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Abstract

We study the complexity of the following cell connection and separation problems in
segment arrangements. Given a set of straight-line segments in the plane and two points
a and b in different cells of the induced arrangement:

(i) compute the minimum number of segments one needs to remove so that there is a
path connecting a to b that does not intersect any of the remaining segments;

(ii) compute the minimum number of segments one needs to remove so that the arrange-
ment induced by the remaining segments has a single cell;

(iii) compute the minimum number of segments one needs to retain so that any path
connecting a to b intersects some of the retained segments.

We show that problems (i) and (ii) are NP-hard and discuss some special, tractable
cases. Most notably, we provide a linear-time algorithm for a variant of problem (i) where
the path connecting a to b must stay inside a given polygon P with a constant number
of holes, the segments are contained in P , and the endpoints of the segments are on the
boundary of P . For problem (iii) we provide a cubic-time algorithm.

1 Introduction

In this paper we study the complexity of some natural optimization problems in segment
arrangements. Let S be a set of straight-line segments in R2, A(S) be the arrangement
induced by S, and a, b be two points not incident to any segment of S and in different cells
of A(S).

In the 2-Cells-Connection problem we want to compute a set of segments S′ ⊆ S of
minimum cardinality with the property that a and b belong to the same cell of A(S \ S′). In
other words, we want to compute an a-b path that crosses the minimum number of segments
of S counted without multiplicities. The cost of a path is the total number of segments it
crosses.
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In the All-Cells-Connection problem we want to compute a set S′ ⊆ S of minimum
cardinality such that A(S \ S′) consists of one cell only.

In the 2-Cells-Separation problem we want to compute a set S′ ⊆ S of minimum
cardinality that separates a and b, i.e., a and b belong to different cells of A(S′) – equivalently
– any a-b path intersects some segment of S′.

Apart from being interesting in their own right, the problems we consider here are also nat-
ural abstractions of problems concerning sensor networks. Each segment is surveyed (covered)
by a sensor, and the task is to find the minimum number of sensors of a given network over
some domain that must be switched on or off so that: an intruder can be detected when walk-
ing between two given points (2-Cells-Separation), or can walk freely between two given
points (2-Cells-Connection) or can reach freely any point (All-Cells-Connection).
Because of these applications, it is worth considering a variant where the segments lie inside a
given polygon P with holes and have their endpoints on the boundary of P , and the a-b path
must also stay inside P . See Fig. 1 for an example of this last scenario. We refer to these
variants as the restricted 2-Cells-Separation or 2-Cells-Connection in a polygon.

Our results. We provide an algorithm that solves 2-Cells-Separation in O(n2+nk) time,
where k is the number of pairs of segments that intersect. The same algorithm, with an extra
logarithmic factor, works for a generalization where the segments are weighted. The algorithm
itself is simple, but its correctness is not obvious. We justify its correctness by considering an
appropriate set of cycles in the intersection graph and showing that it satisfies the so-called
3-path condition [Tho90] (see also [MT01, Chapter 4]). The use of the 3-path condition for
solving 2-Cells-Separation is surprising and makes the connection to topology clear.

We show that both 2-Cells-Connection and All-Cells-Connection are NP-hard
even when the segments are in general position. The first result is given by a careful re-
duction from Max-2-Sat, which also implies APX-hardness. The second one follows from a
straightforward reduction that uses a connection to the feedback vertex set problem in the in-
tersection graph of the segments and holds even if there are no proper segment crossings. Also,
when any three segments may intersect only at a common endpoint, 2-Cells-Connection
is fixed-parameter tractable with respect to the number of proper segment crossings.

Finally, we consider the restricted problems in a polygon. The restricted 2-Cells-
Separation in a polygon is easily reduced to the general weighted version and thus can
be solved efficiently. The restricted 2-Cells-Connection in a polygon remains NP-hard
but can be solved in near-linear time for any fixed number of holes. The approach for this
latter result uses homotopies to group the segments into clusters with the property that any
cluster is either contained or disjoint from the optimal solution.

Related work. Our NP-hardness proof for 2-Cells-Connection has been carefully ex-
tended by Kirkpatrick and Tseng [Tse11], who showed that the 2-Cells-Connection re-
mains NP-hard even for unit-length segments. However, their result does not imply APX-
hardness for unit-length segments. The related problem of finding (from scratch) a set of
segments with minimum total length that forms a barrier between two specified regions in
a polygonal domain has been shown to be polynomial-time solvable by Kloder and Hutchin-
son [KH07].

The problems we consider can of course be considered for other geometric objects, most no-
tably unit disks. To this end, closely related work was done by Bereg and Kirkpatrick [BK09],
who studied the counterpart of 2-Cells-Connection in arrangements of unit disks and gave
a 3-approximation algorithm. While the complexity of 2-Cells-Connection for unit (or
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b

a

Figure 1: A polygon with holes and a minimum-cost a-b path.

arbitrary) disks is still unknown, there exist polynomial-time algorithms for restricted belt-
shaped and simple polygonal domains [KLA07]. Simultaneously and independently to our
work, Gibson et al. [GKV11] have considered the problem of separating k points in an ar-
rangements of disks and provided a polynomial-timeO(1)-approximation algorithm. Their ap-
proach is based on building a solution by considering several instances 2-Cells-Separation
on arrangements of disks, which they can solve approximately.

2 Separating two cells

In this section we provide a polynomial-time algorithm for 2-Cells-Separation. We will
actually solve a weighted version, where we have a weight function w assigning weight w(s) ≥ 0
to each segment s ∈ S. For any subset S′ ⊆ S we define its weight w(S′) as the sum of the
weights over all segments s ∈ S′. The task is to find a minimum weight subset S′ ⊆ S that
separates two given points a and b. Our time bounds will be expressed as a function of n,
the number of segments in S, and k, the number of pairs of segments in S that intersect. We
first describe the algorithm, and then justify its correctness.

We assume for simplicity of exposition that the segment ab is vertical and does not contain
any endpoint of S or any vertex of A(S).

Let γ be a polygonal path contained in
⋃
S, possibly with self-intersections. Because of

our assumption on general position, no vertex of γ is on the segment ab. We define N(γ; a, b)
as the number of oriented intersections of γ with ab: a crossing where γ goes from the left to
the right of ab contributes +1 to N(γ; a, b), while a right-to-left crossing contributes −1 to
N(γ; a, b). We have N(reverse(γ); a, b) = −N(γ; a, b).

