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A B S T R A C T A R T I C L E I N F O 
This research investigates the benefits of different Machine Learning (ML) 
approaches in production systems, with respect to the given use case of con-
sidering the forming process and different friction conditions on hydraulic 
press response in between the phases of the sheet metal bending cycle, i.e. 
bending, levelling and movement. A framework for enhancing production 
systems with ML facilitates the transition to smarter processes and enables 
fast, accurate predictions integrated into decision-making and adaptive con-
trol. Comparative ML analysis provides insights into predictive regression 
models for hydraulic press condition recognition, enhancing process im-
provement. Our results are supported by performance evaluation metrics of 
predictive accuracy RMSE, MAE, MSE and R2 for Linear Regression (LR), Deci-
sion Trees (DT), Support Vector Machine (SVM), Gaussian Process Regression 
(GPR) and Neural Network (NN) models. Given the remarkable predictive 
accuracy of the regression models with R2 values between 0.9483 and 0.9995, 
it is noteworthy that less complex models exhibit significantly shorter train-
ing times, up to 437 times shorter than more complex models. In addition, 
simpler models have up to 36 times better prediction rates, compared to 
more complex models. The fundamentals illustrate the trade-offs between 
model complexity, accuracy and computational training and prediction rate.  
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1. Introduction
Challenges in manufacturing processes often require straightforward solutions or are so com-
plex that they present technicians with seemingly unsolvable problems. Simulation approaches 
are often used to overcome these challenges in order to gain a more detailed understanding of 
the system under consideration and the manufacturing processes running on it [1]. However, 
the underlying problems are sometimes indirect when comparing the real environment with the 
virtual environment established in a simulation model [2]. With the advent of Industry 4.0, tech-
nological solutions have emerged in digitalization and automation processes, often using artifi-
cial intelligence (AI) approaches [3]. The synergy of edge computing (EC) and 5G networks lev-
erages high bandwidths and low latency to process data closer to the source, enabling faster 
response times and more efficient, stable and secure data transfer and data management, which 
has a positive impact on the effectiveness and quality of production processes as well as sustain-
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ability and circular economy improvement [4]. The ML paradigm enables a more in-depth sys-
tem analysis that captures properties that cannot be evaluated by visual representation and 
graphical interpretation alone. Classification and regression models based on data-driven ap-
proaches have already been successfully implemented in many technical fields, offering high 
precision in predicting system behaviour and often overcoming 99 % prediction efficiency in 
real systems [5, 6]. 

Hydraulic presses play a crucial role in various forming processes such as bending, stamping, 
forging and drawing, where the aim is to convert hydraulic energy into deformation energy of 
the workpiece. The dynamic properties of hydraulic presses and bending processes, including 
material properties, fluid properties and friction behaviour, are interrelated and influence each 
other. These complex relationships require in-depth investigations, such as those presented in 
this study, to gain a comprehensive understanding of how the bending process affects the re-
sponse of the hydraulic press. The quality of the forming process has a significant impact on the 
overall quality of the product, especially when disturbances, such as dynamic frictional proper-
ties, are present [7, 8]. Identifying altered conditions is a fundamental step in comprehending 
system behaviour, as highlighted in prior research on issues like hydraulic valve wear [9], pump 
malfunction [10] and leakage [11] has shown. To summarise, artificial intelligence offers data-
driven modelling solutions tailored to different engineering challenges and based on different 
principles. Briefly speaking, ML provides solutions for the identification of faults and malfunc-
tions of hydraulic components, which are crucial for decision making to adapt and improve the 
operation of hydraulic presses. 

A detailed analysis in the field of hydraulic systems shows that there is no simple method for 
selecting the most appropriate ML approach, regardless of the input parameters. Given the use 
of numerous classification and regression methods in studies, a significant dilemma arises when 
choosing between less complex methods such as LR, DT, SVR and more complex methods such 
as GPR and NN for the study of specific research problems [12–17]. Another possible shortcom-
ing of the previously referenced research refers to the fact the authors believe that certain deri-
vations of ML methods are best suited for their particular use case due to their complexity. This 
means that the optimization and prediction of performance depends on the method chosen for 
the particular application, which requires careful consideration. Su et al. [18]demonstrated that 
when comparing the ML methods LR, K Nearest Neighbour (KNN), DT, SVM and NN, the NN 
method outperformed the others with an accuracy of 99.8 % in predicting valve flow. Highlight-
ing the best ML method, it is worth noting that other ML models achieved robust prediction ac-
curacy, with the worst performing LR model still achieving 99.1 %. Moreover, the same conclu-
sions have been confirmed by research groups investigating other use cases [19–22]. On the 
other hand, Guo et al. [23] emphasize that training and prediction times are a crucial parameter 
for the efficient integration of ML models into decision algorithms. It determines how quickly the 
entire decision-making system will react to changing conditions and therefore allows real-time 
actions such as control and parameters set-up. 

