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Abstract. It is an old idea of ours (H. B. Nielsen “Dual Models”,section 6 “Catastrophe
Theory Program”, Scottish University Summer School, 1976) that a most general material
with only translation symmetry, but otherwise no symmetries should generically (in general)
have some small regions in quasi momentum space, where you “see” an approximate Weyl
equation behavior. The Weyl equation is the relativistic equation for a (left handed) neutrino.
This remark means that one could imagine, that there were behind the Standard Model
of High energy physics, a very general crystal model with very little symmetry. Even for
the Yang Mills or electrodynamics types fields a similar philosophy is possible. There are
though some problems with this solid-state type of model beyond the Standard model, for
which we thought have some remedy by means of homolumo gap effects.

By making use of relativistic quantum field theory on the lattice we predicted the-
oretically very high magneto-conduction due to Adler-Bell-Jackiw chiral anomaly effect
– so called Nielsen-Ninomiya effect (or mechanism) in gapless parity violating material.
Nowadays this kind of material such as chiral or Weyl semimetal and the effect are detected
by experiments.

Povzetek. Avtorja obravnavata idejo HBN (H. B. Nielsen “Dual Models”, razdelek 6 “Catas-
trophe Theory Program”, Scottish University Summer School, 1976), da obstajajo v najbolj
splošnem modelu za snov, ki ima le translacijsko simetrijo, majhna območja v prostoru
kvazi gibalne količine, v katerih približno velja Weylova enačba. Ker velja Weylova enačba
za relativistično gibanje (levoročnih) nevtrinov, predlagata, da razširjeni standardni model
gledamo kot zelo splošen model za kristal z zelo malo simetrijami. Podoben pristop upora-
bita za primer elektromagnetnega polja in vsa Yang-Millsova polja. Težave, ki se pri tem
pojavijo, omilita s ”homo-lumo” vrzelmi.

Uporaba relativistične kvantne teorije polja na rešetki napove visoko magnetno prevod-
nost, ki jo sproži kiralna anomalija Adler-Bell-Jackiwa, ter s tem pojav Nielsen-Ninomiye:
visoko magnetno prevodnost v snoveh, ki kršijo parnost, med obema pasovoma pa ni vrzeli.
Te lastnosti materialov merijo v Weylovih (kiralnih) polkovinah.

Keywords: Weyl equation, homo-lumo gap
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Introduction

The authors, in particular H. B. N. have through many years the dream, that it
is not important what the (most) fundamental laws of Nature might be, because
almost certainly the same effective laws would come out anyway: This philosophy
is called “Random Dynamics”.

Inside a piece of matter - crystal, glass, ... - one should then at very low
temperature according to this dream find the Standard Model.

Recently one is about to find Cases of Relativity-behaving Quasi-particles: A
material, e.g. graphene, with such simulations of relativistic particles as we talk
about.

Materials with relativistic particles simulated as quasiparticles may be very
applicable to say high conductivity purposes,...

Some of our publications:

• H. B. Nielsen and M. Ninomiya, “No Go Theorem for Regularizing Chiral
Fermions,” Phys. Lett. 105B, 219 (1981).

• H. B. Nielsen and M. Ninomiya, “Absence of Neutrinos on a Lattice, 1. Proof
by homotopy theory” Nucl. Phys. B 185, 20 (1981).

• H. B. Nielsen and M. Ninomiya, “Absence of Neutrinos on a Lattice. 2. Intuitive
Topological Proof,” Nucl. Phys. B 193, 173 (1981).
• As for the initiation of Random Dynamics, See “Fundamentals of Quark Mod-

els”. Proceedings: 17th Scottish Universities Summer School in Physics, St.
Andrews, Aug 1976, I.M. Barbour, A.T. Davies (Glasgow U.);1977 - 588 pages;
Edinburgh: SUSSP Publ. (1977);Conference: C76-08-01; Contributions: Dual
Strings, Holger Bech Nielsen (Bohr Inst.). Aug 1974, 71 pp.;NBI-HE-74-15
In the last section the idea of “Random Dynamics ” is introduced based on
finding Weyl equation in “whatever”.

The present paper consists as part I and part II.
The part I: Relativity Theory found in solid state.
and
The part II “What comes beyond Topological Insulator – Nielsen-Ninomiya

Effect (or Mechanism) due to ABJ Anomaly –”
Part I: Relativity-Theory found in Solid State Physics

I-1 Introduction
I-2 Automatic: a pet-thought: Natural laws come by themselves! (“Random Dy-

namics”)
I-3 General: A very general world with (only) momentum conservation.
I-4 Graphene: Example Graphene.
I-5 Heusler: Half-metals, Heusler compounds.
I-6 Wang: Thoughts about making materials having models of relativistic particles

inside.
I-7 Doubling: Nielsen - Ninomiya theorem about doubling of such relativistic

particles unavoidably on the lattice. great future; hope of seeing high energy
physics in low temperature materials not out, but not quite finished. material
simulates relativistic quantum field theory.
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218 H.B. Nielsen and M. Ninomiya

I-8 Further: Further Developments of our “Random Dynamics”
I-9 Conclusion for part I

The part II: What comes beyond Topological Insulator –Nielsen-Ninomiya
Effect (or Mechanism) due to ABJ Anomaly

II-1 : Introduction
II-2 : 1+1 dimensional Example
II-3 : 3+1 dimensional case Weyl (or chiral) Fermion Adler-Bell-Jackiw Anomaly
II-4 : Parity non-invariant, Zero-gap material
II-5 : Transfer from Left- to Right- comes by Adler-Bell-Jackiw anomaly
II-6 : Further arguments
II-7 : Conclusions
Appendix A : Necessary properties of quantum field theory in this paper
Appendix B : Adler-Bell-Jackiw anomaly in continuum spacetime

I-2 Automatic

Our Old Work in 1976: Dreams Laws of Nature Automatic
”Dual Strings. Fundamentals of Quark Models.” by H. B. Nielsen, in Scottish

University Summer School in Physics, St. Andrews, 1976 (There H.B.N. still mainly
is talked on String theory, but at the end a general (fermion) Hamiltonian is
studied.)

Assumed was translational invariance, at least with respect to a lattice say,
and thus a (quasi) momentum conservation, but with respect to the “internal
degrees of freedom” there is a very general theory, though assuming there being
essentially a finite (discrete). system of states(representing possibly spin and band
degrees of freedom.).

