Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies UDK 5 Annales, Ser. hist. nat., 28, 2018, 2, pp. 93-216, Koper 2018 ISSN1408-533X UDK 5 ISSN 1408-533X (Print) ISSN 2591-1783 (Online) AnnaleS Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 28, 2018, 2 KOPER 2018 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 28, leto 2018, številka 2 ISSN 1408-533X (Tiskana izd. ISSN 2591-1783 (Spletna izd.; UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Glavni urednik/Redattore capo/ Editor in chief: Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Urednica/ Redattrice/Editor: Lektor/Supervisione/Language editor: Prevajalci/Traduttori/Translators: Oblikovalec/Progetto grafico/ Graphic design: Prelom/Composizione/Typesetting: Tisk/ Stampa/Print: Izdajatelja/Editori/Published by: Nicola Bettoso (IT), Christian Capape (FR), Darko Darovec, Dušan Devetak, Jakov Dulčic (HR), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačic (ME), Alenka Malej, Patricija Mozetič, Martina Orlando-Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Darko Darovec Lovrenc Lipej Martina Orlando-Bonaca Polona Šergon (sl.), Petra Berlot (angl.) Martina Orlando-Bonaca (sl./it.) Dušan Podgornik, Lovrenc Lipej Sedež uredništva/Sede della redazione/ Address of Editorial Board: Gratis trade d.o.o. Gratis trade d.o.o. Zgodovinsko društvo za južno Primorsko - Koper /Societa storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della societa, cultura e ambiente© Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 14. 12. 2018. Sofinancirajo/Supporto finanziario/ Javna agencija za raziskovalno dejavnost Republike Slovenije Financially supported by: (ARRS), Luka Koper in Mestna občina Koper Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis e inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL). Vsi članki so v barvni verziji prosto dostopni na spletni strani: http://zdjp.si/p/annalesshn/ All articles are freely available in color via website: http://zdjp.si/en/p/annalesshn/ ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 28, Koper 2018, številka 2 ISSN 1408-533X (Print) ISSN 2591-1783 (Online) VSEBINA / INDICE GENERALE / CONTENTS SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL, Erdi BAYRI & Eylül ATAg Recent records of the great white shark, Carcharodon carcharías (Linnaeus, 1758) (Chondrichthyes: Lamnidae), in Turkish waters (eastern Mediterranean)............................. 93 Recentni podatki o belem morsklem volku, Carcharodon carcharias (Linnaeus, 1758) (Chondrichthyes: Lamnidae), v turških vodah (vzhodno Sredozemlje) Christian CAPAPÉ, Sihem RAFRAFI-NOUIRA, Khadija OUNIFI-BEN AMOR & Mohamed Mourad BEN AMOR Additional records of sandbar shark, Carcharhinus plumbeus (Chondrichthyes: Carcharhinidae) from the northern Tunisian coast (central Mediterranean Sea)......................... 99 Novi zapisi o pojavljanju sivega morskega psa, Carcharhinus plumbeus (Chondrichthyes: Carcharhinidae) na severni tunizijski obali (osrednje Sredozemsko morje) RECENTNE SPREMEMBE V SREDOZEMSKI BIODIVERZITETI CAMBIAMENTI RECENTI NELLA BIODIVERSITÁ MEDITERRANEA RECENT CHANGES IN MEDITERRANEAN BIODIVERSITY Christian CAPAPÉ, Jeanne ZAOUALI, Khadija OUNIFI-BEN AMOR & Mohamed Mourad BEN AMOR First record of Red sea goatfish Parupeneus forsskali (Osteichthyes: Mullidae) from Tunisian waters (central Mediterranean sea).......... 107 Prvi zapis o pojavljanju bradača vrste Parupeneus forsskali (Osteichthyes: Mullidae) iz tunizijskih voda (osrednje Sredozemsko morje) Thodoros E. KAMPOURIS & loannis E. BATJAKAS The northernmost record of the thermophilic Mediterranean parrotfish Sparisoma cretense (Linnaeus, 1758) (Perciformes, Scaridae) in the eastern Mediterranean Sea (northwestern Aegean Sea).................................... 111 Najsevernejši zapis o pojavljanju toploljubne morske papige Sparisoma cretense (Linnaeus, 1758) (Perciformes, Scaridae) v vzhodnem Sredozemskem morju (severozahodno Egejsko morje) IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Ilker AYDIN & Okan AKYOL Occurrence of pearl fish, Carapus acus (Osteichthyes: Carapidae) in ^e§me, Izmir (Aegean Sea, Turkey)............................................ 119 Pojavljanje strmorinca, Carapus acus (Osteichthyes: Carapidae) v predelu Qe$me, Izmir (Egejsko morje, Turčija) Mohamed Mourad BEN AMOR, Khadija OUNIFI-BEN AMOR & Christian CAPAPČ Additional records and extension of the range of blackfish, Centrolophus niger (Osteichthyes: Centrolophidae) from the Tunisian coast (central Mediterranean Sea)........... 123 Novi zapis o pojavljanju črnuha, Centrolophus niger (Osteichthyes: Centrolophidae) iz tunizijske obale (osrednje Sredozemsko morje) Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIČ Occurrence of ribbon fish (Trachipterus trachypterus) in Slovenian waters (northern Adriatic Sea).......................................... 129 Pojavljanje kosice (Trachipterus trachypterus) v slovenskem morju (severni Jadran) ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 FLORA FLORA FLORA Nina REUTOVA, Petimat DZHAMBETOVA & Se-rikbay ABILEV Species of wild flora as indicators of environmental genotoxicity.............................. 137 Rastlinske vrste kot indikatorji okoljske genotoksičnosti Amelio PEZZETTA Le Orchidaceae del Comune di Pisino (Pazin, Croazia)............................................................... 