so G''(gmax) kompozitov z ve~jimi vsebnostmi gline, kljub obse`nej{emu deformacijskemu razpadanju vezi in s tem ustrezni energijski disipaciji, ni`ji od G''(gmax) manj{ih vsebnosti. Tak{no vedenje je {e ena reolo{ka posebnost elastomernih nanokompozitov. 4.2 Vpliv temperature Na sliki 4 je predstavljena temperaturna odvisnost dinami~nega pro`nostnega modula elastomernih kompo- zitov z razli~nimi vsebnostmi gline. Glede na sorazmerje (4) je odvisnost podana v obliki ln[G'(T)/T] kot funkcija 1/RT, pri ~emer so za G' vzete za~etne deformacijske vrednosti, tj. pri g = 0. Kot prikazuje slika, je eksperimentalno ujemanje s sorazmerjem (4) dobro, z visoko korelacijo. Aktivacijske energije, podane na sliki, so v zna~ilnem obmo~ju energij vezi van der Waalsove vrste, dobro ujemanje pa obenem potrjuje napoved, da je toplotna poru{itev sekundarne mre`e termi~no aktiviran proces. Pri tem podobne vrednosti aktivacijske energije za kompozite razli~nih vsebnosti gline pomenijo, da vsebnost nanopolnila bistveno ne vpliva na kinetiko toplotnega razpada. 4.3 Vpliv vsebnosti polnila Oja~evalni u~inek gline v elastomeru je podan v obliki eksponentne odvisnosti dinami~nega pro`nostnega modula G' od volumenskega dele`a gline fV z ena~bo (5). V sistemih elastomer/polnilo je volumenske dele`e polnila te`ko dolo~iti z merjenjem, enostavno pa jih je izra~unati z masnim dele`em fV in gostoto. Vendar, ker se gostote kompozitov z razli~nimi vsebnostmi gline med seboj le malo razlikujejo, je razlika med fV in fm dovolj majhna, da je fV mo`no nadomestiti z fm. Zato je na sliki 5 odvisnost G' (vrednosti pri g = 0) od vsebnosti gline podana kar z napovedano (z ena~bo 5) linearno zvezo ln G'–fm, pri ~emer naklon podaja za dan sistem elastomer/glina zna~ilno konstanto k. S slike je razvidno, da je napoved potrjena z visoko korelacijo, kar je dodatni pokazatelj ustreznosti modela za obravnavo reolo{kih lastnosti mre` s sekundarno vezavo. 5 SKLEP Na~in reolo{kega preu~evanja nanokompozitov elastomer/glina z dinami~nima mehani~nima funkcija- ma, tj. z dinami~nim pro`nostnim modulom in modulom izgub, se je pokazal kot primeren. Vsaka sprememba v sekundarni tridimenzionalni mre`i, ki jo z van der Waalsovo vezavo glina ustvarja z elastomernimi mole- kulami in ki je glavni nosilec obremenitev nanokom- pozita, se izra`a v vedenju dinami~nih funkcij, kar je eksperimentalno mo`no u~inkovito spremljati. Za razumevanje dogajanja na nanoravni je pri tem prav tako u~inkovita uporaba teoreti~nega modela defor- macijskega in toplotnega razpada sekundarnih mre` v elastomernih sistemih z nanopolnilom, saj razmeroma dobro ujemanje njegovih napovedi z izmerjenimi dina- mi~nimi mehani~nimi funkcijami, posebno v primeru dinami~nega pro`nostnega modula, potrjuje ne le obstoj tak{nih mre`, temve~ tudi verodostojnost samega modela. Vsekakor pa je ob tem najpomembnej{e, da model, sprejet z navedenimi pokazatelji kot prepri~ljiv, omogo~a zanesljivo dolo~itev dveh energij, ki kvanti- Z. [U[TERI^ ET AL.: DINAMI^NE MEHANI^NE LASTNOSTI ELASTOMERNIH KOMPOZITOV ... 260 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Slika 4: Temperaturna odvisnost dinami~nega pro`nostnega modula elastomernih kompozitov z razli~nimi vsebnostmi gline pri amplitudi deformacije ni~ in frekvenci 0,3 Hz Figure 4: Temperature dependence of storage modulus for elasto- meric composites of different clay contents at zero strain amplitude and frequency of 0.3 Hz Slika 5: Odvisnost dinami~nega pro`nostnega modula elastomernih kompozitov od vsebnosti gline pri amplitudi deformacije ni~ in frekvenci 0,3 Hz Figure 5: Dependence of storage modulus for elastomeric composites on clay content at zero strain amplitude and frequency of 0.3 Hz tativno ozna~ujeta sekundarne mre`e: zna~ilne energije za mehani~ni razpad in aktivacijske energije za toplotno poru{itev mre`e. Njune vrednosti so v obmo~ju, zna- ~ilnem za energije sekundarnih interakcij. Kon~no, izkazalo se je, da je z uporabljenim mo- delom mo`na tudi kvantitativna karakterizacija tovrstnih nanokompozitov z ozirom na vsebnost gline, kar lahko neposredno koristi pri na~rtovanju uporabe. 6 LITERATURA 1 R. Krishnamoorti, A. S. Silva in Polymer-clay nanocomposites (T. J. Pinnavaia and G. W. Beall Eds.), Wiley, New York, 2000, Chap. 15 2 L. H. Sperling, Introduction to physical polymer science, Wiley, New York, 2006, Chap. 13. 3 Z. Susteric et al., Acta Chim. Slov. 46 (1999), 69 4 Z. Susteric, I. Dimitrievski, Int. J. Polym. Materials 52 (2003), 527 5 D. Frenkel in Soft and fragile matter (M. E. Cates, M. R. Evans Eds.), SUSSP Publications and Institute of Physics Publishing, Edinburg, London, 2000, 115 6 I. M. Ward, J. Sweeney, An introduction to the mechanical properties of solid polymers, Wiley, New York, 2004, Chap. 3 7 C. W. Macosco, Rheology: principles, measurements and appli- cations, Wiley, New York, 1994, Chap. 1 8 M. Kralj Novak et al., Kovine zlit. tehnol. 29 (1995), 251 Z. [U[TERI^ ET AL.: DINAMI^NE MEHANI^NE LASTNOSTI ELASTOMERNIH KOMPOZITOV ... MATERIALI IN TEHNOLOGIJE 40 (2006) 6 261 J. TUMA ET AL.: FRACTURE TOUGHNESS OF A HIGH-STRENGTH LOW-ALLOY STEEL WELDMENT FRACTURE TOUGHNESS OF A HIGH-STRENGTH LOW-ALLOY STEEL WELDMENT @ILAVOST LOMA ZVARA VISOKOTRDNEGA MALOLEGIRANEGA JEKLA Jelena Tuma1, Nenad Gubeljak2, Borivoj [u{tar{i~1, Borut Bundara3 1Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia 2University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia 3Institute of Metals Constructions, Mencingerjeva 7, 1000 Ljubljana, Slovenia jelena.tuma@imt.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-11-15 The use of high-strength low-alloy steels for high-performance structures, e.g., pressure vessels and pipelines, requires often high-strength consumables to produce an overmatched welded joint. This globally overmatched welded joint contains local mis-matched regions, which can affect the unstable fracture behaviour of the welded joint and the welded structure itself. If local mis-matched regions are present in the vicinity of a crack tip, then the fracture toughness of the weld metal can be significantly lower than that of the base metal. In this paper, the influence of the weld-metal microstructure on the fracture behaviour is estimated enabling an evaluation of the resistance to stable crack growth through different microstructures. The lower bound of the fracture toughness for different microstructures was evaluated using a modified Weibull distribution. The results, obtained using specimens with a through thickness crack front, indicated a low fracture toughness, caused by the strength mis-matching interaction along the crack front. In the case of through-the-thickness specimens, at least one local brittle zone (LBZ) or a local soft region is incorporated into the process zone in the vicinity of the crack tip. Hence, an unstable fracture occurred with small stable crack propagation, or without it. Despite the fact that the differences between the impact toughness of the weld metal and the base metal can be insignificant, the fracture toughness of a weld metal can be significantly lower. Key words: fracture mechanics, welded joint, crack-tip opening displacement, resistance curves Uporaba visokotrdnih malolegiranih jekel za zelo obremenjene strukture, npr. posode pod pritiskom in cevovode, zahteva uporabo varilnega materiala, ki ustvari zvar z ve~jo trdnostjo. Taki zvari vsebujejo lokalna podro~ja z me{ano trdnostjo, ki lahko vplivajo na nestabilno lomno vedenje zvara in zvarjene strukture. ^e me{ana podro~ja le`ijo v bli`ini vrha razpoke, je lahko `ilavost loma pomembno manj{a kot pri osnovnem materialu. V tem delu je ocenjen vpliv mikrostrukture zvara na vedenje pri lomu, kar omogo~a oceno odpornosti proti stabilnem {irjenju razpoke skozi razli~ne mikrostrukture. Ni`ja vrednost `ilavosti loma je bila ocenjena za razli~ne mikrostrukture z modificirano Weibullovo porazdelitvijo. Rezultati, ki so bili dose`eni pri vzorcih z razpoko preko debeline, so pokazali nizko `ilavost loma zaradi razli~ne trdnosti vzdol` ~ela razpoke. V primeru vzorcev z razpoko preko debeline je vsaj eno lokalno krhko podro~je (LBZ) ali lokalno mehko podro~je vklju~eno v procesno podro~je v bli`ini vrha razpoke. Zato se je stabilna propagacija razpoke izvr{ila z majhnim stabilnim {irjenjem ali brez njega. ^eprav so majhne razlike med udarno `ilavostjo zvara in osnovnega materiala, je lahko `ilavost loma zvara pomembno manj{a. Klju~ne besede: mehanika loma, zvarni spoj, premik vrha odprtja razpoke, krivulje odpornosti 1 INTRODUCTION Strength-overmatched welded joints are designed to ensure the safe service of a welded structure by keeping the flaws, e.g., planar defects, in an elastic weld metal, while the base metal starts to yield. Such an approach ensures that a welded structure can sustain local plastic deformation, important when temporary overloading or geometrical changes occur. These changes can be caused by temperature variations during a structures service life. The strength-overmatching requirement presents no special problems for steel with yield strength of less than 600 MPa 1, but in case of steels with higher yield strengths, e.g., above 700 MPa, locally undermatched regions can occur. Such an overmatched weld joint is quite sensitive to planar cracks developing from defects. Thus, a higher stress concentration around the planar defects in a weld metal in locally undermatched regions can cause unstable fracture behaviour2. In this case a significant range of experimentally fracture-toughness values is obtained. It is possible, however, to overcome this problem by determining the lower bound fracture toughness, which can ensure the structural integrity and a safe service life. The lower-bound fracture-toughness value represents the value where the crack propagation occurred. If the stress intensity factor (caused by applied load) is lower than the lower-bound fracture toughness, than crack propagation does not appear. This paper presents a procedure for determining the lower-bound fracture toughness of laboratory specimens cut from a critically overmatched weld joint. The influence of the weld-metal microstructure on the fracture behaviour is estimated, enabling an evaluation of the resistance to stable crack growth through different microstructures, as well as an evaluation of the relevant value of the lower bound of the fracture toughness. Reasons for the range of experimentally measured fracture-toughness values are also presented. MATERIALI IN TEHNOLOGIJE 40 (2006) 6 263 UDK 539.42:621.791.05:669.14.018.298 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 40(6)263(2006) 2 MATERIALS AND WELDING The base metal is a high-strength low-alloy steel, corresponding to grade HT80. The steel, with a thickness of 40 mm, was delivered in quenched-and-tempered (Q + T) condition. Different mechanical properties can be obtained for such a steel by using different tempering temperatures (600–700 °C). The microstructure of the steel of tempered martensite and lower bainite provides a high strength and a high impact toughness. The welding was done on plate samples (500 × 250 × 40) mm and (1000 × 250 × 40) mm using the flux-cored arc-welding (FCAW) process. The edge preparation was X-shaped, Figure 1, as is usual for the welding of steel plates with a thickness of 40 mm. The consumables were filled wires (f 1.2 mm), suitable for welding with mixed-gas shielding (82 % Ar and 18 % CO2). The cooling times from 800 °C to 500 °C (Dt8/5) were approximately of 9 s, with heat inputs of 1.8–2.0 MJ m–1, while the preheating/ inter-pass temperature was of 100 °C. The cooling time was chosen because faster cooling rates (Dt8/5 = 6 s) reduce the toughness in the intercritical region, and the slower cooling rates (Dt8/5 > 12 s) reduce the toughness due to the formation of a martensite-austenite consti- tuent3. The welding parameters are given in Table 1. The first passes of the welded joint were made using preheating at 120 °C 4. The chemical compositions of the base metal (BM) and the different weld regions are listed in Table 2. These compositions indicate a more pronounced alloying effect from the BM in the root region than in the filler regions. Local tempering or quenching caused by reheating and cooling during the deposition of subsequent passes is also present in the root and filler weld regions. This is the main reason why the local mis-matching through the weld thickness varied, even in the case of a homogeneous weld. J. TUMA ET AL.: FRACTURE TOUGHNESS OF A HIGH-STRENGTH LOW-ALLOY STEEL WELDMENT 264 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 2 4 0 2 60 o Figure 1: The "X" shaped groove used in this investigation Slika 1: @leb z X-obliko, uporabljen pri tej raziskavi Table 1: Welding parameters for each weld pass Tabela 1: Varilni parametri za vsak varek Welding pass Current A Voltage V Speed of welding cm/min Interpass temperature °C Heat input kJ/cm Dt8/5 s Weld joint region 1 155 24.5 11.5 120 19.813 10.61 2 185 23.5 13.7 135 19.040 10.82 root 3 250 24 16.0 30 22.500 8.78 4 250 24 15.0 65 24.000 10.47 5 240 23 10.5 105 31.543 15.65 6 240 23 11.1 120 29.784 15.66 7 220 23 15.9 65 19.130 8.43 8 220 23.5 14.6 85 21.203 9.96 filler 9 210 23 14.2 120 20.481 10.95 part 10 220 23 13.9 125 21.763 11.83 11 210 24 15.4 80 19.662 9.11 12 250 24 14.8 110 24.342 12.43 13 220 25 15.8 95 20.899 10.18 14 230 25 19.5 125 17.692 9.70 average 210 24 14.0 88 21.338 10.17 root average 226 24 15.0 103 22.648 11.39 filler Table 2: Chemical composition of the base metal, the pure weld metal and the actual weld metal of the filler and the root regions Tabela 2: Kemi~na sestava osnovnega materiala, ~istega vara, realnega vara v obmo~ju polnitve in korena v masnih dele`ih w/% Material C w/% Si w/% Mn w/% P w/% S w/% Cr w/% Ni w/% Mo w/% CE/% Base metal 0.09 0.27 0.25 0.015 0.004 1.12 2.63 0.25 0.366 Weld metal (pure) 0.06 0.35 1.43 0.011 0.008 0.86 3.01 0.56 0.448 WMfill (filler part) 0.07 0.33 1.27 0.008 0.006 0.86 2.21 0.47 0.404 WMroot 0.08 0.32 0.78 0.012 0.007 0.99 2.50 0.35 0.388 The content of carbon is very low in the base metal and the weld metals and the temperature of martensite transformation is higher. Thus, the time interval for self-tempering from the temperature of martensite transformation up to room temperature is larger. In this case a brittle hard microstructure does not appear. This is the reason for the high toughness of the microstructure. Table 2 presents the change of the carbon equivalent (CE) during the welding process. The low CE and the low strength hinder the hydrogen-assisted cold cracking. The mechanical properties of the welds were determined using round tensile specimens (f 5 mm) extracted from the root and the cap region of the X-groove welds in longitudinal direction. The tensile tests were performed at room temperature and at the fracture-toughness testing temperature, i.e., –10 °C. The results are listed in Table 3, with the data in brackets representing the designed values (theoretical) of the mis-matching factor, which do not correspond to the real welds. The differences between the designed values and real mis-matching factors are a consequence of the weld-pool dilution/ alloying by molten BM (see chemical compositions in Table 2). It should also be pointed out that the cooling rate in these experiments (Dt8/5 » 9 s) was obviously different from that used during the all-weld metal sample preparation by the consumable producer. Table 3: Average mechanical property values of the base metal and the weld metal Tabela 3: Povpre~ne mehanske lastnosti osnovnega materiala in vara Material Temp. °C E GPa RP0.2 MPa Rm MPa At % Cv+ J M Base 20° 201 711 838 19.6 54-40 °C – metal –10° 209 712 846 19 85-10 °C – WM 20° 210* 770 845 16 56-10 °C (1.08) WMfill 20° 205 861 951 11.7 56-10 °C 1.21 –10° 211 873 1041 10.8 33-40 °C 1.22 WMroot 20° 221 807 905 15.3 61-10 °C 1.14 –10° 212 824 902 16.5 50-40 °C 1.16 + mean value of three Charpy-V notched impact-toughness specimens * value has been estimated because an accurate experimental value was not available The impact-toughness V-notch specimens and the single-edge notch bend SE(B) specimens were also extracted from the welded joints. Different testing temperatures were used to evaluate the impact toughness. It can be concluded that the impact toughness corresponds to the brittle-to-ductile transition region of the weld joint, see Table 3. In spite of higher dilution/ alloying by the molten BM in the root region, a better impact toughness is achieved in that region than in the filler part of the WM. The mis-match factor M is defined as: M y, y, = σ σ WM BM (1) The mechanical properties listed in Table 3 are the average values of the region from where the tensile specimens were taken. Hence, an empirical relationship was used to obtain the local mis-matching values of mechanical properties. 