(Trivial) Generic Considerations on Fermion Dispersion relations (1976).
We ignore all conservation laws except for

• Energy conservation and Hamiltonian development.
• Momentum Conservation.
• Particle (number) conservation.
• Free approximation (first).
• Smoothness, (so that e.g H(~p) is differentiable and continuous as function of
~p.)
• Generic: i.e. no fine-tuned values of parameters,

and consider a single particle equation:

i
∂

∂t
ψ(~p, t) = H(~p)ψ(~p), (10.1)

where for each value of the momentum ~p the H(~p) is a Hermitian matrix.
Relativity and Dimensionality of Space time being 3+1 come out Automati-

cally!
A priori - with no fine-tuning (=generically) - the Fermi surface would put

itself at separate eigenvalues; but if for some reason ( e.g. “homlumo-gap effect”)
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the Fermi-level were just where n = 2 levels meet, then in a small neighborhood
the shape of the dispersion relations would be given by taking H(p̃) to be n× n =

2× 2. We then Taylor expand

H(~p) ≈ H(~p0) +
∑
a,µ

σaVµapµ + ... (10.2)

where σa are the Pauli-matrices and the unit matrix σ0 = 1. The “vierbein” Vµa is
a set of expansion coefficients for H(~p) as function of the components pµ (strictly
speaking µ =1,2,3; here).

Hermitian matrix, Provided Fermi-level at Degeneracy n = 2 leads to Weyl
Equation in 3+1 Dimensions.

In the old days we argued that in a general physics universe the Hubble
expansion would finally lead to the Fermi-level approaching an n = 2 degenerate
levels energy; but now H. B. N.’s Zagreb group - I.Andric, L. Jonke, D. Jurman, and
HBN - have studied in general, what is called “Homolumo-gap Effect” meaning
the by Jahn and Teller[1] first proposed effect, that the electrons filling the Fermi-
sea would back react such as to increase the homolumo gap between the lowest
unoccupied (LUMO) and the highest occupied (HOMO) state. This effect goes
in the direction to make metals not occur, and make every materials become an
insulator, but the gapless semiconductor may be too hard for the homolumo-gap
effect to dispense with.

Note that this hope for getting automaticly a Weyl-equation like theory had,
when using just Hermitean Hamiltonian marices and looking at the n = 2 degen-
eracy possibility, the consequence that there came only three spatial dimensions
functioning the relativistic way, because there were only 3 Pauli matrices. Some-
how arguing that the dimensions for which there are no Pauli matrices will lead
to essentially zero velocity for the fermion/quasi-electron in these directions and
that such dimensions will not be observed, we have come to 3+1 dimensions as an
additional prediction from the very general starting theory!

With time-reversal symmetry imposed dimension prediction gets modified.

Symmetry Square Pauli M. Dimension Field
TP (TP)2 = 1 σx, σz 2+1 Real
- - σx, σy, σz 3+1 Complex

TP (TP)2 = −1 5 of them 5+1 Quaternions

Table 10.1. The symmetry assumed in line 1 and 3 is the combination of time reversal T
and parity P to TP, which leaves the momentum ~p invariant but is an antilinear operator
effectively conjugating the complex numbers in the matrix. If then Fermi-level falls at
n = 2 degenerate levels in addition to the Kramers-Kronig doubling in the 3rd case, one
gets by Taylor expanding the 2× 2 resolved into Pauli-matrices, and a generalized Weyl
equation results corresponding to the in fourth column denote space + time dimensions.
Actually the effective theory is naturally written in terms of the in column 5 mentioned
division-algebra(= field).

Fundamentally in many Dimensions, but in Most dimensions the Fermion
Run with Zero Velocity, we Ignore them.
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In the for fundamental physics ideal situation of no extra T or TP symmetry
the Hamiltonian matrix H(~p) is just a generic(∼ random) Hermitian matrix (with
complex matrix elements), and it predicts at the two levels degenerate point -
hoped to be favored at the Fermi-surface by either Hubble expansion or homolumo-
gap-effect - that the Fermion only moves with appreciable velocity in as many
spatial dimensions as there are Pauli-matrices. We hope that the dimensions in
which the velocity gets zero, can/shall be ignored. If the zero-velocity dimensions
are ignored, then we have remarkable agreement:

The number of dimensions in which the generic double degeneracy neigh-
borhood has the fermions move just corresponds to experimental number of
dimensions 3+1 and to having relativity and rotational invariance!

If TP (or T) is good symmetry and (TS)2 = 1then H(~p) must have real
matrix elements.

This is the case in which we in a crystal - with PT symmetry say - completely
ignore the usual spin as being decoupled so as to be totally ignored.

In this case we get the effective dimensionality, if we ignore the zero-velocity
directions:

2 + 1
This means that the relativistic effective fermion should appear “generically”

(automatically) even in only 2 spatial dimensions.
With Genuine Spin=1

2
Electrons and Unbroken Time reversal, the “Quaternion

Case” If T or TP good symmetries, and spin 1
2

included, then T2 = (TP)2 = −1 we
have generally doubling of all levels according to Kramers-Kronig rule.[2]

So double degeneracy is already there generally and nothing special. In this
case we shall therefore instead consider that we can get 4 times degenerate levels
sporadically. If we go to such a 4-times degenerate point in momentum space,
we could elegantly go to a quaternion 2 × 2 matrices (quaternions are writable
as 2 × 2 complex matrices, so that 2 × 2 quaternion matrices can be equivalent
to 4× 4 complex matrices with some restriction. Dimension of non-zero velocity
directions:

5 + 1
I-3 Graphene

Graphene denotes the layer of carbon like the ones in graphite taken as seperate,
i.e. it is 2(space)dimensional material. The quasi electrons running in the graphene
layers actuall do show dispersion relations behaving how we above argued for the
case with time reversal but ignoring the spin leading to the effective space time
dimension 2+1.

On the following picture 10.1 one sees the lattice structure of graphene:
The next figure 10.2 is supposed to generally illustrate a metal, an insulator

and a material with a Dirac-like quasi particle (on the figure 10.1).
Even just making a two-layer of graphene complicates the situation and the

work by Gammelgaard on the next figure 10.3 illustrates a gap appearing:
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Fig. 10.1. (2+1)-dimensional Example is Graphene.

Fig. 10.2.

Fig. 10.3. Putting Double Layer Produces Gap.
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The left dispersion law is for a double layer of graphene; the right for single
layer. (Gammelgaard).

The next figures 10.4 illustrate calculation of the dispersion relations for
quasi-electrons in graphene by the model described just below. Since we have
a 2 space dimension material the energy can be the orbital direction up in the
perspective while the two spatial momentum components form the basis plane of
the three-dimensional perspective figure:

Fig. 10.4. .

The Dirac points are of course the points where two branches of the dispersion
relation meet with a cone shape. (Fig. 10.5):

Fig. 10.5.

Dispersion Relation of Graphene The electronic properties of graphene can
be described using a simple tight binding model. The electrons in the covalent
bonds form deep fully filled valence bands, and thus their effects on the conductiv-
ity can be safely disregarded. The unhybridized p orbital is only slightly perturbed
by the neighboring atoms. Therefore, the wave function of an electron in the sys-
tem can be written as a Linear Combination of Atomic Orbitals (LCAO). Using
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these orbitals as the basis set to represent the wave function, the Hamiltonian that
governs the dynamics of the electron is given by:

H =
∑
i

εi|ψi >< ψi|+
∑
l

∑
{<i|j>}l

tl(|ψi >< ψj|+ |ψj >< ψi|) (10.3)

whereεi represents the onsite energy at the atom, |ψi > the i’th atomic orbital ,
{< i, j >}l the set of couples of lth-nearest neighbors, and tl the hopping parameter
between them.