147 Kukavičevke pazinske občine (Pazin, Hrvaška) FAVNA FAUNA FAUNA Ana FORTIČ & Borut MAVRIČ First record of the bryozoan Tricellaria inopinata (d'Hondt and Occhipinti-Ambrogi, 1985) from the Slovenian sea......................................... 155 Prvi zapis o pojavljanju mahovnjaka Tricellaria inopinata (d'Hondt and Occhipinti-Ambrogi, 1985) iz slovenskega morja Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA Macrozoobenthos of arid watercourses of Kazakhstan: the Ilek River case......................... 161 Makrozoobentos aridnih vodnih teles v Kazahstanu: primer reke Ilek MISCELLANEA Matjaž URŠIČ, Matija KRIŽNAR & Pavel JAMNIK Pregled pleistocenske favne in analiza ugrizov na kosteh v jamah Bele vode nad Gorenjo Trebušo in Smoganica nad Mostom na Soči.......... 173 Review of Pleistocene fauna and the analysis of bone bite marks in the caves Bele vode near Gorenja Trebuša and Smoganica near Most na Soči OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Lovrenc LIPEJ & Martina ORLANDO-BONACA Book review: La biologia marina a Trieste e nell'Alto Adriatico..........................................................................................193 IN MEMORIAM In memory of Mark Hines (1950-2018) (Jadran Faganeli) ....................................................................................................201 Navodila avtorjem................................................................................................203 Istruzioni per gli autori....................................................................................205 Instruction to Authors........................................................................................207 Kazalo k slikam na ovitku..........................................................................210 Index to images on the cover................................................................210 SREDOZEMSKI MORSKI PSI SQUALIMEDITERRANEI MEDITERRANEAN SHARKS ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 original scientific article DOI 10.19233/ASHN.2018.10 received: 2018-09-12 RECENT RECORDS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS (LINNAEUS, 1758) (CHONDRICHTHYES: LAMNIDAE), IN TURKISH WATERS (EASTERN MEDITERRANEAN) Hakan KABASAKAL & Erdi BAYRI Ichthyological Research Society, Tantavi mahallesi, Mente§oglu caddesi, Idil apt., No: 30, D: 4, Ümraniye, TR-34764 Istanbul, Turkey E-mail: kabasakal.hakan@gmail.com Eylül ATAQ Ege University, Fisheries Faculty, Izmir, Turkey ABSTRACT Between January 2016 and April 2018, 3 juvenile great white sharks, Carcharodon carcharias (Linnaeus, 1758), were incidentally captured in the coastal waters of the Turkish Aegean Sea. Journeys of young-of-the-year (YOY) and juvenile specimens can increase the risk of their encountering fishing gears if the specimens head for regions where the fishery of the great whites is not banned. An understanding of the geographic range and knowledge of the vertical distribution of the YOY and juvenile great whites are therefore necessary to implement a management plan for great white populations in Turkish waters and to reduce the incidental fishing mortality of this vulnerable top predator. Key words: Great white shark, Carcharodon carcharias, conservation, nursery, distribution RECENTI RITROVAMENTI DEL GRANDE SQUALO BIANCO, CARCHARODON CARCHARIAS (LINNAEUS, 1758) (CHONDRICHTHYES: LAMNIDAE), IN ACQUE TURCHE (MEDITERRANEO ORIENTALE) SINTESI Nel periodo tra gennaio 2016 e aprile 2018, 3 giovani esemplari del grande squalo bianco, Carcharodon carcharias (Linnaeus, 1758), sono stati catturati accidentalmente nelle acque costiere del mar Egeo turco. Gli spostamenti degli esemplari che non hanno ancora raggiunto ilprimo anno di eta (YOY) e degli stadi giovanili possono aumentare il rischio di incontrare attrezzi da pesca, se gli esemplari si dirigono verso regioni in cui la pesca dei grandi squali bianchi non e vietata. Una comprensione dell'estensione geografica e la conoscenza della distribuzione verticale degli esemplari YOY e degli stadi giovanili della specie sono quindi necessarie per attuare un piano di gestione per le popolazioni del grande squalo bianco nelle acque turche e per ridurre la mortalita causata dalla pesca accidentale di questo vulnerabile predatore. Parole chiave: grande squalo bianco, Carcharodon carcharias, conservazione, area di riproduzione, distribuzione 93 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Hakan KABASAKAL & Erdi BAYRI: RECENT RECORDS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS (LINNAEUS, 1758) ..., 93-98 INTRODUCTION The great white shark, Carcharodon carcharias (Linnaeus, 1758), has been known in Turkish waters since the Middle Ages (Bellonii, 1553; Kabasakal, 2014). In the 16th-century manuscript, Bellonii (1553) reported a great white shark caught off the Izmir coast (central Aegean Sea). Besides this historical anecdotal record, the majority of data on the occurrence of C. carcharias in Turkish waters have been gathered since the 1880s (Kabasakal, 2014, 2016). In a recent review on the historical and contemporary dispersal of the great white shark in Turkish waters, Kabasakal (2016) concluded that 54 specimens were recorded in the mentioned region between 1881 and 2014. Since C. carcharias is a mythic species with the status of endangered large shark in the Mediterranean Sea (Cavanagh & Gibson, 2007), each capture constitutes an ichthyological event of which the world of ichthyology deserves to be informed. In the present article, the authors report on the recent captures of the great white shark in the Aegean Sea, off the Turkish coast, which are considered valuable data for the general understanding of the eastern Mediterranean distribution of C. carcharias. MATERIAL AND METHODS Since the great white shark is an endangered species and protected in certain parts of the Mediterranean Sea (Cavanagh & Gibson, 2007; Serena, 2005), the selection of an appropriate sample for the present study was an instance of typical opportunistic research, consisting in dead animal sampling (Jessup, 2003). A regular screening of social media, local newspapers - both printed and internet based - and recreational fishing websites provided the authors with information on the present incidental captures of great white sharks. All three cases were verified by interviewing fishermen and were considered as confirmed if a properly shot photo of the specimen accompanied the record. For the three specimens, the following data were collected: total length o *' ' v 100 Itn * v Fig. 1: Carcharodon carcharias, captured on January 2, 2016, in the Bay of Edremit. (Photo: IRS archives). Sl. 1: Primerek belega morskega volka, ki je bil ulovljen 2. januarja 2016 v edremitskem zalivu (Foto: arhiv IRS). Fig. 2: Capture localities of new-born (m) and juvenile (•) specimens of Carcharodon carcharias incidentally captured in Turkish Aegean waters, from previous studies and the present research. Sp. 1: specimen from the present study captured on January 2, 2016, in the Bay of Edremit; Sp. 2: specimen from the present study captured on June 4, 2017, off the Didim coast; and Sp. 3: specimen from the present study captured on April 14, 2018, off the Izmir coast. Sl. 2: Lokalitete, kjer so bili v turškem delu Egejskega morja naključno ujeti novorojenec (n) in mladostni primerek (l) belega morskega volka na podlagi podatkov iz predhodnih raziskav in iz pričujoče študije. Sp. 1: primerek iz pričujoče študije, ujet 2. januarja 2016 v zalivu Edremit; Sp. 2: primerek iz pričujoče študije, ujet 4. junija 2017 ob didimski obali; in Sp. 3: primerek iz pričujoče študije, ujet 14. aprila 2018, ob obali Izmirja. 