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Abstract 

The result of this investigation is an operational model that can be used to ac-
curately identify real stock market time series. In other words, if we are presented 
with a collection of blinded time series (real-life time series and simulated Random-
Walks) then the proposed model will allow us to discriminate between both cate-
gories. In addition, it is shown that the type II error of this model quickly converges 
to zero as the time series length increases. The most remarkable feature of this model 
is its simplicity: a (bias-reduced) logistic regression with a single exogenous variable 
(the kurtosis p-value) based on the Quasi Random-Walk model that relates returns of 
equity and the entire market in times of large market returns. This model can be used 
as an objective rating benchmark for the models that are used by hedge funds to iden-
tify the stocks that should be used in a market neutral arbitrage strategy of long and 
short positions. In addition, it allows independent auditors to objectively evaluate 
the added value of statistical and technical analysis techniques that are often used in 
investment decisions. A rating mechanism that is based on the proposed benchmark, 
provides valuable information about the investment strategy even in absence of full 
disclosure. 

1 Introduction 

My main argument in this paper is that real stock market time series exhibit fundamen-
tal, testable differences when compared to Random-Walk series that are - by definition -
Fama-efficient. The discrimination between both types of time series is based on a simple 
logistic regression model with the p-value of the small sample Kurtosis as exogenous vari-
able. The discrimination quality of the model is extraordinary which makes the model an 
effective benchmark (and challenge) for any discrimination model that is used by hedge 
funds in a market neutral investment approach. 

To provide empirical evidence for this statement I follow a three step procedure. First, 
a theoretical introduction and formal definition of an alternative model for the efficient 
market hypothesis (the so-called Quasi Random-Walk model) is provided. Second, a com-
prehensive dataset is collected, and complemented with simulated Random-Walk time 

1 Integrated Faculty of Business and Economics (Lessius, dept. of Business Studies), KULeuven Asso-
ciation; patrick@wessa.net 

mailto:patrick@wessa.net


20 Patrick Wessa 

series that represent the efficient market hypothesis. The third step involves the develop-
ment of a very simple (bias reduced) logistic regression model that discriminates between 
both types of time series. It is shown that the discrimination quality is near perfect (in 
terms of type I and type II errors) when the time series under investigation has more than 
500 observations. 

All computations that are presented in this paper were performed with the R language 
(R Core Team, 2007). 

2 The model 

2.1 Introduction 

The application of the Quasi Random-Walk (QRW) model in finance was proposed by 
Airoldi (2001) based on previous research and the following observation of Cizeau et 
al. (2001): "Empirical evidence shows that for large market returns almost 90% of the 
equities have the same sign as that of the market...". 

Airoldi formulates his model for N equities Si for i = 1, 2,..., N that exhibit move-
ments d Si = ±s following a Quasi Random-Walk with "hopping probabilities" Pd S i that 
may depend on previous market returns Airoldi (2001). Since this dependence is associ-
ated with periods of turmoil we can introduce two separate states of the market: 

h= 1 : Pas, (MC"**)) = ± ( M ^ ) „ 
h = 0 : P0Si = I K ' } 

„ „ ( t - A l ) 
with M«-**) = £ E f = ! , 19 (M) I < 1. 

Obviously, if h = 0 then Pd S i behaves like an ordinary Random-Walk and does not 
depend on market movements. In this case, the probability of an increase (or a decrease) 
is exactly | and does not depend on anything else. This implies that there is no way to 
predict the outcome of future returns (h = 0 corresponds to the efficient market). As a 
consequence, the time series of equity returns is not autocorrelated when h = 0. This 
automatically leads to the conclusion (based on the central limit theorem) that equity 
returns must be normally distributed (as long as h = 0). 

On the other hand, Pd S i in (2.1) depends on the previous market movements if h = 1. 
As pointed out before, in times of large market returns there is a high probability that 
the sign of equity returns is the same as that of the market. Therefore an additional term 
that describes the dependence on past market returns is included in the equation. As a 
consequence, the time series of equity returns (for periods where h = 1) is autocorrelated 
and fat-tailed instead of normally distributed. 