In Graphene the Fermi- surface just Lies at the Double degenerate Point
So in graphene by symmetry one really get a simulation of a 2+1 dimensional

massless Weyl/Dirac fermion, also w.r.t. the placing of the fermi surface.
If we think of just the generic case of a very general theory there will typically

be no reason why the fermi surface should be just at the Weyl point (with the
double degeneracy).

We have, however, speculated on two mechanisms, which might make the
fermi-surface be driven towards the degeneracy point:

• If the world in question has a strong Hubble expansion, then filled states
above the degeneracy point would be gradually emptied and holes below the
degeneracy point would be also gradually be expanded away/attenuated.

• “Homolumo-gap-effect” - meaning that the fermions act back onto the various
degrees of freedom that can be adjusted in the lattice in which the fermions
run. This back action will be so as to in the ground state arrange to lower the
energies of filled fermi states. Thereby arise the so called Homolumo-gap, or
rather it gets expanded by this back action “homolumo-gap-effect”. In the case
that we have degeneracy point that is somehow topologically stabilized, as
one might say of the Weyl points discussed here, it may not be possible for
the homolumo-gap-effect to really produce a gap. In stead we expect that it
will only bring the fermi surface to coincide with the degeneracy point; that
would namely lower the filled states as much as possible with the “topological
ensurance” of the degeneracy point.

I-4 Heusler

Heusler CompoundMn2CoAl is a Spin Gapless Semicondutor:
Siham Oardi, G.H. Fecher, C. Felser and J. Kübler (arXiv:1210.0148v1 [cond-

mat.mtrl-sci], 29 Sep. 2012.) investigated the Heusler compoundMn2CoAl. They
gave the article the name Realization of spin gapless semiconductors: the Heusler
compoundMn2CoAl.

In halfmetallic ferromagnets you have so to speak metal as far as the electrons
with one direction of the spin is concerned, but insulator w.r.t. to the elctrons with
the opposite spin direction. Now it may further happen that we instead of the
metallic we get a gapless semiconductor, namely if we have a degeneracy point
as we discussed above. Once there is effectively only one spin of the electron one
escapes the time reversal symmetry. Thus in such halfmettals there is a better
chance to find Weyl points.
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The following figure 10.6 illustrates dispersion relation along a piecewise
straight curve in momentum space for the two different spin directions along the
magnetization axis for the compoundMn2CoAl. The dispersion relation for the
two different spin orientations are printed respectively red and blue:

Fig. 10.6. Band structure ofMn2CoAl, Majority spin red.

In the following figure 10.7 are then as function of temperature given some
carrier properties of this materialMn2CoAl:

On the following page from Lakhan Baisly et al. as figure 7 in their article we
see the density of electron levels (DOS) for the two spin orientations seperately. In
the in red shown DOS there can be seen crudely a gap, so for this spin orientation
we have the insulator. For the other spin orientation - shown with the positive
ordinate pointing upwards there is also a dip at the fermilevel, but now the DOS
is going non-zero immediately by going away from the fermilevel. So for this spin
we rather have the gapless semiconductor behavior.

The strong dependence of the conductivity as function of the magnetic field is
just what one expects due to the Adler-Bell-Jackiw-anomaly-effect described more
in part II of the present article below.

These figures are from:
Siham Ouardi et al. “Realization of Spin Gapless Semiconductors: The Heusler

Compound Mn2CoAl” DOI: 10.1103/PhysRevLett.110.100401.
Zero Gap Material with Quadratic Energy Dispersion (this is by fine tuning)

HgTe is one of the few materials wherin this quadratic dispersion law zero gap
has been found, since 1950’s.

Pb1−xSnxTe, Pb1−xSnxSeandBixSb1−x are zero-gap materials (with quadratic
disp.).

But really one - Wang, Dou, and Zhang - expects that all narrow gap semi-
conductors by some doping or pressure could be tuned to have zero gap (with
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Fig. 10.7. Majority spin and Minority spin. Calculated with spin orbit coupling.

quadratic dispersion law). Then they call for finding a non-toxic material of this
kind.

I-5 Wang

Physical Chemistry; Chemical Physics
Controllable electronic and magnetic properties in a two-dimensional ger-

manene heterostructure Run-wu Zhang, Wei-xiao Ji, Chang-wen Zhang,* Sheng-
shi Li,b Ping Li, Pei-ji Wang, Feng Lia and Miao-juan Rena Author affiliations
Abstract

The control of spin without a magnetic field is one of the challenges in devel-
oping spintronic devices. Here, based on first-principles calculations, we predict
a new kind of ferromagnetic half-metal (HM) with a Curie temperature of 244
K in a two-dimensional (2D) germanene Van der Waals heterostructure (HTS).
Its electronic band structures and magnetic properties can be tuned with respect
to external strain and electric field. More interestingly, a transition from HM to
bipolar-magnetic-semiconductor (BMS) to spin-gapless-semiconductor (SGS) in a
HTS can be realized by adjusting the interlayer spacing. These findings provide a
promising platform for 2D germanene materials, which hold great potential for
application in nanoelectronic and spintronic devices.
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Fig. 10.8.
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Fig. 10.9. Hall conductivity as function of magnetic field.
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Fig. 10.10. Magnetoresistence as function of a magnetic field.

I-6 Doubling

Nielsen-Ninomiya’s No-go theorem
The authors are very proud of, that we have shown a theorem saying:
When one makes the mentioned “relativistic fermions of Weyl-type” (=chi-

rale fermion) on a lattice (so e.g. in a crystal) then you always get equally many
right-spinning and left-spinning Weyl-type particle(species).

This theorem is a great challenge for those wanting to make a lattice model
(with calculational purposes) for a theory with massless (or almost massless)
quarks, let alone the Standard Model.

By having 3 K +3 K ′ Dirac-points of Compensating Handedness Our Dou-
bling Theorem Realized in Graphene.

I-7 ABJ Anomaly

In the article
H. B. Nielsen and M. Ninomiya, “Adler-Bell-Jackiw Anomaly And Weyl

Fermions In Crystal,” Phys. Lett. 130B, 389 (1983). doi:10.1016/0370-2693(83)91529-
0

we have put forward how to understand intuitively the Adler-Bell-Jackiw
anomaly and how it should be possible to see it in crystals. Indeed now it has
-presumably- been found in Na3Sb in its three dimensional form; at least the
characteristic property that this anomaly can lead to a negative magnetoresistance
seems justified for this material as should be seen from the following figure 10.12:
It is clearly seen for the low temperatures that there is a dramatic peak in the
resistance when the magnetic field is small, whereas the resistance becomes ap-
preciably smaller when the magnetic field is switched on. The lower of the two
figures shows the resistance in the direction of the magnetic field. It is indeed
important that this increased conductivity goes in the direction of the magnetic
field and thus there is a dependence of the magnetoresistance as a function also of
the angle between the magnetic field and the direction of the electric field.