94 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Hakan KABASAKAL & Erdi BAYRI: RECENT RECORDS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS (LINNAEUS, 1758) ..., 93-98 (TL) to the nearest cm, weight (W) to the nearest gram, sex, gear and capture depth. The photographs of the present specimens, referenced with dates of capture and fishing localities, are preserved in the digital archives of the Ichthyological Research Society (IRS). RESULTS AND DISCUSSION On January 2, 2016, a female great white shark (Sp. 1; Fig. 1) got entangled in a coastal stationary net in the Bay of Edremit (northeastern Aegean Sea; Fig. 2). The total length of the shark was 175 cm. The dried head, jaws and caudal fin of the specimen are preserved by local fishermen in Altinoluk province. A male great white shark (Sp. 2; Fig. 3), measuring 200 cm in total length and weighing 60 kg, was captured by a commercial purse-seiner off the Didim coast (central Aegean Sea; Fig. 2) on June 4, 2017. On April 14, 2018, a female great white shark (Sp. 3; Fig. 4), was captured by a coastal stationary-netter, off the Izmir coast (central Aegean Sea; Fig. 2), and the total length of the specimen was 180 cm. After being displayed at the fishmonger's for a few days, specimens 2 and 3 were discarded, and / ni ■ f 4Í ML ; % -- ■ Fig. 3: Carcharodon carcharías, captured on June 4, 2017, off the Didim coast. (Photo: IRS archives). Sl. 3: Primerek belega morskega volka, ki je bil ulovljen 4. junija 2017 ob didimski obali (Foto: arhiv IRS). no body parts were preserved to be available for further inspection. Based on previous records (n = 54; Kabasakal, 2016) and the results of the present study, 57 specimens of C. carcharías were recorded in Turkish waters from the 1880s to date. In a recent inventory study, De Maddalena & Heim (2012) provided the details of 596 great white sharks recorded in the entire Mediterranean Sea and adjacent waters. Following Boldrocchi et al. (2017), who recently reviewed the distribution, ecology and status of great white sharks in the Mediterranean Sea, at least 629 great white sharks were recorded in the mentioned region between 476 and 2015. Therefore, the 57 specimens of C. carcharías recorded in Turkish waters represent 9% of all Mediterranean records of the great white shark. Based on the available data, it is safe to presume that the great white shark is a regular seasonal visitor of Turkish waters, and that a possible breeding and nursery ground is located in the central-northern Aegean Sea (Kabasakal 2014, 2016). Specimens of the great white sharks examined in the present research were juveniles and incidentally captured in coastal waters. Along the Aegean coast of Turkey, coastal fishery possibly puts a threatening pressure on the survival of young great white sharks, which was also suggested by previous studies (Kabasakal & Gedikoglu, 2008; Kabasakal & Kabasakal, 2015; Kabasakal et al., 2009) and confirmed by the results of the present study. Referring to the map depicted on Figure 2, capture localities of young-of-the-year (YOY) and juvenile great white sharks extend over a wide area from northern to southern parts of the Aegean Sea. Although the juvenile specimens were captured over the entire region, YOY specimens were only captured in the waters of the Bay of Edremit (Fig. 2). Therefore, based on the data on the occurrence of YOY and juvenile great white sharks in Turkish waters (Kabasakal, 2014, 2016; results of the present study), the Bay of Edremit can be considered as a breeding ground of C. carcharías, where pregnant females give birth to pups between late spring and midsummer, then the juveniles move to a wider nursery region that extends along almost the entire Turkish coast of the Aegean Sea (Fig. 2). Based on the captures of pregnant females with developing or near-term embryos, and juvenile specimens, Saidi et al. (2005) and Rafrafi-Nouira et al. (2015) suggest that central Mediterranean off the Tunisian coast could be considered as a possible nursery area for C. carcharías, as well. In a previous study focused on the movements, behaviour and habitat preferences of juvenile specimens of C. carcharías in the eastern Pacific, Weng et al. (2007) reported that YOY great white sharks can travel over 700 km in a few months. Weng et al. (2007) suggest that journeys of YOY and juvenile specimens can increase the risk of them encountering fishing gears if the specimens head for regions where the fishery of the great whites is not banned. To conclude, an un- 95 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Hakan KABASAKAL & Erdi BAYRI: RECENT RECORDS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS (LINNAEUS, 1758) ..., 93-98 Fig. 4: Carcharodon carcharías, captured on April 14, 2018, off the Izmir coast. (Photo: IRS archives). Sl. 4: Primerek belega morskega volka, ki je bil ulovljen 14. aprila 2018 ob izmirski obali (Foto: arhiv IRS). derstanding of the geographic range and knowledge of the vertical distribution of the YOY and juvenile great whites are necessary to implement a management plan for great white populations in Turkish waters and to reduce the incidental fishing mortality of this vulnerable top predator. ACKNOWLEDGEMENTS Authors wish to thank the fishermen, who kindly provided support in the field surveys of great white shark research, carried out by Ichthyological Research Society (Istanbul) since 2000. The first author extends special thanks to his wife, Ozgur, and his son, Derin, for their endless love and patience. 