In a graph, we will use the term cycle for a closed walk without repeated vertices. A
polygonal path is simple if it does not have self-intersections.

2.1 The algorithm

From S we construct its intersection graph G = (S, {ss′ | s∩s′ 6= ∅}). See Fig. 2(a)-(b). Note
that G has k edges. To each edge ss′ of G we attach a weight (abstract length) w(s) +w(s′).
Any distance in G will refer to these edge weights. For any walk π in G we use lenG(π)
for its length, that is, the sum of the weights on its edges counted with multiplicity, and
S(π) = V (π) for the set of segments along π. For any spanning tree T in G and any edge
e ∈ E(G) \ E(T ), let τ(T, e) denote the cycle obtained by concatenating the edge e with
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Figure 2: (a) A set of segments S. (b) The corresponding intersection graph G with some
of its edge-weights. (c) The polygonal path γ(π) for the walk π = s2s1s4s6s7s5s4. (d) The
closed polygonal path γ(π) for the closed walk π = s2s1s4s6s7s2.

the path in T connecting both endpoints of e. (The actual orientation of τ(T, e) will not be
relevant.)

Consider any walk π = s0s1 · · · st in G. This walk defines a polygonal path, denoted
by γ(π), which has vertices x0, x1, . . . , xt−1, where xj = sj ∩ sj+1 for j = 0, . . . , t − 1. If
π is a closed walk with s0 = st, then we take γ(π) to be a closed polygonal path whose
last edge is xt−1x0, which is contained in s0. See Fig. 2(c)-(d). The polygonal path γ(π) is
contained in

⋃
S(π). Note that even if π is a cycle the closed polygonal path γ(π) may have

self-intersections.
For any segment r ∈ S, let Tr be a shortest-path tree in G from r; if there are several

we fix one of them. We will mainly use polygonal paths arising from cycles τ(Tr, e), where
e ∈ E(G) \ E(Tr). Thus we introduce the notation γ(r, e) = γ(τ(Tr, e)). (Again, the actual
orientation of γ(r, e) will not be relevant.)

The algorithm is the following. We compute the set

P = {(r, e) ∈ S × E(G) | e ∈ E(G) \ E(Tr) and N(γ(r, e)); a, b) 6= 0},
choose

(r∗, e∗) = arg min
(r,e)∈P

lenG(τ(Tr, e)),

and return S(τ(Tr∗ , e
∗)). This finishes the description of the algorithm. For analyzing it, it

will be convenient to use the notation τ∗ = τ(Tr∗ , e
∗) and γ∗ for the polygonal path γ(τ∗).

The algorithm, as described above, can be implemented in O(n3k) time in a straightfor-
ward way. We can speed up the procedure to obtain the following result.

Lemma 1. The pair (r∗, e∗) can be computed in O(nk + n2 log n) time.

Proof. The graph G can be constructed explicitly in O(n2) time by checking each pair of
segments, whether they cross or not. Recall that G has k edges.

For any segment r ∈ S, let us define

Er = {e ∈ E(G) \ E(Tr) | (r, e) ∈ P}
= {e ∈ E(G) | e ∈ E(G) \ E(Tr) and N(γ(r, e)); a, b) 6= 0}.
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Figure 3: (a) Tree Ts1 for the scenario of Fig. 2 assuming unit weights in the segments. In this
case Cs1(s8) = s2 and Cs1(s6) = s4. (b) The polygonal paths γ(Ts1 [s8]) and γ(Ts1 [s6]). (c) The
polygonal paths γ(ps1(s8)s8s6ps1(s6)) = γ(s7s8s6s4) and γ(Cs1(s6)s1Cs1(s8)) = γ(s4s1s2)
that are used to compute N(γ(s1, s6s8); a, b) in Lemma 1.

Note that
P =

⋃
r∈S
{r} × Er,

and therefore
min

(r,e)∈P
lenG(τ(Tr, e)) = min

r∈S
min
e∈Er

lenG(τ(Tr, e)).

Thus, (r∗, e∗) can be computed by finding, for each r ∈ S, the value

min
e∈Er

lenG(τ(Tr, e)).

We shall see that, for each fixed r ∈ S, such value can be computed in O(k + n log n) time.
It then follows that (r∗, e∗) can be found in |S| × O(k + n log n) = O(nk + n2 log n) time.

For the rest of the proof, let us fix a segment r ∈ S. Computing Tr takes O(|E(G)| +
|V (G)| log |V (G)|) = O(k + n log n) time. For any segment s ∈ S, s 6= r, let Tr[s] denote the
path in Tr from r to s. We define Nr(s) = N(γ(Tr[s]); a, b) and define Cr(s) to be the child
of r in the path Tr[s]. See Fig. 3(a)–(b). The values Nr(s), s ∈ S, can be computed in O(n)
time using a BFS traversal of Tr: if pr(s) is the parent of s in Tr, we can compute Nr(s) from
Nr(pr(s)) in O(1) time using

Nr(s) = Nr(pr(s)) +N(γ(pr(pr(s))pr(s)s); a, b).

Similarly Cr(s), s ∈ S, can be computed in O(n) time: we assign Cr(s
′) = s′ for all children

s′ of r and use that Cr(s) = Cr(pr(s)) for any s not adjacent to r.
For ss′ ∈ E(G) \ E(Tr) we have that N(γ(r, ss′) : a, b) is equal to

Nr(s) +N(γ(pr(s)ss
′pr(s′)); a, b)−Nr(r, s

′) +N(γ(Cr(s
′)rCr(s)); a, b).

See Fig. 3(b)–(c). (The negative sign comes from the reversal of Tr[s].) Therefore, each
N(γ(r, ss′); a, b) can be computed in O(1) time from the values Nr(s), Nr(s

′), Cr(s′), Cr(s).
It follows that Er can be constructed in O(|E(G)|) = O(k) time.
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s

(a) (b)

s′

γ(α1) γ(α2)
γ(α3)

a1 a2 a3

b3b2b1

s

s′

γ(π2)

(c)

s

s′

β1

p

p′

β3

Figure 4: (a) Scenario in the proof of Lemma 3. (b) The polygonal path γ(π2). (c) The
polygonal paths β1 and β3. (The bottom of β1 lies on s′. We draw it outside because of the
common part with β3.)