This subject will be explained in more detail in part II.
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Fig. 10.11. Our Doubling Theorem Realized in Graphene.

Fig. 10.12.
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I-8 Further

Further Developments of Our “Random Dynamics” Further speculations, cal-
culations, supporting the idea of getting the Standard Model out as a - say low
energy limit - of/from almost whatever the (most) “fundamental” physical laws
(say complicated) might be:

• A low energy boson system - with only momentum conservation ... like the gen-
eral fermion system considered - gives (in free approximation) free Maxwell
equations.

• Remarkably: All species of particles in the Standard Model except the Higgs
boson are eihter Yang-Mills particles or chiral fermions; so they would all be
massless except for effects due to the Higgs field! This is just what one gets
by asking for the low energy limit in the general theory!

I-9 Conclusion

• Hope that the type of relativistic chiral fermions, one finds in high energy
physics Standard Model in fact comes by itself - and even points to the right di-
mensionality 3 +1, which just is the right one-; but there are a couple of “small”
problems (different species of particles have in first go different “maximal”
velocities)
• Now adays the phenomenon is about being found in real materials, graphene

etc. One can make relativity models chemically

It should be especially stressed that the negative magneto-resistance due to
the Adler Bell Jackiw anomaly has been seen in Na3Sb.

II. What comes beyond Topological Insulator ?
–“Nielsen-Ninomiya Effect” due to Adler-Bell Jackiw chiral Anomaly–

II-1 Introduction

In part I we mainly argued about “Gapless Semiconductor” “Topological Insulator”
and this subject has been very rapidly developing presently.

We now, in this part II, argue chiefly a new application of relativistic quantum
field theory. Specifically, We investigate in condensed matter (in nano-scale∼=
10−9m) how the Relativistic Quantum field theory Effect can appear and can be
detected in material science.

Theoretically this effect was predicted already 35 years ago in 1983 by the
present authors

• (H. B. N and M. N.) in a High Energy Theoretical Physics journal, Physics
Letters B Vol. 130, issue 6 p 389 (1983), entitled “The Adler-Bell-Jackiw anomaly
and Weyl Fermions in a Crystal”.
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• Prior to the above paper one of the authors (M. N) was invited to give talks
in the International Workshop on “Lattice Field Theory” in Saclay, Paris and
Subsequently held XXI International Conference on High Energy Physics, Paris
July 26-31, 1982 (so called “Rochester Conference series”), where he talked
about Weyl fermions on lattices and the ABJ-anomaly.

In solid material there offen appears crystal lattice structure. Thus we are forced to
use lattice field theory which has been well developped in high energy physics. In
this formulation the crucial facts for us are the following:

Suppose At each lattice site we put one Weyl fermion e.g. ΨL (Left-handed
one).

Our Nielsen-Ninomiya Theorem states that there should appear equally many
right handed and left handed Weyl fermions - looking in momentum space at
different momentum values -. In the simplest construction resulting from just
“naively” replacing derivatives by differences on the lattice our theorem is imple-
mented by there appearing 2d species (d: space dimension). Therefore in 3 space
dimensions it turs out that there should be 8 species of Weyl (or chiral) fermions.
Furthermore 4 of them are left-handed ΨL and rest 4 species are right-handed ΨR
chiral fermions.

That is to say on the lattice there should be pairwise (left-handed and right-
handed) chiral fermions. Therefore we are not able to construct chiral theory with
for instance only one handed fermion on the lattice. Thus it leads to the very
important consequence in high energy physics. In reality the Standard Model or,
unified model of, weak and electromagnetic interactions called “Glashow-Salam-
Weinberg model”, or “Standard Model” of Weak and Electromagnetic Interaction
cannot be constructed on the lattice! The reason is that in the Standard Model all
the fermions are left-handed chiral fermions, while no right-handed fermion at
all. The experimental results performed so far are all well in agreement with the
standard model predictions.

If one takes serious the proposal of a new law of nature by one of us and
various collaborators, “Multiple Point Principle”, one can even claim an indication
for, that the Standard Model contrary to the expectation of many of our colleagues,
should be valid up to an energy scale of the order of 1018GeV (rather close to the
Planck scale):

One of the authors (H. B. N.) made together with C. D. Froggatt a theoretical
calculation ofmH with recourse to the just mentioned “multiple point principle
(MPP)”. The value is in very good agreement with experimental value at LHC
(Large Hadron Collider in CERN, Geneva)mH ∼ 125GeV.

See e.g. H. B. Nielsen and M. Ninomiya “Degenerate vacua from unification
of second law of thermodynamics with other laws; The derivation of Multiple
point principle” Int. J. Mod. Phys. A23 (2008) 919 DOI: 10.1142/S02177510839682,
in which an argument for among other things is given MPP from a model with
the action taken to be complex rather than real as it is normal.

If the Standard Model shall as from this suggestion from Multiple Point
Principle etc. be valid only with tiny corrections if any almost up to the Planck
scale, it would be even more mysterious that we could not put it on a lattice
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because of its chiral particles. Really we could -it looks -hardly regularize it with
any sensible cut off! Quite a mystery. [3]

2) ABJ anomaly on a lattice
Condensed matter researchers except for high energy physicists (including

some nuclear theorists), may not have heard of the Adler-Bell-Jackiw or chiral
anomaly. Therefore we briefly explained ABJ anomaly in continuum space in
Appendix A.

Here we turn to our nano-scale material case. In the material there is a lattice
structure Fig. 10.13.

Fig. 10.13. Lattice structure.

In this 3 dimensional lattice on each sites we put one Weyl or Chiral electron
e.g. eL (Left handed electron),then according to the Nielsen-Ninomiya Theorem,
there should appear somehow so many of them, that there are equally many right
haned and left handed ones. In fact we get in the simplest case 4 eL as well as 4 eR.

To understand band structure, we go to the momentum space.
Note that due to the lattice translational invariance the momentum is con-

served modulo multiple of the unit length of reciprocal lattice.
The Brillouin zone in the momentum space is topologically equivalent to the

hypertorus S1 × S1 × S1.
In such a topological structure of crystal lattice, the Adler-Bell-Jackiw anomaly

explained for continuum spacetime in appendix B, is easily understood also , as
was presented in PLB 130 n06, (1983) by the present authors.
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II-2 1+ 1 dimensional example

For simplicity, as an example the 1 space 1 time dimensional case is considered.
Right chiral (Weyl) fermion obeys lattice Weyl eg.

i ∂
∂t
ΨR(na) =

i
2a

[ΨR((n+1)a)−ΨL((n−1)a)] where n = 0,±1,±2, · · · denote
sites and a is a lattice space. This can be easily solved and the dispersion relation
is given by w = ( 1

a
) sinpa. Thus near p = 0 there is a RH (RH = right handed)

species with the dispersion law w ≈ p and further there is a LH (LH =left handed)
species near π

a
with the dispersion law

w ≈ −(p− π
a
).

