
ERK'2022, Portorož, 60-63 60

IDENTIFYING AND TRACKING PHYSICAL OBJECTS

WITH HYPERLEDGER DECENTRALIZED

APPLICATIONS

David Chicano1, Matevž Pustišek2

1 Universitat Politécnica de Catalunya, ETSETB,

c. Jordi Girona 1-3.08034 Barcelona. Spain
2 University of Ljubljana,Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia

Email: david.chicano.valenzuela@gmail.com

IDENTIFYING AND TRACKING

PHYSICAL OBJECTS WITH

HYPERLEDGER DECENTRALIZED

APPLICATIONS

Abstract. The passing of time has made clear the trend

of decentralization. Distributed ledger technologies like

blockchain have brought a full range of new

possibilities to improve, in this case, trust and identity

management on the internet as Self Sovereign Identity

(SSI) does. This thesis has analyzed the blockchain

impact on IoT with the Linux Foundation Project called

Hyperledger, concretely, with its Identity Stack solution.

Even though it is a really unmatured project, it has

some useful tools to start understanding and testing the

capabilities of this technology. The project consists of a

practical scenario simulation of communication and

verified credentials sending between a Raspberry Pi

with an RFID sensor, which will be tracking an object’s

state of delivery, and a graphical Java Application.

Everything through the Hyperledger SSI Stack, formed

by a public Indy network instance and Aries agents.

1 Introduction

The purpose of this project is to analyze decentralized

applications for IoT based on Hyperledger technologies.

In particular, it will explore and demonstrate options for

identifying and tracking physical objects with

Hyperledger decentralized applications.

The project is based on the Self Sovereign Identity

concept which is built in a blockchain-based ledger.

There are many different implementations, but this

project will be using a solution from the Hyperledger

Foundation called the Identity Stack.

1.1 Blockchain

We are not interested in a deep explanation of

blockchain, since we will be using an already

created/configured network and its interactions will be

automated with the Hyperledger software.

A blockchain is a growing list of data blocks linked

together, a peer-to-peer distributed ledger forged by

consensus, combined with a system for "smart

contracts" and other assistive technologies. Together

these can be used to build a new generation of

transactional applications that establishes trust,

accountability, and transparency at their core, while

streamlining business processes and legal constraints.

All without middlemen (so-called trusted third parties).

Each block is timestamped, with each new block

referring to the previous block. Combined with

cryptographic hashes, this timestamped chain of blocks

provides an immutable record of all transactions in the

network, from the very first (or genesis) block.

An interesting point to know about for this thesis is that

we can differentiate between two types; permissioned

and permissionless.

Figure 1 Blockchain: Permissioned vs. Permissionless

1.2 Self Sovereign Identity (SSI)

Self Sovereign Identity (SSI) is the idea that you control

your own data, you control when and how it is provided

to others, and when it is shared, it is done so in a trusted

way. With SSI, there is no central authority holding

your data that passes it on to others upon request. And

because of the underlying cryptography and blockchain

technology, SSI means that you can present claims

about your identity and others can verify it with

cryptographic certainty.

In SSI, entities are identified by decentralized identifiers

(DID). The trust and management of DIDs are assured

by blockchain technology, and DIDs can be decoupled

from centralized registries, identity providers, and

certificate authorities. Like the URLs that we are

familiar with, DIDs can be resolved (often resolved by

reading from a blockchain). When we pass a valid DID

to a piece of software called a DID Resolver, it works

like a browser given a URL, resolving the DID and

returning a document. However, instead of returning a

web page, a DID Resolver returns a DID Document

61

(DIDDoc), a JSON document whose format is defined

in the DID specification. A DIDDoc contains (usually)

public keys whose private keys are held by the entity

that controls the DID, and (usually) service endpoints

that enable communication with that entity.