3 METALLOGRAPHIC INVESTIGATION The cross-sections of the welded joints were polished and etched (3 % nital) to reveal the microstructure 5, shown in Figure 2. Previously performed fracture- toughness testing 6,7 showed that in the case of unstable crack propagation, the fracture-toughness value depended on the microstructure of the crack-tip region. Hence, a fracture-toughness analysis of unstable crack propagation requires the classification of the fracture toughness data connected to the microstructures at the crack tip. Figure 3 shows a welded joint cross-section indicating two different regions inside a weld pass – one region, with a dendritic structure (’as-welded’), and the other one showing evidence of being re-heated at the subsequent welding pass. The darkened regions in the weld metal correspond to the partially transformed J. TUMA ET AL.: FRACTURE TOUGHNESS OF A HIGH-STRENGTH LOW-ALLOY STEEL WELDMENT MATERIALI IN TEHNOLOGIJE 40 (2006) 6 265 Figure 3: The re-heated and as-welded region within a welded pass, ×20 Slika 3: Pogreto in kot varjeno podro~je v varku, pove~ano 20-krat Figure 2: Macrograph of the cross-section of the welded joint, ×1.5 Slika 2: Makroposnetek prereza zvara, pove~ano 1,5-krat regions, re-heated above Ac1. The temperature of the subsequent weld pass was between Ac1 and the self- tempering temperature. 4 FRACTURE-TOUGHNESS TESTING Specimen and Location of Machined Notch The critical crack-tip opening displacement (CTOD) value in the case of unstable crack propagation strongly depends on the microstructures at the crack tip. Different microstructures are formed in the weld metal, depending on the thermal cycles and the chemical composition. For this reason, the notch positioning in the welded joint is very important. The effect of different microstructure on the fracture behaviour was assessed by testing CTOD B × 2B specimens (thickness B = 36 mm) with a through- the-thickness notch tip in the weld metal. The CTOD B × B specimens, with the surface notch in the weld metal, were used to assess the effect of different micro- structures on the fracture behaviour of the welded joint. Crack-tip opening displacement testing The fatigue pre-cracking of the specimens was performed according to the step-wise high-ratio R "SHR" technique 8. The CTOD testing was performed on the fracture-toughness specimen in accordance with the BS 7448 standard 9. The testing temperature was of –10 °C, according to the recommendations of the Offshore Mechanics and Arctic Engineering (OMAE) 10. A single-specimen method was used with the DC potential-drop technique applied to monitor the stable crack growth 11. The specimens were loaded using a constant cross-head velocity of 1 mm/min, i.e., in displacement control. Base-metal BxB specimens with a shallow crack (a/W = 0.1) and a deep crack (a/W = 0.5) were also tested. In both cases the maximum CTODm values were observed: CTODm = 1.08 mm (for a/W = 0.1) and CTODm = 0.604 mm (for a/W = 0.5). 5 ANALYSIS OF THE FRACTURE-TOUGHNESS RESULTS Figure 4 shows the resistance curves for almost the same crack lengths (a/W = 0.27), but with a different microstructure at the crack tip. The critical value of the CTOD during crack-growth initiation is lower for the ’as-welded’ microstructure, denoted WM(B), than for the ’re-heated’ microstructure, denoted WM(A). The stable crack growth through WM(B) is characterised by a low slope of the resistance curve and thus by a low resistance to stable crack growth. The shallow-cracked specimen with a shorter crack (a/W = 0.28) exhibited a higher value of CTOD initiation than in the case of the longer crack (a/W = 0.4). In the latter case, local instability occurred (’pop-in’) during crack-tip blunting, followed by crack arrest in the WM(A). The same slope for the resistance curves obtained from the two spe- cimens with different crack lengths (a/W = 0.27 and a/W = 0.4) indicates to a stable crack growth through the same WM(A) microstructure. Figure 5 shows the values of the CTOD as a fracture-toughness parameter for both series of specimens, B × 2B and B × B, with the notch in the weld metal and the base metal. Significant differences between the fracture-toughness values of the base metal and weld metal were observed. Also, all critical values for the B × 2B specimens were within the same interval. This is a consequence from the incorporation of at least one local brittle zone (LBZ) or local soft region in the process zone in the vicinity of the crack tip. The results for the critical CTOD, obtained using BxB specimens, are classified according to the micro- structure, WM(A) and WM(B), depending on the position of the fatigue crack tip at the beginning of the CTOD testing. Since, the higher critical CTOD values were measured for the specimens with a crack tip in the WM(A), it is clear that the critical CTOD values for the specimens with a crack tip in the WM(B) can be divided J. TUMA ET AL.: FRACTURE TOUGHNESS OF A HIGH-STRENGTH LOW-ALLOY STEEL WELDMENT 266 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 0 0.05 0.1 0.15 0.2 0.25 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ∆a / mm C T O D / m m ∆ajump δjump a/W=0.3 Crack tip in WM(B) "Stable" crack growth from WM(B) towards WM(A) Crack arrested in WM(A) Crack tip in WM(A) a/W=0.27 a/W=0.27 Figure 4: CTOD resistance curves of B × B specimens with the crack tip in different microstructure Slika 4: CTOD odpornostne krivulje za B × B vzorce s konico razpoke v razli~ni mikrostrukturi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 C T O D / m m W We el ld dm me et ta al l c δ δ u δm B×B B B × × 2 2 B B B×B B WM(A) WM(B) ase metal a/W= 0.20 0.20 0.28 0.20 0.27 0.20 0.27 0.32 0.24 0.27 0.27 a/W = 0.5 a/W = 0.5 Figure 5: Compilation of the critical CTOD values Slika 5: Pregled kriti~nih vrednosti CTOD into two groups, depending on the crack depth. Obviously, the scatter of the critical CTOD values and the relatively small amount of data prevented a more reliable estimation of the fracture-toughness lower- bound value for different microstructures. A modified Weibull distribution was used for the statistical interpretation of the measured and corrected critical CTOD values. Zerbst et al. 12 proposed a modified Weibull distribution for estimating the lower-bound fracture toughness in terms of the J-integral 13. The distribution function referring to this is given by: P J J J P J J f C l. b. f C , = − ≤ − −           ln ( ) . exp 2 05 1 0 0 2     ≥        , fP 05. (2) with the lower bound, Jl.b., as the toughness for a failure probability of zero. The term J can be replaced with CTOD = d by using the relation between d and J 14: d J m = ⋅σ ys m a W R= − + + ⋅0111 0817 136. . . *; R n n * . = ⋅    500 2 718 or R* = σ σ m y (3) The terms m and R* were introduced by Kirk and co-workers [14] on the basis of finite-element analysis results. The lower bound fracture toughness can be derived by considering the condition of continuity for Pf. As a result, the lower bound is simply obtained from the mean value by the expression: δ β δl. b. c,mean= ⋅ ⋅0 26. with (4) β = + − +1 2 737 2 327 125802 3. . .p p p where p is the fraction of data that is rejected by the size criterion. The results of this analysis are two curves of Weibull distribution that are in good agreement with the experimental results for each individual microstructure, as shown in Figure 6. The lower-bound fracture- toughness value is represented by the CTOD value at the intersection point of the Weibull distribution curve with the x-axis. Although the Weibull distribution curves are for different microstructures, it is worth pointing out that the fracture-toughness lower-bound value is low for both of them 7. 6 CONCLUSION In spite of the fact that the differences between the impact toughness of the weld metal and the base metal are insignificant, the fracture toughness of the weld metal can be significantly lower. The overmatched weld metal exhibited unstable crack propagation, while the base metal is ductile at the same test temperature. From the analysis performed on the B x B specimen it can be concluded that the critical value of the fracture toughness and the fracture behaviour of the weldment as a whole, depend on the crack depth and the microstructure at the crack tip, and also on the microstructure toward which the crack is growing. The influence of these parameters is reflected in pronounced differences in the experimentally obtained values. The higher reliability for estimating the fracture-toughness lower bound was achieved by using a modified Weibull distribution with the CTOD parameter. The B x 2B specimens also indicated low critical CTOD values, but with lower scatter. The reason for this is the increased constraint, since the ligament profile is of square shape, and also the fact that the stress state at the crack tip causes an interaction between strength-mis-matched microstruc- tures, which are inevitably crossed by the crack front. In the case of through-the-thickness specimens at least one local brittle zone (LBZ) or a local soft region is incorporated in the process zone in the vicinity of the crack tip. Hence, the unstable fracture occurred with small stable crack propagation, or without. The statistically determined lower-bound fracture toughness takes account of this effect, which causes an increased scatter of experimental results. Therefore, for structural integrity procedures, it is possible to use the present approach to determine relevant fracture-toughness values. 7 REFERENCES 1 Vojvodi~ Tuma J.: Low-temperature tensile properties, notch and fracture toughness of steels for use in nuclear power plants, Nuclear Engineering Design, (2002) 211, 105–119 2 Gubeljak N.: The fracture behaviour of specimens with a notch tip partly in the base metal of strength mis-matched welded joints, Int. J. Fract., 100 (1999) 2, 169–181 J. TUMA ET AL.: FRACTURE TOUGHNESS OF A HIGH-STRENGTH LOW-ALLOY STEEL WELDMENT MATERIALI IN TEHNOLOGIJE 40 (2006) 6 267 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CTOD /mm P ro b a b ili ty , P f Lower bound toughness of WM(A) microstructure Lower bound toughness of WM(B) mic. Figure 6: Failure probability with lower bound values classified by microstructures WM(A) and WM(B) Slika 6: Verjetnost preloma pri spodnji vrednosti za mikrostrukturi WM(A) in WM(B) 3 Matsuda, F., Fukada, Y., Okada, H., Shoga, C., Ikeuchi, K., Horii Y., Shiwaku, T., Suzuki, S.: Rewiew of mechanical and metallurgical investigations of martensite-austenite constituent in welded joints in Japan, Welding in the World, 37 (1996) 3, 134–154 4 Duren C.: Evulation of large diametre pipe steel weldability by means of the carbon equivalent, Duisburg 1982 5 Compendium of weld metal microstructures and properties (Submerged-arc welds in ferritic steel), Prepared for Commisssion IX of the International Institute of Welding by Sub-Commission IXJ, The Welding Institute Abington Hall, Cambridge UK 1985 6Machida, S., Miyata, T., Toyosada, M., Hagiwara, Y.: Study of methods for CTOD testing of weldments, fatigue and fracture testing of weldments, ASTM STP 1058, H. I. McHenry, J. M. Potter, Eds., American Society for Testing and Materials, Philadelphia, 1990, 142–156 7 Fairchild, D. P.: Fracture toughness testing of weld heat-affected zones in structural steel, fatigue and fracture testing of weldments, ASTM STP 1058, H. I. McHenry, J. M. Potter, Eds., American Society for Testing and Materials, Philadelphia, 1990, 117–142 8 Koçak M., Seifert, Yao S., Lampe H.: Comparison of fatigue precracking methods for fracture toughness testing of weldments: Local compression and step-wise high ratio, Conference Welding-90 9 BS 7448 (1997): Fracture mechanics toughness tests, Part 2. Method for determination of KI, critical CTOD and critical J values of welds in metallic materials, British Standards Institution, London 10 Fairchild, D. P., Theisen, J. D., Royer, C. P.: Philosophy and technique for assessing HAZ toughness of structural steels prior to steel production, Paper OMAE-88-910, Seventh International Conference on Offsore Mechanics and Artictic Engineering, Houston, TX, February 1988 11 Johnson, H. H.: Calibrating the electric potential method for study slow crack growth, Materials Research and Standards, (1965) 5, 442–445 12 Zerbst, U., Heerens, J., Puff, M., Wittkowsky, B. U., Schwalbe, K.