The length of any cycle τ(Tr, e) can be computed inO(1) time per cycle in a similar fashion.
For each vertex s, we store at s its distance dG(r, s) from the root r. We also construct a data
structure for finding lowest common ancestor (lca) of two vertices in constant time. Such
data structure can be constructed in O(n) time [BFC04, HT84]. The length of a cycle can
then be recovered using

lenG(τ(Tr, ss
′)) = dG(r, s) + w(s) + w(s′) + dG(r, s′)− 2dG(r, lca(s, s′)).

Equipped with this, we can in O(k) time compute

min
e∈Er

lenG(τ(Tr, e)).

The following special case will be also relevant later on.

Lemma 2. If the weights of the segments S are 0 or 1, then the pair (r∗, e∗) can be computed
in O(nk + n2) time.

Proof. In this case, a shortest path tree Tr can be computed in O(|E(G)|+|V (G)|) = O(k+n)
time because the edge weights of G are 0, 1, or 2. Using the approach described in the proof
of Lemma 1 we spend O(k + n) per root r ∈ S, and thus spend O(nk + n2) in total.

2.2 Correctness

Consider the set of closed walks

Π = {π | π a closed walk in G with N(γ(π); a, b) 6= 0}.

We have the following property, known as 3-path condition.

Lemma 3. Let α0, α1, α2 be 3 walks in G from s to s′. For i = 0, 1, 2, let πi be the closed
walk obtained by concatenating αi−1 and the reverse of αi+1, where indices are modulo 3. If
one of the walks π0, π1, π2 is in Π, then at least two of them are in Π.

6

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
15

2,
 J

u
n

e 
23

, 2
01

1



Proof. (This result is a consequence of the group structure for relative Z2-homology. We
provide an elementary proof that avoids using homology.) For i = 0, 1, 2, let ai be the
starting vertex of the polygonal path γ(αi) and let bi be the ending vertex. The polygonal
paths γ(α0), γ(α1), γ(α2) start on s and finish on s′. However, they may have different
endpoints. See Fig. 4. To handle this, we choose a point p on s and a point p′ on s′, and
define βi to be the polygonal path obtained by the concatenation of pai, γ(αi), and bip

′. A
simple but tedious calculation shows that, using indices modulo 3,

N(γ(πi); a, b) = N(βi−1; a, b)−N(βi+1; a, b).

Indeed, since
N(ai+1ai−1; a, b) = N(pai−1; a, b) +N(ai+1p; a, b)

and
N(bi−1bi+1; a, b) = N(p′bi+1; a, b) +N(bi−1p′; a, b),

we have

N(γ(πi); a, b) = N(γ(αi−1); a, b) +N(bi−1bi+1; a, b)

+N(reverse(γ(αi+1)); a, b) +N(ai+1ai−1; a, b)

= N(γ(αi−1); a, b) +N(p′bi+1; a, b) +N(bi−1p′; a, b)

−N(γ(αi+1); a, b) +N(pai−1; a, b) +N(ai+1p; a, b)

= N(pai−1; a, b) +N(γ(αi−1); a, b) +N(bi−1p′; a, b)

−N(pai+1; a, b)−N(γ(αi+1); a, b)−N(bi+1p
′; a, b)

= N(βi−1; a, b)−N(βi+1; a, b).

It follows that, using indices modulo 3,

2∑
i=0

N(γ(πi); a, b) =

2∑
i=0

(N(βi−1; a, b)−N(βi+1; a, b)) = 0.

Therefore, if N(γ(πi); a, b) 6= 0 for some i, at least another cycle πj , j 6= i, must have
N(γ(πj); a, b) 6= 0.

When a family of closed walks satisfies the 3-path condition, there is a general method to
find a shortest element in the family. The method is based on considering fundamental-cycles
defined by shortest-path trees, which is precisely what our algorithm is doing specialized for
the family Π. We thus obtain:

Lemma 4. The cycle τ∗ is a shortest element of Π.

Proof. It is a consequence of the 3-path condition, that a shortest cycle in

{τ(Tr, e) | r ∈ S, e ∈ E(G) \ E(Tr), τ(Tr, e) ∈ Π} = {τ(Tr, e) | (r, e) ∈ P}

is a shortest cycle in Π. That is, the search for a shortest element in Π can be restricted to cy-
cles of the type τ(Tr, e). See Thomassen [Tho90] or the book by Mohar and Thomassen [MT01,
Chapter 4] for the so-called fundamental cycle method. (The method is described for un-
weighted graphs but it also works for weighted graphs. See, for example, Cabello et al. [CdVL10]
for the generalized case of weighted, directed graphs.)
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γ(τ)
si

sj

γ(τ1)
si

sj

s1 s1

γ(τ2)

Figure 5: The polygonal paths defined by the cycles τ1 and τ2 from the cycle τ in Lemma 6.

The next step in our argument is showing that γ∗ is simple (without self-intersections)
and separates a and b. We will use the following characterization of which simple, closed
polygonal paths separate a and b.

Lemma 5. For any simple, closed polygonal path γ we have |N(γ; a, b)| ≤ 1. Furthermore, γ
separates a and b if and only if N(γ; a, b) = ±1.

Proof. Since γ is simple, it defines an interior and an exterior by the Jordan curve theorem.
The crossings between γ and ab, as we walk along ab, alternate between left-to-right and right-
to-left crossings because ab has pieces alternating in the interior and exterior of γ. Therefore
|N(γ; a, b)| ≤ 1.

Assume that γ separates a and b, so that one is in the interior of γ and the other in the
exterior. Then the segment ab crosses γ an odd number of times, and it must be |N(γ; a, b)| =
1. Conversely, if |N(γ; a, b)| = 1, then the number of intersections between γ and ab is odd,
which implies that one of the points a and b is in the interior of γ and the other in the
exterior.

We can now prove that γ∗ is simple using a standard uncrossing argument. Indeed, a
self-crossing of γ∗ would imply that we can find a strictly shorter element in Π, which would
contradict the property stated in Lemma 4.

Lemma 6. The polygonal path γ∗ is simple and separates a and b.