These situations are illustrated in the following Fig. 10.14.

Fig. 10.14.

Note that due to topology of momentum space, there is a periodicity modulo
2π. (e.g. points p = −π

a
and π

a
are identified)

II-3 3+ 1 dimensional case

This 1+ 1 dimension example clearly tells us, that in lattice theory there appear
equal number of RH and LH chiral (or Weyl) fermion species (really in 1+1 di-
mension one should rather talk about right mover and left mover, because there is
no genuine handedness in 1+1 dimensions) . It is not completely straightforward
to generalize to 3 + 1 dimensions, but with use of the appriate mathematics of
homotopy (group) theory one make the analogous theorem in 3+1 or in even
higher dimensions to the theorem in 1+1 that in a period real function has pass
zero in positive and in negative direction equally many times per period.
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II-3 (a) Weyl (or chiral) Fermion

In generic chiral (Weyl) fermion theory which obeys
iΨ̇(−→x ) = HΨ(−→x ) = wΨ(−→x )
We assume that the generic Hamiltonian satisfy the following four conditions:
(1) Locality of interaction in the sense thatH(−→x −−→y )→ 0 as |−→x −−→y )|→ large

fast enough that the Fourie transform of H(−→x ) has continuous first derivative.
(2) Translational invariance in the lattice (3) Hermiticiti of H (reality of S) (4)
Furthermore an assumption is that the charge (=lepton number in our case) is
bilinear in the fermion field.

Under these conditions in the generic H case we gave a rigorous proof in
terms of the Homotopy theory in topology in 1981 (see, II-1).

II-3 (b) Adler-Bell-Jackiw anomaly on a lattice

Let us go into the Adler-Bell-Jackiw (ABJ) anomaly on the lattice in the continuum
spacetime. We reviewed this anomaly in continuum spacetime in Appendix B.

Here we argue for the lattice version of the ABJ anomaly. Firstly we as as an
example let us explain the 1+ 1 dimensional lattice Weyl (chiral) fermion. In the
lattice RH chiral or Weyl electron system, we put on an external uniform electric
field E in x-direction denoted by Ȧ1 = E in temporal gauge (A0 = 0). Then the
Weyl eq. reads

i ∂
∂t
ΨR(x) = (−i ∂

∂x
− Ȧ1)ΨR(x).

The dispersion law is given byω(p) = p.
In the classical eq. of the electron in the presence of the electric field is ṗ = eE

so that the RH electron in quantum theory is given by
ω̇ = ṗ = eE.

Therefore the creation rate of the RH electrons per unit time and unit length is
determined by a change of the Fermi surface that separates the filled and unifilled
states as shown in Fig. 10.15.

Fig. 10.15.
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We denotes the quantization length L, then the density of states per unit
momentum is given by L

2π
. Therefore the rate of change of the RH electron number

NR is given by ṄR = L
2π
· ω̇fs

where ω̇fs denotes the rate of energy take up of the RH electron fermi surface
per fermion, i.e. eE.

Therefore we obtain RH electron creation is given by ṄR = e
2π
E per unit

length (namely for L=1). This is the ABJ anomaly.
Thus the chiral charge QR defined as the total number of RH particles (over

the fermisea minus the number of holes) is not conserved: Q̇R = ṄR = e
2π
E In

the same manner the annihilation rate of LH electrons withω = −p is derived as
ṄL = − e

2π
E

This means that creation rate of the LH anti-electron is given as
˙̄NL = e

2π
E

By adding both, the anomaly of the Dirac electrons is
ṄR + ṄL = e

π
E, and thus

Q̇5 =
e
π
E

To proceed to the 3+ 1 dimension case, we should calculate the energy levels
in the presence of an external uniform magnetic field, e.g. in the z-direction so
that A2 = Hx, and Aµ = 0 otherwise. Thus we consider the equation for the two
component RH electron field ΨR[

i ∂
∂t

− (−→p − e
−→
A)−→σ ]ΨR(x) = 0

This eq. can be solved by introducing an auxiliary fieldΦ as
ΨR =

[
i ∂
∂t

+ (−→p − e
−→
A)−→σ ]Φ.

Thus the eq. forΦ is given by[
i∂
∂
− (−→p − e

−→
A)−→σ ] · [i∂

∂
+ (−→p − e

−→
A)−→σ ]Φ = 0

This eq. reduces to the harmonic oscillation tpe eq,[
−( ∂
∂x ′

)2 + (eH)2(x ′ + p2
eH

) + (p3)
2 + eHσ3

]
Φ = ω2Φwith σ3 = ±1

The energy eigenvaluesω are given by the Landau levels as follows

ω(n, σ3, p3) = ±
[
2eH(n+ 1

2
) + (p3)

2 + (eHσ3)
] 1
2 with n = 0, 1, 2, · · · , ex-

cept for the n = 0 and σ3 = −1mode. Here
ω(n = 0, σ = −1, p3) = ±p3.
The eigenfunction is of the form
Φnσ3(x) = Nnσ3(x)×exp(−ip2x2−ip3x3)×exp(−1

2
eH(x ′+ p2

eH
)2)×Hm(x ′+

p2
eH

)χ(σ3)

where Nnσ3 is normalization constant and χ(σ3) denotes the eigenfunctions

of Pauli spin σ3 : χ(1) =
(
1

0

)
and χ(−1) =

(
0

1

)
Thus the solution of the eq. for Two-component RH electron ΨR becomes the

relations Ψ(n+1,σ3=−1)
R = Nn+1,σ3=−1

Nn,σ3=1
Ψn,σ3=1R

for n = 0, 1, 2, · · ·
The zero mode n = 0 is
Ψ

(n=0,σ3=−1)
R = 0withω = −p3.

Therefore the ground state energy of ΨR is given byω(n = 0, σ3 = −1, p3) =

p3 The energy eigenvalue for the other modes are
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ω(n = 0, σ3, p3) = ±
[
2eH(n+ 1

2
) + (p3)

2 + eHσ3
] 1
2

These dispersion laws are depicted in the Fig. 10.16.

Fig. 10.16.

In the next step an external uniform electric field E is turned on along the
same direction parallel to H. For the zero mode (n = 0, σ3 = −1) the dispersion
law is the same as that for 1+ 1 dimensions. Thus the creation rate of the particles
is calculated in a similar manner.