Figure 2 DID structure example

With this comes the use of verifiable credentials. A

credential is (formally) an attestation of qualification,

competence, or authority issued to an entity by a third

party with a relevant or de facto authority or assumed

competence to do so. For identity, verifiable credentials

are digital, cryptographically-protected data from

authorities that you can use to prove you are you.

In all uses of a verifiable credential, what is issued is a

credential. However, in some implementations, when a

credential is presented, the credential is proven, while in

others (including in Hyperledger Indy), the claims

within the credential are proven individually. Your

verifiable credentials are issued to you, stored in your

digital wallet, and you decide when and where you want

to use them. Verifiable presentation data is proven

without needing to call back to the issuer.

Another pair of terms that might seem to be used

interchangeably are proof and presentation. Proof is

evidence of the claim.

The same framework can be adapted for non-person

subjects as IoT.

Figure 3 SSI flow diagram

1.3 Hyperledger Identity Stack

“The Hyperledger Foundation is a global ecosystem for

enterprise blockchain technologies. As part of the Linux

Foundation, it is a neutral home for developers to

collaborate, contribute, and maintain open-source

software.” [1]

The main strength of Hyperledger is having a specific

solution for each necessity. In this case, the Identity

Stack creates an optimized ecosystem for SSI. It is

composed of three projects; Indy, Ursa, and Aries.

Figure 4 Hyperledger Identity Stack

Hyperledger Indy was Hyperledger’s first “identity-

focused” blockchain framework. Includes verifiable

credentials based on zero-knowledge proof (ZKP)

technology, decentralized identifiers, a software

development kit (SDK) for building agents and an

implementation of a public, permissioned distributed

ledger. [2]

When the issuer wants to issue a credential, they must

have:

 A DID on the blockchain that allows verifiers to

find out who they are.

 A schema on the blockchain with the list of attribute

names that the credential will contain.

 A credential definition on the blockchain which

specifies which DID, schema and public keys are

going to be used.

Finally, the issuer may want to be able to revoke

credentials and if they do, they must also write a

revocation registry to the ledger before issuing

credentials.

Figure 5 What goes on Indy blockchain

As Indy evolved within Hyperledger, there was a

realization that the cryptography in Indy could be used

in several Hyperledger projects, and even outside of

Hyperledger. The decision was made to migrate the

indy-crypto code repository out of Indy and into its own

project: Hyperledger Ursa. [2]

Since Ursa work is made “behind the scenes” it is not

important to know how it works for this research.

Indy is not the only implementation. In the long term,

there will likely be many implementations that are used

by different people, organizations and communities.

This is when Aries comes, capable of using agents to

interact between multiple ecosystems.

62

Aries is a toolkit designed for creating, transmitting,

storing and using verifiable digital credentials. Its core

are protocols enabling connectivity between agents

using secure messaging to exchange information. Aries

is all about peer-to-peer interactions between agents

controlled by different entities—people, organizations

and things.

Verifiable credentials can be exchanged based on DIDs

rooted in different ledgers (based on Indy or other

technology), and it is “verifiable credential-agnostic”—

support different verifiable credential implementations

within a single agent.

An Aries agent is a piece of software that enables an

entity (a person, organization or thing) to assume one or

more of the roles within the verifiable credential

model—an issuer, holder or verifier—and allows that

entity to interact with others that also have verifiable

credential roles. [2]

2 Prototype solution

We want to create interaction between a holder

(Application) and an issuer (IoT device) using Aries

Cloud Agent (ACA) [3] through a public Indy ledger.

This will be under the simulation of a delivery (imagine

you have purchased a product and you want to see the

current delivery status).

This makes taking into account all the necessary parts,

including the creation of a graphical application, the

configuration of the Raspberry Pi with the RFID sensor,

the use of ACA project [3] and the configuration of the

Indy ledger.

2.1 Scenario

The delivery status will be tracked by the IoT device. At

the very beginning of the delivery, the product will be

attached to an IoT device with an RFID sensor. We will

assume that the deliverer has an RFID tag and the final

user has another. When the deliverer gets the product,

passes his RFID tag near the sensor and immediately the

IoT device updates the status to “in delivery”. As soon

as the product reaches the final user he would do the

same and the status would be updated to “delivered”.