Proof. Assume, for the sake of contradiction, that γ∗ is not simple. It is then possible to show
the existence of two cycles τ1 and τ2 in G such that lenG(τ1) < lenG(τ∗), lenG(τ2) < lenG(τ∗),
and N(γ∗; a, b) = N(γ(τ1); a, b) +N(γ(τ2); a, b), as follows.

Let s0s1s2 . . . st, with st = s0, be the cycle τ∗. Start walking along γ∗ from s0 ∩ s1, until
we find the first self-intersection, which is defined by segments si and sj , with i < j. Note
that 2 ≤ j − i because si and si+1 cannot define a self-intersection of γ∗. Consider the cycles
τ1 = sisi+1 . . . sjsi and τ2 = s0 . . . sisj . . . st. See Fig. 5. Note that

N(γ∗; a, b) = N(γ(τ1); a, b) +N(γ(τ2); a, b)

because the polygonal paths γ(τ1) and γ(τ2) form a disjoint partition of γ∗, with orientations
preserved. Moreover, because j − i ≥ 2 and τ∗ is a cycle, we have lenG(τ1) < lenG(τ∗) and
lenG(τ2) < lenG(τ∗). This finishes the proof of existence of τ1 and τ2.
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Because τ∗ ∈ Π we have

0 6= N(γ∗; a, b) = N(γ(τ1); a, b) +N(γ(τ2); a, b).

Therefore, N(γ(τ ′); a, b) 6= 0 for some τ ′ ∈ {τ1, τ2}. Since lenG(τ ′) < lenG(τ∗) andN(γ(τ ′); a, b)
6= 0, then τ ′ ∈ Π. This contradicts the property that τ∗ is a shortest cycle of Π (Lemma 4).
We conclude that γ∗ must be simple.

Since γ∗ is simple, N(γ∗) ∈ {−1, 0,+1} by Lemma 5. Since τ∗ ∈ Π, then N(γ∗) 6= 0,
which implies N(γ∗) = ±1. It then follows from Lemma 5 that γ∗ separates a and b.

We can now prove the main theorem.

Theorem 7. The weighted version of 2-Cells-Separation can be solved in O(nk+n2 log n)
time, where n is the number of input segments and k is the number of pairs of segments that
intersect.

Proof. We use the algorithm described in Section 2.1. The algorithm returns a feasible solu-
tion because of Lemma 6: the cycle γ∗ separates a and b and is contained in

⋃
S(τ(Tr∗ , e

∗)),
therefore, the set S(τ(Tr∗ , e

∗) returned by the algorithm separates a and b.
To see the optimality of the weight of S(τ∗), consider an optimal solution S∗ ⊆ S. Assume

that we run the algorithm on S∗. The algorithm would compute a cycle τ∗ in the intersection
graph of the segments S∗ and return S(τ∗) ⊆ S∗. By Lemma 6, the polygonal path γ(τ∗) is
simple and separates a and b. Lemma 5 implies that N(γ(τ∗); a, b) = ±1 6= 0, and therefore
τ∗ ∈ Π (here Π refers to the original problem, rather than the subproblem defined by input
S∗).

For any cycle π of G we have lenG(π) = 2|S(π)| because of the choice of the edge-weights
in G. Since τ∗ is a shortest cycle in Π by Lemma 4, we have

w(S(τ∗)) = 1
2 lenG(τ∗) ≤ 1

2 lenG(τ∗) = w(S(τ∗)) ≤ w(S∗).

It follows that S(τ∗) is a feasible solution whose weight is not larger than w(S∗), and therefore
it is optimal. The running time follows from Lemma 1.

Corollary 8. The weighted version of 2-Cells-Separation in which the segments have
weights 0 or 1 can be solved in O(n2 + nk) time, where n is the number of input segments
and k is the number of pairs of segments that intersect.

Proof. In the proof of the previous theorem we use Lemma 2 instead of Lemma 1.

In the case where the segments of S are unweighted, the points a, b are inside a polygon
P with holes, and the a-b path must be contained in the interior of P , the problem can be
easily solved by assigning weight 0 to the edges E(P ) of the polygon P and weight 1 to the
segments in S. We can then apply Corollary 8 on S ∪ E(P ), and obtain the following.

Corollary 9. The restricted 2-Cells-Separation problem in a polygon with holes can be
solved in O(n2 + nk) time, where n is the total size of the input and k is the number of pairs
of segments in S that intersect.
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T F

x1

x2

xn

(x̄n ∨ x̄1)

(x̄n ∨ x2)

(x̄1 ∨ x̄2)

(x2 ∨ xn)

a

b

...

(x̄n ∨ x̄1)

(x̄n ∨ x2)

(x̄1 ∨ x̄2)

(x2 ∨ xn)
...

L1 R1

L2 R2

Ln Rn

Figure 6: Idea of the construction with curved segments.

3 Connecting two cells

We show that 2-Cells-Connection is NP-hard and APX-hard by a reduction from Exact-
Max-2-Sat, a well studied NP-complete and APX-complete problem(c.f. [H̊as01]): Given a
propositional CNF formula Φ with m clauses on n variables and exactly two variables per
clause, decide whether there exists a truth assignment that satisfies at least k clauses, for a
given k ∈ N, k ≤ m. Let x1, . . . , xn be the variables of Φ, `i be the number of appearances
of variable xi in Φ, and ` =

∑
i `i; since each clause contains exactly 2 variables, ` = 2m.

The maximum number of satisfiable clauses is denoted by opt(Φ). Using Φ we construct an
instance consisting of a set of segments S = S(Φ) and two points a = a(Φ) and b = b(Φ) as
follows.

Abusing the terminology slightly, the term segment will refer to a set of identical single
segments stacked on top of each other. The cardinality of the set is the weight of the segment.
Either all or none of the single segments in the set can be crossed by a path. There are two
different types of segments, τ1, and τ∞, according to their weight. Segments of type τ1
have weight 1 (light or single segments), while segments of type τ∞ have weight 20m (heavy
segments). The weight of heavy segments is chosen so that they are never crossed by an
optimal a-b path.