By pointing out the basic assumptions and an analysis of the available ML algorithms, the ob-
jective of this paper is to demonstrate the advantages of the five basic regression modelling 
types LR, DT, SVM, GPR, NN in the investigation of a hydraulic press under different intensities of 
the forming process and friction dynamics. Chapter 2 introduces the background and the re-
search problem, supplemented by Design of Experiments (DOE), data extraction and data pre-
processing. Section 3 introduces different types of regression models and defines the range of 
hyperparameters to obtain the best prediction from five ML approaches. Finally, Section 4 pre-
sents the best fitted regression models along with the most efficient selection of hyperparameters. 

2. Experiment and dataset analysis 
2.1 A case study of hydraulic press 

This study focuses on a hydraulic press subjected to the conditions of the forming process, in-
cluding the bending process and the constraints on the movement of the hydraulic cylinder re-
sulting from the friction between the press guides and the hydraulic cylinder, as shown in Fig. 1. 
A hydraulic press is a sophisticated and robust mechanical device designed for various industrial 
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applications that utilises the principles of fluid mechanics to generate significant force for form-
ing, shaping and compressing materials. The design of a hydraulic press combines 

• hydraulic components, i.e. hydraulic valve, hydraulic cylinder, hydraulic power unit (hy-
draulic pump with electric motor and controller), 

• mechanical components, i.e. guiding system, hydraulic press frame, mechanical system 
(bending process), 

• control system, e.g. PLC Beckhoff Controller CX 9020, PID Moog Controller, Raspberry Pi. 
 

The components listed above with their respective characteristics form a distributed network 
in which data collection and analysis takes place. They therefore form the basis for integration 
into the concept of edge computing and 5G communication technology and particular on 5G real-
time data transfer. The integration of these components enables the hydraulic press to effective-
ly convert hydraulic energy into mechanical power. As explained by Jankovic D. et. Al [24], these 
influences contribute to a delayed movement of the hydraulic cylinder, which is determined not 
only by the mentioned factors, but also by the intensity of these factors and the velocity of the 
hydraulic cylinder. To achieve this goal, 30 different scenarios were analysed in the experiments, 
focusing on the effects of the forming process. In addition, a further 46 scenarios were systemat-
ically carried out to evaluate the influence of different operating conditions on the reaction of 
the hydraulic press. 

Forming processes require the mechanical energy of a hydraulic press to change the shape of 
the specimen. During this process, the deformation of the specimen restricts the movement of 
the hydraulic cylinder. Consequently, the applied hydraulic energy increases to ensure that the 
movement of the hydraulic cylinder measured by the displacement sensor XC matches the refer-
enced movement Xref controlled by a PLC controller and given on the basis of a predefined sheet 
metal bending cycle. However, the ability of the controller to fully compensate for the described 
causes is not given, as shown by the response error ΔXC of the hydraulic press, which is evaluat-
ed as the difference between the measured XC and the referenced Xref displacement of the hy-
draulic cylinder. In addition, the pressure sensors are integrated to monitor the pressure condi-
tions pA, pB in both hydraulic cylinder chambers. In addition, a force sensor is positioned be-
tween the hydraulic cylinder and the pressing plate to monitor the generated hydraulic cylinder 
pressing force FC. The integrated LVDT sensor allows to foresee the opening of hydraulic valve 
XV. The intensity of the bending process was controlled by applying combinations of hydraulic 
cylinder velocities (5 mm/s, 15 mm/s, 25 mm/s) and the width of the samples (10 mm, 20 mm, 
30 mm, 40 mm). To capture the analog signals from the sensors, Beckhoff modules were used to 
import the data into the digital datasets. Each scenario was experimentally performed three 
times to confirm the repeatability of the experiments. 

The friction conditions in the press guides arise due to the friction between two sliding sur-
faces. Stribeck friction, which is characterised by its dynamic nature, is defined by the correla-
tion between frictional force and velocity of movement [7]. The choice of sealing and guiding 
technology in hydraulic cylinders is influenced by the quality and stability of the dynamic fric-
tion of hydraulic cylinders [25]. Advanced guiding and sealing systems enable a more stable fric-
tion profile over the entire range (static, hydrodynamic and mixed friction). In contrast, conven-
tional sealing and guiding systems exhibit characteristics in which the static friction phase is 
significantly higher than the hydrodynamic phase. In addition, higher frictional forces occur in 
conventional sealing and guiding systems under the same velocity conditions. The implementa-
tion of a subsystem with three pulleys and a cable allows the emulation of different friction sce-
narios during the phases of the sheet metal bending cycle. By adjusting the load, the desired fric-
tion scenario is achieved and measured directly by a force gauge attached to the pressing plate, 
which reflects the resistance force during the movement of the hydraulic cylinder. 
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Fig. 1 Hydraulic press condition analysis 