The QRW model does not explain when, how, or why large market returns occur. It 
also does not describe the exact specification of the function g (.) that relates large market 
returns to the returns of equities. This however is not a problem for the development of a 
discrimination model as will be explained in the following sections. 
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2.2 Bias reduced logistic regression model 

I expand on Airoldi's idea, and introduce a simple logistic relationship f = e1+&X where 
P {h = 1) = j j j and where X represents a "discriminating statistic" that is used to model 
the states of the market. Parameter estimates 7, 7 are obtained with the Bias Reduced 
Logistic Regression method introduced by Firth (1992) which yields adequate variance 
estimates in cases of near perfect discrimination - unlike ordinary logistic regression esti-
mation (Firth (1993), and Heinze et al. (2002)). 

The key to discriminate between h = 1 and h = 0 is provided by the observation that 
the sign of large market returns can be associated with the sign of equity returns (Cizeau et 
al., 2001). Moreover, it has been well established in empirical research that large market 
returns are more likely to occur than what we could expect in efficient markets. Hence, if 
market returns exhibit fat tails then we should expect excess kurtosis (as compared to the 
normal distribution). 

In addition, the QRW model predicts that autocorrelation measures are bad predictors 
for a discrimination model. The reason is simply due to the fact that the observations of a 
QRW is a mixture of two different states where only state h =1 displays any meaningful 
autocorrelation pattern. Any attempt to measure this pattern requires the investigator to 
filter the time series to exclude the randomness in state h = 0. 

In this study we employ the following (sample) measure of kurtosis (Borghers et al., 
2006a) for the equities Si = (xi , x2, ...xn} with i = 1, 2,..., N; 

K = l (n-l)n 3(ra-2)2 

' \ (n-2)(n-3)(n-4)j^\ s J J (n - 3) (n - 4) K ) 

with S 
\ 

_ T i f and v j = V Ina;,- and r, = y 
j=2 j=2 

The kurtosis measure Ki in (2.2) can be used for large and small samples. The stan-
dard error of Ki is 

4 Un - 1)2 - 1) s2 

S K = \ I ( n - 4 ) ( n + 4 ) ( 2 ' 3 ) 

with = . 6 (""1)" . The test statistic is z = ^ <- N (0,1). s (n-3)n(n+2) SK \ ' / 

Based on the research of Van der Vorst (2005), I use the p-value of Ki as the only 
discriminating statistic X in the logistic regression. This means that (given a population 
kurtosis of Ki) the type I error P (K i = 0 | H0 : Ki = 0) is transformed into a probability 
of the state of the market P (h = 1 ) . In order to be able to make clear-cut decisions a 
threshold-based rule must be introduced to identify Quasi Random-Walk Stock Market 
Returns. 

The threshold u is chosen such that the type I error is P (P (h = 1 ) > u | h = 0) < 
0.05. Obviously, the type II error is hoped to be small enough to allow for practical 
applications. 
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2.3 Applications 

It is well known that a large proportion of hedge funds employs a so-called "market neu-
tral" investment strategy. This particular strategy is often employed because it theoreti-
cally promises to yield positive returns that are independent of the market trend. Basically, 
this is achieved by holding simultaneous long and short positions in different subsets of 
a (pre-specified) universe of stocks or other assets. In theory, such strategies allows the 
hedge fund to generate positive investment returns that are independent of the overall 
market trend. 

The underlying decision process of this type of hedge fund is based on some sort of 
discrimination model or methodology. For obvious reasons, this will be kept secret from 
the outside world, making the hedge fund resemble a black box that can only be rated 
indirectly, through the analysis of historical performance. 

Non disclosure of the actual discrimination model or methodology is problematic for 
the hedge funds and their clients. The hedge fund managers are unable to adequately 
demonstrate the qualities of their investment approach and the clients have no informa-
tion about the risk they are actually taking by using the hedge fund investment vehicle. 
Therefore there is an obvious need for an objective rating methodology that can be used 
by clients to assess and compare hedge fund investment strategies without the need to 
disclose any secret information about the underlying discrimination model. 