96 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Hakan KABASAKAL & Erdi BAYRI: RECENT RECORDS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS (LINNAEUS, 1758) ..., 93-98 RECENTNI PODATKI O BELEM MORSKLEM VOLKU, CARCHARODON CARCHARIAS (LINNAEUS, 1758) (CHONDRICHTHYES: LAMNIDAE), V TURŠKIH VODAH (VZHODNO SREDOZEMLJE) Hakan KABASAKAL & Erdi BAYRI Ichthyological Research Society, Tantavi mahallesi, Mente§oglu caddesi, Idil apt., No: 30, D: 4, Ümraniye, TR-34764 Istanbul, Turkey E-mail: kabasakal.hakan@gmail.com Eylül ATAQ Ege University, Fisheries Faculty, Izmir, Turkey POVZETEK Med januarjem 2016 in aprilom 2018 so bili v ribiške mreže v obalnih vodah turškega dela Egejskega morja naključno ujeti trije primerki belega morskega volka, Carcharodon carcharias (Linnaeus, 1758). Potovanja enoletnih mladičev in mladostnih primerkov v okolja, kjer ni prepovedi lova na belega morskega volka, je zaradi ribolova zelo tvegano. Razumevanje areala in navpične razširjenosti enoletnih in mladostnih morskih volkov je zato nujno za vzpostavitev akcijskega plana za populacije morskih volkov v turških vodah in za zmanjšanje naključnega ulova tega ogroženega plenilca na vrhu prehranjevalne verige. Ključne besede: veliki beli morski volk, Carcharodon carcharias, ohranjanje, vzrejno območje, razširjenost 97 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Hakan KABASAKAL & Erdi BAYRI: RECENT RECORDS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS (LINNAEUS, 1758) ..., 93-98 REFERENCES Bellonii, P. (1553): De aquatilibus, Librio duo. Cum eiconibus ad viuam ipforum effigiem, quoad eius fieri potuit, expreffis. Paris: Cum priuilegio Regis. Boldrocchi, G., J. Kiszka, S. Purkis, T. Storai, L. Zin-zula & D. Burkholder (2017): Distribution, ecology, and status of the white shark, Carcharodon carcharías, in the Mediterranean Sea. Rev. Fish. Biol. Fisheries. DOI: 10.1007/s11160-017-9470-5. Cavanagh, R.D. & C. Gibson (2007): Overview ofthe conservation status of cartilaginous fishes (Chon-drichthyans) in the Mediterranean Sea. IUCN, Gland, Switzerland and Malaga, Spain, 42 pp. De Maddalena, A. & W. Heim (2012): Mediterranean great white sharks: a comprehensive study including all recorded sightings. Jefferson, McFarland, 242 pp. Jessup, D.A. (2003): Opportunistic research and sampling combined with fish and wildlife management actions or crisis response. ILAR Journal, 44, 277-285. Kabasakal, H. (2008): Two recent records of the great white sharks, Carcharodon carcharías (Linnaeus, 1758) (Chondrichthyes: Lamnidae), caught in Turkey's waters. Annales, Ser. Hist. Nat., 18, 11-16. Kabasakal, H. (2014): The status of the great white shark (Carcharodon carcharías) in Turkey's waters. Mar. Biodivers. Rec., 7, doi:10.1017/S1755267214000980. Kabasakal, H. (2015): Occurrence of the shortfin mako shark, Isurus oxyrinchus Rafinesque, 1810, off Turkey's coast. Marine Biodiversity Records 8, e134, doi:10.1017/S1755267215001104. Kabasakal, H. (2016): Historical dispersal of the great white shark, Carcharodon carcharias, and bluefin tuna, Thunnus thynnus, in Turkish waters: Decline of a predator in response to the loss of its prey. Annales, Ser. Hist. Nat., 26, 213-220. Kabasakal, H. & S.O. Gedikoglu (2008): Two newborn great white sharks, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes; Lamnidae) from Turkey's waters of the north Aegean Sea. Acta Adriat., 49, 125135. Kabasakal, H. & O. Kabasakal (2015): Recent record of the great white shark, Carcharodon carcharias (Linnaeus, 1758), from central Aegean Sea off Turkey's coast. Annales, Ser. Hist. Nat., 25, 11-14. Kabasakal, H., A. Yarmaz & S.O. Gedikoglu (2009): Two juvenile great white sharks, Carcharodon carcharias (Linnaeus, 1758) (Chondrichthyes; Lamnidae), caught in the northeastern Aegean Sea. Annales, Ser. Hist. Nat., 19, 127-134. Rafrafi-Nouira, S., O. El Kamel-Moutalibi, C. Rey-naud, M. BoumaTza & C. Capape (2015): Additional and unusual captures of elasmobranch species from the northern coast of Tunisia (central Mediterranean). J. Ichthyol., 55, 836-848. SaTdi, B., M.N. BradaT, A. BouaTn, O. Guelorget & C. Capape (2005): Capture of a pregnant female white shark Carcharodon carcharias (Lamnidae) in the Gulf of Gabes (southern Tunisia, central Mediterranean) with comments on oophagy in sharks. Cybium, 29, 303-307. Serena, F. (2005): Field identification guide to the sharks and rays of the Mediterranean and Black Seas. FAO species identification guide for fishery purposes. Rome: FAO, 97 pp. Weng, K.C., J.B. O'Sullivan, C.G. Lowe, C.E. Winkler, H. Dewar & B.A. Block (2007): Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Proc. Ser., 338, 211-224. 98 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 short scientific article DOI 10.19233/ASHN.2018.11 received: 2018-09-17 ADDITIONAL RECORDS OF SANDBAR SHARK, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) FROM THE NORTHERN TUNISIAN COAST (CENTRAL MEDITERRANEAN SEA) Christian CAPAPÉ Laboratoire d'Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr Sihem RAFRAFI-NOUIRA Laboratoire de Bio-surveillance de l'Environnement, Unité d'Hydrobiologie Littorale et Limnique, Université de Carthage, Faculté des Sciences, Zarzouna, 7021 Bizerte, Tunisia Khadija OUNIFI-BEN AMOR Université de Carthage, Institut National Agronomique de Tunisie, 43 avenue Charles Nicolle, 1082-Tunis-Mahrajène,Tunisia ,Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Biodiversité, Biotechnologie et Changement Climatique, LR11ES09, 1002, Tunis, Tunisia Mohamed Mourad BEN AMOR Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia ABSTRACT Recent investigations conducted off Ras Jebel in the northern Tunisian coast have allowed a collection of 9 specimens of sandbar shark Carcharhinus plumbeus (Nardo, 1825), 5 males and 4 females. They ranged in size between 890 and 2030 mm and weighed between 3.5 and 38 kg. Such captures confirm the occurrence of the species in an area where a viable population seems to be successfully established. However, the origin of the species remains uncertain, it probably migrated from southern Tunisia, where the species is rather abundant, or, possibly, from western areas, the Algerian coast, where it is also commonly caught. Key words: Carcharhinus plumbeus, description, distribution, expansion range, central Mediterranean Sea NUOVI RITROVAMENTI DELLO SQUALO GRIGIO, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) LUNGO LA COSTA