We should note that the electric field E is switched on adiabatically,and there
is no particle creation in the n 6= 0modes. The density of the state in momentum
space in the magnetic field direction is for quantization length L L eH

4π2
, and thus

the creation rate (=the ABJ anomaly) is expressed as

ṄR = 1
L
LeH
4π2

ωfs (n = 0, σ3 = −1, P3)

= e2

4π2
EH

= Q̇R

For the LH electrons annihilation rate of LH anti electron is

ṄL = −
e2

4π
EH



i
i

“proc18” — 2018/12/10 — 11:44 — page 237 — #253 i
i

i
i

i
i

10 Do We Find High Energy Physics Inside. . . 237

and the creation rate of the LH anti particle is given by

˙̄NL = e2

4π2
EH

= Q̇L

In the case of the Dirac electron

ṄR + ˙̄NL = e2

2π2
EH

= Q̇5

II-3 (c) Generic Case

We again look at a generic case of which Hamiltonian is given by N×N local Her-
mitian matrix. The N discrete energy eigenvalues are determined by the following
eigenvalue eq.

N∑
l=1

Hkl(
−→p )Ψ(i)

l (−→p ) = ωiΨk(−→p ) (i = 1, · · · , N)

Here we assume that the ith level Ψi(−→p ) and (i+ 1)th level are degenerate. The
eigenvalue ωi(−→p ) are assumed to be degenerate with the (i + 1) level at sev-
eral different points in momentum space, which are denoted as (ωd(−→pd),−→p d) in
the dispersion space (ω(−→p ),−→p ). The ith and (i + 1)th levels are described by d
submatrix H(2)(−→p ): it has the ith and (i+ 1)th entries of N×N matrix H.

We then expandH(2)(−→p ) in powers of (−→p −−→p d) around are of the degenerate
point (ωd(−→p d), pd). In the expansion of H(2)(−→p ) is given

H(2)(−→p ) = H(2)(−→p d) + (−→p −−→p d)∂H(2)(−→p )
∂−→p |−→p=−→pd +O((−→p −−→p d)2).

The derivative term is expressed by the Pauli matrices (1+ σα), (α = 1, 2, 3)

and1 = 2× 2 unit matrix, as

∂H(2)

∂−→p k |−→p=−→pd = ak(
−→p d)1+ Vαk (−→p d)σα

Here V are the constants depending on −→p d. Thus near −→p = −→p d, H(2)(−→p ) takes
the form

H(2)(−→p ) = ωd1+ (−→p −−→p d)−→a1+ (−→p −−→p d)kVkασα
The eigenvalue eq. of the ith and (1+ i)th energy eigenvalues near −→p = −→p d

H(2)(−→p )u = ωu.
This is rewritten by using a new set of variables

p̂ = −→p −−→p d, p0 = ω−ωd − p̂−→a
as

p̂V−→σ u = p0u
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If we introduce

K0 = p0 and k = ±p̂−→V
Were ± correspond to the sign of det V . For simplicity we may take as an example
Vkα = vδkα (k, α = 1, 2, 3).

The above eigenvalue eq. becomes

−→
k−→σu = ±k0u

Where the dispersion law (k0)2 = v2k2. Thus, it isω2 = v2p2

In this way RH and LH Weyl eq. describes the 2 energy levels near degeneracy
point in (ω(−→p ),−→p ) space correspond to a species of Weyl fermions contained in the
theory. Our theorem tells that RH and LH degeneracy points appear necessarily as
a pair because of the Brillouin zero structure (topology). The theorem was proved
by only topological arguments together with locality, as was shown our papers in
1981. The doubling of the Weyl fermions are illustrated in Fig. II-4 (page 18).

II-4 Parity non-invariant zero-gap material

We assume that we have found a parity non invariant material (i.e. a crystal should
be of non-centrosymmetric symmetry; e.g. BiTeI form a non-centrosymmetric
crystal. Best might be a triclinic pedial class with no point symmetry at all.) with
zero-gap, which can be simulated by a Weyl, fermion theory with a dispersion
lawω2 = v2p2. The effect analogous to the ABJ anomaly gives rise to a peculiar
behavior of the conductivity of the electric current in the presence of the magnetic
field. It is enough to consider one conduction bandωi.

The valence bandωi+1 (negative energy state) is assumed to be completely
filled. In the absence of external field, the single electron distribution function in the
thermodynamical equilibrium is of the form f0(

−→p ) = [1+ exp[(ω(p) − u)/kT ]]−1

In the presence of E and H = 0 there occurs a small deviation from thermody-
namical equilibrium so that f = f0 + δf, and the E field accelerates the electrons in
the same direction and then (

∂f

∂t

)
drift

= eE
∂f

∂pz
.

At the same time the accelerated electrons get scattered back into some states in
the same cone. We assume that f fills back into f0 exponentially with a relaxation
time τ0 so that δf ∝ e−

τ
τ0

Then (
∂f

∂t

)
coll

= −
1

τ0
(f− f0)

Therefore the steady state condition is
(
∂f
∂t

)
drift = −

(
∂f
∂t coll

)
(Boltzmann eq.).

The sol. of this is in the lowest order in E

f(−→p ) = f0(ω) + eEτ0
∂f(ω)

∂pz
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Then the longitudinal current density is given by

J0 =
1

L3

∑
−→p

(−e)vzf(
−→p )(#deg. pts)

Where vz = ∂ω
∂pz

and (#deg. pt) denotes the number of deg. pts (= degeneracy
points).

In the low temperature approximation f0(ω) = θ(µ−ω) so that

J0 =
1

6π2
e2E(

µ2

v
)τ0(#deg. pt)

the relaxation time is given in terms of transition probability of electron from the
state with−→p into one with−→p ′,W(−→p → −→p ′) by

1

τ0
=
1

L3

∑
−→p ′

pz − p
′
Z

pz
W(−→p → −→p ′)

We assume that the interaction between the electron and the ionized impurities is
given by the screened Coulomb potential (pot.) of the from

V(−→x ) = (4πe2
k

)
e
−

|−→x|

γ0

|−→x |
With the screening length γ0 and k the dielectric constant. Computing τ0 in the
first order perturbation we obtain the current as

J0 =
4e2E

3πηI

(
k

4πe2

)2(
µ4

v2

)[
ln(1+ β) −

β

1+ β

]−1
(#deg. pt)

With β = 2πkv
e2

(#deg. pt) and ηI the density of impurity.
Next compute the magneto-conductivity when H parallel to E is so strong that

only the lowest states n = 0, σ3 = −1with dispersion lawω = vpz orω = −vpz
near the RH and LH degeneracy point are filled the ABJ anomaly effect will cause
the movement in the momentum space of electrons from the lowest Landau level
(n = 0, σ3 = −1) at the one deg. pt. (=degeneracy point) in the LH cone to the
corresponding one (n = 0, σ3 = −1) in the RH cone (at the RH deg.pt.). Thus
these moved electrons will give raise to a deviation from the thermodynamical
equilibrium, that can be expressed by the different chemical potentials for the
electrons at the RH degeneracy pt., µR and at the LH one µL. If one had calculated
the relaxation time in the approximation where only one degeneracy point at a
time was relevant -such as we did above in the H = 0 case–we would have found
1
τ
= 0. This comes out of such a calculation due to the energy conservation factor

δ(ω−ω ′) = 1
v
δ(pz − p

′
z) contained inW(PZ − P ′Z) which makes (23) give 1

τ
= 0.