-H.: Engineering estimation of the lower bound toughness in the transition regime of ferritic steels, Fatigue & Fracture of engineering materials & Structures, (1998) 21, 1273–1278 13 Anderson, T. L.: Fracture mechanics fundamentals and applications, Second edition, 1994 14 Kirk, M. T., Dodds, R. H.: J and CTOD estimation equations for shallow cracks in single edge notch bend specimens, J. of Testing and Evaluation, 21 (1993) 4 J. TUMA ET AL.: FRACTURE TOUGHNESS OF A HIGH-STRENGTH LOW-ALLOY STEEL WELDMENT 268 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 M. TORKAR: SOLIDIFICATION AND FRACTURE OF AN AS-CAST Ni ALLOY SOLIDIFICATION AND FRACTURE OF AN AS-CAST Ni ALLOY STRJEVANJE IN PRELOM LITE NIKLJEVE ZLITINE Matja` Torkar Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia matjaz.torkar@imt.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-11-06 The investigation was carried out on samples cut from 20-kg as-cast ingots of a Ni alloy. The as-cast microstructures were examined, the intensity of the segregations were determined, and the fracture surfaces of the specimens, cooled in liquid nitrogen, were examined. It was found that with slow solidification, carbide particles precipitate on the grain boundaries, diminishing the grain-to-grain cohesion and influencing the morphology of fracture. In the areas of columnar solidification the fracture propagates along the dendrite boundaries. Key words: Ni alloy, solidification structure, segregation intensity, fracture surface Izceje v zlitini z lito strukturo poslab{ujejo preoblikovalnost v vro~em. Za preiskavo so bili odrezani vzorci iz litih ingotov zlitine na osnovi niklja z maso 20 kg. Preiskana je bila strjevalna struktura in dolo~ena intenziteta izcej. Vzorci so bili prelomljeni v hladnem in preiskana je bila morfologija povr{ine preloma. Med po~asnim strjevanjem nastajajo po mejah zrn karbidni delci, ki zmanj{ujejo kohezijo med zrni in vplivajo na morfologijo preloma. Na vrsto preloma vplivajo stebrasta strjevalna zrna zaradi poti preloma vzdol` mej dendritov. Klju~ne besede: nikljeva zlitina, strjevalna struktura, intenziteta izcej, povr{ina preloma 1 INTRODUCTION Most as-cast Ni-based superalloys have a low hot workability1. The hot-workability window depends on the microstructural characteristics, the yield strength2, the deformation rate and the dynamic and static recry- stallization. The Ni-based alloy with about 75 % Ni, 20 % Cr, 2.5 % Ti, 1.4 % Al and 0.08 % C is strengthened by sub-micron precipitates of γ' phase (Ni3Al) and, with a sufficient content of carbon, also by carbide precipitates. During solidification, primary carbide and carbo-nitride particles of the M(C,N) type are formed, while the secondary carbides, M7C3 and M23C6, precipitate at dendrite boundaries during the cooling of the solid alloy, because of the decreased solubility of carbon in austenite with decreasing temperature. The presence of carbides and the intermetallic precipitates greatly increases the creep resistance of the alloy, which depends on the size, quantity and distribution of the precipitates. The basic mechanism of hot deformation consists of the gliding and climbing of dislocations. The resulting strain hardening is decreased by dynamic recovery and recrystallization, which also affect the kinetics of precipitation and the temperature of phase transformation. With a higher content of alloying elements, the yield strength of the alloy and the acti- vation energy, Ea, for recrystallization are greater. The yield strength of the alloy also depends on the defor- mation rate, according to the Zener-Hollomon equation3 . For this reason the intercrystalline hollows and segregations decrease the workability until the moment when the microstructure is modified by recrystallization. Sufficient dynamic recrystallization also stops the propagation of the microcracks formed on non-defor- mable inclusions and on the triple points of the grains. If a grain-boundary crack is oriented orthogonally to the flow of the metal it propagates until a grain boundary of a very different orientation is met, at which point the propagation of the crack is arrested4. To obtain the optimal properties for Ni-based superalloys a heat treatment, specific to the particular alloy5, is necessary. During the heat treatment two essential operations are included: – The solution of the g' phase and most of the carbide particles. The solution of the g' occurs in the range 960–980 °C. This range of temperature increases with the increasing content of Ti in the alloy. M23C6 precipitates are dissolved in the temperature range 1040–1095 °C and M7C3 particles in the range 1095–1150 °C. – The controlled precipitation of g' and carbide parti- cles during cooling from the solution temperature and during holding at 700 °C. The two-step heat treatment produces an over saturation of the matrix of the alloy with carbon, which increases the tensile strength at lower temperatures, but leads, however, to a more unstable microstructure at higher temperatures. The grain size of nickel superalloys also affects the proper relation between the tensile strength and the low-cycle fatigue. The resistance to low-cycle fatigue requires a small grain size (forged material), while the MATERIALI IN TEHNOLOGIJE 40 (2006) 6 269 UDK 669.245:539.42 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 40(6)269(2006) resistance to creep requires a coarse grain size (as-cast material). For this reason, modern turbine blades are mostly produced by casting6. As a compromise, a thermo-mechanical treatment giving a "necklace" structure7 has been developed. This structure consists of coarse, slightly elongated grains, surrounded by small grains, and ensures the best balance of properties. As-cast Ni alloys usually have a microstructure of coarse, columnar grains, which requires careful starting reductions during the hot-working process. During dendritic solidification, strong segregations of elements are formed in the interdendritic pockets. The intensity of the segregations and the size of the dendrites depend on the rate of solidification: the slower the cooling rate, the coarser are the dendrites and the greater are the segregations. The aim of this work was to characterise the as-cast microstructure of a Ni-based alloy. 2 EXPERIMENTAL PROCEDURE The alloy was prepared by melting in air in an induction furnace and casting into 20-kg ingots. The ingots were forged, and during the forging a great number of cracks were formed. Specimens were cut from several places in the ingot and areas containing segregations were assessed by using a scanning electron microscope (SEM) equipped with a wavelength- dispersive spectrometer (WDS). The microstructures were also examined using optical microscopy. The coefficient of segregation was calculated from the difference in the content of elements within the grain and in the interdendritic region. Prior to fracturing the samples were cooled in liquid nitrogen. In addition, the resulting fracture surfaces were examined in the SEM. 3 RESULTS AND DISCUSSION From the solidification microstructure (Figure 1), with coarse, columnar grains near the surface and equiaxed crystal grains in the middle of the ingot, the content of Cr, Co, Al and Ti was determined in the region of the equiaxed grains with point analysis within the grain and in the interdendritic region. The contents of M. TORKAR: SOLIDIFICATION AND FRACTURE OF AN AS-CAST Ni ALLOY 270 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 a b c Figure 2: Columnar and equiaxed grains with dendrites in as-cast Ni-based alloy. Etched with Marble’s reagent. Slika 2: Stebrasta in enakoosna zrna z dendriti v liti nikljevi zlitini; jedkano z Marblovim jedkalom Table 1: Concentration of elements in and between the solidification grains Tabela 1: Masni dele` elementov v strjevalnih zrnih in med njimi Element Concentration, w/% Coef. of segregation K = cmax/cmin In the grain In the inter- dendritic pocket Cr 20.08 26.04 1.29 Co 1.14 1.39 1.21 Ni 69.88 69,72 - Al 0.43 0.46 1,06 Ti 2.03 4.45 2.19 Fe 1.12 1.29 1.15 a b Figure 1: Dendrites and interdendritic segregations of as-cast Ni-based alloy. Etched with Marble’s reagent. Slika 1: Dendriti in meddendritne izceje v liti nikljevi zlitini; jedkano z Marblovim jedkalom analysed elements and the calculated segregation coefficients in Table 1 confirm the expected strong segregation. The segregation intensity increases from iron to cobalt to chromium, and it is much greater for titanium. The segregations make the alloy chemically inhomoge- neous and cause a difference in the hot deformability. The morphology of the as-cast microstructure depends on the cooling rate; however, it is also related to the segregation intensity. Several samples were cut from the as-cast ingots and the microstructures were examined M. TORKAR: SOLIDIFICATION AND FRACTURE OF AN AS-CAST Ni ALLOY MATERIALI IN TEHNOLOGIJE 40 (2006) 6 271 a b Figure 5: Detail of brittle-fracture surface with triangles and tetrahedra and a mixture of brittle and ductile fracture with dimples (SEM) Sliki 5: Detajl krhke povr{ine preloma s trikotniki in tetraedri ter duktilni prelom z jamicami (SEM) Figure 3: Stringer of carbide particles on the grain boundary in as-cast ingot (SEM) Slika 3: Niz karbidnih delcev na meji zrn v ingotu z lito strukturo Figure 6: Fracture along the columnar grains Slika 6: Prelom vzdol` stebrastih zrn a b c Figure 4: Ductile and brittle fracture of as-cast sample in the region of equiaxed grains (SEM) Slika 4: Duktilen in krhek prelom v litem vzorcu v obmo~ju enakoosnih zrn (SEM) using optical microscopy. The as-cast microstructure reveals a dendritic solidification (Figure 1) with coarse, columnar and equiaxed grains (Figure 2), with inter- dendritic segregations and stringers of carbide particles on the grain boundaries (Figure 3). The examination of the cold fracture of the as-cast alloy (Figures 4, 5) revealed a mixed fracture surface, with both ductile- and brittle-fracture areas being present. Since the alloy is very tough, the fracture was obtained by bending samples that were cooled in liquid nitrogen. As shown in Figure 5, on the relatively smooth surface of the brittle fracture, triangles or tetrahedra were observed, indicating that the fracture occurred on the {111} lattice plane. The stacking-fault tetrahedra are special forms of point-defect agglomerates8. They are formed by dissociated glide or climb and the aggregation of vacancies. In face-centred cubic metals and alloys the vacancies can group in three-dimensional faults in the form of stacking faults on four {111} planes with six n edges of the tetrahedron. On the fracture surface a ductile area with trans- crystalline dimples prevails (Figures 4, 5), with carbide particles at the bottom of the dimples. The fracture along the boundaries of the columnar grains is similar. The mixture of ductile and brittle fracture is shown in Figures 4b, c and 5b. The fractures are mostly trans- crystalline. In some areas a quasi-ductile and quasi-brittle micromorphology was observed, which does not permit a proper interpretation of the prevailing fracturing process. 4 CONCLUSIONS The Ni alloy had a poor hot workability and a large number of hot cracks appeared during the hot forging. The metallography revealed dendritic solidification with coarse, columnar grains near the surface, equiaxed grains in the centre of the ingot and interdendritic segregation of the alloyed elements and carbide particles on the grain boundaries. The stringers of the carbide particles are the main reason for the poor grain-to-grain cohesion and represent an easy path for crack propagation during the hot working. They also affect the fracture propagation during cold fracture. The precipitation of carbide particles at the grain boundaries occurs during the slow cooling after solidification or during a too-low soaking temperature prior to hot working. The examination of the cold fractures revealed quasi-ductile and quasi-brittle areas, partly transcry- stalline and partly intercrystalline. On the brittle-fracture surfaces triangles and tetrahedra were observed, suggesting a fracture on the {111} lattice planes. For improved hot workability of the alloy it is necessary to decrease the grain size and the amount of segregation and to avoid the precipitation of carbide particles on the grain boundaries. ACKNOWLEDGEMENT The Ministry of Higher Education, Science and Technology of the Republic of Slovenia sponsored this research. 5 REFERENCES 1 Schindler, I., Machá~ek, J., Spittel, M., Intermetallics 7 (1999), 83–87 2 Torkar, M., [u{tar{i~, B., Vodopivec, F., Kovine, zlit., tehnol., 27 (1993) 4, 289–294 3 Long, Z., Zhuang, J., Lin, P., Zhong, Z., Advanced Technologies for Superalloy Affordability, ed. K. M. Chan, S. K. Srivastava, D. U. Furrer, K. R. Bain, The Minerals, Metals&Materials Society, 2000, 187–196 4 Ryan, N. D., McQueen, H. J. J. of Mech. Work. Technol., 12 (1986), 279–296 5Mc Queen, H. J., Bourell, D. L. J. of Metals, (1987), Sept., 28–35 6 Ryan, N. D., McQueen, H. J. J. of Mech. Work. Technol.,12 (1986), 323–349 7Wright, D. C., Smith D. J. Mat. Sci. And Technol., (1986) 2, 742–747 8Matsukawa, Y., Zinkle S.J., Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations, Journal of Nuclear Materials, 329–333 (2004), 919–923 M. TORKAR: SOLIDIFICATION AND FRACTURE OF AN AS-CAST Ni ALLOY 272 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 A. KLOBODANOVI], M. ORU]: LABORATORY'S ACCREDITATION – CONFIDENCE IN THE ACTIVITIES ... LABORATORY ACCREDITATION – CONFIDENCE IN THE ACTIVITIES OF CONFORMITY ASSESSMENT OF PRODUCTS LABORATORIJSKA AKREDITACIJA- ZAUPANJE V AKTIVNOST OCENE USTREZNOSTI PROIZVODOV Azemina Klobodanovi}, Mirsada Oru~ Institute of Metallurgy "Kemal Kapetanovi}", Travni~ka cesta 7, 72000 Zenica, Bosnia and Herzegovina miz@miz.ba Prejem rokopisa – received: 2005-08-29; sprejem za objavo – accepted for publication: 2006-10-19 The role of accredited laboratories is to verify the quality of products. This is particularly important for those products intended for export. The activities of the laboratories of the Institute of Metallurgy and their significance for industrial activity in Bosnia and Herzegovina are presented. Key words: accreditation, products quality control, quality management Naloga akreditiranih laboratorijev je preverjanje kakovosti proizvodov. To je posebno pomemebno za izdelke, namenjene za izvoz. Predstavljena je aktivnost laboratorijev na Institutu za metalurgijo in njegov pomen za industrijsko dejavnost v Bosni in Hercegovini. Klju~ne besede: akreditacija, kontrola kakovosti proizvodov, upravljanje kakovosti 1 INTRODUCTION The prime task of Central and East European Countries is to achieve the required level of quality for products and services that are exported to the countries of the European Union. A considerable amount of work and knowledge are needed to bring the quality of products to a higher level, and much effort is necessary to improve the quality and responsibility of the work of all the people involved in the processes of production, control and quality assurance. The first difficulty to overcome is the barriers related to the conformity of the national legal framework, metrology, standardisation and of quality assessment with EU regulations. This is a major and complex task, since it involves the adoption of rules and processes prescribed in about 200 legal directives and about 7000 European standards related to metrology systems, methods of testing and certification, all necessary in order to have a comparable and transparent system of quality and procedures in all the involved countries, and which are easy to supervise1. Also, for the placement of products in EU markets in the non-obligatory area of certification, serious barriers exist. First of all, certificates for the quality-management system in accordance with the standard ISO 9001:2000 and for the environmental management systems in accordance with ISO 14000 must be obtained, with the aim to ensure that certificates, accreditations, test and calibration reports are accepted throughout Europe. This means that products intended for export must be tested in accredited laboratories that have a certified system of quality control. Quality is a characteristic confirming that the product is manufactured according to an approved procedure and that the properties are in agreement with a standard or with a prescription accepted by the manufacturer and the purchaser. The word quality has also a more general significance that may not be defined by a document in the case when it is related to a specific activity, a process or an organisation. With the quality system for companies and laboratories, the rules of behaviour in business are established, and reciprocal relations, tasks and responsibilities of the quality management are put in place. Therefore, good quality control for companies is one of the attributes for survival in a competitive market. 