SETTENTRIONALE DELLA TUNISIA (MEDITERRANEO CENTRALE) SINTESI Recenti indagini condotte al largo di Ras Jebel, lungo la costa settentrionale della Tunisia, hanno permesso di raccogliere 9 esemplari di squalo grigio, Carcharhinus plumbeus (Nardo, 1825), ossia 5 maschi e 4 femmine. Le lunghezze degli esemplari variavano tra gli 890 e i 2030 mm, mentre il peso era compreso tra i 3,5 e i 38 kg. Tali catture confermano l'ipotesi che una popolazione vitale si sia stabilita con successo in quest'area. Tuttavia, il punto d'origine della specie rimane incerto. Gli autori ipotizzano che sia migrata dal sud della Tunisia, dove la specie è piuttosto abbondante, o da zone a occidente, quali la costa algerina, dove viene comunemente catturata. Parole chiave: Carcharhinus plumbeus, descrizione, distribuzione, intervallo di espansione, Mediterraneo centrale 99 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Christian CAPAPÉ et a/.: ADDITIONAL RECORDS OF SANDBAR SHARK, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) FROM ..., 99-104 INTRODUCTION The sandbar shark Carcharhinus plumbeus (Nardo, 1827) is a migratory species widely distributed throughout the world and commonly reported from southern Mediterranean areas (Capape, 1989). However, it disappeared from the northern areas of the western Basin, such as the coast of France, for instance (Capape et al., 2000). The species has been only sporadically captured in the Adriatic Sea (Costantini & Affronte, 2003; Lipej et al., 2008; Dragicevic et al., 2010) and in the southern Aegean Sea, off southwestern Turkey (Bilecenoglu et al., 2014), whereas it is still commonly and abundantly caught off the Maghreb coast (Hemida et al., 2002; SaTdi et al., 2005). Carcharhinus plumbeus is abundant in southern Tunisian areas, such as the Gulf of Gabes, but rather rare in northern areas, its range extending as far as the Gulf of Tunis (Capape, 1989). However, three specimens were captured in the waters surrounding the Cani Rocks (Raf-rafi-Nouira et al., 2015), and a large female was caught off Tabarka, a city located in the northern Tunisian coast, close to the Algerian border (Soufi-Kechaou et al., 2018). In the wake of a collaboration with experienced fishermen aware of fishing grounds, we were informed of other Fig. 1: Map of the northern Tunisian coast indicating two previous and the present capture sites of Carcharhinus plumbeus: 1. in the waters surrounding the Cani Rocks off Ras Jebel (Rafrafi et al., 2015); 2. in the waters surrounding the Galite Islands and the Cani Rocks off Tabarka (Soufi-Kechaou, 2018); 3. off Bizerte (this study). GT = Gulf of Tunis, GH = Gulf of Hammamet. Sl. 1: Zemljevid severne tunizijske obale z označbo dveh predhodnih in nove lokalitete, kjer so ujeli sive morske pse: 1. vode, ki obkrožajo Cani Rocks blizu predela Ras Jebel (Rafrafi et al., 2015); 2. vode, ki obdajajo otoke Galite in Rocks blizu Tabarke (Soufi-Kechaou, 2018); 3. okoli Bizerte (pričujoča študija). GT = tuniški zaliv, GH = hammameški zaliv. specimens of Carcharhinus plumbeus captured in the northern coast of Tunisia. These captures are presented and commented in this paper, offering us the opportunity to assess the real status of the species in the area. MATERIAL AND METHODS On 11 July 2018, 9 specimens of Carcharhinus plumbeus were caught by pelagic longlines, on sandy-rocky bottoms, at depths between 140 and 170 m, together with sparid species and swordfish Xiphias gladius Linnaeus, 1758. These captures occurred off the city of Bizerte in northern Tunisia, at 37° 27' 13" N and 9° 51' 03" E (Fig. 1). All specimens were measured for total length (TL) to the nearest millimetre by digital callipers and weighed to the nearest gram. Due to the local economic value of C. plumbeus, they were immediately sold, except for the smallest specimen, which was donated by the fishermen for further laboratory examination. Morphometric measurements and tooth counts were performed on this shark following Rafrafi-Nouira et al. (2015). The head of the specimen was fixed in 10% buffered formalin, preserved in 75% ethanol and deposited in the Ichthyological Collection of the Faculté des Sciences de Bizerte (Tunisia), under the catalogue number FSB-Car-plu-02. RESULTS AND DISCUSSION The specimens were identified as Carcharhinus plumbeus following a combination of main morphological characters (Fig. 2): body stout, snout broadly rounded and short; first dorsal fin high, triangular, its origin over pectoral bases; pectoral fins broadly triangular, relatively long; interdorsal ridge present; upper teeth broadly triangular and serrated, with oblique cusp; lower teeth erect with narrow serrated cusp (Fig. 3), dental formula [13-1-13/12-1-12]; skin almost entirely covered by dermal denticles compactly arranged; denticles rounded, with 4 to 6 ridges extending from base to crown, exhibiting several cuspids (Fig. 4); colour of body grey to bronze on upper surface, belly whitish. The morphology, the measurements (Table 1), the shape of the teeth in the upper and lower jaws and that of dermal denticles coincided with previous observations by Capapé et al. (1979), Cadenat & Blache (1981), Garrick (1982), Branstetter (1984) and Compagno (1984), allowing to identify these 9 captured specimens as C. plumbeus. Of these 9 specimens, 5 were males and 4 females (Fig. 2). The total length ranged between 1367 and 2030 mm in males, and between 890 and 1258 mm in females. The total body weight in males and females ranged between 12 and 38 kg, and between 3.5 and 9.8 kg, respectively. Following previous observations related to the specimens from the Tunisian coast (Capapé, 100 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Christian CAPAPÉ et a/.: ADDITIONAL RECORDS OF SANDBAR SHARK, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) FROM ..., 99-104 Tab. 1: Morphometric measurements (in mm) and as percentages of total length (TL %) recorded in the specimens of Carcharhinus plumbeus (ref. FSB-Car-plu-02) caught off Bizerte. Tab. 1: Morfometrične meritve (v mm) in delež celotne dolžine (TL %) primerkov Carcharhinus plumbeus (ref. FSB-Car-plu-02) ujetih pri Bizerti. Reference FSB-Car-plu-02 Sex Morphometric measurements M mm ale % TL Total length 890 100.00 Head length 170 