2.2 Experimental analysis 

The data is visualised using variables measured in real time (sampling frequency of 100 Hz): 
Pressure in the upper and lower hydraulic cylinder chambers pA, pB, hydraulic valve opening XV, 
hydraulic cylinder force FC and hydraulic cylinder displacement XC. The visualisation and inter-
pretation of the raw data are the most important steps in data analytics. The extraction of rele-
vant data intervals enables data-driven models to deliver enhanced prediction performance 
[26]. Furthermore, Fig. 2 shows the comparison of two main causes and their effects on the hy-
draulic press response, with the least intensive and the most intensive scenario shown for each 
cause to illustrate which measured variable offers the most information in each scenario. 
The sheet metal bending cycle enhances three phases: 

• Fast- forward movement (1) and fast- backward movement (4) of the hydraulic cylinder to 
minimise the duration of the sheet metal bending cycle and enable the production of as 
many parts as possible within the allotted time frame.  

• In the bending phase (2), a bending force is applied to deform a sheet metal workpiece and 
bring it into the desired shape.  

• Levelling phase (3) includes processes aimed at achieving uniformity and flatness of the 
sheet metal workpiece after the bending phase, with the die tool remaining stationary in 
its position. 

 

The presented scenarios depict a selected sheet metal bending cycle, with the hydraulic cyl-
inder velocity set to 50 mm/s during the movement phase (phases 1 & 4) and 15 mm/s during 
the bending phase (phase 2). Looking at the cause of the forming process shown in Fig. 2(a), the 
first scenario represents the intensity of unrestricted movement without a test specimen, while 
the second scenario shows the highest forming intensity, involving the placement of a specimen 
with a width of 40 mm is inserted into the die tool. The obvious changes occur when the die tool 
comes into contact with the specimen, resulting in a significant increase in the forming force FC, 
which changes during the bending phase and remains semi-stationary during the levelling 
phase. The same tendency is observed for the variable pA, while the variable pB decreases as ex-
pected. During this event, the opening of the hydraulic valve XV increases to compensate for the 
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hydraulic press response error ΔXC, which persists until the end of the levelling phase, when the 
pressing plates release the elastic tension in the sample. 

The analysis of different friction scenarios shown in Fig. 2(b) indicates non-visible changes in 
the hydraulic cylinder displacement XC, which can be seen by averaging the value over the phase 
range. The first scenario signifies more favourable friction conditions with no restraining force, 
while the second scenario conditions lower friction characteristics, simulated by a pulley system 
emulating a restraint force of 1 kN. The most noticeable changes manifest in a visible rise in the 
forming force during the sheet metal bending cycle and the variable pA, accompanied by an ex-
pected decrease in the value of the variable pB. In addition, a slight increase in the hydraulic 
valve opening is observed. Clearly, the influence of the friction conditions on hydraulic press 
response error is less significant compared to the impact observed in the case of the forming 
process, especially when considering maximum force FC required to deform the sample at 15 kN. 
 

 
Fig. 2 Data visualization of measured variables of: (a) forming process-bending and (b) friction conditions 

2.3 Data pre-processing 

In regression learning, the crucial step of feature selection involves identifying and include rele-
vant input variables, thereby enhancing the accuracy and predictive ability of the model. Moreo-
ver, regression modelling is a statistical method that reveals features that are not readily appar-
ent in the visualisation phase, yet provides indispensable insights into data characteristics that 
may otherwise go unnoticed [16]. In addition, the pressure difference Δp in hydraulic cylinder 
chambers is assumed to be the difference between the variables pA and pB, providing a higher 
intensity of information [27]. In addition, the hydraulic cylinder velocity vC is considered more 
meaningful than the measured hydraulic cylinder displacement ΔXC, as it characterises much 
more dynamic conditions [28]. While the purpose of regression models is to predict the hydrau-
lic press response error ΔXC, the input data for regression models include the variables ΔXC, FC, 
XV, vC and Δp. 
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Industry 4.0 underlines the importance of using smart data to minimize latency and optimize 
the efficiency of data transmission [29]. The case study includes an investigation of 76 different 
conditions under which the hydraulic press was examined. However, it's crucial that the raw 
data for each condition includes information from different scenarios. To address this, the data 
must be pre-processed separately and combined into one dataset covering all scenarios so that 
the regression model can account for all scenarios. In addition, employing the data bundling en-
ables the packaging of only pertinent sections into a unified dataset for each phase of the sheet 
metal bending cycle, as shown in Fig. 3. During the pre-processing stage, the variable sections 
were carefully selected to illustrate the semi-stable operating condition of the hydraulic press 
over a time scale. Furthermore, the extracted sections were selected considering the visualiza-
tion aspects described in chapter 2.2. In addition, a feature scaling was performed to standardize 
the importance of the five variables and to prevent any single variable from being prioritized 
[30]. The scaling was performed to normalize the y-axis by setting it in the range from 0 to 1. 
Finally, the extracted datasets representing different scenarios were partitioned into training 
and test datasets to evaluate the regression models using known metrics, including Root Mean 
Square Error (RMSE), coefficient of determination R2, Mean Squared Error (MSE) and Mean Av-
erage Error (MAE). Furthermore, training datasets are used during the model training phase to 
determine the required training time for different regression model approaches. In addition, test 
datasets were used to evaluate the prediction accuracy of each model after the training phase, 
considering the testing time required to perform the predictions. 
 