We first provide an informal, high-level description of the construction that uses curved
segments. Later on, each curved segment will by replaced by a collection of straight-line
segments in an appropriate manner. See Fig. 6. We have a rectangle R∞ made of heavy
segments, with point a at a lower corner and b at an upper corner. For each variable xi we
add a small vertical segment of type τ∞ in the lower half of R∞. From the segment we place `i
horizontal light segments, denoted by Ri, going to the right and `i horizontal light segments,
denoted by Li, going to the left until they reach the outside of R∞. Roughly speaking, (things
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(b)

tunnel
boundary

obstacle

Pi
Ni

xi

x̄i
xi

a

xi

main
corridor

tunnel
boundary (τ∞)

group of `i
single segments

b

end
corridor

b′

C2

C3
C6

C7

C4 C5

P r
i

P l
i

N l
i

N r
i

(a)

group of `i
single segments x̄i

single
segment

Figure 7: (a) Tunnel and variable chain. Each gray trapezoid represents a piece with `i
parallel segments. (b) Part of a chain piece close to the tunnel.

are slightly more complicated) an optimal a-b path will have to choose for each xi whether it
crosses all segments in Li, encoding the assignment xi = T, or all segments in Ri, encoding
the assignment xi = F. Consider a clause like x2 ∨ xn, where both literals are positive. We
prolong one of the segments of L2 and one of the segments of Ln with a curved segment so
that they cross again inside R∞ (upper half) in such a way that an a-b path inside R∞ must
cross one of the prolongations, and one is enough; see Fig. 6, where one of the prolongations
passes below R∞. A clause like x̄n ∨ x2 is represented using prolongations of one segment
from L2 and one segment of Rn. The other types of clauses are symmetric. For each clause
we always prolong different segments; since Li and Ri have `i segments, there is always some
segment that can be prolonged. It will then be possible to argue that the optimal a-b path
has cost ` + (m − opt(Φ)). We do not provide a careful argument of this here since we will
need it later for a most complicated scenario. This finishes the informal description of the
idea.

We now describe in detail the construction with straight-line segments. First, we construct
a polygon, called the tunnel, with heavy boundary segments of type τ∞; see Fig. 7(a). The
tunnel has a ‘zig-zag’ shape and can be seen as having 8 corridors, C1, . . . , C8. It starts with
C1, the main corridor (at the center of the figure), which contains point a, then it turns left
to C2, then right, etc., gradually turning around to C7 and then to the end corridor C8 (at
the top). The latter contains point b. To facilitate the discussion, we place a point b′ in the
tunnel where the transition from C7 to the end corridor occurs. The tunnel has a total weight
of 21 · 20m = O(m). The rest of the construction will force any a-b path of some particular
cost (to be given shortly) to stay always in the interior of the tunnel.
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Each variable xi of Φ is represented by a collection of 16 pieces, which form a chain-like
structure. Each piece is a group of `i nearly-parallel single segments whose ends are either
outside the tunnel or lie on ‘short’ heavy segments of type τ∞ in the interior of the tunnel,
referred to as obstacles. For each variable, there is one obstacle in each of the corridors C1,
C2, C7 and there are two obstacles in each of the corridors C3, C4, C5, and C6. See Fig. 7(a),
where we represent each piece by a light gray trapezoid and each obstacle by a bold, short
segment. Pieces always contain a part outside the tunnel. The exact description of the
structure is cumbersome; we refer the reader to the figures. The obstacle in C2 contains the
extremes of four pieces: two pieces, called Pi, go to the obstacle in the main corridor, one
goes to an obstacle in C3, and the fourth piece, which we call N l

i goes outside the tunnel.
Symmetrically, the obstacle in C7 contains the extremes of four pieces: two pieces, called Ni,
go to the main corridor, one goes to the corridor C6, and one, which we call P ri goes outside
the tunnel. We add pieces connecting the obstacles in C3 and C4, the obstacles in C4 and
C5, and the obstacles in C5 and C6. From the obstacle in C3 that currently has one piece we
add another piece, which we call P li and whose other extreme is outside the tunnel. From the
obstacle in C6 that currently has one piece we add another piece, which we call N r

i , whose
other extreme is outside the tunnel.

The obstacles and the pieces of all variables should satisfy some conditions: obstacles
should be disjoint, pieces can touch only the obstacles at their extremes, and pieces may cross
only outside the tunnel. See Fig. 8. Some of the single segments of P ri , P li , N

r
i , N l

i will be
prolonged and rotated slightly to encode the clauses. For this, we will need that the line
supporting a segment from P ri ∪ N r

i intersects inside the end corridor the line supporting a
segment from P lj ∪ N l

j . This can be achieved by stretching the end corridor sufficiently and
placing the obstacles of C2 and C7 close to the tunnel boundary; see Fig. 7(b).

For each clause of Φ we prolong two segments of P ri ∪ P li ∪N r
i ∪N l

i as follows; see Fig. 8
for an example of the overall construction, where prolongations are shown by dashed lines.
Each segment corresponds to some literal xi or x̄i in the clause: in the first case the segment
comes from either P ri or P li , while in the second one it comes from either N r

i or N l
i . For the

construction, these choices for each clause can be made arbitrarily, provided that one segment
intersects the tunnel from the left side and the other one from the right. These segments are
prolonged until their intersection point inside the end corridor. For each clause, two different
segments are prolonged. Since the pieces corresponding to variable xi have `i segments, there
is always some segment available. Segments corresponding to different clauses may intersect
only outside the tunnel; this is ensured by rotating the segments slightly around the endpoint
lying in the obstacle. In this way, the end corridor is obstructed by m pairs of intersecting
segments such that any path from the intermediate point b′ to point b staying inside the
tunnel must intersect at least one segment from each pair.

The following lemma establishes the correctness of the reduction.

Lemma 10. There is an a-b path of cost at most 8` + k, where 1 ≤ k ≤ m, if and only if
there is a truth assignment satisfying at least (m− k) of the clauses.

Proof. We denote by Si the set of segments in the pieces corresponding to the variable xi.
We denote by ST

i the segments in the pieces of Pi, the piece connecting C7 to C6, the piece
P ri , and so on in an alternating manner along the chain structure. Note that ST

i contains Pi,
P li and P ri . We denote by SF

i the segments Si \ ST
i . Note that SF

i contains Ni, N
l
i and N r

i .
See Fig. 9. Each of the sets ST

i and SF
i contains 8`i segments. Inside the tunnel there is an
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T F
x1

x2

xn

(x̄n ∨ x̄1)

(x̄n ∨ x2)

(x̄1 ∨ x̄2)

(x2 ∨ xn)

x̄2

x̄1

x2

a

b

x̄n
xn

x2

x̄1

b′

xn
x1

x̄n

Figure 8: Example of overall construction.

a-b′ path disjoint from ST
i and there is another a-b′ path disjoint from SF

i . We also denote
by Tj the two segments used for clause Cj of Φ.