2 QUALITY – A NEW APPROACH TO BUSINESS Quality is a global requirement valued in developed countries and becoming of essential importance for different industrial companies in Bosnia and Herzegovina, too. The market success of a number of products is more and more dependent on the purchaser’s satisfaction and the price of the product. Because of the competition, which may offer the same quality for a lower price or an improved quality for an unchanged price, the quality determines the competitiveness in the market place for companies too3. For this reason, the concept of quality has radically changed, and at present it is completely oriented towards the purchaser, his or her needs, expectations and preferences. It is not enough for the supplier to have high-quality products/services, it is also necessary to be ready to offer an acceptable price for an increasing level of quality. Therefore, only continuous improvements enable the producer to stay at the front of the general development and to be continuously competitive in the market. MATERIALI IN TEHNOLOGIJE 40 (2006) 6 273 UDK 691.1:389:061.6(497.15) ISSN 1580-2949 Professional article/Strokovni ~lanek MTAEC9, 40(6)273(2006) At the beginning of the industrial revolution the sellers controlled the market, and because of the limited range of goods on offer, the purchaser was frequently forced to accept products of insufficient quality. The primary task of manufacturing was to ensure an increasing quantity of goods on the market. The saturation of the market set up the balance between supply and demand and asserted the quality and reliability as being significant for the market value of products. The increased number of suppliers of goods on the market is the cause of decreasing prices for goods of increasing quality. Success in competitive markets forces the producers to ensure not only that their products conform to standards, but also to improve the extent and reliability of the control of quality, including also non-standardised requirements. The increased market competition and the strengthening of the role of the purchaser led to the development of a quality system involving the control of the quality of products and the inclusion of preventive actions to provide a constant supervision of the manufacturing process as well as the provision of an acceptable level of interference of this process with the environment. All the people involved in the production process have to take part in the activities related in a broad sense to the quality control. This understanding of the broad significance of quality control led to the development of the principles of the system of quality assurance for products. Rapid changes in the market for products put the producers into a position in which even permanent improvement of the product quality, process and quality system were not sufficient to ensure success. This was the reason for the evolution of quality with new methods of integration and harmonization to predict the customer’s behaviour. The processes inside an organization based on standards and internal producer rules were combined with continuous research and development and led to the system of Total Quality Management (TQM). 3 THE IMPORTANCE AND PARTICIPATION OF ACCREDITED LABORATORIES Frequently, in the business sections of journals in Bosnia and Herzegovina there are reports on the successful operation of companies that have obtained certificates in accordance with standards from the ISO 9000 and ISO 9001 series. However, very rarely, if ever, is the reader informed about organizations with accredited testing and calibration laboratories, in spite of the fact that these organisations are competitive with different services in their domain of activity in accordance with the European standard EN 45001 and the ISO/IEC 17025 standard4. The value of the accreditations according to these two standards is equal to the value of the ISO 9000 certificates. The quality of the system involving standards, internal company rules and metrology and the assessment of the conformity of products depends also on the quality of some basic elements of the country’s infrastructure, since the rules, standardization, and metrology for the assessment of the conformity of products and services according to standards are base elements of the infrastructural quality of the country. The differences in principles and the level of development of the quality of the infrastructure between different countries set up barriers and limited the growth rate of trade on the European and world markets. It is, for this reason, of primary importance that the level of development of the infrastructure, especially in less-developed countries, becomes very fast relative to those in countries that are potential markets for products. Testing and calibration are base elements for the assessment of conformity and are applied widely for a large range of products and their results are a reliable basis for the inspection and certification of products. In building up the EU market, it was necessary to develop conditions for the acceptance of goods produced in one country to be accepted in other countries without retesting. It was, therefore, necessary to define requirements which can be fulfilled in every certified European laboratory for testing and calibration and make the results of the testing and calibration acceptable in all the countries of the EU2. The approach is based on the European standard EN 45001. On the other hand, the countries’ governments have a responsibility towards consumers in terms of health, safety, the environment and legal regulations. This requires that all of the testing is carried out in accredited laboratories. The rules in the standards of the EN 45000 series have been satisfactory for Europe; however, accredited bodies have come to the conclusion that trade is a worldwide process and many countries cannot accept the EU’s standards. This was one of the reasons for the development of the new ISO/IEC 17025 standard. This standard includes previous requirements defined in the EN 45001 standard, but also others, which have to be accepted by the testing and calibration laboratories, if these laboratories want their services to be accepted internationally. It is the policy of the EU to remove trade barriers; one of the basic conditions for a successful functioning of the common market, "a new approach to technical harmonization and standards" is defined. Part of this policy, related to the conformity of assessment, is the goal to abolish technical trade barriers and establish a mutual confidence in producer competence and in the competence of the body for the assessment of conformity (Figure 1). This confidence should be ensured in obligatory and in non-obligatory areas with harmonized standards, with the application of quality assurance methods, with the testing, inspection and certification of products as well as with the introduction of a modern and independent A. KLOBODANOVI], M. ORU]: LABORATORY ACCREDITATION – CONFIDENCE IN THE ACTIVITIES ... 274 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 organization for cooperation in testing, certification and accreditation at the European level. The basic task is to support the establishment of agreements on the mutual recognition of tests in the non-obligatory area. If accreditation bodies certify and announce that services from bodies they have accredited are based on the same rules and, for this reason, to be trusted and accepted, then all services will be acceptable in all countries that have signed the document of agreement. In this way, it is possible to build up the "pyramid of confidence", an example of which is shown for the EU in Figure 2. Accreditation is, indeed, the basis for establishing the mutual confidence between the conformity-assessment bodies. It ensures the transparency of the activity of accreditation bodies at national and regional levels. 4 ACCREDITED LABORATORIES OF THE METALLURGICAL INSTITUTE "Kemal Kapetanovi}", d.o.o., ZENICA The metallurgical Institute "Kemal Kapetanovi}", d.o.o., Zenica (formerly "Hasan Brki}") has been active in Bosnia and Herzegovina for almost 45 years, and it is, for this field of activity, the only organization in the country. Several institute laboratories served initially as a testing and analytical base for scientific investigations; later they also provided services to outside customers, sometimes with a smaller participation in the scientific analysis of the experimental data. During more than 40 years a great deal of experience in laboratory work was gained and many testing methods have been developed, e.g., mechanical testing of different materials (metallic and non-metallic), metallography, chemical, ceramic and mineralogical analysis, calibration methods for force, hardness, torque, temperature and pressure. In the time of war, the market required laboratory services, and priority was given to this activity and to continuous efforts to work in accordance with European and international standards. In accordance with the available recourses, it was decided to further improve the quality system. This began with the laboratories and inspection bodies, and to ensure an efficient and transparent operation at all levels of the institute, taking care that the interest of the customers is considered. The laboratories were the first accredited laboratories in Bosnia and Herzegovina in 1998. The accreditation was carried out by the National Department for Standardization, Metrology and Patents BiH (now the Institute for Accreditation BiH) in accordance with the EN 45001 standard. Later, the laboratories were reaccredited according to the ISO/IEC 17025 standard, and the institute has the following accreditations: – LK – 02-01 (calibration scope: calibration of equipment for force, torque and hardness); – LI – 02-02 (testing scope: mechanical testing of metallic materials); – LI – 02-03 (testing scope: metallographic testing of metallic materials); – LI – 02-04 (testing scope: chemical analysis of metallic materials and petroleum products, physical and mechanical testing of construction materials, including refractories); – LK – 02-05 (calibration scope: calibration of measuring instruments for temperature and pressure). 5 CONCLUSION From the experience of countries in transition, it is known that a very important part of the agreement for all the candidate countries for inclusion in the EU is the chapter related to the free exchange of products. This requires the conforming of the technical legislature, the reciprocal recognition of results of assessment of conformity and the establishment of mechanisms for the A. KLOBODANOVI], M. ORU]: LABORATORY ACCREDITATION – CONFIDENCE IN THE ACTIVITIES ... MATERIALI IN TEHNOLOGIJE 40 (2006) 6 275 Figure 2: Example of the pyramid of confidence for the EU Slika 2: Primer piramide zaupanja za EU Figure 1: Procedure for ensuring confidence in supplier’s competence Slika 1: Procedura za zagotovitev zaupanja v kompetenco dobavitelja removal of trade barriers. For this reason, the compe- tence of laboratories for testing materials and products is very important, since it determines which test results will be the basis for the assessment of the conformity of products to standards. The mutual confidence in the competence is the condition for the acceptance of the global principle: "once tested and once certificated", based on accreditations that are themselves based on multi-national agreements of recognition of the equality of results of national conformity assessments. The Metallurgical Institute "Kemal Kapetanovi}" Zenica has the possibility to perform, together with the accredited laboratories, an important role in this area in Bosnia and Herzegovina, having already gained sufficient experience, satisfactory resources and the confidence of customers/users of services resulting from many years of cooperation. In recent years, the laboratories were certified by the Croatian Register of Shipping and Metallurgical Institute "Kemal Kapeta- novi}" Zenica has got opportunity to be in the list of approval service suppliers in the important areas for conformity assessment. 6 REFERENCES 1 D. Ujevi}.: Planning and introduction of a quality system into the manufacturing process following the ISO 9000 standards, Proceedings – 1st Symposium, Revitalization and modernization of metal industry of Bosnia and Herzegovina, Biha}, 1997 2 A. Me{anovi}: Accreditation – instrument for acquisition of confi- dence in the other activities to conformity assessment, Glasnik No. 3 – Department for standardization, metrology and patents B&H, 1999 3Mirsad Begi}: Quality – New philosophy of business, NIP "Eco- nomic newspaper" d.d., Sarajevo, 2001 4 A. Klobodanovi}: Importance of laboratory’s accreditation, Business newspaper No 1113/1114, Sarajevo, 2003 A. KLOBODANOVI], M. ORU]: LABORATORY ACCREDITATION – CONFIDENCE IN THE ACTIVITIES ... 