However we cannot neglect scattering processes involving two degeneracy point.

II-5 Transfer from LH to RH cones by Adler-Bell-Jackiw Anomaly

The mechanism for the electric current with both E can H switched on peculiarly
different from the one with a negligibly weak H. In the presence of strong H the
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lattice anomaly of the ABJ anomaly takes place: transfer of the particles from the
LH degeneracy pt. to the RH one acts as a drift term, i.e. Ṅ|drift in the Boltzmann
equation. On the other hand for negligible H each degeneracy points act inde-
pendently. By the ABJ anomaly the Fermi energy level µR in the RH cone goes
up compared to that of the H = 0 case µ and µL in the LH cone is lowered. See
Fig. 10.16 (a) (1+ 1 dim. case) and Fig. 10.17 (3+ 1 dim. case)

Fig. 10.17.

In order that the system is in the steady state
the excess electrons by the ABJ anomaly in the RH cone must be scattered

back to the another state.
But they can not be scattered back into the state in the same come! because, as

was explained above τ =∞.
Therefore they must transfer into the states in another cone; that is from the

RH cone into the LH cone.
We may call this the intercone scattering and we denote the corresponding

relaxation time by τI. If the intercone transition probability W(pz → p ′z) from RH
cone into the LH cone is calculated, then the collision term is given by

ṄR|coll =
2
L

∑
pZ

[f(pZ) − f0(pz)]
1
L

∑
p ′z
W(pz → p ′z)

≡ −
p ′z
τI

(NR −N0R)
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Here NR and N0R denote the total electron numbers in the RH cone above
the degeneracy energy in the H 6= 0 and H = 0 cases respectively. Thus 1

τI
=

2eH
(2π)2

1
L

∑
p ′
3
W(pz − p

′
z)

The generation of a current associated with the ABJ anomaly can be shown by
the following energy conservation argument. ABJ anomaly indicates that electrons
are transferred from the LH cone into the RH cone by the rate of e

2EH
(2π)2

per unit
Time,per unit volume.: Notice that the dispersion law is continuous and the RH
and LH cones are connected smoothly as shown Fig. 10.17.

Since the Fermi level energies are µR > µL the transfer costs the energy
e2

(2π)2
EH(µR − µL). This energy must be taken from the E field by the presence of

a current JA determined by the energy balance as
EJA = e2

(2π)2
eH(µR − µL)

At the zero temperature, in the RH cone
f0(ω) = θ(µR −ω) and thus

NR = 1
L3

∑
pypz

f0(ω) eH
(2π)2

µR
v

∼= N0R + (µR − µ)∂NR
∂µ

Inserting this into Boltzmann eq.
ṄR|drift = −ṄR|col

We obtain µR − µL = evEτI
Therefore JA = ev e2

(2π)2
EHτI(#deg.pt.) Here the subscript A stands for the

anomalous current the one associated with the analogue of the ABJ anomaly. In
the definition of τI we may approximateW(−→pz → p ′z)

∼=W(−→p −
−→
p ′)

So thatW(pZ−p
′
Z)

∼= (4π
2

k
)2ηI

[
(−→p −−→p ′)2 + 1

γ2
H

]−2
2πδ(ω−ω ′) with 1

γ2
H

=

EH
kv

(#deg.pt.). According to −̂→p ≡ −→p −−→p d, p0 = ω−ωd− p̂
−→a , we have −→p −−→p ′ =

−→p d −−→p ′d + −̂→p − p̂ ′

where −̂→p and −̂→p ′ are oscillating around −→p d and −→p ′d: since they are order of

(eH)
1
2 . We may ignore the oscillatory part (−̂→p − −̂→p ′) and 1

γ2
H

term in the denomi-
nator ofW(pZ − p ′Z) when compared to the distance of the RH and LH deg. pts
−→p d −−→p ′d. In this approximation we obtain

JA = e2v2E
2πηI

(
k
4π2

)2
(−→p d −−→p ′d)4(#deg.pt.)

We then obtain the ratio of the conductivity that is defined by f = σE as
σA
σ0

= 3
16

(
v
µ

)4 [
ln(1+ β) − β

1+β

]
(−→p d −−→p ′d)4

By these results, for the intercom relation time τI the electrons must travel
a “long distance” in momentum space. Thus τI is expected to be a large value
compared to τ0 for H = 0. Therefore σA

σ0
given above is large.

II-6 Further arguments

So far we have presented our own theoretical predictions in 1983 although we
believed sooner or later our predicted “Nielsen-Ninomiya” mechanism (or effect)
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will be proved by experiment. Indeed after almost 35 year later Princeton Uni-
versity group led by Prof. N. Phuan Ong and R. Cava, found chiral anomaly in
crystalline material. This surprising news in science community appeared in an
article by Catherine Zandonella,

• office of the Dean of Research, in Science, September 3, 2015 entitled Research
at Princeton: Long-sought chiral anomaly detected in crystalline material
(science).
At the almost same time, scientist’s article entitled.
• “Evidence for the chiral anomaly in the Dirac semimetal Na3Bi” By J. Xiong

Satya K. Kushwaha, Tian Liang, J. W. Kritzan, M. Hirsehberger, Wulin Wang,
R. J. Cava, X. P. Oug, Science Express, 03 , September 2015. and

• “Signature of the chiral anomaly in a Dirac semimetal – a current plume
steered by J. Xiong, S. K. Kushwaraha, T. Liang, J. W. Krizan, Wudi Wang, R. J.
Cava and N. P. Ong

Since then the works on this subject is really under rapidly developing mainly
in Experiments, also theories: e. g. Dirac cones,and Weyl semimetals. We believe
in the rather near future we shall see some machines using “Nielsen-Ninomiya
Mechanism (or Effect). See e.g also [4].

II-7 Conclusions

In the present article we present the viewpoint at two exceptional high energy
theoretical physicists new eras of condensed matter.

In the first part I we mainly considered “Topological Insulator” from random
dynamics point of view. The essential point is that in generic Fermion dispersion
relations i.e. in (almost) all solids or fluids at low temperature we can derive the
recently found properties of Topological insulators such as graphene etc.

In the 2nd point II, we present what comes beyond topological insulator.
We believe that the Adler-Bell-Jackiw anomaly effect in the chiral non invari-

ant gapless material, causes that

• magnetic conductance is enhanced very much (ideally permanent current)
• Chiral electron (chiral fermion in general) in lattice of the gapless material runs

with a fixed speed. (This fixed speed is what in the relativity theory analogue is
the speed of light.) This is so, because we by analogy can apply the relativistic
quantum field theory.