19.10 Prebranchial length 165 18.54 Preorale length 65 7.30 Prenasal length 20 2.25 Intergill length 140 15.73 Eye with 11 1.24 Eye height 12 1.35 Internasal length 50 5.62 Mouth width 80 8.99 Distance between snout 1st gill 70 7.87 Precaudal length 250 28.09 First dorsal base 100 11.24 First dorsal inner margin 35 3.93 First dorsal posterior margin 110 12.36 First dorsal anterior margin 120 13.48 Second dorsal base 40 4.49 Second dorsal inner margin 35 3.93 Second dorsal posterior margin 40 4.49 Second dorsal anterior margin 40 4.49 Pectoral base 55 6.18 Pectoral inner margin 43 4.83 Pectoral anterior margin 140 15.73 Pectoral posterior margin 130 14.61 Pelvic base 40 4.49 Pelvic inner margin 30 3.37 Pelvic anterior margin 40 4.49 Pelvic posterior margin 50 5.62 Anal base 35 3.93 Anal inner margin 30 3.37 Anal anterior margin 50 5.62 Anal posterior margin 45 5.06 Dorsal caudal margin 220 24.72 Upper postventral caudal margin 130 14.61 Subterminal caudal margin 25 2.81 Lower postventral caudal margin 50 5.62 Preventral caudal margin 80 8.99 Terminal caudal margin 50 5.62 Caudal peduncle height 40 4.49 Weight Total body mass (g) 3500 101 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Christian CAPAPÉ et a/.: ADDITIONAL RECORDS OF SANDBAR SHARK, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) FROM ..., 99-104 Fig 2: The nine specimens of Carcharhinus plumbeus caught off Bizerte. Scale bar = 300 mm. Sl. 2: Devet primerkov sivega morskega psa, ujetih blizu Bizerte. Merilo = 300 mm. 1984; SaTdi et al., 2005), male and female C. plumbeus mature between 1545 and 1600 mm, and between 1660 and 1720 mm, respectively. Therefore, of the 5 males captured, 4 were adults and 1 was juvenile, as confirmed by the observation of claspers, which were rigid, calcified and developed in the former (see Col-lenot, 1969). Conversely, it appears that all sampled females were probably juvenile, because they had not yet reached the size associated with sexual maturity (see Capape, 1984; SaTdi et al., 2005). This is the first time that a significant number of Carcharhinus plumbeus was discovered in the northern Tunisian coast. Previous, even recent, captures of this species made in the same comprised large, adult and juvenile males and females (Rafrafi-Nouira et al., 2015; Soufi-Kechaou et al., 2018). Therefore, the presence of C. plumbeus in northern Tunisian waters supports the hypothesis of an established population in the area. So much so, as there exist nursery areas for C. plumbeus (BradaT et al., 2005) in southern Tunisia and migrations of elasmobranch species from these areas were / Fig. 3: Head of specimen FSB-Car-plu-02, with ventral surface showing teeth in the upper and lower jaws. Scale bar = 20 mm. Sl. 3: Glava primerka FSB-Car-plu-02 s spodnje strani; vidni so zobje iz zgornje in spodnje čeljustnice. Merilo = 20 mm. Fig. 4: Placoid scales removed from the skin of specimen FSB-Car-plu-02. Scale bar = 0.5 mm. Sl. 4: Iz kože primerka FSB-Car-plu-02 pobrane plakoidne luske z dentikli. Merilo = 0,5 mm. 102 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Christian CAPAPÉ et a/.: ADDITIONAL RECORDS OF SANDBAR SHARK, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) FROM ..., 99-104 suggested by Rafrafi-Nouira et al. (2015). Additionally, C. plumbeus is rather abundant in the nearby Algerian waters, and migration from this region towards the east, including the Tunisian coast, has probably occurred. Due to the global warming of the Mediterranean (Francour et al., 1994), it appears that some species can be found in areas where they were previously considered rare or unknown (Ben Raïs Lasram & Mouillot, 2009); internal migration of fish has been reported throughout the Tunisian waters (Rafrafi-Nouira, 2016), with extensive migrations from distant regions, such as the Red Sea and the Eastern Tropical Atlantic, further enhancing the already important changes in the local biodiversity (Ben Amor et al., 2016; Ounifi-Ben Amor et al., 2016). Additionally, these findings may support the thesis that at present, this species cannot exactly be considered as threatened (Musick et al., 2009). However, following Souif-Kechaou et al. (2018), opposite patterns manifest in other large Mediterranean shark species, which have been faced with a drastic decline in population and are, therefore, on the way to becoming extinct in this sea (Ferretti et al., 2008). NOVI ZAPISI O POJAVLJANJU SIVEGA MORSKEGA PSA, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) NA SEVERNI TUNIZIJSKI OBALI (OSREDNJE SREDOZEMSKO MORJE) Christian CAPAPÉ Laboratoire d'Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr Sihem RAFRAFI-NOUIRA Laboratoire de Bio-surveillance de l'Environnement, Unité d'Hydrobiologie Littorale et Limnique, Université de Carthage, Faculté des Sciences, Zarzouna, 7021 Bizerte, Tunisia Khadija OUNIFI-BEN AMOR Université de Carthage, Institut National Agronomique de Tunisie, 43 avenue Charles Nicolle, 1082-Tunis-Mahrajène,Tunisia ,Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Biodiversité, Biotechnologie et Changement Climatique, LR11ES09, 1002, Tunis, Tunisia Mohamed Mourad BEN AMOR Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia POVZETEK V okviru recentnih raziskav v vodah okoli lokalitete Ras Jebel na severni tunizijski obali je bilo ujetih 9 primerkov sivega morskega psa Carcharhinus plumbeus (Nardo, 1825), 5 samcev in 4 samice. V dolžino so merili med 890 in 2030 mm in tehtali med 3,5 in 38 kg. Ta ujetja potrjujejo prisotnost vrste v predelu, kjer je še vedno prisotna ustaljena viabilna populacija. Kakorkoli že, izvor teh primerkov je še vedno slabo poznan; verjetno izvirajo iz voda južne Tunizije, kjer je vrsta še vedno razmeroma pogosta, ali pa iz zahodnih predelov iz Alžirije, kjer jo še vedno pogosto ulovijo. Ključne besede: Carcharhinus plumbeus, opis, razširjenost, razširjanje, osrednje Sredozemsko morje 103 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Christian CAPAPÉ et a/.: ADDITIONAL RECORDS OF SANDBAR SHARK, CARCHARHINUS PLUMBEUS (CHONDRICHTHYES: CARCHARHINIDAE) FROM ..., 99-104 REFERENCES Ben Amor, M.M., Y. Diatta, M. Diop, M. Ben Salem & C. Capapé (2016): Confirmed occurrence in the Mediterranean Sea of milk shark Rhizoprionodon acutus (Chondrichthyes: Carcharhinidae) and first record off the Tunisian coast. Cah. Biol. Mar., 57(2), 145-149. Ben Raïs Lasram, F. & D. Mouillot (2009): Increasing southern invasion enhances congruence between endemic and exotic Mediterranean fish fauna. Biol. Inv., 11(3), 697-711. Bilecenoglu, M., M. Kaya, B. Cihangir & E. Âiçek (2014): An updated checklist of the marine fishes of Turkey. Turk. J. Zool., 38(6), 901-929. Bradai, M.N., B. Saïdi, A. Bouaïn, O. Guélorget & C. Capapé (2005): The Gulf of Gabès (southern Tunisia, central Mediterranean): nursery area for sandbar shark, Carcharhinus plumbeus (Nardo, 1827) (Chondrichthyes: Carcharhinidae). Ann., ser. Hist. Nat., 15(2), 187-194. Branstetter, S. (1984): Carcharhinidae, pp. 102-114. In: P.J.P. Whitehead, M.