Consider a truth assignment {xi = bi}, where each bi ∈ {T,F}, satisfying at least (m− k)
clauses. We construct a subset of segments S′ where we include the set Sbii , for each variable
xi, and a segment of Tj , for each clause Cj that is not satisfied by the truth assignment.

Since |Sbii | = 8`i, the set S′ contains at most 8` + k segments. The removal of S′ leaves the
points a and b′ in the same cell of the arrangement. Equivalently, there is an a-b′ path inside
the tunnel that crosses only segments from S′. If a clause Cj of Φ is satisfied by the truth

assignment, then at least one of the segments in Tj is included in Sbii ⊂ S′. If a clause Cj is
not satisfied, then one of the segments Tj is included in S′ by construction. Thus, for each
clause Cj we have Tj ∩ S′ 6= ∅. It follows that b′ and b are in the same cell after the removal
of S′.

Conversely, note first that any a-b path with cost at most 8` + k ≤ 16m + m = 17m
cannot intersect the tunnel boundary or an obstacle because segments of type τ∞ have weight
20m. Let S′ be the set of segments crossed by the path. If Pi ⊂ S′, then we define bi = T;
otherwise, we define bi = F. Note that when Pi 6⊂ S′, then Ni ⊂ S′ because the a-b path is
inside the tunnel. (However it may be Ni∪Pi ⊂ S′, so the assignment of bi is not symmetric.)
We next argue that the truth assignment {xi = bi} satisfies at least (m− k) clauses.
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xi

x̄i

a

b

b′

C2N l
i

N r
i

x̄i

segments after the removal of ST
i

xi

xi

a

xi

b

b′

P r
i

P l
i

segments after the removal of SF
i

Figure 9: Removal of ST
i (left) and SF

i (right).

Consider the case when Pi ⊂ S′. Inspection shows that

|S′ ∩ Si| ≥ 8`i + |S′ ∩ (N l
i ∪N r

i )|.

Indeed, after the removal of Pi ∪ N l
i ∪ N r

i any path from a to b′ must still cross at least 6
pieces. Similarly, inspection shows that when Ni ⊂ S′ we have

|S′ ∩ Si| ≥ 8`i + |S′ ∩ (P li ∪ P ri )|.

Let Ai = N l
i ∪N r

i if bi = T and Ai = P li ∪P ri if bi = F. The previous cases can be summarized
as

|S′ ∩ Si| ≥ 8`i + |S′ ∩Ai|.
We further define

Y =
⋃
i

(S′ ∩Ai).

For each clause Cj we have S′∩Tj 6= ∅ by construction, as otherwise a and b cannot be in the
same cell of S \ S′. If Cj is not satisfied by the truth assignment {xi = bi}, then it must be
(S′ ∩Tj) ⊂ S′ ∩Ak for some variable xk in Cj . This means that Tj ∩Y 6= ∅. Since the sets Tj
are disjoint by construction, the number of unsatisfied clauses is bounded by |Y |. Using that

8`+ k = |S′| =
n∑
i=1

|S′ ∩ Si| ≥
n∑
i=1

(8`i + |S′ ∩Ai|) = 8`+
n∑
i=1

|S′ ∩Ai|,

we obtain
n∑
i=1

|S′ ∩Ai| ≤ k.

Therefore, the total number of clauses with value F is bounded by

|Y | =
∑
i

|S′ ∩Ai| ≤ k.
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The construction can be easily modified by replacing every heavy segment with a set
of 20m distinct parallel single segments such that every single segment in S that originally
intersected the heavy segment now intersects all the segments in the new set and such that
no three segments have a point in common. We have the following:

Theorem 11. 2-Cells-Connection is NP-hard and APX-hard even when no three seg-
ments intersect at a point.

Proof. NP-hardness follows form Lemma 10 and the fact that the reduction produces O(nm)
segments, whose coordinates can be bounded by a polynomial in (n + m). APX-hardness
follows from the fact that the reduction is approximation-preserving, as we now show.

First, since there is always an assignment that satisfies at least 3m/4 clauses, we have that
m ≤ (4/3)opt(Φ). Recall that an optimal a-b path costs 8`+ (m− opt(Φ)), where ` = 2m. A
polynomial-time c-approximation algorithm (c > 1) for the problem would give a path that
costs at most

c(8`+ (m− opt(Φ))) = c(17m+ opt(Φ))

= 17m− c opt(Φ) + 17(c− 1)m

≤ 17m− c opt(Φ) + 17(c− 1)(4/3)opt(Φ)

= 17m− opt(Φ)(68/3− (65/3)c)

= 16m+
[
m− opt(Φ)(68/3− 65c/3)

]
and, by Lemma 10, a truth assignment that satisfies at least opt(Φ)(68/3 − 65c/3) clauses.
However, Exact-Max-2-SAT cannot be approximated above 21/22 [H̊as01], which implies
that c must be larger than (68/65 − 63/(22 · 65)) ≈ 1.002097 . . . (A slightly better inap-
proximability result can be obtained using the better bounds that rely on the unique games
conjecture [KKMO07].)

We can reduce 2-Cells-Connection to the minimum color path problem (MCP): Given
a graph G with colored (or labeled) edges and two of its vertices, find a path between the
vertices that uses the minimum possible number of colors. We color the edges of the dual
graph G ofA(S) as follows: two edges of G get the same color if and only if their corresponding
edges in A(S) lie on the same segment of S. Then, finding an a-b path of cost k in A(S)
amounts to finding a k-color path in G between the two cells which a, b lie in.

However, MCP is NP-hard [BLWZ05] and W[1]-hard [FGI10] (with respect to solution
size) even for planar graphs, it has a polynomial-time O(

√
n)-approximation algorithm and

is non-approximable within any polylogarithmic factor [HMS07].

4 Tractable cases for connecting two cells

We now describe two special cases where 2-Cells-Connection is tractable. First, we con-
sider the case where the input segments have few crossings, in a sense that is specified below.
Then, we return to the special case where we have a polygon and provide an algorithm that
takes polynomial time when the number of holes in the polygon is constant.
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1 1

2

(b)

1

1

2 2

(c)

1 1

2

1

1
1

3 4

5

(d)

Figure 10: Examples of intersections in A(S) and colored edges in G.