How can the proposed model be used to rate hedge funds that employ a "market 
neutral" investment strategy? 

At first, it is important to identify the fundamental problem that the hedge fund man-
ager is facing in the market neutral strategy. To put things simply, the manager faces the 
following list of decisions: 

• define a universe of tradable items (for instance all large-cap stock in the U.S.A.) 

• determine the investment horizon (often this ranges from 2 - 3 0 days) 

• create a discrimination model that classifies the stocks in three piles (long, short, 
and neutral) 

The fundamental (most difficult) problem is to appropriately identify the stocks that 
have to be attributed to the short, long, and neutral category. The hedge fund's portfolio 
consists of a combination of simultaneous long positions (from the long pile stocks), and 
short positions (from the short pile stocks) during the investment horizon. The hedge fund 
manager hopes to achieve an arbitrage profit that is caused by rising prices of long pile 
stocks and decreasing prices of short pile stocks. 

Unfortunately, the hedge fund manager is unable to disclose information about the 
discrimination model or methodology that is used because it would otherwise lose its 
competitive advantage. At the same time, the manager is not allowed (due to legal restric-
tions) to advertise the quality of the investment strategy. 

In second instance, one could look at the decision problem of the manager of an 
"ordinary" fund. Here, the investment strategy is subject to many restrictions that are 
imposed by law and senior management. Many funds will manage a basket of assets that 
contains cash, bonds, and a portfolio of stocks that is similar to a market index. From 
time to time, these managers will decide to change the composition of the basket or stock 
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portfolio. These changes are typically small and "cautious". Therefore the stock-picking 
problem is not as acute as in the case with hedge funds. Nevertheless, many financial 
institutions and institutional investors often base their decisions on the analysis of experts 
such as: technical analysts, econometricians, and fundamental analysts. Even though 
there is a legal requirement to be transparent to the outside world, the details of such 
analysis and resulting decisions are not readily disclosed. 

In both cases there is no full disclosure. This is problematic because clients have no 
way to assess the risk that is associated with their investments. In addition, there are 
seems to be a growing concern about the black-box nature of the hedge fund industry 
which explains why some are now openly calling for more regulation. 

If the proposed model in (2.1) turns out to be true and if the suggested exogenous 
factor proves to be effective in discriminating between the states of the market (h = 1 
and h = 0) then it is possible to create fast algorithms that make a preselection of equities 
(from the universe of all equities under consideration) that show a high logistic regression 
probability that h = 1 . This is of particular importance for hedge funds, employing the 
market-neutral investment strategy. 

Furthermore, any model that selects equity from the universe and assigns them to 
either a long or short position portfolio, must have a statistical discrimination quality that 
is at least as good as the quality of the proposed model. In other words, the power of 
the proposed logistic regression is a benchmark for any equity selection algorithm when 
feeded with simulated and true stock market time series. This allows us to create a rating 
mechanism that allows us to compare ratings from different (hedge) funds even if they 
operate in different markets or circumstances. The logic behind this is that the rating 
of the fund depends on its ability to discriminate between Random-Walk and real Stock 
Market time series relative to the discrimination quality of the benchmark model. If the 
model's performance is not too sensitive with respect to place or time then the relative 
rating promises to be fair. In any case the fund's performance should be at least as good 
as the performance of the proposed benchmark. 

3 Dataset 

I collected 66 index time series from Yahoo! Finance (2007) about various important 
markets and made them available in an on-line archive (see Figure 1 and Statistical Com-
putations at FreeStatistics.org (2007)). Each time series consists of daily closing prices 
ranging from the first trading day in 1995 (earliest date) until the last trading day of De-
cember 2006. The lengths of the time series vary due to obvious reasons. 

The data collection represents a variety of important markets including: 

• several important stock exchanges of the U.S.A. 