In order to watch in real-time the status, we will have a

graphical Application. This App is not only meant for

data tracking, it will have another feature, the creation

invitation for the connection between the App and the

sensor, which we will discuss later.

The following diagram shows the experiment, all the

components involved, and their connections:

Figure 6 Components diagram

As you could see in the diagram, the IoT part is

simulated with a Raspberry Pi and an RFID sensor. In

this case, we will be using a Raspberry Pi 4 Model B

and a PN532 NFC RFID MODULE V3. Its function

will be to read the UID from the two different tags and

make the proper calls to the Agent API to send de new

status.

Immediately we have the ACA-py [3] instance for the

sensor. It will be configurated with a public API

address, the IoT is not running on the same machine and

we need to make the calls through the internet.

Its function will be to communicate with the ledger and

the App Agent to send the new status. Quite similar to

the other part, we have the ACA-py [3] instance for the

App. It is not necessary to configure a public API

address because it will be running on the same machine

as the App, so we can use the localhost address. Its

function will be to communicate with the ledger and the

sensor Agent to store the new status.

Then we have the App, which will be a simple graphical

interface. It will have a log-in menu at the start, where

you should introduce the App wallet password. If it is

correct you will be sent to the menu, where you can

create an invitation connection for the sensor and also

see the credentials stored in the wallet, those which have

the status written. Its function will be to create the

connection invitation and fetch the credentials in the

wallet.

Finally, we have the Indy ledger, in this case, we will be

using one of the free public instances currently available

on the internet, the BCovrin Dev ledger [4]. It has a

really simple interface to see the nodes running, register

DIDs, and see the ledger state. Its function will be to

store the sensor DID, its schemas, and credential

definitions.

2.2 Achieve Sending Credentials

Figure 7 Project SSI flow diagram

The sending and receiving of the delivery status updates

will be done by verifiable credentials. This credential

contains an attribute field where we will write the new

status value. Then it will be sent from the sensor to the

App. In order to make this work, it is necessary to

understand every step before and during the sending.

Just to clarify, this procedure is adapted to the Aries

protocols, it may change in other SSI projects/solutions.

Also, the verifier part is not implemented.

We will have a look at the whole process inside the

ACA logic [5]. We will differentiate three parts.

63

Figure 8 Concept UML diagram

The first one would be everything the ledger needs to

have before sending a credential. Which is to have

registered a public DID from the sender/issuer, a

schema, and a credential definition related to that

schema.

Once you have a DID registered you can create the

connection, these steps are:

1. App creates a connection invitation.

2. Sensor gets the invitation and does the receive

connection invitation.

3. Sensor accepts the invitation.

4. App accepts the invitation.

Now the connection should be created and we can move

on to the credential dance. For this, it is necessary to

have the schema and credential definition already

created, in the ledger and the wallet.

1. Sensor sends a credential offer.

2. App sends a credential request.

3. Sensor creates and issues the credential.

4. App stores it in the wallet.

With this, we could fetch the credential from the App

wallet in order to read it.

3 Conclusions

In conclusion, this paper has covered the concept that

refers to sending IoT data using SSI blockchain

technology, from a more theoretical part, which

explained the main concepts of blockchain and SSI,

from a more practical part providing a guide to sending

verifiable credentials from an IoT device, a Raspberry

Pi with an RFID sensor, using Hyperledger Aries Cloud

Agent with an Hyperledger Indy public network.

We have been able to demonstrate in a real case how

this technology could be used as a solution to the

identification of IoT devices. Not only that, but we

managed also to send data in the same SSI ecosystem

using verifiable credentials.