4.1 Segments crossings.

Without loss of generality, we assume that every segment in S intersects at least two other
segments and that both endpoints of a segment are intersection points. We say that two
segments cross if and only if they intersect at a point that is interior to both segments (a
segment crossing).

Consider the colored dual graph G of A(S) as defined after Theorem 11. A face of G
(except the outer one) corresponds to a point of intersection of some r ≥ 2 segments and
has r colors and, depending on the type of intersection, from r to 2r edges. For example, for
r = 2 we can get two multiple edges, a triangle, or a quadrilateral, with two distinct colors.
See Fig. 10(a)-(c), where the colors are given as labels.

When any three segments may intersect only at a common endpoint and no two segments
cross, G can only have multiple edges (possible all with the same color), bi-chromatic triangles,
and arbitrary large faces where all edges have different colors; See Fig. 10(d) for an example.
In this case, since two segments can intersect only at one point, each color induces a connected
subgraph of G, in fact a tree (where all but one multiple edges with the same color can be
deleted) for there can be no monochromatic cycle in G. Then, 2-Cells-Connection reduces
to a simple shortest path computation between the cells containing a and b in the (uncolored)
graph resulting from G by completing each monochromatic tree into a clique. By contrast,
note that All-Cells-Connection is still NP-hard for this special case; see Section 5.

Generalizing this, if we allow k segment crossings, we can easily reduce the problem to
2O(k) shortest path problems as follows. Let C ⊆ S be the set of the (at most 2k) segments
participating in these crossings. For a fixed subset C ′ of C, we first contract every edge of
G corresponding to a segment in C ′, effectively putting all segments of C ′ into the solution.
Then, we delete every edge corresponding to a segment in C \ C ′ that still participates in a
crossing, i.e., we exclude all crossing segments of C \ C ′ from the solution. In the resulting
(possibly disconnected) graph G′, each of the remaining colors induces again a monochromatic
subtree, thus we can compute a shortest path as before and add C ′ to the solution. Finally,
we return a minimum size solution set over all 2O(k) possible subsets C ′. Thus, we have just
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zβ
zβ′

zβ

zβ′

a a

Figure 11: Some of the curves γs arising from Fig. 1, after a small perturbation, and the
resulting clusters. In the left case, β and β′ are boundaries of holes, while in the right case
β′ is the exterior boundary.

proved the following:

Theorem 12. 2-Cells-Connection is fixed-parameter tractable with respect to the number
of segment crossings if any three segments may intersect only at a common endpoint.

4.2 Polygon with holes.

Let P be a polygon with h holes and S be a set of segments lying inside P with their endpoints
on its boundary; see Fig. 1. We use n as a bound for the number of vertices of P and segments
in S. We consider the restricted 2-Cells-Connection problem where the a-b path may not
cross the boundary of P . This version is also NP-hard by a simple reduction from the general
one: place a large polygon enclosing all the segments and add a hole at the endpoint of each
segment. We assume for simplicity that a and b are in the interior of P .

A boundary component of P may be the exterior boundary or the boundary of a hole.
For each boundary component β of P , let Cβ be the connected component of R2 \P that has
β as boundary, and let zβ be an arbitrary, fixed point in the interior of Cβ. If β is the exterior
boundary, then Cβ is unbounded.

Let β and β′ be two boundary components of P ; it may be that β = β′. Let Sβ,β′ be the
subset of segments from S with one endpoint in β and another endpoint in β′. We partition
Sβ,β′ into clusters, as follows. Consider the set Xβ,β′ obtained from P \ {a, b} by adding Cβ
and Cβ′ . Note that a and b are holes in Xβ,β′ . For each segment s = pq ∈ Sβ,β′ , with p ∈ β
and q ∈ β′, we define the following curve γs: follow a shortest path in Cβ from zβ to p, then
follow pq, and then follow a shortest path in Cβ′ from q to zβ′ . See Fig. 11. We say that
segments s and s′ from Sβ,β′ are a-b equivalent if γs and γs′ are homotopic paths in Xβ,β′ .
Since being homotopic is an equivalence relation (reflexive, symmetric, transitive), being a-b
equivalent is also an equivalence relation in Sβ,β′ . Therefore, we can make equivalence classes,
which we call clusters. The following two results provide key properties of the clusters.

Lemma 13. Sβ,β′ is partitioned into O(h2) clusters. Such partition can be computed in
O(hn log n) time.

Proof. Let Γβ,β′ be the set of curves γs over all segments s ∈ Sβ,β′ . Note that two curves γs
and γs′ of Γβ,β′ may cross only once, and they do so along s and s′. With a small perturbation
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zβ
zβ′

zβ

zβ′

a a

Figure 12: The curves Σ in solid and Γβ,β′ in dashed style for the example of Fig. 11, after a
small perturbation.

of the curves in Γβ,β′ we may assume that γs and γs′ are either disjoint or cross at s ∩ s′.
(We do not actually use that γs contains shortest paths inside Cβ and Cβ′ besides for this
property of non-crossing curves inside Cβ and Cβ′ .)

We now describe a simple criteria using crossing sequences to decide when two segments
of Sβ,β′ are a-b equivalent. We take a set Σ of non-crossing paths in Xβ,β′ that have the
following property: cutting Xβ,β′ along the curves of σ removes all holes. Such set Σ has a
tree-like structure and can be constructed as follows. For each boundary α of P , distinct from
β and β′, we add to Σ the shortest path in P between a and α. We add to Σ the shortest
path in P between a and b. Finally, if β or β′ is the exterior boundary of P , we add to Σ
a shortest path from a to a point that is very far in P union the the outer face. In total, Σ
has O(h) polygonal paths in Xβ,β′ . Note that the curves in Σ are non-crossing and a small
perturbation makes them disjoint, except at the common endpoint a. See Fig. 12. Each curve
σ ∈ Σ is simple and has two sides. We arbitrarily choose one of them as the right side and
the other as the left side. We use σ1, . . . , σk to denote the curves of Σ.