• U.S.A. bonds, notes, and treasury bills 

• gold and silver 

• several well-known stock exchanges in Europe and Asia 
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Figure 1: Descriptive statistics - dataset 
http://www.freestatistics.org/blog/date/2007/0ct/18/26qptxvtt3arzpz1192711431.htm 

Figure 1 shows the histograms about various statistics of the log returns of all ob-
served time series (denoted QRW). It can be observed that many series contain more than 
2500 trading days, and only a small minority of series have less than 1000 observations 
(variable "length"). The descriptive statistics about extreme values (c.q. range, mini-
mum, maximum, and interquartile range) have highly skewed distributions. In addition, 
the variation about these statistics is substantial, indicating that the sample of index series 
exhibits a variety in terms of extreme returns. 

For every time series I simulated 20 Random-Walks (denoted RW) that are - by def-
inition - known to satisfy the criteria of weak form-efficiency. Each of the 20 simulated 
series has the same mean, and standard deviation as the original time series. More pre-
cisely, the formal definition of the symmetric Random-Walk is (1 — B)lnYt = et with 
BYt = Yt-i. 

This definition contains a logarithmic transformation because it allows the simulated 
stock market prices to have the property that local volatility increases with the local mean. 
This property is realistic as can be easily verified by the use of the Standard Deviation-

http://www.freestatistics.org/blog/date/2007/0ct/18/26qptxvtt3arzpz1192711431.htm
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Mean Plot (Borghers et al., 2006b). In addition, it should be noted - as pointed out by 
Larry Weldon - that the definition of the RW is symmetric. This means that the probability 
of an increase or decrease of stock market prices is exactly 50%. This comment makes 
sense because a weak drift (c.q. a constant term) might be added to the definition to 
account for the long term trend on the stock markets. In this investigation the constant 
term is assumed to be zero because of the following reasons: 

• the drift component in a simulated RW of a maximum of 500 daily observations is 
negligible 

• if the drift component is tested in real stock market time series (c.q. QRW) it is 
almost never significant 

• if a drift component would be included in the simulation it would result in a skewed 
distribution and non-zero autocorrelation of the log returns - a property that would 
be easily detected by a discrimination model 

Figure 1 shows that the variation of the deviation of extremes (minimum or maximum) 
between the simulated and original time series converges as the extreme is closer to zero. 
The interquartile range (IQR) of simulated and observed time series however are highly 
correlated, even if the variation of the observed time series is large. In other words, the 
RW and QRW series are similar when only the mid 50% of observations are considered. 
The differences between both types of series are clearly located in the tails of the log 
return distribution. 

4 Analysis 

4.1 Introduction 
In applied research it is common to use market time series of daily returns that are rel-
atively short (between 6 months and 2 years). The underlying assumption is that only 
the recent history contains any information of interest. For this reason, we analyze time 
series that are obtained by introducing a minimum nmin and a maximum number of ob-
servations nmax. The methodological approach outlined below however, is generic and 
can be reproduced for any set of integer values with n m i n < nmax. 

The maximum number of subsets M m a x is defined by the following relationship Mmax = 
ri ( max(length(Si),length(S2),...,length(SM)) \ i ri / \ , ,1 , • , i floor -— ^ y— ^ ' — ^ " where tloor(x) returns the nearest integer value 

\  nmin J 

that is equal to or smaller than x, and length(Si) returns the number of observations of 
the time series. 

The actual subsets (for every equity i and actual length j) are defined by the following 
relationship M^ = floor ^âîhi^l^j for i = 1,2,..., N and j = nmin, nmin +1,..., nmax. 

The p-values pijq of the previously defined kurtosis measures K i j q were computed for 
the log returns r i j q of every actual subseries S i j q = { x j ( q - 1 ) + 1 , Xj(q-1)+2, . . . X j ( q - i ) + j } 

for i = 1, 2,..., N and j = nmin, nmin + 1,..., nmax and q = 1, 2,..., Mij. Due to the 
large number of subseries the computational effort is quite substantial. It is therefore 
not feasible to use many more than 20 Random-Walks per observed time series. Several 
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Figure 2: Type II errors depend on the time series length given a fixed type I error of 5%. 

experiments applied to a subset of the data with 50 Random-Walks instead of 20 yielded 
results that were very similar to those portrayed below. 