 
Fig. 3 Smart data forming 

3. Regression models 
The availability of regression modelling methods offers a wide range of possibilities to achieve 
semi-mirrored data-driven model for the chosen research problem. Grid search and random 
search are two commonly employed methods for optimizing hyperparameters. While grid 
search exhaustively explores all possible parameter combinations, it incurs high computational 
costs, especially when a large number of parameters are involved [18]. In contrast, the random 
search examines potential parameter combinations randomly within fixed ranges and offers a 
significant reduction in computational cost. In our study, both approaches are used for hyperpa-
rameter optimization. Grid search is applied to LR, GPR and SVR, while random search is applied 
to DT and NN depending on the number of hyperparameters involved. The MATLAB application 
Regression Learner was used to train and test the regression models. 
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Five-fold cross-validation was used to determine the hyperparameters that provide the best 
generalization performance for our models. In each iteration, a specific subset was selected for 
testing, while the remaining subsets were used for training. The investigated hyperparameters 
for the models are summarized for each model in its subsection.  

3.1 Linear regression 

Linear regression (LR) uses an assumption function described in Eq. 1 to model and capture the 
relationships between independent variables x, where β is the coefficient vector, n is the number 
of samples, and y is the target value [12]. In our approach, we include interaction terms in the 
linear regression model; nevertheless, we also use the classical LR approach. This decision is 
based on previous studies that indicate a varying degree of influence of different independent 
variables on the dependent variable [24]. Including interaction terms allows the model to cap-
ture and account for the joint effects of these variables, taking into account the potential de-
pendencies and relationships identified in previous research [12]. 

The objective of minimizing the objective function is to reduce the sum of squared differences 
between the observed values and the corresponding predicted values, as described in Eq. 2 by 
the least squares method. 

𝑦𝑦(𝑥𝑥) =  𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽2(𝑥𝑥1 ∙ 𝑥𝑥2) +⋯+  𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 (1) 
 

𝐽𝐽(𝛽𝛽) =
1

2𝑛𝑛
�(
𝑛𝑛

𝑖𝑖=1

𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2  (2) 

3.2 Decision trees 

Decision trees assume nonlinear patterns and relative relationships in the data and perform 
feature selection for the most accurate prediction [13]. In addition, DT have simple extraction 
rules, are very accurate and provide good interpretability of the models. In our approach, the 
search for the optimal parameters for DT involves varying the leaf size (4, 12 and 36). 

3.3 Support vector regression 

The SVR is an extension of support vector machine developed for single-output regression [14]. 
In addition, the SVR determines a linear dependence between the independent variable x and 
the dependent variable y, as shown in Eq. 3, where w is the weight vector and b is the intercept. 

𝑦𝑦 = 𝑤𝑤𝑥𝑥 + 𝑏𝑏 (3) 
The goal of objective function in SVR is to find the weight vector w and the intercept b such 

that configures the least deviation in between the predicted and actual values as expressed in 
Eq. 4. Here, a regularization parameter C balances the trade-off between w and the slack varia-
bles ξ, ξ*, under the conditions expressed in Eq. 5. Fig. 4 describes the linear kernel function ap-
proximation considering the data accuracy of ε. 
 

 
Fig. 4 Linear kernel function for SVR 
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𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ > 0
 (5) 

The decision function in SVR with a linear kernel is determined in Eq. 6. 

𝑦𝑦 = �(
𝑛𝑛

𝑖𝑖=1

𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏 (6) 

Enhancing the accuracy of nonlinear predictions, we consider a number of kernel options de-
scribed in Eq. 6 through 10, including linear, quadratic Kq, cubic Kc, exponential Ke, and squared 
exponential Kse, where c is a constant term. These kernels are systematically evaluated using a 
random search approach to uncover the most appropriate SVR model. 