276 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 LETNO KAZALO – INDEX Letnik / Volume 40 2006 ISSN 1580-2949 © Materiali in tehnologije IMT Ljubljana, Lepi pot 11, 1000 Ljubljana, Slovenija M EHNOLOGIJEIN ATERIALI M A T E R I A L S A N D T E C H N O L O G Y MATERIALI IN TEHNOLOGIJE / MATERIALS AND TECHNOLOGY VSEBINA / CONTENTS LETNIK / VOLUME 40, 2006/1, 2, 3, 4, 5, 6 2006/1 Inhibition of the pitting corrosion of grey cast iron using carbonate Raziskave inhibiranja jami~aste korozije sivih litin z uporabo karbonatne me{anice A. Kocijan, M. Jenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 The characterization of polymer composites by thermogravimetry Termogravimetri~na karakterizacija polimernih kompozitov I. G. Popovi}, L. Katsikas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 The influence of copper on the decarburization and recrystallization of Fe-Si-Al alloys Vpliv bakra na razoglji~enje in rekristalizacijo zlitin Fe-Si-Al D. Steiner Petrovi~, M. Jenko, V. Dole~ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Improving the corrosion resistance of components made from structural steels Pove~anje korozijske odpornosti delov iz konstrukcijskih jekel P. Jur~i, P. Stolaø . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Evolucija globularne mikrostrukture pri postopku Rheo-light Evolution of globular microstructure at the Rheo-light process M. Torkar, M. Godec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Poslovanje dru`b z dejavnostjo proizvodnje kovin v Sloveniji v obdobju od leta 1992 do 2004 Operation of metal producing companies in Slovenia in the period from 1992 to 2004 V. Pirih . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2006/2 Segregation and oxidation Segregacija in oksidacija H. J. Grabke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Small-punch testing of a weld’s heat-affected zones Testiranje lezenja toplotno vplivanih podro~ij vara z uporabo majhnega bata R. [turm, Y. Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Degradation of VOC'S by a two stage thermal and high frequency DBDC system Degradacija VOC z dvostopenjskim termi~nim in visokofrekven~nim DBDC-sistemom O. G. Godoy-Cabrera, A. Mercado-Cabrera, R. López-Callejas, R. Valencia A., S. R. Barocio, A. E. Muñoz-Castro, R. Peña-Eguiluz, A. de la Piedad-Beneitez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Determination of the deformational energy during slab-width rolling on an edger mill Dolo~anje deformacijske energije pri valjanju slabov na kr~ilnem ogrodju F. Vode, A. Jakli~, R. Robi~, A. Ko{ir, F. Perko, J. Novak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 B2O3 and CaO in the magnesium oxide from seawater B2O3 in CaO v magnezijevem oksidu iz morske vode V. Martinac, M. Labor, N. Petric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Preparation of NiO/YSZ powders using a pechini-type method Priprava NiO/YSZ prahov s prilagojeno pechini metodo T. Razpotnik, V. Franceti~, J. Ma~ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Microstructure evaluation of an NRC-processed automotive component Ocena mikrostrukture avtomobilske komponente, izdelane po postopku NRC M. Torkar, B. Breskvar, M. Godec, P. Giordano, G. Chiarmetta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Properties and microstructure of very pure CrNiV steel Lastnosti in mikrostruktura zelo ~istih jekel CrNi S. Nìme~ek, P. Moty~ka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2006/3 Mechanical and corrosion properties of AA8011 sheets and foils Mehansko vedenje in korozijske lastnosti trakov in folij AA8011 K. Deliji}, V. Asanovi}, D. Radonji} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 278 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 LETNO KAZALO – INDEX Flame temperature as a function of the combustion conditions of gaseous fuels Temperatura plamena v odvisnosti od pogojev zgorevanja plinastih goriv M. Lalovic, Z. Radovic, N. Jaukovic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 [tudij mikrostrukture tiskanih slojev YSZ na podlagi Ni-YSZ Microstructure characterisation of screen-printed layers of YSZ on Ni-YSZ substrate M. Marin{ek, B. Kapun, A. Zupan~i~ Valant, K. Zupan, G. Kapun, J. Ma~ek. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Supramolekularni poliuretani z azobenzenskimi skupinami Supramolecular azobenzene polyurethanes G. Ambro`i~, M. @igon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Mehanske lastnosti kav~ukovih zmesi na osnovi NBR Mechanical properties of NBR based compounds H. [ubic ml., Z. [u{teri~, M. @umer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Influence of micro-alloying on the phase transformations in cast manganese steels Vpliv mikrolegiranja na fazne premene v litem manganovem jeklu P. Moty~ka, J. Drnek, L. Kraus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2006/4 A crack growth analysis in critical structural components Analiza rasti razpoke v kriti~nih komponentah naprav D. Semenski, @. Bo`i}, H. Wolf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Hot ductility of austenite stainless steel with a solidification structure Vro~a preoblikovalnost avstenitnega nerjavnega jekla s strjevalno strukturo F. Tehovnik, F. Vodopivec, L. Kosec, M. Godec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 The extraction of raw materials for the cement industry and nature conservation Zagotavljanje primernih materialov za cementno industrijo s ciljem ohranjanja narave @. Poga~nik, M. Stupar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Vacuum teaching for undergraduate students at the University of Coimbra U~enje vakuuma za {tudente na Univerzi Coimbra J.M.F. dos Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Isothermal decomposition of the β' phase in Cu-Zn-Al shape-memory alloys Izotermna razgradnja β'-faze v zlitinah s spominom Cu-Zn-Al V. Asanovi}, K. Deliji}, N. Jaukovi} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Estimation of the fatigue threshold values for a crack propagating through a bi-material interface taking into account residual stresses Ocena utrujenostnega praga za razpoko, ki napreduje skozi vmesno ploskev med dvema materialoma z upo{tevanjem rezidualnih napetosti L. Náhlík . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Karakterizacija kopolimerov SEC in SEC-MALS asparaginske kisline in laktida SEC and SEC-MALS characterization of copolymers of aspartic acid and lactide M. Gri~ar, E. @agar, A. Kr`an, M. @igon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 2006/5 Fatigue behaviour of a cast nickel-based superalloy Inconel 792-5A at 700 °C Utrujanje lite nikljeve superzlitine Inconel 792-5A pri 700 °C M. Petrenec, K. Obrtlík, J. Polák, T. Kruml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 The application of linear elastic fracture mechanics to optimize the vacuum heat treatment and nitriding of hot-work tool steels Uporaba linearne elastomehanike loma pri optimiranju vakuumske toplotne obdelave in nitriranju orodnih jekel za delo v vro~em V. Leskov{ek, B. [u{tar{i~, D. Nolan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 The influence of long-term service exposure on the structure and properties of high-temperature steels and alloys Vpliv dolgotrajnega obratovanja pri visokih temperaturah na lastnosti jekel in zlitin, namenjenih uporabi v energetskih napravah A. Rybnikov, L. Getsov, G. Pigrova, N. Dashunin, E. Manilova, N. Mozaiskaja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 The influence of mim and sintering-process parameters on the mechanical properties of 316L SS Vpliv procesnih parametrov brizganja in sintranja na mehanske lastnosti nerjavnega jekla 316L B. Berginc, Z. Kampu{, B. [u{tar{i~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Behaviour and optimisation of multi-directional laminate specimens under delamination by bending Vedenje in optimizacija ve~smernih vzorcev laminatov pri upogibu z delaminacijo N. Ouali, A. Ahmed-Benyahia, A. Laksimi, T. Boukharouba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 LETNO KAZALO – INDEX MATERIALI IN TEHNOLOGIJE 40 (2006) 6 279 The behavior of fatigue-crack growth in shipbuilding steel using the ESACRACK approach Modeliranje rasti utrujenostne razpoke jekla za ladijske plo~evine po postopku ESACRACK M. Shehu, P. Huebner, M. Cukalla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Ocena odpornosti proti zmrzovanju gradbene keramike na podlagi direktnih in indirektnih metod Frost resistance evaluation of building ceramics by indirect and direct methods T. Kopar, J. Ranogajec, M. Radeka, R. Marinkovi}-Nedu~in, V. Ducman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2006/6 Plazemska sterilizacija bakterij s kisikovo plazmo Oxygen plasma sterilization of bacteria D. Vujo{evi}, Z. Vranica, A. Vesel, U. Cvelbar, M. Mozeti~, A. Drenik, T. Mozeti~, M. Klanj{ek-Gunde, N. Hauptman . . . . . . . . . . . . 227 A comparison of experimental results and computations for cracked tubes subjected to internal pressure Primerjava eksperimentalnih rezultatov in izra~una za cevi z razpoko, ki so obremenjeni z notranjo razpoko J. Capelle, I. Dmytrakh, J. Gilgert, Ph. Jodin, G. Pluvinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Fatigue problems of transmission belts: a viscoelastic analysis of the strain-accumulation process Problem utrujanja pogonskih jermenov: viskoelasti~na analiza procesa akumuliranja deformacije I. Emri, J. Kramar, A. Nikonov, U. Florjan~i~, A. Hribar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 A micro-macro analysis of the tool damage in precision forming Mikro-makroanaliza po{kodb orodja za natan~no kovanje T. Rodi~, J. Korelc, A. Pristov{ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 The stability of cast alloys and CVD coatings in a simulated biomass-combustion atmosphere Stabilnost zlitin in CVD-prevlek v simulirani atmosferi zgorevanja biomas D. A. Skobir, M. Spiegel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Nastanek LaCrO3 med zgorevalno sintezo LaCrO3 formation during combusttion synthesis K. Zupan, M. Marin{ek, S. Pejovnik, T. Hrobat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Dinami~ne mehani~ne lastnosti elastomernih kompozitov s polnili nanovelikosti Dynamic mechanical properties of elastomeric composites with nano-scale fillers Z. [u{teri~, T. Kos, M. [u{tar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Fracture toughness of a high-strength low-alloy steel weldment @ilavost loma zvara visokotrdnega malolegiranega jekla J. Tuma, N. Gubeljak, B. [u{tar{i~, B. Bundara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Solidification and fracture of an as-cast Ni alloy Strjevanje in prelom lite nikljeve zlitine M. Torkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Laboratory accreditation – confidence in the activities of conformity assessment of products Laboratorijska akreditacija- zaupanje v aktivnost ocene ustreznosti proizvodov A. Klobodanovi}, M. Oru~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 LETNO KAZALO – INDEX 280 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 MATERIALI IN TEHNOLOGIJE / MATERIALS AND TECHNOLOGY AVTORSKO KAZALO / AUTHOR INDEX LETNIK / VOLUME 40, 2006, A–@ A Ahmed-Benyahia A. 199 Ambro`i~ G. 99 Asanovi} V. 83, 153 B Barocio S. R. 55 Berginc B. 193 Bo`i} @. 123 Boukharouba T. 199 Breskvar B. 73 Bundara B. 263 C Capelle J. 233 Chiarmetta G. 73 Cukalla M. 207 Cvelbar U. 227 D Dashunin N. 185 Deliji} K. 83, 153 Dmytrakh I. 233 Dole~ek V. 13 Drenik A. 227 Drnek J. 111 Ducman V. 211 E Emri I. 239 F Florjan~i~ U. 239 Franceti~ V. 69 G Getsov L. 185 Gilgert J. 233 Giordano P. 73 Godec M. 23, 73, 129 Godoy-Cabrera O. G. 55 Grabke H. J. 39 Gri~ar M. 161 Gubeljak N. 263 H Hauptman N. 227 Hribar A. 239 Hrobat T. 253 Huebner P. 207 J Jakli~ A. 61 Jaukovi} N. 89, 153 Jenko M. 3, 13 Jodin Ph. 233 Jur~i P. 17 K Kampu{ Z. 193 Kapun B. 93 Kapun G. 93 Katsikas L. 7 Klanj{ek-Gunde M. 227 Klobodanovi} A. 273 Ko{ir A. 61 Kocijan A. 3 Kopar T. 211 Korelc J. 243 Kos T. 257 Kosec L. 129 Kr`an A. 161 Kramar J. 239 Kraus L. 111 Kruml T. 175 L Labor M. 65 Laksimi A. 199 Lalovic M. 89 Leskov{ek V. 179 Li Y. 49 López-Callejas R. 55 M Ma~ek J. 69, 93 Manilova E. 185 Marin{ek M. 93, 253 Marinkovi}-Nedu~in R. 211 Martinac V. 65 Mercado-Cabrera A. 55 Moty~ka P. 79, 111 Mozaiskaja N. 185 Mozeti~ M. 227 Mozeti~ T. 227 Muñoz-Castro A. E. 55 N Náhlík L. 157 Nìme~ek S. 79 Nikonov A. 239 Nolan D. 179 Novak J. 61 O Obrtlík K. 175 Oru~ M. 273 Ouali N. 199 P Pejovnik S. 253 Peña-Eguiluz R. 55 Perko F. 61 Petrenec M. 175 Petric N. 65 Piedad-Beneitez A. de la 55 Pigrova G. 185 Pirih V. 27 Pluvinage G. 233 Poga~nik @. 139 Polák J. 175 Popovi} I. G. 7 Pristov{ek A. 243 R Radeka M. 211 Radonji} D. 83 Radovic Z. 89 Ranogajec J. 211 Razpotnik T. 69 Robi~ R. 61 Rodi~ T. 243 Rybnikov A. 185 S Santos dos J. M. F. 145 Semenski D. 123 Shehu M. 207 Skobir D. A. 247 Spiegel M. 247 Steiner Petrovi~ D. 13 LETNO KAZALO – INDEX MATERIALI IN TEHNOLOGIJE 40 (2006) 6 281 Stolaø P. 17 Stupar M. 139 [ [turm R. 49 [u{tar M. 257 [u{tar{i~ B. 179, 193, 263 [u{teri~ Z. 107, 257 [ubic ml. H. 107 T Tehovnik F. 129 Torkar M. 23, 73, 269 Tuma J. 263 V Valencia A. R. 55 Vesel A. 227 Vode F. 61 Vodopivec F. 129 Vranica Z. 227 Vujo{evi} D. 227 W Wolf H. 123 Z Zupan K. 93, 253 Zupan~i~ Valant A. 93 @ @agar E. 161 @igon M. 99, 161 @umer M. 107 LETNO KAZALO – INDEX 282 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 MATERIALI IN TEHNOLOGIJE / MATERIALS AND TECHNOLOGY VSEBINSKO KAZALO / SUBJECT INDEX LETNIK / VOLUME 40, 2006 Kovinski materiali – Metallic materials Inhibition of the pitting corrosion of grey cast iron using carbonate Raziskave inhibiranja jami~aste korozije sivih litin z uporabo karbonatne me{anice A. Kocijan, M. Jenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 The influence of copper on the decarburization and recrystallization of Fe-Si-Al alloys Vpliv bakra na razoglji~enje in rekristalizacijo zlitin Fe-Si-Al D. Steiner Petrovi~, M. Jenko, V. Dole~ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Improving the corrosion resistance of components made from structural steels Pove~anje korozijske odpornosti delov iz konstrukcijskih jekel P. Jur~i, P. Stolaø . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Evolucija globularne mikrostrukture pri postopku Rheo-light Evolution of globular microstructure at the Rheo-light process M. Torkar, M. Godec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Poslovanje dru`b z dejavnostjo proizvodnje kovin v Sloveniji v obdobju od leta 1992 do 2004 Operation of metal producing companies in Slovenia in the period from 1992 to 2004 V. Pirih . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Segregation and oxidation Segregacija in oksidacija H. J. Grabke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Small-punch testing of a weld’s heat-affected zones Testiranje lezenja toplotno vplivanih podro~ij vara z uporabo majhnega bata R. [turm, Y. Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Degradation of VOC'S by a two stage thermal and high frequency DBDC system Degradacija VOC z dvostopenjskim termi~nim in visokofrekven~nim DBDC-sistemom O. G. Godoy-Cabrera, A. Mercado-Cabrera, R. López-Callejas, R. Valencia A., S. R. Barocio, A. E. Muñoz-Castro, R. Peña-Eguiluz, A. de la Piedad-Beneitez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Determination of the deformational energy during slab-width rolling on an edger mill Dolo~anje deformacijske energije pri valjanju slabov na kr~ilnem ogrodju F. Vode, A. Jakli~, R. Robi~, A. Ko{ir, F. Perko, J. Novak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Microstructure evaluation of an NRC-processed automotive component Ocena mikrostrukture avtomobilske komponente, izdelane po postopku NRC M. Torkar, B. Breskvar, M. Godec, P. Giordano, G. Chiarmetta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Properties and microstructure of very pure CrNiV steel Lastnosti in mikrostruktura zelo ~istih jekel CrNi S. Nìme~ek, P. Moty~ka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Mechanical and corrosion properties of AA8011 sheets and foils Mehansko vedenje in korozijske lastnosti trakov in folij AA8011 K. Deliji}, V. Asanovi}, D. Radonji} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Flame temperature as a function of the combustion conditions of gaseous fuels Temperatura plamena v odvisnosti od pogojev zgorevanja plinastih goriv M. Lalovic, Z. Radovic, N. Jaukovic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Influence of micro-alloying on the phase transformations in cast manganese steels Vpliv mikrolegiranja na fazne premene v litem manganovem jeklu P. Moty~ka, J. Drnek, L. Kraus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A crack growth analysis in critical structural components Analiza rasti razpoke v kriti~nih komponentah naprav D. Semenski, @. Bo`i}, H. Wolf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Hot ductility of austenite stainless steel with a solidification structure Vro~a preoblikovalnost avstenitnega nerjavnega jekla s strjevalno strukturo F. Tehovnik, F. Vodopivec, L. Kosec, M. Godec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 LETNO KAZALO – INDEX MATERIALI IN TEHNOLOGIJE 40 (2006) 6 283 Isothermal decomposition of the β' phase in Cu-Zn-Al shape-memory alloys Izotermna razgradnja β'-faze v zlitinah s spominom Cu-Zn-Al V. Asanovi}, K. Deliji}, N. Jaukovi} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Estimation of the fatigue threshold values for a crack propagating through a bi-material interface taking into account residual stresses Ocena utrujenostnega praga za razpoko, ki napreduje skozi vmesno ploskev med dvema materialoma z upo{tevanjem rezidualnih napetosti L. Náhlík . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Fatigue behaviour of a cast nickel-based superalloy Inconel 792-5A at 700 °C Utrujanje lite nikljeve superzlitine Inconel 792-5A pri 700 °C M. Petrenec, K. Obrtlík, J. Polák, T. Kruml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 The application of linear elastic fracture mechanics to optimize the vacuum heat treatment and nitriding of hot-work tool steels Uporaba linearne elastomehanike loma pri optimiranju vakuumske toplotne obdelave in nitriranju orodnih jekel za delo v vro~em V. Leskov{ek, B. [u{tar{i~, D. Nolan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 The influence of long-term service exposure on the structure and properties of high-temperature steels and alloys Vpliv dolgotrajnega obratovanja pri visokih temperaturah na lastnosti jekel in zlitin, namenjenih uporabi v energetskih napravah A. Rybnikov, L. Getsov, G. Pigrova, N. Dashunin, E. Manilova, N. Mozaiskaja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 The influence of mim and sintering-process parameters on the mechanical properties of 316L SS Vpliv procesnih parametrov brizganja in sintranja na mehanske lastnosti nerjavnega jekla 316L B. Berginc, Z. Kampu{, B. [u{tar{i~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 The behavior of fatigue-crack growth in shipbuilding steel using the ESACRACK approach Modeliranje rasti utrujenostne razpoke jekla za ladijske plo~evine po postopku ESACRACK M. Shehu, P. Huebner, M. Cukalla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 A comparison of experimental results and computations for cracked tubes subjected to internal pressure Primerjava eksperimentalnih rezultatov in izra~una za cevi z razpoko, ki so obremenjeni z notranjo razpoko J. Capelle, I. Dmytrakh, J. Gilgert, Ph. Jodin, G. Pluvinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Fatigue problems of transmission belts: a viscoelastic analysis of the strain-accumulation process Problem utrujanja pogonskih jermenov: viskoelasti~na analiza procesa akumuliranja deformacije I. Emri, J. Kramar, A. Nikonov, U. Florjan~i~, A. Hribar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 A micro-macro analysis of the tool damage in precision forming Mikro-makroanaliza po{kodb orodja za natan~no kovanje T. Rodi~, J. Korelc, A. Pristov{ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 The stability of cast alloys and CVD coatings in a simulated biomass-combustion atmosphere Stabilnost zlitin in CVD-prevlek v simulirani atmosferi zgorevanja biomas D. A. Skobir, M. Spiegel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Fracture toughness of a high-strength low-alloy steel weldment @ilavost loma zvara visokotrdnega malolegiranega jekla J. Tuma, N. Gubeljak, B. [u{tar{i~, B. Bundara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Solidification and fracture of an as-cast Ni alloy Strjevanje in prelom lite nikljeve zlitine M. Torkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Laboratory's accreditation – confidence in the activities of conformity assessment of products Laboratorijska akreditacija- zaupanje v aktivnost ocene ustreznosti proizvodov A. Klobodanovi}, M. Oru~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Anorganski materiali – Inorganic materials B2O3 and CaO in the magnesium oxide from seawater B2O3 in CaO v magnezijevem oksidu iz morske vode V. Martinac, M. Labor, N. Petric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Preparation of NiO/YSZ powders using a pechini-type method Priprava NiO/YSZ prahov s prilagojeno pechini metodo T. Razpotnik, V. Franceti~, J. Ma~ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 [tudij mikrostrukture tiskanih slojev YSZ na podlagi Ni-YSZ Microstructure characterisation of screen-printed layers of YSZ on Ni-YSZ substrate M. Marin{ek, B. Kapun, A. Zupan~i~ Valant, K. Zupan, G. Kapun, J. Ma~ek. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 LETNO KAZALO – INDEX 284 MATERIALI IN TEHNOLOGIJE 40 (2006) 6 Nastanek LaCrO3 med zgorevalno sintezo LaCrO3 formation during combusttion synthesis K. Zupan, M. Marin{ek, S. Pejovnik, T. Hrobat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Polimeri – Polymers The characterization of polymer composites by thermogravimetry Termogravimetri~na karakterizacija polimernih kompozitov I. G. Popovi}, L. Katsikas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Supramolekularni poliuretani z azobenzenskimi skupinami Supramolecular azobenzene polyurethanes G. Ambro`i~, M. @igon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Mehanske lastnosti kav~ukovih zmesi na osnovi NBR Mechanical properties of NBR based compounds H. [ubic ml., Z. [u{teri~, M. @umer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Karakterizacija kopolimerov SEC in SEC-MALS asparaginske kisline in laktida SEC and SEC-MALS characterization of copolymers of aspartic acid and lactide M. Gri~ar, E. @agar, A. Kr`an, M. @igon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Behaviour and optimisation of multi-directional laminate specimens under delamination by bending Vedenje in optimizacija ve~smernih vzorcev laminatov pri upogibu z delaminacijo N. Ouali, A. Ahmed-Benyahia, A. Laksimi, T. Boukharouba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Dinami~ne mehani~ne lastnosti elastomernih kompozitov s polnili nanovelikosti Dynamic mechanical properties of elastomeric composites with nano-scale fillers Z. [u{teri~, T. Kos, M. [u{tar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Vakuumska tehnika – Vacuum technique Vacuum teaching for undergraduate students at the University of Coimbra U~enje vakuuma za {tudente na Univerzi Coimbra J.M.F. dos Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Plazemska sterilizacija bakterij s kisikovo plazmo Oxygen plasma sterilization of bacteria D. Vujo{evi}, Z. Vranica, A. Vesel, U. Cvelbar, M. Mozeti~, A. Drenik, T. Mozeti~, M. Klanj{ek-Gunde, N. Hauptman . . . . . . . . . . . . 227 Gradbeni materiali – Materials in civil engineering The extraction of raw materials for the cement industry and nature conservation Zagotavljanje primernih materialov za cementno industrijo s ciljem ohranjanja narave @. Poga~nik, M. Stupar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Ocena odpornosti proti zmrzovanju gradbene keramike na podlagi direktnih in indirektnih metod Frost resistance evaluation of building ceramics by indirect and direct methods T. Kopar, J. Ranogajec, M. Radeka, R. Marinkovi}-Nedu~in, V. Ducman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 LETNO KAZALO – INDEX MATERIALI IN TEHNOLOGIJE 40 (2006) 6 285 VACUUM HEAT TREATMENT LABORATORY Vacuum Brazing Universally accepted as the most versatile method of joining metals. Vacuum Brazing is a precision metal joining technique suitable for many component configurations in a wide range of materials. ADVANTAGES • Flux free process yields clean, high integrity joints • Reproducible quality • Components of dissimilar geometry or material type may be joined • Uniform heating & cooling rates minimise distortion • Fluxless brazing alloys ensure strong defect free joints • Bright surface that dispense with expensive post cleaning operations • Cost effective Over five years of Vacuum Brazing expertise at IMT has created an unrivalled reputation for excellence and quality. Our experience in value engineering will often lead to the use of Vacuum Brazing as a cost effective solution to modern technical problems in joining. INDUSTRIES • Aerospace • Hydraulics • Nuclear • Mechanical • Pneumatics • Automotive • Electronics • Marine QUALITY ASSURANCE Quality is fundamental to the IMT philosophy. The choice of process, all processing operations and process control are continuously monitored by IMT Quality Control Department. The high level of quality resulting from this tightly organised activity is recognised by government authorities, industry and International companies. IN[TITUT ZA KOVINSKE MATERIALE IN TEHNOLOGIJE INSTITUTE OF METALS AND TECHNOLOGY Lepi pot 11 • POB 431 • 1000 Ljubljana • Slovenia tel.: +386 1 4701 800 • fax: +386 1 4701 939 www.imt.si • e-mail: imt imt.si VACUUM HEAT TREATMENT LABORATORY Vacuum Heat Treatment Vacuum Heat Treatment is recognised as a high quality cost effective and ultra clean method for processing a wide range of components and materials currently in use in today's industry. The range of our equipment enables us to heat treat most sizes of load, from small batches to work up to 350 mm diameter, 910 mm high, and weight up to 380 kg. ADVANTAGES • Clean, bright surface finish • Minimal distortion • Minimal post treatment operations, e.g., grinding or polishing Five years of continual investment has ensured that VHTL maintains its position as market leader in the field of high quality sub-contract metal processing. We operate the latest generation of IPSEN VTTC furnace capable of processing components up to 350 mm in diameter, which in addition to our high pressure, rapid quenching facilities increases the range of materials suitable for Vacuum Heat Treatment. TYPICAL APPLICATIOS • Bright Annealing • Demagnetisation • Bright Stress Relieving • Degassing • Hardening/Tempering • Diffusion Treatments • Brazing/Hardening/Tempering • Sintering • Solution Treatment QUALITY ASSURANCE Quality is fundamental to the IMT philosophy. The choice of process, all processing operations and process control are continuously monitored by IMT Quality Control Department. The high level of quality resulting from this tightly organised activity is recognised by government authorities, industry and International companies. IN[TITUT ZA KOVINSKE MATERIALE IN TEHNOLOGIJE INSTITUTE OF METALS AND TECHNOLOGY Lepi pot 11 • POB 431 • 1000 Ljubljana • Slovenia tel.: +386 1 4701 800 • fax: +386 1 4701 939 www.imt.si • e-mail: imt imt.si Zavod za gradbeni{tvo Slovenije Slovenian National Building and Civil Engineering Institute Dimi~eva 12, 1000 Ljubljana, SLOVENIJA, Telefon: + 386 1/280 42 50, Telefaks: + 386 1/280 44 84 Elektronska po{ta: info@zag.si, WWW: http://www.zag.si/ • temeljne in uporabne raziskave • presku{anje v akreditiranih laboratorijih (SA, SWEDAC, PTB-DKD), potrjevanje skladnosti in certificiranje gradbenih materialov, proizvodov in izvedenih del • predkonkuren~ni razvoj na podro~ju gradbeni{tva • razvoj novih metod presku{anja in meritev • {tudije, preiskave, meritve, pregledi in opazovanja, • ekspertno svetovanje in sodelovanje pri revizijah ter analize stanja: gradbenih objektov, transportnih naprav, prometnic, naravnega in bivalnega okolja • kalibriranje in overjanje meril, etalonov in referen~nih materialov Materiali mineralna veziva in malte kamen in agregat beton in betonski izdelki kovine, korozija in protikorozijska za{~ita keramika in ognjevzdr`ni materiali polimeri asfalti, bitumen in bitumenski proizvodi Gradbena fizika akustika toplotna za{~ita po`arna presku{anja po`arno in`enirstvo Konstrukcije stavbe in mostovi kovinske konstrukcije in transportne naprave lesene konstrukcije potresno in`enirstvo dinamika konstrukcij Geotehnika in prometnice geomehanika in geotehnika okolja vzdr`evanje in gospodarjenje s cestami geotehni~no opazovanje in`enirska geologija in mehanika hribin Metrologija Penjeni stekleni agregat: toplotno izolacijski material, izdelan iz odpadnega stekla Mineralo{ke preiskave naravnih in umetnih nekovinskih materialov Dolo~anje tla~ne trdnosti na preizku{ancu iz kamna Dolo~itev dinami~nih karakteristik nevezanih materialov s triosnim cikli~nim aparatom Lahkota prihodnosti TALUM, d.d., KIDRI^EVO Tovarni{ka ulica 10 2325 Kidri~evo, Slovenia Telephone: +386 2 799 51 00 Telefax: +386 2 799 51 03 4 3 2 1 0 –1 –2 1,101,05 1,15 1,20 10 /K3 –1T –1 ln ( /m in ) t NOVO!Izdal: In{titut za kovinske materiale in tehnologije, LjubljanaAvtor: Boris Ule FIZIKALNA METALURGIJA RE[ENE NALOGE Delo je nekje vmesmed zbirko re{enih nalog in u~benikom fizikalne metalurgije. Naloge v knjigi so re{ene v vseh podrobnostih, ve~ino re{itev pa uvodoma dopolnjuje nekaj teoreti~ne razlage. Pri vsaki nalogi sonavedeni vsi potrebni podatki, da uporabnik pri samostojnem re{evanju ne bo potreboval {e kak{nih drugih virov.