There are many different options for implementing an

SSI system, for example using a blockchain as

Ethereum, but it should be written from scratch. This

means creating the proper smart contracts to manage the

DIDs, the credentials, the verifier, etc. This is truly a

complex thing and not a really good option to deal with

scalability, with ecosystem adaptation, and you are tied

to the blockchain project properties changes.

This is why Hyperledger is a perfect solution to this. It

brings a blockchain adaptation for each kind of system.

In this case, the Identity Stack is a clear example of it.

With Indy we have the optimized solution for SSI

network, and with Aries we have the solution to interact

with the network.

Extrapolating to the IoT context, being certain that your

device message is really your device who has sent it, is

a big step in improving security. Not only that, a great

number of device identification is also well managed.

Furthermore, since IoT devices could have a big amount

of interactions in a small period of time, the solution of

Aries to bring a secure channel in the connection

between agents could have a great impact on the system

efficiency.

Certainly, it will take more time to bring this to a real

production state because this is a very new technology

that is still in progress, but the potential is amazing.

In the future development, exploring the part of the

verifier would be an important point to see. The verifier

is responsible for requesting proof from the holder and

verifying that what is said in the credential is true. Here,

we are relying on the Aries connection and that we are

the ones that have done everything. But in a real

implementation you may not have this confidence with

every part of the equation, here is when the verifier

comes in.

Literature

[1] «HL_Paper_HyperledgerOverview_102721.pdf»,

https://www.hyperledger.org/wp-

content/uploads/2021/11/HL_Paper_HyperledgerOvervie

w_102721.pdf.

[2] Introduction to Hyperledger Sovereign Identity

Blockchain Solutions: Indy, Aries & Ursa.”

LearnThings.Online (blog), March 5, 2020.

https://learnthings.online/other/2020/03/05/introduction-

to-hyperledger-sovereign-identity-blockchain-solutions-

indy-aries-ursa.

[3] Hyperledger Aries Cloud Agent - Python. Python. 2019.

Reprint, Hyperledger, 2022.

https://github.com/hyperledger/aries-cloudagent-

python/blob/00d97b3e0e6f713dfab383eb2e5e14e58472a

47d/DevReadMe.md.

[4] “BCovrin Dev Indy Network.” Accessed June 6, 2022.

http://dev.bcovrin.vonx.io/.

[5] Jong, Laurence de. “Becoming a Hyperledger Aries

Developer - Getting Started.” Laurence de Jong, March

11, 2021. https://ldej.nl/post/becoming-a-hyperledger-

aries-developer-getting-started/.

https://www.hyperledger.org/wp-content/uploads/2021/11/HL_Paper_HyperledgerOverview_102721.pdf
https://www.hyperledger.org/wp-content/uploads/2021/11/HL_Paper_HyperledgerOverview_102721.pdf
https://www.hyperledger.org/wp-content/uploads/2021/11/HL_Paper_HyperledgerOverview_102721.pdf
https://learnthings.online/other/2020/03/05/introduction-to-hyperledger-sovereign-identity-blockchain-solutions-indy-aries-ursa
https://learnthings.online/other/2020/03/05/introduction-to-hyperledger-sovereign-identity-blockchain-solutions-indy-aries-ursa
https://learnthings.online/other/2020/03/05/introduction-to-hyperledger-sovereign-identity-blockchain-solutions-indy-aries-ursa
https://github.com/hyperledger/aries-cloudagent-python/blob/00d97b3e0e6f713dfab383eb2e5e14e58472a47d/DevReadMe.md
https://github.com/hyperledger/aries-cloudagent-python/blob/00d97b3e0e6f713dfab383eb2e5e14e58472a47d/DevReadMe.md
https://github.com/hyperledger/aries-cloudagent-python/blob/00d97b3e0e6f713dfab383eb2e5e14e58472a47d/DevReadMe.md
http://dev.bcovrin.vonx.io/
https://ldej.nl/post/becoming-a-hyperledger-aries-developer-getting-started/
https://ldej.nl/post/becoming-a-hyperledger-aries-developer-getting-started/