𝐾𝐾𝑞𝑞 = (𝑥𝑥 + 𝑐𝑐)2 (7) 

𝐾𝐾𝑐𝑐 = (𝑥𝑥 + 𝑐𝑐)3 (8) 
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�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
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2

2𝑙𝑙2
� (10) 

3.4 Gaussian process regression 

Due to the non-parametric Bayesian approach to regression problems, the GPR offers a high de-
gree of flexibility for the targeted prediction of complex relationships in the data [16]. It assumes 
a Gaussian data distribution, where the model hyperparameters, i.e. the variance of the distribu-
tion σf and the length parameter l, are determined by the mean function m(x) and the kernel K, 
as shown in Eq. 11 [31]. The purpose of the mean function is to represent the expected trend of 
the decision function y, which is assumed to be a zero-mean function in our case [24]. In addi-
tion, the purpose of the kernel function is to assign importance rates to the training datasets and 
to fit the model. 

𝑦𝑦 ~ 𝐺𝐺𝐺𝐺 (𝑚𝑚(𝑥𝑥),𝐾𝐾) (11) 
To extract the most accurate GPR model, a σf of 0.001-0.100 was varied. In the training pro-

cess, Automatic Relevance Determination (ARD) allows the model to automatically determine 
the relevance of each predictor by adjusting the length parameter l, considering different types 
of kernels as shown in Eq. 6 to 10. 

3.5 Neural network 

Neural networks consist of neurons organized in layers that determine the connections between 
neurons through a series of weights and biases [22]. The input data is processed to provide an 
output of each neuron, which allows flexibility in determining the number of neurons in each 
layer and the number of layers in the neural network to best fit the data. Neural networks are 
composed of an input layer, one or more hidden layers and an output layer of artificial neurons, 
as shown in Fig. 5. Artificial Neural Network (ANN) is a broad term that encompasses NN models 
of varying complexity, while Deep Neural Network (DNN) specifically refers to networks with 
multiple hidden layers that emphasize the depth of the architecture, which is usually associated 
with an increased ability to learn complicated representations from data [23]. Models built in 
our case with NN include five neurons in the input layer, since the available predictors are five. 
The output layer consists of one neuron, since only one output estimate is predicted. 
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In the configuration of the neural network, we varied the number of neurons in the hidden 
layer between 10, 25 and 100, while the number of layers ranged from one to three. ReLU was 
chosen as the activation function, with a maximum of 1000 iterations and a regularization 
strength of 0. 
 

 
Fig. 5 Neural network structure 

4. Results and discussion 
4.1 Characteristics of fitted regression models 

The performance of regression models of different types depends on model complexity, data 
quality and quantity, feature selection, assumption violations, pre-processing stage and hy-
perparameter selection [18]. The results shown in Table 1 represent the best-fit regression 
models with the most optimal selection of hyperparameters for the given case study and the 
range of regression model trained and test fitted in the MATLAB environment. Considering that 
the research problem focuses on three phases of the sheet metal bending cycle, i.e. bending, lev-
elling movement, the complexity of the regression model differs due to the nature of the data 
patterns, the presence of white noise and the number of conditions summarised in each phase. 

Regression modelling for LR yields superior results when interaction terms are included 
across all phases of the sheet metal bending cycle than the method without interaction terms. In 
addition, the DT type of regression modelling shows the importance of selecting hyperparame-
ter variation. In the bending and levelling phase, the necessary depth of the DT is significantly 
higher than in the case of the movement phase. In addition, the medium size tree is mostly ap-
propriate for the bending phase, while the coarse tree size is the most appropriate for the level-
ling and movement phases, considering the number of leaves and the size of the parents. The 
results in the table for the SVR regression modelling type show that the squared exponential 
kernel function is most effective in representing complex relationships and patterns among the 
input data. In addition, the hyperparameters C and ε reflect the trade-off between the accurate 
fit of the training data and the margin of tolerance, which is comparable between phases. More-
over, selected hyperparameters with low values indicate an easy fit of the model and a relatively 
narrow range, emphasising the minimization of errors in the predictions. In addition, the SVR 
regression model shows that less complexity is required in the case of the bending phase and the 
margin of error is even narrower than in the SVR regression models for the levelling and move-
ment phases. Moreover, the results of the GPR regression models show that the Exponential 
kernel function consistently provides the most optimal fit among the different kernels available. 
In the levelling phase, it is evident that a higher standard deviation of noise is required as the 
data has a higher amount of white noise compared to the movement and bending phase. For the 
application of regression modelling using NN, it has been shown that a single layer is sufficient 
for the levelling and bending phases. However, for optimal performance in the levelling phase, it 
is best to use three layers with a layer size of 10. 
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Table 1 Best fitted regression models summary 
Regression model Hyperparameters and  