In order to be able to create a model that discriminates between (efficient) Random-
Walks and true financial time series (Quasi Random-Walk) the kurtosis p-values p'ijq were 
computed based on the subseries of 20 simulated log returns r with the same mean and 
standard error as the original time series Si. 

For every length j = nmin, nmin + 1, ..., nm a x a bias reduced logistic regression was 
computed where the binary status variable h = 0 or h = 1 is explained by the correspond-
ing p-values of the kurtosis p'ijq and pijq. For obvious reasons, the degrees of freedom of 
every regression depends on the number of subsets that can be created of each length j. 
All bias reduced logistic regressions however, have highly significant 5 parameters (t-stat 
between-15.9 and -27.5). 

4.2 Type I & II errors 

From the results presented below it can be concluded that the discrimination quality of 
the logistic regressions strongly depends on the length of the time series j = nmin, nmin + 
1,..., nmax with nmin = 100 and nmax = 500. The relationship between the type I error 
(alpha), type II error (beta), and the time series length (len) is shown in Figure 2. 

The type I error is 5% up to a rounding-off error: the exact values range from 4.5%-
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Figure 3: Type II error of kurtosis-based discrimination model in relationship with type I 
error (time series length = 100). 
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Figure 4: Type II error of kurtosis-based discrimination model in relationship with type I 
error (time series length = 300). 
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Figure 5: Type II error of kurtosis-based discrimination model in relationship with type I 
error (time series length = 500). 

5.5%. The pattern that emerges from the sequence of type I errors is caused by the varying 
lengths of the original data. The same applies to the wiggly pattern in the sequence of type 
II errors. More importantly, there is a clear (non-linear) negative relationship between the 
length of the time series ("length") and the type II error ("beta"). Also note that there is a 
very sharp reduction in type II error (from a maximum of 60.8% to 8.44%) with increasing 
length. The shortest time series in this investigation have 100 observations. For obvious 
reasons we should not expect the kurtosis to be significantly different from zero in every 
single instance. If a type I error of 5% is maintained, the statistical power is expected to 
be rather low. Figure 3 shows the relationship between the chosen type I error (alpha), 
its corresponding critical value (c.q. threshold u), and the type II error. The power of the 
statistical test is only 39.2% when a 5% type I error is selected - this is inadequate for 
practical applications. 

With increasing number of observations, the power of the test is improved. For exam-
ple, a time series length of j = 200 yields a power of 61.6%. The result for j = 300 is 
shown in Figure 4 - the power is 75.9%. The trade-off between type I & II errors is much 
smaller than before (c.q. the type II error curve is much flatter). Finally, Figure 5 shows 
the relationship between the chosen type I error, its corresponding critical value, and the 
type II error for time series with a length of 500 observations (the maximum length in this 
investigation). Now there is virtually no trade-off between type I & II error. In addition, 
the statistical power is 91.6% and could be increased further by using time series that are 
longer than 500 observations. 

The type II error is much less sensitive to changes in its critical value u than with short 
time series. Increasing the length of the time series under investigation has a tremendous 
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and favorable effect on the model's prediction quality. This is not the case for other criteria 
- such as autocorrelation measures - that are traditionally used in empirical research. For 
example, one might consider an autocorrelation-based discriminating statistic based on 
Xijq = EK=I IP (Vlnx t , Vlnx—)| for t = j (q - 1) + 1, j (q - 1) + 2 , j (q - 1) + j , 
i = 1, 2,..., N, j = nmin, nmin + 1, ..., nm a x , and q = 1, 2,..., Mij. This discriminating 
statistic yields a power between 8.8% (for j = 100) and 22.73% (for j = 500) when used 
in the logistic regression instead of the kurtosis p-value. The power slowly improves with 
increasing length j, but is not suited for any real-life application. 

This observation may - at least in part - explain why the empirical research literature 
about financial market efficiency has not come to an unambiguous final conclusion. The 
argument here is that autocorrelation-based criteria are inefficient measures of market 
inefficiency because they cannot capture the dynamical properties of the financial market 
in a parsimonious way. Traditional (c.q. non-robust) autocorrelation statistics are ill-
suited measures of inefficiency in the presence of large returns (outliers). 