^e pa `e, so ti navedeni med tekstom, nekaj najbolj{ih del s podro~ja fizikalne metalurgije pa je na{tetih v popisu literature na koncu knjige. Pri pripravi knjige je bilo uporabljeno obi~ajno didakti~no na~elo, po katerem se vsako poglavje pri~ne z la`jimi, kon~a pa z zahtevnej{imi nalogami. Nekatere izmed nalog so zastavljene kot teoreti~ne, spet drugimpa je avtor sku{al pridati {e prakti~no uporabnost. V zbirko so zato vklju~ene tudi naloge, ki so pomembne za vsakdanjo in`enirsko prakso. Tak{ne naloge na primer obravnavajo nekatera vpra{anja toplotne obdelave ali pa dobo trajanja obreme- njenihkovinskihmaterialov. PRVA ZBIRKA RE[ENIH NALOG IZ FIZIKALNE METALURGIJE Marec 2005 500 strani, 191 nalog, 221 slik in diagramov ISBN 961-91448-1-3 Knjiga vsebuje devet poglavij: (1) Kristalna zgradba kovin (2) To~kaste napake (3) Difuzija (4) Strjevanje (5) Dislo-kacije (6) Mejne povr{ine (7) Utrjevanje kovin (8) Fazne premene (9) Lom, utrujanje in lezenje Temeljne informacije o najnovej{ih tehnologijah in zlitinah Izdal: In{titut za kovinske materiale in tehnologije, Ljubljana Avtor: Franc Vodopivec KOVINE IN ZLITINE kristalna zgradba, mikrostruktura, procesi, sestava in lastnosti Kristalna zgradba in procesi Mikrostruktura in procesi Sestava in lastnosti kovinskih zlitin Kristalna mre`a • to~kaste in linijske napake deformacija, utrjevanje in spro{~anje, deformacijske energije termi~no aktivirana plasti~na deformacija trdne raztopine, razgradnja in utrjevanje kristalizacija taline fazne premene difuzija v trdnem utrujenost prelom struktura in lastnosti povr{in absorpcija in segregacije elektri~na prevodnost magnetizem korozija in pasivnost povr{inska in notranja oksidacija. Ravnote`ni faznim diagrami strjevanje in`enirskih zlitin; segregacije in homogenizacija vro~a in hladna predelava jekla in aluminijevih zlitin toplotna obdelava jekel in zlitin utrjevanje povr{ine s termokemi~nimi in fizikalnimi postopki kovinski kompoziti kovinska stekla mehansko legiranje nanozlitine intermetalne spojine. Temeljne zna~ilnosti in`enirskih zlitin obremenitve pri uporabi metode karakterizacije jekla sive litine aluminij in zlitine baker in zlitine titan in zlitine magnezij in zlitine cink, kositer in svinec ter zlitine nikelj in kobalt ter zlitine kovine in zlitine z visokim tali{~em plemenite kovine in zlitine mehko in trdomagnetne zlitine zlitine za elektri~ne upore in kontakte cermeti in trde kovine biokompatibilne zlitine. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Delo povzema temeljna znanja o zgradbi kovin in zlitin na treh redih velikosti, od atoma in kristalne mre`e do lastnosti pri uporabi in povezavi med njihovimi lastnostmi, mikrostrukturo in kemijsko sestavo. Dokumentirano je tudi z izsledki iz slovenskih raziskovalnih ustanov in iz industrije, ki proizvaja ali uporablja kovine in zlitine v Sloveniji. Knjiga prina{a temeljne informacije o najnovej{ih tehno- logijah in zlitinah, vse do amorfnih in nanokristalnih zlitin. Za pripravo knjige je uporabljeno nad 30 monografij in nad 250 ~lankov iz {tevilnih najbolj kakovostnih inozemskih strokovnih in znanstvenih revij iz let 1980 do 2001. Opremljena je z 271 slikami in diagrami ter 167 analiti~nimi odvisnostmi, ki opisujejo ravnote`na stanja in kinetiko procesov. V knjigi je citirano ve~ kot 900 avtorjev, med njimi ve~ kot 100 slovenskih. Vsebuje avtorsko in vsebinsko kazalo. Knjiga bo dosegljiva tudi na CD plo{~ku. PRVA SLOVENSKA ZNANSTVENA MONOGRAFIJA O TEMELJNIH ZNANJIH ZGRADBE KOVIN IN ZLITIN September 2002, 474 str., 271 slik, diagramov ISBN 961-238-084-8 VSEBINA NAVODILA AVTORJEM BESEDILO ^LANKA (ROKOPIS IN ELEKTRONSKA OBLIKA) Glavnemu uredniku je treba predlo`iti dve kopiji rokopisa ~lanka, skupaj s povzetkom, klju~nimi bese- dami in z ilustracijami. Prispevki morajo biti napisani v slovenskem ali angle{kem jeziku; izvle~ki, klju~ne besede, podpisi k slikam in naslovi tabel pa v obeh jezikih. Glavni urednik bo poskrbel za strokovno oceno ~lanka. Avtorji imajo pravico navesti imena (naslove in telefonske {tevilke) treh ali {tirih oseb, ki so uspo- sobljene strokovno oceniti njihov prispevek. Izbrani recenzent ni nujno, da je iz predlo`enega seznama avtorja. Nepopolni podatki o predlo`enih recenzentih lahko upo~asnijo objavo rokopisa. Rokopis bo vrnjen avtorju skupaj s pripombami recenzenta. ^e je ~lanek sprejet (po recenzentovem in lektorje- vem pregledu), avtor vrne popravljen ~lanek uredni{tvu (izpis na papirju, elektronska oblika, originalne slike) v enem od bolj raz{irjenih urejevalnikov besedil: Word for Windows ali Word Perfect. ^e avtor uporablja kak{en drug urejevalnik, naj ga posname ali konvertira kon~ni izdelek v navaden ASCII-format. Priprava rokopisa • Besedilo naj bo napisano na listih A4 z dvojnim presledkom med vrsticami, ob levi strani s 3 cm {irokim robom (da je mogo~e vna{ati popravke lektorjev) na o{tevil~enih straneh. • Formule so lahko v datoteki samo nazna~ene, na izpisu pa ro~no izpisane. • ^lanek v elektronski obliki lahko avtor posreduje tudi po e-po{ti: mit@imt.si. Opomba: V vseh primerih si izdajatelj pridr`uje pra- vico odlo~anja, ali bo ~lanek sprejet za objavo ali ne. Avtor prevzema vso odgovornost za svoj prispevek. Predlo`eni prispevek ne sme biti v postopku za objavo v kaki drugi publikaciji in avtor ne sme kr{iti pravic kopiranja. Ko je prispevek sprejet za objavo, preidejo avtorske pravice kopiranja na izdajatelja. Ta prenos avtorskih pravic na izdajatelja zagotavlja naj{ir{e reproduciranje. Celoten rokopis ~lanka obsega: • naslov ~lanka (v slovenskem in angle{kem jeziku) • podatke o avtorjih • izvle~ek (v slovenskem in angle{kem jeziku) • klju~ne besede (v slovenskem in angle{kem jeziku) • besedilo ~lanka (v slovenskem ali angle{kem jeziku) • preglednice, tabele (glava tabele v slovenskem in angle{kem jeziku) • slike (risbe, fotografije) • podnapise k slikam (v slovenskem in angle{kem jeziku) • pregled literature (v angle{kem jeziku) ^lanek naj bi bil ~im kraj{i in naj ne bi presegal 4–6 tiskanih strani, pregledni ~lanek 12 tiskanih strani, prispevek s posvetovanj pa 2–4 tiskane strani. Prva stran ~lanka Naslov ~lanka naj bo natan~en toda tudi informativen ter ne sme presegati ene vrstice teksta. Besede iz naslova naj bodo primerne za indeksiranje in iskanje. Sledijo podatki o avtorju(-jih), imenu in naslovu institucije oz. laboratorija, kjer je delo nastalo. Podatki o avtorju: ime (celo ime, ne samo za~etnica), priimek, akademski naslov in poklic, e-po{ta, faks. Izvle~ek ^lanek mora vsebovati izvle~ek, ki naj vsebuje bistveno in kratko vsebino, sklepe ~lanka ter opozorilo na kakr{nokoli novo informacijo, ki je predstavljena v ~lanku. Izvle~ek mora biti razumljiv kot samostojna oblika. Napisan naj bo v preteklem ~asu, ker se nana{a na delo, ki je bilo `e opravljeno. Sklicevanje na formule, ena~be in vire literature v tekstu ni dovoljeno. Izogibati se je treba manj znanim izrazom, kraticam in okraj{a- vam. Dol`ina izvle~ka naj bi bila do 250 besed. Klju~ne besede Avtor dolo~i do {est klju~nih besed po lastni presoji, s katerimi natan~no dolo~i vsebino ~lanka in ki so primerne za indeksiranje in iskanje. Merske enote, ena~be Obvezna je raba merskih enot, ki jih dolo~a Odredba o merskih enotah (Ur. L. RS {t. 26/01), tj. enot medna- rodnega sistema SI. Uporaba in pisava morata biti po tej odredbi skladni s standardi SIST ISO 2955, serije SIST ISO 31 in SIST ISO 1000. Ena~be se ozna~ujejo ob desni strani besedila s teko~o {tevilko v okroglih oklepajih. Preglednice (tabele) Preglednice (tabele) naj bodo napisane na lo~enih listih in ne med besedilom, ozna~ene s primerno glavo tabele. V preglednicah in diagramih se ne uporabljajo izpi- sana imena veli~in, ampak ustrezni simboli v skladu z ISO 31. (Glavne smernice so v prispevku P. Glavi~, Mednarodni standardi – veli~ine in enote, Materiali in tehnologije, 37 (2003) 1–2, 79–84.) Preglednice (tabele) morajo biti jasno citirane v besedilu z arabskimi {tevilkami. Preglednica (tabela) mora imeti naslov (v sloven- skem in angle{kem jeziku), da je njen pomen razumljiv tudi brez citiranja v besedilu. Ilustracije Ilustracije (risbe, diagrami, fotografije) morajo biti o{tevil~ene, prilo`ene posebej in ne vstavljene (ali nalepljene) med besedilom. Diagrami in fotografije morajo biti izdelani od 1,5- do 3-krat ve~ji od velikosti tiskanega diagrama in morajo biti natan~no ozna~eni. Navadno so tiskani v {irini enega stolpca (7,9 cm), razen v posebnih primerih (maks. {irina ≈16 cm). Neprimerna velikost ~rk na diagramu omogo~a pomanj{avo le do optimalne ~itljivosti. ^rkovne oznake na diagramu naj bodo take velikosti, da je po pomanj{avi velikost {tevilk in (velikih) ~rk od 1,2 mm do 2,4 mm. Pogosto so ~rte na diagramih pretanke v primerjavi s celotnim diagramom. Za vse slike po fotografskih posnetkih je treba prilo`iti izvirne fotografije, ki so ostre, kontrastne in primerno velike. Pomembno je, da fotografije niso `e skenirane. ^e je treba, naj bo ozna~eno na hrbtni strani slik, kje je njihov zgornji rob. Priporo~ljivo je primerno pomanj{anje slike, ~e ni jasno, kateri njen detajl je pomemben. Diagrami in slike naj bodo narisani in posneti v formatih BMP, TIF, JPG. Za risanje naj bo po mo`nosti uporabljen program CorelDraw. Vsi podpisi k slikam (v slovenskem in angle{kem jeziku) naj bodo zbrani na lo~enem listu in ne med besedilom. Izdajatelj zahteva kvalitetne slike, ki omogo~ajo tudi kvalitetno tiskanje. Izdajatelj praviloma ne sprejema kopij slik in diagramov. Ilustracije so lahko tiskane barvno, ~e uredni{tvo presodi, da je to bistvenega pomena pri objavi. Izdajatelj in avtor nosita vsak del dodatnih stro{kov. Nadaljnje informacije o barvnih ilustracijah in stro{kih avtorjev so dosegljive pri izdajatelju. Na avtorjevo `eljo uredni{tvo vrne diagrame in slike, ko je ~lanek objavljen. Literatura Literaturni viri so zbrani na koncu ~lanka in so o{tevil~eni po vrstnem redu, kakor se pojavijo v ~lanku. Vsak vir mora biti opremljen s podatki, ki omogo~ajo bralcu, da ga lahko poi{~e. Vsak literaturni vir mora biti popoln, in tako okraj{ave ibid., idem., et al., etc., niso dovoljene. Literaturni viri, ki se nana{ajo na {e neobjavljena ali nesprejeta dela, naj se ne citirajo. Avtorjem pripo- ro~amo, da ne navajajo ve~jega {tevila samocitatov. Bibliografske navedbe naj bodo dosledno priprav- ljene v angle{kem jeziku. Knjige, periodi~ne publikacije, deli knjig, ~lanki v periodi~nih publikacijah, patenti, elektronske mono- grafije, ~lanki in drugi prispevki v elektronski obliki morajo biti citirani kot npr.: 1. Monografije Zgled: H. Ibach, H. Luth, Solid state physics, 2nd ed., Springer, Berlin 1991, 245 2. ^lanki v periodi~nih publikacijah Zgled: H. J. Grabke, Kovine zlitine tehnologije, 27 (1993), 1–2, 9 3. Periodi~ne publikacije Zgled: Kovine zlitine tehnologije. IMT Ljubljana, 1992–1999. Ljubljana: IMT, 1998. Text in Slovene and English. ISSN 1318-0010 4. Prispevki v zbornikih posvetovanj Zgled: I. Rak, M. Kocak, V. Gliha, N. Gubeljak: Fracture behaviour of over-matched high strength steel welds containing soft root layers, Proc. of the 2nd Inter. Symp. on Mis-Matching of Interfaces and Welds, Reinsford, 1997, 627–641 5. ^lanki in drugi prispevki v elektronski obliki Zgled: M. P. Wnuk: Principles of fracture mechanics for space applications. Kovine zlitine tehnologije [online]. 34, 1999, 6, 505–508 [cited 2000-01-30]. Available from World Wide Web: http://www.imt.si/materiali-tehnologije/ AVTORSKI PREGLED ^LANKA Avtorji prejmejo tiskan ~lanek v avtorski pregled. Uredni{tvu ga morajo vrniti v dveh dneh, sicer si uredni{tvo pridr`uje pravico, da objavi ~lanek brez avtorskega pregleda. SEPARATI Avtorji prejmejo brezpla~no 20 izvodov separatov objavljenega ~lanka. Dodatne izvode lahko avtor naro~i po ceniku, ki ga dobi v uredni{tvu. AVTORSKE PRAVICE Avtor mora predlo`iti izjavo, da je besedilo njegovo izvirno delo in ni bilo v taki obliki {e nikoli objavljeno. Predlo`eni prispevek ne sme biti v postopku za objavo v kaki drugi publikaciji. Deli ~lankov so lahko `e bili predstavljeni kot referati. Z objavo preidejo avtorske pravice na izdajatelja. Pri morebitnih kasnej{ih objavah, mora biti periodi~na publikacija Materiali in tehnologije navedena kot vir. Uredni{tvo periodi~ne publikacije Materiali in tehnologije: • odlo~a o sprejemu ~lankov za objavo • poskrbi za strokovne ocene in morebitne predloge za kraj{anje ali izpopolnitev prispevka • poskrbi za jezikovne popravke Rokopisi ~lankov ostanejo v arhivu uredni{tva periodi~ne publikacije Materiali in tehnologije. DODATEK: ZGLED ZA UVELJAVLJEN NA^IN PISANJA ^LANKA NASLOV ^LANKA Pravilen in dober naslov ~lanka vsebuje kar najmanj mo`nih besed, ki najbolj ustrezno opi{ejo vsebino prispevka. Naslov mora – biti natan~en in ne sme presegati ene vrstice teksta. Naslova ne smemo – pri~enjati z nepotrebnimi oz. odve~nimi besedami, kot so "[tudij" ali "Preiskava" – oblikovati v vpra{alni obliki. IZVLE^EK Izvle~ek naj bo skraj{ana oblika ~lanka, dol`ina ne sme presegati 250 besed. Napisan naj bo v preteklem ~asu, ker se nana{a na delo, ki je bilo `e opravljeno. Izvle~ek mora – opisati glavni predmet in cilj preiskave – povzeti rezultate – oblikovati glavne sklepe Izvle~ek ne sme – posredovati informacije ali sklepov, ki niso del ~lanka – citirati literature 1 UVOD Namen pisanja uvoda je podati zadosti predhodnih informacij, da bi bralec ~lanka lahko pravilno razumel in ocenil rezultate {tudije. Kratko in jasno naj bo podan namen pisanja prispevka. Uvod naj bo napisan v sedanjem ~asu, ker se nana{a na problem in osvojeno znanje problema na za~etku preiskave. Uvod mora – jasno opisati naravo in obseg problema, ki ga raziskuje avtor – podati pregled najnovej{e literature, da bi pravilno usmeril bralca – podati uporabljeno metodo preiskave, in ~e je treba tudi razloge za izbor dolo~ene metode 2 EKSPERIMENTALNI DEL Eksperimentalni del prispevka mora podati vse podrobnosti eksperimentalnih naprav in metod, ki so bile uporabljene, da je avtor dosegel navedene rezultate. Napisan naj bo v preteklem ~asu, pasivna oblika. Eksperimentalni del mora – vsebovati podrobnosti, ki se nana{ajo na opremo in uporabljene materiale, njihovo koli~ino, tempe- rature, ~ase itd. – zagotoviti zadostno informacijo, ki bo omogo~ala raziskovalcu istega znanstvenega podro~ja, da preizkus lahko ponovi. Eksperimentalni del ne sme – navajati nobenih dose`enih rezultatov preiskave. 