-L. Bauchot, J.C. Hureau, J. Nielsen, E. Tortonese (eds.). Fishes of the North-Eastern Atlantic and the Mediterranean. UNESCO, Paris, Vol. 1. Cadenat, J. & J. Blache (1981): Requins de Méditerranée et d'Atlantique (plus particulièrement de la côte occidentale d'Afrique). Faune trop., ORSTOM, 21, 1-330. Capapé, C., J. Zaouali & M. Desoutter (1979): Note sur la présence en Tunisie de Carcharhinus obscurus (Lesueur, 1818) (Pisces, Pleurotremata) avec clé de détermination des Carcharhinidœ des côtes tunisiennes. Bull. Off. natn Pêch., Tunisie, 3(2), 173-182. Capapé, C. (1984): Nouvelles données sur la morphologie et la biologie de la reproduction de Carcharhinus plumbeus (Nardo, 1827) (Pisces, Carcharhinidae) des côtes tunisiennes. Invest. Pesq., 48(2), 115-137. Capapé, C. (1989): Les Sélaciens des côtes méditerranéennes: aspects généraux de leur écologie et exemples de peuplements. Océanis, 15(3), 309-331. Capapé, C., J.A Tomasini. & J.-P. Quignard (2000): Les Elasmobranches Pleurotrêmes de la côte du Languedoc (France méridionale, Méditerranée septentrionale). Observations biologiques et démographiques. Vie Milieu, 50(2), 123-133. Compagno, L.J.V. (1984): FAO Species Catalogue, vol. 4, Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species known to Date. FAO Fisheries Synopsis, 125, vol. 4, part 2 (non carcharhinoids), x +251-655. Collenot, G. (1969): Etude biométrique de la croissance relative des ptérygopodes chez la roussette Scyliorhinus canicula L. Cah. Biol. Mar., 10(3), 309-329. Costantini, M. & M. Affronte (2003): Neonatal and juvenile sandbar sharks in the northern Adriatic Sea. J. Fish Biol., 62(3), 740-743. Dragicevic, B., J. Dulcic & L. Lipej (2010): On the record of the sandbarshark Carcharhinus plumbeus Nardo, 1827 (Carcharhiniformes: Carcharhinidae) in the middle Atlantic Sea. Acta Adriat., 51(2), 227-232. Ferretti, F., R.A. Myers, F. Serena & H.K. Lotze (2008): Loss of large predatory sharks from the Mediterranean Sea Conserv. Biol., 22(4), 952-964. Francour, P., C.F. Boudouresque, J.G. Harmelin., M.L Harmelin-Vivien. & J.-P. Quignard (1994): Are the Mediterranean waters becoming warmer? Mar. Poll. Bull., 28(9), 523-526. Garrick, J.A.F. (1982): Sharks of the Genus Carcharhinus. NOAA Technical Report NMFS, Circular, 445, 1-194. Hemida, F., R. Seridji, N. Labidi, J. Bensaci & C. Capapé (2002): New data on Carcharhinus spp (Chon-drichthyes: Carcharhinidae) from off the Algerian coast (southern Mediterranean). Acta. Adriat., 43(2), 83-93. Lipej, L., B. Mavric, Z. Dobrajc & C. Capapé (2008): On the occurrence of the sandbar shark, Carcharhinus plumbeus (Chondrichthyes: Carcharhinidae) off the Slovenian coast (Northern Adriatic). Acta Adriat., 49(2), 137-145. Musick, J.A., J.D. Stevens, J.K. Baum, M.N. Bradai, S. Clo, I. Fergusson, R.D. Grubbs, A. Soldo, M. Vacchi & C.M. Vooren (2009): Carcharhinus plumbeus. The IUCN Red List of Threatened Species e.T3853A10130397. Downloaded on 12 September 2018. Ounifi Ben Amor, K., M. Rifi., R. Ghanem, I. Draeif, J. Zaouali & J. Ben Souissi (2016): Update of alien fauna and new records from Tunisian marine waters. Medit. Mar. Sc., 17(1), 124-14. Rafrafi-Nouira, S., O. El Kamel-Moutalibi, C. Rey-naud, M. Boumaïza & C. Capapé (2015): Additional and unusual captures of elasmobranch species from the northern coast of Tunisia (central Mediterranean). J Ichthyol., 55(6), 337-345. Rafrafi-Nouira, S. (2016): Catalogue raisonné des espèces de poissons capturées devant Ras Jebel et autres régions marines de Tunisie septentrionale: aspects morphologiques, biométriques et bio-écologiques. Thesis, Faculty of Sciences of Bizerte, University of Carthage (Tunisia), 509 pp. Saïdi, B., M.N. Bradaï, A. Bouaïn, O. Guélorget & C. Capapé (2005): Reproductive biology of the sandbar shark, Carcharhinus plumbeus (Chondrichthyes: Carcharhinidae) from the Gulf of Gabès (Southern Tunisia, Central Mediterranean). Acta. Adriat., 46(1), 47-62. Soufi-Kechaou, E., K. Ounifi Ben Amor, J. Ben Sou-issi, M.M. Ben Amor & C. Capapé (2018): The capture of a large predatory shark, Carcharhinus plumbeus (Chondrichthyes: Carcharhinidae), off the Tunisian coast (Central Mediterranean). Ann., ser. Hist. Nat., 28(1), 23-287. 104 RECENTNE SPREMEMBE V SREDOZEMSKI BIODIVERZITETI CAMBIAMENTI RECENTI NELLA BIODIVERSITÁ MEDITERRANEA RECENT CHANGES IN MEDITERRANEAN BIODIVERSITY ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 short scientific article DOI 10.19233/ASHN.2018.12 received: 2018-11-21 FIRST RECORD OF RED SEA GOATFISH PARUPENEUS FORSSKALI (OSTEICHTHYES: MULLIDAE) FROM TUNISIAN WATERS (CENTRAL MEDITERRANEAN SEA) Christian CAPAPÉ Laboratoire d'Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr Jeanne ZAOUALI & Khadija OUNIFI-BEN AMOR Université de Carthage, Institut National Agronomique de Tunisie, 43 avenue Charles Nicolle, 1082-Tunis-Mahrajène,Tunisia ,Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Biodiversité, Biotechnologie et Changement Climatique, LR11ES09, 1002, Tunis, Tunisia Mohamed Mourad BEN AMOR Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia ABSTRACT The authors present the first record of a Lessepsian migrant identified as Parupeneus forsskali (Fourmanoir & Guézé, 1976) based on an underwater photograph taken by a diver in the waters surrounding the Jerba Island (southern Tunisia). It is the fifth mullid species recorded in the area. The present note provides comments on the distribution of this species. Key words: description, distribution, expansion