On the other hand, there is strong empirical evidence - additionally supported by the 
Quasi Random Walk theory - that the kurtosis p-value is a near-perfect discriminating 
factor with type II errors that quickly converge towards zero with increasing length. It 
also explains the phenomenon that was observed in Figure 1: the deviation of extremes 
(minimum and maximum) between the simulated Random Walk and the original series 
diverge in the tails of the log return distribution. 

Linear Fit of Transformed Data 
Residual SD = 16.4408005828792 

-2.5 -2.0 -1.5 -1.0 -0.5 

QQ Plot 

transformed beta (lambda=0) length 

Figure 6: Relationship between length and Type II error (criterion: Kurtosis p-value). 
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4.3 Simple nonlinear models 

Assuming a fixed Type-I error of 5% throughout, the relationship between the Type-II 
error Bj and the length j of the time series can be described with a simple nonlinear 

model j = a1 + ßiA(B j) with j = Um n„ , umax and with A (Bj ) 
Bj-1 

"I" !)•••) "-'max Wim ±\-y-L^jj ^ 
0). Figure 6 shows that the Maximum (for A = 0) and A (Bj) = log(Bj) (when A 

Likelihood estimate for A — 0, hence the loglinear model specification is the optimal Box-
Cox transformation A(.) that linearizes the relationship between both variables of interest. 
In addition, the least squares fit is quite high (Adj .R 2 = 0.9798) and the parameters ćx1 = 
-10.657 and ß1 = -216.244 highly significant. This loglinear model is an operational 
equation that computes the time series length that is required for any desired Type-II error 
B*: j* = -10.657 - 216.244 log(B*). Suppose that the desired Type-II error B* = 15% 
then it is easy to obtain the required length j * = 400 (rounded to the nearest integer). 

Another simple nonlinear model can be used to relate the required time series length 
to the optimal threshold value u j * = a2 + ß2A(j). Figure 7 illustrates the Maximum 
Likelihood optimum for A — -0.66. Least Squares Estimation yields highly significant 
parameters and goodness of fit (Adj.R2 = 0.969). The operational equation is uj* = 
—3.50777 + 2.50951j _0 g"1 for j = n m i n , n m i n + 1, . . . ,nm a x . If we require a time series 
length of 400 observations then u400* — 0.22. 

Linear Fit of Original Data 
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Figure 7: Relationship between threshold (w) and length (criterion: Kurtosis p-value). 

The relationship displayed in Figure 6 can be recomputed for the autocorrelation-
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based discriminating statistic - the results are shown in Figure 8. It is interesting to 
compare the discrimination performance of both statistics. A simple extrapolation of 
the model displayed in Figure 8 yields a required time series length of 1998 observations 
to obtain a desired Type II error level of 15% - this is about 5 times the length that would 
be required when we would use the kurtosis p-value. 

o o CO 
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Figure 8: Relationship between length and Type II error (criterion: Autocorrelation). 

5 Conclusion 

The proposed benchmark model is remarkable because it is simple and promises to pre-
dict well across geographical regions and time. Therefore it is possible to compare a 
(hedge) fund's ability to discriminate between Random-Walk and real Stock Market time 
series (that are presented in a blinded experiment) with the benchmark model's perfor-
mance. The objective rating of the (hedge) fund is expressed as the degree by which 
it outperforms the benchmark. This definition effectively allows us to compare (hedge) 
funds from different regions, and working under different circumstances. The applica-
bility of this rating methodology is obviously limited to the cases where the fund under 
investigation is using some sort of discrimination model that helps them in some sort of 
stock-picking decisions. 

Based on the evidence presented in this paper it is my believe that such a rating mecha-
nism could be fairly easily implemented to systematically provide comparative, scientific 
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ratings about a fund's ability to make adequate (stock-picking) investment decisions with-
out the need to disclose any sensitive information to third parties. 
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