3 REZULTATI Ta del mora podati celotno sliko vseh preizkusov, ne da bi se ponavljale posamezne podrobnosti iz eksperi- mentalnega dela. Podatki morajo biti jasni in natan~ni. Avtor lahko uporabi diagrame in tabele, ~e je to potrebno. Ta del naj bo napisan v preteklem ~asu. Rezultati ne smejo – opisovati in navajati eksperimentalnih metod – vsebovati diskusije o dose`enih rezultatih (Zaradi narave nekaterih ~lankov je mo`no zdru`iti rezultate in diskusijo v eno poglavje, da bi bil ~lanek bralcu bolj jasen in la`je razumljiv.) – vsebovati rezultatov ali podatkov, ki niso del diskusije. 4 DISKUSIJA Namen diskusije je podati na~ela, odnose in posplo- {evanja, ki so bili prikazani v rezultatih. Diskusija mora razjasniti pomen rezultatov in primerjati sedanja dognanja s prej objavljenimi deli. Diskusija naj bo napisana v sedanjem ali preteklem ~asu. Diskusija mora – razlo`iti rezultate in jih ne sme samo ponoviti Diskusija se ne sme – izogibati komentiranju rezultatov, ki niso povsem ustrezni. 5 SKLEPI Sklepi morajo biti kratki. Vsebujejo naj enega ali dva sklepa, povzeta iz rezultatov in diskusije rezultatov. ^e je treba, naj bodo sklepi oblikovani po to~kah. Sklepi morajo – biti natan~ni in bralcu jasno razumljivi Sklepi ne smejo – biti ponovitev rezultatov – biti enaki izvle~ku. 6 LITERATURA INSTRUCTIONS FOR AUTHORS SUBMISSION OF PAPERS (MANUSCRIPT + ELECTRONIC TEXT ON DISKETTE) Two duplicate copies of the original manuscript complete with abstract, key words and illustrations should be submitted to the Editor-in-chief. All contributions should be written in Slovene or English, with title, abstract, key words and figure captions in both languages. The Editor-in-chief will take care of the review process. Authors are encouraged to list the names, addresses and telephone numbers of three or four individuals who are qualified to serve as referees for their paper, however, the refeeres selected by the Editor will not necessarily be from the list suggested by the author. Failure to provide information on several possible referees may delay processing of the manuscript. The manuscript will be returned to the author together with the notes of the referees. If the paper is accepted the author will be asked to amend the manuscript in accordance with the referees’ comments (for both language and technical content) and return it to the Editorial Board (hard copy plus electronic form with original illustrations) in one of the wildely used word-processing programs such as Word for Windows or Word Perfect. If the author wishes to use any other word-processing program the final product should be converted into normal ASCII (text). Preparation of the manuscript • Manuscripts should be typed on A4 paper, double- spaced, with 3 cm margins (for corrections) on numbered pages. • Contributions in electronic form can also be submitted by e-mail: mit@imt.si. Note: In all cases the Publisher reserves the right to decide whether to accept the paper for publication. The author should obtain all the necessary authority for publication. Submission of an article implies it is not under consideration for publication elsewhere and that the author is satisfied that no copyright will be infringed. Upon acceptance of an article, the copyright is transfered to the publisher. This transfer will ensure the widest possible dissemination of the article. Style of manuscript: • title of the paper (in Slovene and English) • authors’ full names with affiliations • abstract (in Slovene and English) • key words (in Slovene and English) • text of the paper (in Slovene or English) • tables (table titles in Slovene and English) • illustrations (drawings or photographs) • captions to figures (in Slovene and English) • references (in English) The paper should be as short as possible and should not exceed 4–6 print pages. Review papers may be up to 12 printed pages, papers presented at conferences should be restricted to 2–4 printed pages. Title page Papers should be headed by a concise but informative title which should not exceed one line, words from the title should be suitable for indexing and searching. The title should be followed by the name(s) of the author(s) and by the name and address of the institu- tion(s) or laboratory(ies) where the work was carried out. Telephone and fax numbers as well as an e-mail address for a contact author should also be supplied. Abstract Papers must include an abstract. This summary should present a brief and factual account of the content and conclusions of the paper and an indication of any new information presented in the paper. The abstract should be understandable in isolation. The abstract should be written in the past tense, because it refers to work which was already done. References to formulae, equations and references that appear in the text is not allowed. Uncommon expressions and abbreviations should be avoided. The length of the abstract should not exceed 250 words. Key words The author may supply up to six key words, that describe the content of the article and are suitable for indexing and searching. Symbols, equations (units of measurement) Units of measurement should comply with the Law of Units of Measurement and Measures (Official Gazette of the Republic of Slovenia 2001/26) i.e. international SI units. Equations should be marked on the right-hand side of the text with numbers in round brackets. Tables Tables should be typed on separate sheets. Written names of quantities should not be used in tables and diagrams, only the corresponding symbols, according to ISO 2955, series ISO 31 and ISO 1000. Tables should be clearly referred to in the text using Arabic numerals. Each table should have a title which makes the general meaning understandable without reference to the text. Ilustrations Ilustrations (drawings, diagrams, photographs) should be numbered and provided separately, not inserted in the text. The drawings or gloss prints for the line pictures should be 1.5–3 times larger than the printed size of the figures and should contain carefully applied lettering. Figures are reduced to a single-column width (7.9 cm) except in special cases (max. printed size ≈16 cm). Inappropriately sized lettering on a figure may prevent its reduction to the size optimum for its information content. The lettering used on a figure should be chosen so that after reduction the height of numbers and capital letters falls within the range (1.2–2.4) mm. Lines and arrows should also be of sufficient thickness so as to remain clear after the reduction process. The photographs supplied for reproduction should be original, sharp, with good contrast and of appropriate size. It is important that the photographs supplied are not already screened. When necessary, the top side of a photograph should be marked on the back. A reduction factor should be recommended for a photo when it is not obvious what detail in the photo is of interest. Diagrams and figures should be drawn and saved in any supported format, e.g. BMP, GIF, JPG. Use Correl Draw if available, since figures can be saved as vector images. Figure captions (in Slovene and English) should be listed together at the end of the manuscript and not inserted in the text. The publisher reqiures a set of good quality drawings and photographs to ensure good quality printing. Photo copies cannot be accepted. Illustrations can be printed in colour when they are judged by the Editor to be essential to the presentation. The publisher and the author will each bear part of the extra costs involved. Further information concerning colour illustrations and the costs to the author can be obtained from the publisher. Upon request original drawings and photographs will be returned after publication of the paper. References The references should be collected at the end of the article, and numbered in the order of their appearance in the text. Each reference should be complete, the use of ibid., idem., et al., etc. is not permitted. References to unpublished or not readily accessible reports should be avoided. References should be cited in English. We recommend the authors to avoid self-citing in the references. In the list of references monographs, articles in journals, journals, contributions to conference proceed- ings, patent documents, electronic monographs, articles and other electronic documents should be cited in accordance with the following examples: 1. Monographs Example: H. Ibach, H. Luth, Solid State physics, 2nd ed., Springer, Berlin 1991, 245 2. Articles in journals Example: H. J. Grabke, Kovine zlitine tehnologije, 27 (1993), 1–2, 9 3. Journals Example: Kovine zlitine tehnologije, IMT Ljubljana, 1992–1999, Ljubljana, IMT, 1998. Text in Slovene and English. ISSN 1318-0010 4. Contributions to conference proceedings Examples: I. Rak, M. Kocak, V. Gliha, N. Gubeljak: Fracture behaviour of over-matched high strength steel welds containing soft root layers, Proc. of the 2nd Inter. Symp. on Mis-Matching of Interfaces and Welds, Reinsford, 1997, 627–641 5. Articles and other contributions in electronic form Example: M. P. Wnuk: Principles of fracture mechanics for space applications. Kovine zlitine tehnologije [online]. 34, 1999, 6, 505–508 [cited 2000-01-30]. Available from World Wide Web: http://www.imt.si/materiali-tehnologije PROOFS Authors will receive a set of proofs. They are requested to return the proofs with any corrections within two days. In the case of a delay the Editorial Board reserves the right to publish the article without the author’s proofs. OFFPRINTS A total of 20 prints of each article will be supplied free of charge to the author(s). Additional offprints can be ordered, prices are available from the Editorial Board. COPYRIGHT In addition to the paper, authors must also enclose a written statement that the paper is original work and has not been published in this form anywhere else and that it is not under consideration for publication elsewhere. Parts of the paper may have been given in the form of reports. On publication, copyright will pass to the publisher. The Journal of Materials and Technology must be stated as the source in all later publications. The Editorial Board of the Journal of Materials and Technology: • decide whether to accept a paper for publication; • obtain professional reviewers for papers and decide on any proposals to shorten or extend them; • obtain correct terminology and edit language. Manuscripts of papers will be kept in the archives of the journal: Materials and Technology. ADDITION: INSTRUCTIONS FOR AUTHORS WRITING A TITLE A good Title will have the fewest possible words that adequately describe the contents of the paper. The Title should: – Be concise and not exceed a single line of text. The Title should not: – Begin with the waste words such as "Study of" or "An investigation"; – Be in the form of a question. PREPARING THE ABSTRACT The Abstract should be viewed as a miniversion of the paper and not exceed 250 words. The Abstract should be written in the past tense, because it refers to work already done. The Abstract should: – State the principal objectives and scope of the investigation; – Describe the methodology employed; – Summarize the results; – State the principal conclusions. The Abstract should not: – Give information or conclusions that are not included in the paper; – Cite references to the literature. 1 WRITING THE INTRODUCTION The purpose of the Introduction is to supply sufficient background information to allow the reader to understand and evaluate the results of the present study. If should state briefly and clearly the purpose in writing the paper. Much of the Introduction should be written in the present tense, because it relates to the problem and the established knowledge relating to the problem at the start of the work. The Introduction should: – Present as clearly as possible the nature and scope of the problem investigated; – Review recent literature to orient the reader; – It should state the method of the investigation, and if necessary the reasons for the choice of a particular method. 2 THE EXPERIMENTAL SECTION The Experimental section of the paper must give full details of the experimental apparatus and the methods used in obtaining the results. It is recommended that authors use passive language in the past tense. The Experimental section should: – Include accurate details relating to the equipment and materials used, including quantities, tempera- tures, times etc. – Provide sufficient information for a colleague in the same field to reproduce the experiment. The Experimental section should not: – Introduce any of the results obtained. 3 WRITING THE RESULTS SECTION The Results section should provide an overall picture of the experiments without repeating any of the details in the Experimental section. The data should be presented clearly and concisely, using graphs and tables where appropriate. The Results section should be written in the past tense, using a mixture of passive and active language. The Results section should not: – Describe any experimental methods; – Include any discussion of the data obtained (Because of the nature of some papers it may be appropriate to combine the Results and Discussion sections into a single section to improve clarity and make it easier for the reader.); – Contain results or data which play no part in the Discussion. 4 THE DISCUSSION The purpose of the Discussion is present the principles, relationships, and generalisations shown by the Results. The Discussion must make clear the significance of the Results and compare the findings with previously published work. The Discussion should be written using both the present and past tenses. Active and passive language should be used to enhance the readability. The Discussion should: – Discuss the results not simply repeat them. The Discussion should not: – Avoid commenting on results which do not quite fit. 5 THE CONCLUSIONS The Conclusion section should be short. It will present one or more conclusions which have be drawn from the Results and the subsequent Discussion. If appropriate, the conclusions should be presented in point form. The Conclusions should: – Be concise and easily understood by the reader. The Conclusions should not: – Be a re-statement of the results; – Be the same as the Abstract. 6 REFERENCES