characteristics 
Bending 
phase 

Levelling 
phase 

Movement 
phase 

Linear regression (LR) Interactions terms ON ON ON 
 Robust option OFF OFF OFF 
Decision Trees (DT) Max. depth 410 390 162 
 Min. leaf size 12 36 36 
 Min. Parent size 24 72 72 
 Max. Number Splits 4454 9067 8666 
 Split Criterion MSE MSE MSE 
 Prune ON (RMSE) ON (RMSE) ON (RMSE) 
 Surrogate OFF OFF OFF 
Support Vector Regression (SVR) Cost C 0.1848 0.2708 0.2768 
 Epsilon ε 0.0185 0.0271 0.0277 
 Kernel type KSE KSE KSE 
 Kernel Scale 0.5 0.5 2 
 Iteration limit 106 106 106 
Gaussian Process Regression (GPR) Kernel type KE KE KE 
 Standard deviation of noise σn 0.0100 0.0438 0.0038 
 Quasi-Newton optimization ON ON ON 
Neural Network (NN) Number of layers 1 1 3 
 Layer size 100 100 10, 10, 10 
 Activation ReLu ReLu ReLu 
 Iteration Limit 1000 1000 1000 
 Regularization strength 0 0 0 

4.2 Regression model performance evaluation 

The overall performance of the regression models was assessed using the validation and test 
results to confirm that the data-driven models do not overfit. The results for the bending phase 
are presented in Table 2 and show significant performance accuracy in the validation stage by 
the R2 metric, which is at a value between 0.9945 and 0.9961. In addition, the complexity of the 
regression modelling affects the performance of the regression models. This is particularly the 
case for less complex regression modelling approaches such as LR and DT. In such examples, the 
values of the LR regression model for the metrics RMSE, R2, MSE, MAE are 0.01364, 0.9945, 
0.000186, 0.009998 in the validation and 0.01368, 0.9941, 0.000187, 0.009836 in the test. As 
the complexity of the regression modelling increases, the performance of the regression model 
increases, which is evident in the regression models GPR and NN by higher evaluation metrics 
RMSE, R2, MSE, MAE. In comparison, the best fitted regression model in the case of the bending 
phase is the GPR model with metric values RMSE, R2, MSE, MAE at validation 0.01144, 0.9961, 
0.000131, 0.007810 and at test 0.01150, 0.9958, 0.000132, 0.007768. Although more complex 
regression models, e.g., GPR and NN, perform better, less complex regression models, e.g., LR 
and DT, accurately predict the desired response error of the hydraulic press in different scenari-
os. In addition, the performances of the regression models built by different approaches provide 
solid results in the test stage, where the coefficient of determination is between 0.9941 and 
0.9958. 

Table 2 Regression model performance evaluation for bending phase 
Model Validation  Test  

 RMSE R2 MSE MAE RMSE R2 MSE MAE 
LR 0.01364 0.9945 0.000186 0.009998 0.01368 0.9941 0.000187 0.009836 
DT 0.01357 0.9946 0.000184 0.009316 0.01265 0.9950 0.000160 0.008854 

SVR 0.01252 0.9954 0.000157 0.009066 0.01238 0.9952 0.000153 0.008754 
GPR 0.01144 0.9961 0.000131 0.007810 0.01150 0.9958 0.000132 0.007768 
NN 0.01168 0.9960 0.000136 0.008105 0.01156 0.9958 0.000134 0.007890 

 
The validation and test results for the levelling phase are shown in Table 3. From the metrics, 

the best regression model in validation is the DT model, which has the lowest RMSE, MSE and 
MAE at 0.04393, 0.001930 and 0.030141, but the highest R2 at 0.9618. In addition, the other 
fitted regression models considering the metrics of RMSE, R2, MSE, MAE are in the order of GPR, 
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SVR, NN, LR. In addition, the test results show that the same sequence of regression models ena-
bles the best regression model performance. Moreover, the overall accuracy of the different re-
gression models is solid, as R2 is between 0.9517 and 0.9618 for the validation results and 
0.9483 and 0.9581 for the test results. Compared to the bending phase, the performance of the 
regression models is lower due to the white noise contained in the experimental data. 