To make any apparatus using the above theory will be widely opened to not
only condensed matter, but chemistry, beyond artificial division such as, physics
chemistry engineering etc.
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Appendix A

We consider electron in quantum field theory (Relativistic quantum mechanics.)
We present only necessary properties in Appendix A

The electron in the relativistic quantum field theory it is usually described as

Dirac field Ψ =

(
ΨL
ΨR

)
where ΨL and ΨR are 2 component fields. Now the electron

has intrinsic spin
−→
S . Thus electron has the angular momentum then

−→
J , whose

value are half integers, and the spin components is
−→
S take values ±1

2
.

For massless fermions the right ΨR and the left ΨL componets in the (free)
Dirac equation gets seperated, and we actually even find that the spin direction
is the same as that of electron movement for the right components ΨR and the
opposite for the left components ΨL. Let us start with the Dirac field such as an
electron in the quantum field theory. The electron has intrinsic spin 1

2
of fermion

obeying the free Dirac eq.
(iγµ∂µ −me)ΨD = 0 (II − 1)
thereafter we ignore electron mass unless described. Our notation is that of

the textbook of Bjorken-Drell “ Relativistic Quantum Fields”. For our purpose we
list up relevant notations below

• The 3+ 1 dimensional flat space metric (tensor):

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


• The γmatrices are

γ0 =

(
1 0

0 −1

)
were1 =

(
1 0

0 1

)
and γi =

(
0 σi

−σi 0

)
i = 1, 2, 3

Here σi denotes 2× 2 Pauli matrices and1 =
(
1 0

0 1

)
.

Furthermore

γ5 = γ5 =

(
01

1 0

)
(note

(
γ5
)2

= 1)

• The 4 component Dirac field is denoted as
ΨD(p, s)

and when there is no interactions obeys the free Dirac eq. as
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(iγµ∂µ −m)Ψ = 0

where ∂µ = ∂
∂xµ

, in momentum representation
pµ = i ∂

∂xµ

ΨD(
−→p , s).

Here s denote intrinsic spin |s| = 1
2

ΨD(
−→p ,−→s ) obeys

/pΨD(p, s) = 0

with 4 component Dirac field we may describe

ΨD(p, s) =

(
ΨL
ΨR

)
(p, s)

Where ΨL and ΨR are 2 component spinor respectively the eigenvalue solution
of free Dirac eq. (II − 1) is the form of
Ψ(p, s) = ±

√−→p 2 +m2

Fig. 10.18. Dirac’s “hole theory”.

We adopt the Dirac’s “hole theory”. In this theory often used in condensed
matter as dispersion relation, the negative states are all filled, while the hole in the
Dirac sea is antiparticle, i.e. positron e+.

In solid state physics where one has say a crystal lattice, which from the
quantum field theory is discretized, so therefore we are interested in discretizing
the quantum field theory here. The Dirac fermion wave function ΨD(−→p , s) has
4-components: 2 degree of freedom as that energy can have plus or minus. Fur-
thermore the electron has intrinsic spin of which value is |s| = 1

2
. In the massless

case spin/(vector) direction can be either the direction of the electron motion or
the opposite. We then define for describing “chirality”. It is usually distinguished
by this quantity. That is to say γ5Ψ = +1or − 1. Customary +1 is named Left
moving- and −1 case is Right moving-Weyl or chiral fermion denoted ΨL and ΨR
respectively. (The Lorentz or Poincare group of spacetime in 3+ 1 dim Hermann
Weyl investigated in detail and the basis is 2 component spinor called Weyl spinors
ΨL and ΨR. In terms of these 4 component Dirac field Ψ such handed components

can be constructed (ΨD =

(
ΨL
ΨR

)
)
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Appendix B

We are now ready to discuss about Adler-Bell-Jacklin anomaly. In quantum field
theory there are various symmetries. One of the most interesting symmetries is
chiral (or axial) symmetry. That is the interaction of Dirac field ΨD with electro-
magnetic field Aµ is given by

S =
∫
d4xΨ̄(x) [iγµ (∂µ + ieAµ(x))]ΨD(x) (∗)

in the case of massless electron., where Ψ̄D = Ψ†γ0. It has chiral symmetry
which may be obvious, if we rewrite (∗) in terms of ΨL and ΨR as the Dirac eq. can
be written as(

0 i(∂0 + σ
i(∂i + ieAi))

i(∂0 − σ
i(∂i + ieAi)) 0

)(
ΨL
ΨR

)
= 0.

In this way the equations of ΨL and ΨR are separately given by the following
Weyl equations

i(∂0 − σ
i(∂i +Ai))ΨL = 0

and
i(∂0 + σ

i(∂i +Ai))ΨR = 0.

In these forms it is evident that the theories are invariant under the following
infinitesimal Weyl transformations

ΨL → (1− iαi σi
2

− βi σi
2
)ΨL

ΨR → (1− iαi σi
2

+ βi σi
2
)ΨR

Where αi and βi (i = 1, 2, 3) are infinitesimal transformation parameters,
restricted to leave the normalization of the Weyl fields invariant. This Weyl or
Chiral transformation is broken due to quantum effect in quantum field theory.
There were several suggestive articles, but explicit manifestation is presented by

• S. Adler, Phys. Rev. 177 (1969) 2426
and

• J. S. Bell and R. Jackiw Nuovo Cimento 60A (1969) 4.

Furthermore the method of path integral formulation this ABJ anomaly is due to
nor-invariance of the path integral measure

• K. Fujikawa Phys. Rev. Lett. 42 1195 (1979)

Phenomenologically this ABJ anomaly is really important. It has been observed
by experiments. Π0 meson decays into 2 photons. When we approximate Π0 as
being massless, this decay process is expressed as the following diagram, triangle
diagram of Feynman diagram
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If chiral symmetry is not broken, this diagram turns out to give zero. Thus this
decay is not allowed. However, experimentally this decay process certainly exists.
This is the evidence that Adler-Bell-Jackiw anomaly does exist. In high energy,
physics the ABJ anomaly is expressed as the non-conservation chiral current J5µ
such that

∂µJ5µ = − e2

16π2
εαβγδFαβFγδ

Here the chiral current J5µ is defined as

J5µ = limε→0 {Ψ̄(x+ ε
2
)γµγ

5exp
[
−ie
∫x+ε

2

x−ε
2
dzA(z)

]
Ψ(x+ ε

2
)
}

We might perform the calculation to show that the above triangle diagram is
non-zero due to the ABJ anomaly. But we have instead in subsection 10 alluded to
a derivation of the ABJ-anomaly by using how particles are pumped up or down
from or to the fermi-sea (in high energy physics the Dirac sea).
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