To each path γ in Γβ,β′ we associate a crossing sequence w(γ) as follows. We start with
the empty word and walk along γ. When γ crosses an arc σi ∈ Σ from left-to-right we append
σ→i to the word, and when γ crosses σi from right-to-left we append σ←i to the word. From
the crossing sequence w(γ) we can obtain the reduced crossing sequence wR(γ): we iteratively
remove contiguous appearances of σ→i and σ←i , for any i. For example, from the crossing
sequence σ→1 σ

←
2 σ
→
3 σ
←
3 σ
→
2 we obtain the reduced crossing sequence σ→1 . A consequence of

using {σi} to construct the so-called universal cover is the following characterization: the
curves γs and γs′ are homotopic in Xβ,β′ if and only if the curves γs and γs′ have the same
reduced crossing sequence. See for example [CLMS04]. We conclude that s and s′ from Sβ,β′

are a-b equivalent if and only if wR(γs) = wR(γs′).
The union of Σ and Γβ,β′ forms a family of pseudosegments: any two of them crosses at

most once. Indeed, by construction different curves can only cross in P , but inside P all those
curves are shortest paths, and thus can cross at most once. Furthermore, the segments Σ do
not cross by construction and the curves of Γβ,β′ have common endpoints. Mount [Mou90,
Theorem 1.1] has shown that in such case the curves in Γβ,β′ define at most O(|Σ|2) = O(h2)
distinct crossing sequences. Therefore, there are at most O(h2) homotopy classes defined by
the curves in Γβ,β′ , and Sβ,β′ defines O(h2) clusters.

The procedure we have described is constructive: we have to compute O(h) shortest paths
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zβ

zβ′

β′

β
s s′

γs γs′

π

s′′

y
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zβ

zβ′

β′

β

s

s′

γs γs′

π s′′

x

y

Figure 13: Figure for the proof of Lemma 14. Left: case when s and s′ are disjoint. Right:
case when s and s′ intersect. In both cases, the darker gray region represents the topological
disk defined by π[x, y] and xy.

in P to obtain the curves of Σ, and then, for each segment s ∈ Sβ,β′ , we have to compute
the corresponding crossing sequence. Such crossing sequence is already reduced. Note that
for computing the crossing sequence of γs we never have to construct γs itself because all
crossings occur along s. This can be done in O(hn log n) time using algorithms for shortest
paths in polygonal domains [HS99] and data structures for ray-shooting among the segments
of Σ [CEG+94].

Lemma 14. For each cluster, either all or none of the segments in the cluster are crossed by
a minimum-cost a-b path.

Proof. Let s and s′ be two a-b equivalent segments from Sβ,β′ . This implies that γs and γs′

are homotopic in Xβ,β′ . Therefore, the path γ obtained by concatenating γs and the reversal
of γs′ is contractible in Xβ,β′ .

Let π be a minimum-cost path between a and b that crosses s but does not cross s′. We
will reach a contradiction. We take π that minimizes the total number of crossings with s.
We may assume that π is simple and disjoint from β, β′. We use π[x, y] to denote the subpath
of π between points x and y of π. We distinguish two cases:

• s and s′ do not intersect. In this case, the curve γ is simple and contractible in Xβ,β′ . It
follows that γ bounds a topological disk Dγ in Xβ,β′ . By hypothesis, π crosses the part
of the boundary of Dγ defined by s but not s′. Therefore, π must cross at least twice
along s. Let x and y be two consecutive crossings of π and s as we walk along π. See
Fig. 13 left. Consider the path π′ that replaces π[x, y] by the segment xy. Any segment
s′′ crossing s along xy crosses also π because π[x, y] and xy define a disk. Therefore
π′ crosses no more segments than π and crosses s twice less than π. Thus, we reach a
contradiction. (If π′ is not simple we can take a simple path contained in π′.)
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• s and s′ intersect. In this case, the curve γ in Xβ,β′ has precisely one crossing. Let
γ′ and γ′′ be the two simple loops obtained by splitting γ at its unique crossing. It
must be that γ′ and γ′′ are contractible, as otherwise γ would not be contractible. See
Fig. 13 right. Therefore, we obtain two topological disks Dγ′ and Dγ′′ , one bounded
by γ′ and another by γ′′. The path π must cross the boundary of Dγ′ or Dγ′′ , and the
same argument than in the previous item leads to a contradiction.

A minimum-cost a-b path can now be found by testing all possible cluster subsets, that
is, 2O(h

4) possibilities.

Theorem 15. The restricted 2-Cells-Connection problem in a polygon with h holes and
n segments can be found in 2O(h

4) polylog n time.

Proof. We classify the segments of S into O(h4) clusters using Lemma 13. This takes
O(h3n log n) time. Because of Lemma 14, we know that either all or none of the segments in a
cluster are crossed by an optimal a-b path. Each subset of the clusters defines a set of segments
S′, and we can test whether S′ separates a and b in O(n polylog n) time [GSS89, dBDS95].

5 Connecting all cells

We show that All-Cells-Connection is NP-hard by a reduction from the NP-hard problem
of feedback vertex set (FVS) in planar graphs (c.f. [Vaz01]): Given a planar graph G, find a
minimum-size set of vertices X such that G−X is acyclic.

First, we subdivide every edge of G obtaining a planar bipartite graph G′. It is clear
that G′ has a feedback vertex set of size k if and only if G has one. Next, we use the result
by de Fraysseix et al. [dFOP91] (see also Hartman et al. [HNZ91]), which states that every
planar bipartite graph is the intersection graph of horizontal and vertical segments, where
no two of them cross (intersect at a common interior point). Let S be the set of segments
whose intersection graph is G′; it can be constructed in polynomial time. Since G′ has no
triangles, no three segments of S intersect at a point. Then, observe that all cells in A(S)
become connected by removing k segments if and only if G′ has a feedback vertex set of size
k. Therefore we have:

Theorem 16. All-Cells-Connection in NP-hard even if no three segments intersect at
a point and there are no segment crossings.

It is also easy to see that if no three segments intersect at a point a k-size solution to
All-Cells-Connection corresponds to a k-size solution of FVS in the intersection graph
of the input segments. For general graphs, FVS is fixed-parameter tractable when parame-
terized with the size of the solution [CFL+08], and has a polynomial-time 2-approximation
algorithm [Vaz01]. We thus obtain the following:

Corollary 17. When no three segments intersect at a point, All-Cells-Connection is
fixed-parameter tractable with respect to the size of the solution and has a polynomial-time
2-approximation algorithm.
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