In the movement phase, the best-fitting regression models, i.e. DT, GPR and NN, have a robust 
coefficient of determination R2 of 0.9995 for both validation and test results, as shown in Table 
4. In addition, DT is shown to be the best performing model with the lowest values for RMSE, 
MSE and MAE. The next best performing regression model for the movement phase is NN, with 
GPR being similarly accurate to NN in terms of the RMSE, MSE and MAE metrics. The lowest per-
forming regression model is SVR with an R2 value of 0.9986 in validation and 0.9987 in test. In 
addition, the LR model is more accurate than SVR in prediction. Overall, the prediction accuracy 
of the regression models is higher in the movement phase than in other phases of the sheet met-
al bending results, which is evident by an R2 value of more than 0.999 in the validation and test. 
Overall, regression models are built accurately and are not overfitting trough all phases of the 
sheet metal bending cycle, i.e. bending, levelling and movement, considering that the RMSE, R2, 
MSE and MAE metrics show similar values between validation and test results. 
 

Table 3 Regression model performance evaluation for levelling phase 
Model Validation  Test  

 RMSE R2 MSE MAE RMSE R2 MSE MAE 
LR 0.04944 0.9517 0.002445 0.036453 0.05070 0.9483 0.002571 0.037562 
DT 0.04393 0.9618 0.001930 0.030141 0.04568 0.9581 0.002086 0.031166 

SVR 0.04770 0.9550 0.002275 0.034339 0.04801 0.9537 0.002305 0.034739 
GPR 0.04628 0.9576 0.002142 0.033074 0.04680 0.9560 0.002190 0.033308 
NN 0.04829 0.9539 0.002332 0.035171 0.04830 0.9531 0.002333 0.035264 

 
Table 4 Regression model performance evaluation for movement phase 

Model Validation  Test  
 RMSE R2 MSE MAE RMSE R2 MSE MAE 

LR 0.08885 0.9991 0.007894 0.068134 0.08894 0.9991 0.007909 0.067491 
DT 0.06629 0.9995 0.004395 0.048779 0.06658 0.9995 0.004433 0.048933 

SVR 0.11099 0.9986 0.012318 0.089846 0.10939 0.9987 0.011966 0.089033 
GPR 0.06781 0.9995 0.004598 0.050394 0.06801 0.9995 0.004626 0.050394 
NN 0.06719 0.9995 0.004515 0.050851 0.06709 0.9995 0.004501 0.049864 

4.3 Training and prediction rate analysis 

The comparison of the training and test times in between the regression models LR, DT, SVR, 
GPR and NN is shown in Fig. 6. In terms of training and prediction time, the regression models 
LR, DT and SVR show better results for all phases of the sheet metal bending cycle, i.e. bending, 
levelling movement, compared to more complex regression models such as GPR and NN. 

Examining the bending phase shown in Fig. 6(a), it is evident that LR, DT and SVR models ex-
hibit short training times below 5 s and short prediction times, which are less than 8.5 ms. The 
best training and prediction rate were achieved by the DT model with a training time of 3.8 s and 
a prediction time of 3.4 ms. In contrast, the training time of the GPR and NN models is 190.6 s 
and 183.7 s, which corresponds to a 50 times higher rate compared to the less complex DT mod-
el. In addition, the GPR model requires 59.9 ms to predict the response error of the hydraulic 
press in the bending phase, compared to the NN model prediction time of 3.9 ms. Overall, the 
prediction rate of the NN model is comparable to other low-complexity regression models, as 
evidenced by the test time of LR, DT and SVR of up to 8.4 ms. 
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Fig. 6 Regression model training and testing time comparison for: (a) bending phase, (b) levelling phase, 

             (c) movement phases 
 

In the case of the levelling phase shown in Fig. 6(b), the training rate for the LR, DT and SVR 
models is up to 437 times better than for the GPR and NN models. In addition, the training time 
of the DT model is solid at 0.8 s for the entire training dataset. The training time of the NN model 
is the longest at 350.3 s, but the prediction time is the shortest at 5.5 ms compared to the other 
models. In comparison, the SVR model requires 6 times more time to predict the outcome than 
the DT model. The GPR model has the highest prediction rate with a prediction time of 264.5 ms. 
Examining the movement phase shown in Fig. 6(c), the LR, DT and SVR models require a training 
time of up to 3 s, which is on average better than in the bending and levelling phase. However, 
the LR, DT and SVR models require higher prediction times on average compared to the bending 
and levelling phase. In the movement phase, datasets size is higher compared to the bending and 
levelling phase, but the required complexity of the regression model is lower. In addition, due to 
the larger datasets, the number of predictions is also higher, which leads to higher prediction 
times. In terms of prediction time, the NN model has the lowest prediction time of 29.7 ms. In 
addition, the GPR model requires the longest prediction time of 620.5 ms, which is 20 times 
higher compared to the NN model. 

4.4 A general framework for enhancing production systems using machine learning  

The study also aims to provide general guidelines for transforming of conventional production 
systems to a smart production system using ML techniques. The main steps from 1 to 4 can be 
used to define the most suitable machine learning strategy and approach for particular produc-
tion use case such as robotic assembly, CNC machining, etc. (Fig. 7).  
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Step 1: The effectiveness of these methods depends on the availability and quality of the data 
required for model training (Step 1, Data collection). Focusing on our use case, the results of the 
hydraulic press show the importance of tailored approaches to improve process control and the 
performance of the different data samples from production processes in terms of pattern, com-
plexity, presence of Gaussian noise, dimensionality and transition types. In general, the most 
important is to design experiments and data collection approaches, focusing on selecting appro-
priate sensors and determining their location to extract the relevant information from the real 
production system and ensure the validity of the information collected. The sensors serve as the 
primary data source for monitoring specific characteristics and requirements relevant to the 
research. Furthermore, in step 4, the input variables for ML modelling are determined, which 
influence the predictive accuracy of the outcome variables and summarize the specific charac-
teristics and requirements of the respective research.  

Step 2: Here, the data analysis is performed by visualizing the various conditions of the produc-
tion system under investigation. Learning and testing datasets should be extracted from differ-
ent condition scenarios at intervals to observe the most relevant sections of the measured data 
for predicting outcomes of ML model.  

Step 3: This step represents the signal pre-processing, which involves the condition recognition 
of production system. In the case of hydraulic presses condition recognition, the most important 
task is data pre-processing that involves bundling and scaling. In addition, when observing other 
production processes their characteristics are different, thereby other pre-processing methods, 
such as logarithmic transformation may be more appropriate to consider.  
Step 4: Finally, when selecting a machine learning strategy, different ML approaches should be 
tested to determine the most appropriate one for the application in terms of given criteria and 
objective function. For hydraulic presses, the edge computing decision-making algorithm inte-
grated into the control system is expected to be fast and accurate in order to improve the per-
formance of the hydraulic press in real-time. The prediction rate significantly impacts the ability 
of the hydraulic press control system to adjust responses autonomously, increasing production 
reliability and reducing product uncertainty. 
 

 
Fig. 7 Guidelines for accurate machine learning integration into production processes 

5. Conclusion 
This research addresses the trade-off between model complexity, prediction accuracy, and com-
putational efficiency. In real-time applications, rapid response times are crucial for effective re-
actions. Therefore, the efficiency of a decision-making system that reacts to recognised condi-
tions in the production processes depends on the prediction rate and the accuracy of the ML 
model. In addition, the adaptability of ML models to newly introduced conditions are deter-
mined by the learning rate. While more complex models such as GPR and NN deliver higher pre-
diction accuracy, the associated training and prediction times need to be carefully considered, 
especially in different phases of the sheet metal bending cycle i.e. forming, levelling and move-
ment. The varying performance of LR, DT, and SVR models showcases the importance of select-
ing models tailored to the specific requirements and constraints of the application. In conclu-
sion, the metric R2 yielded robust results in validation and test performance accuracy in each 
phase of the sheet metal bending cycle: bending 0.995, levelling 0.950, and movement 0.999. The 
findings suggest that more complex regression models exhibit superior performance, but they 
are associated with a higher training time, which is up to 437 times higher than for less complex 
models such as LR, DT and SVT. Notably, GPR requires even longer prediction times compared to 
other ML models. The difference in prediction time could be attributed to the explicit represen-
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tation and computational intricacies involved in GPR during predictions, whereas NN often ben-
efit from more implicit representations and parallelization, leading to faster predictions. Fur-
thermore, the memory requirement with models NN is much lower compared to GPR, as GPR 
needs to store information for the entire training dataset, including covariance matrices. Models 
LR, DT, and SVR can be treated as lower-performance models, however evidently need shorter 
training and prediction times for the given case study. Therefore, the optimal ML models for 
integration into the decision-making system are either the less complex LR model, offering high-
er training and prediction rate, or either more intricate NN, which requires a higher training 
rate. However, despite higher training rates, NN showcases superior prediction accuracy and 
prediction rate comparable to other less complex ML models. 

In summary, the design of the control system for the hydraulic press allows the consideration 
of predetermined operating conditions, however the occurrence of new conditions would re-
quire the optimization of machine learning hyperparameters. The methodology presented in this 
study provides a valuable reference point for the selection of modelling and solution methods 
suitable for the diagnosis of autonomous production process conditions. Given the complexity of 
production processes and the desired prediction results, an intelligent combination of different 
solution methods can effectively address these challenges. By applying multiple machine learn-
ing methods such as LR, GPR, NN and SVR, this study presents the most suitable approach that 
enables accurate and rapid prediction of hydraulic press response.  
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