range, Tunisia, central Mediterranean Sea PRIMA SEGNALAZIONE DI PARUPENEUS FORSSKALI (OSTEICHTHYES: MULLIDAE) IN ACQUE TUNISINE (MEDITERRANEO CENTRALE) SINTESI Gli autori presentano il primo ritrovamento di un migrante lessepsiano identificato come Parupeneus forsskali (Fourmanoir e Guézé, 1976) in base ad una fotografia subacquea scattata da un subacqueo nelle acque che cir-condano l'isola di Gerba (Tunisia meridionale). È la quinta specie di mullidi confermata per l'area. La presente nota fornisce commenti sulla distribuzione di questa specie. Parole chiave: descrizione, distribuzione, intervallo di espansione, Tunisia, Mediterraneo centrale 107 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 CHRISTIAN CAPAPf et al.: FIRST RECORD OF RED SEA GOATFISH PARUPENEUS FORSSKALI (OSTEICHTHYES: MULLIDAE) FROM TUNISIAN WATERS ..., 107-110 INTRODUCTION The Red Sea goatfish Parupeneus forsskali (Fourman-oir & Gueze, 1976) is known as the most common mullid species in the Red Sea and Gulf of Aden, and one with a high economic value (Golani et al., 2017). The species has recently entered the Mediterranean Sea through the Suez Canal. Two specimens were sighted in Turkish waters (^inar et al., 2006), while other specimens were recorded in the Levant Basin (Bariche et al., 2013; Sonin et al., 2013; Ali et al., 2016). Following Erguden et al. (2018), P. forsskali appears to be successfully established throughout the Turkish coast and probably in the entire eastern Mediterranean Basin. The species has migrated toward western areas and has also been recorded off the Egyptian coast (Mehanna et al., 2016). Fig. 1: Map of the Central Mediterranean Sea copied from Ben Amor et al. (2016) indicating the site where the photograph of Parupeneus forsskali was taken in the waters surrounding the Jerba Island (JI, black star) in the Gulf of Gabes (GG). Gulf of Tunis (GT). GH = Gulf of Hammamet. Sl. 1: Zemljevid osrednjega Sredozemskega morja (prirejeno po Ben Amor in sod., 2016) z označeno lokaliteto, kjer je bil ob otoku Jerba (JI, črna zvezdica) v Gabeškem zalivu fotografiran primerek vrste Parupeneus forsskali. Oznake: Gabeški zaliv (GG), Tuniški zaliv (GT), Hammameški zaliv (GH). The migration has been confirmed by underwater observations in Tunisian waters, as a diver photographed the species in the wild and provided us with information about this important sighting, all of which is presented herein. MATERIAL AND METHODS P. forsskali was observed for the first time in the southern waters of the Gulf of Gabes surrounding the Jerba Island (33° 45' 35'' N and 11° 03' 12'') on 14 August 2016, at a depth not exceeding 7 m, on sandy-muddy bottom partially covered by sea grass and algae (Fig. 1), together with several sparid and mullid species. The specimen is herein described on the basis of a photograph (Fig. 2). RESULTS AND DISCUSSION The specimen was identified from a photograph as P. forsskali following a combination of characters: body elongated, slightly compressed, depth from origin of the first dorsal fin 20.5 %, pointed large upper profile of head slightly concave, eyes located in the upper part of the head, two long barbels both located on the chin, body pink with a black stripe from front tip of snout through the eye, along upper side of body, ending below rear base of second dorsal fin; a round black spot, about as large as the eye, on posterior third of caudal peduncle above lateral line, head and body yellow above stripe, white below, caudal fin yellow. The external morphology and colour patterns of the present specimen are in complete agreement with Sonin et al. (2013), Bariche et al. (2013) and Ali et al. (2016), which - despite the identification being based on a photograph - allows us to confirm this as the first record of Parupeneus forsskali in Tunisian waters. However, captures of additional specimens will be needed for a taxonomic verification following the suggestions of Bello et al. (2014) and assessment of the species' real status in the area where five mullid species have been reported to date. Two of them - the red mullet Mullus barbatus Linnaeus, 1758, and the striped red mullet M. surmuletus Linnaeus, 1758 - are native, the remaining three - the West African goatfish Pseudupeneus prayensis (Cuvier, 1829), found off the northern Tunisian coast (Azzouz et al., 2011), and two Lessepsian migrants, Por's goatfish Upeneus pori Ben-Tuvia & Golani, 1989, and the Red Sea goatfish P. forsskali - are allochthonous. U. pori was found in Bahiret El Biban, a brackish area located in southern Tunisia (Ben Souissi et al., 2006), migrating toward northern areas, where captures of the species occurred in the Lagoon of Bizerte (Azzouz et al., 2010). At present, U. pori is successfully established in the central Mediterranean and Italian seas (Deidun et al., 2018). The frequency of records of P. forsskali suggests an expansion of this species similar to that of U. pori into 108 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 CHRISTIAN CAPAPf et al.: FIRST RECORD OF RED SEA GOATFISH PARUPENEUS FORSSKALI (OSTEICHTHYES: MULLIDAE) FROM TUNISIAN WATERS ..., 107-110 Fig. 2: Parupeneus forsskali (underwater photograph by Hédi Zaouali). Sl.. 2: Parupeneus forsskali (podvodni posnetek, foto: Hédi Zaouali). the central Mediterranean and probably into the western basin. Additionally, the underwater photographer informed us that other P. forsskali specimens surrounded the present specimen. Furtherly, P. forsskali and U. pori should be locally monitored to allow an assessment of their importance and role in their new habitats. Interspecific competition between them and other indigenous mullid species cannot be totally ruled out, nor that between P forsskali and U. pori and other teleost species inhabiting similar biotopes and foraging for same preys. ACKNOWLEDGEMENTS The authors are indebted to Mr Hedi Zaouali, an underwater diver, who provides them the photography and information on Parupeneus forsskali. PRVI ZAPIS O POJAVLJANJU BRADAČA VRSTE PARUPENEUS FORSSKALI (OSTEICHTHYES: MULLIDAE) IZ TUNIZIJSKIH VODA (OSREDNJE SREDOZEMSKO MORJE) Christian CAPAPÉ Laboratoire d'Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr Jeanne ZAOUALI & Khadija OUNIFI-BEN AMOR Université de Carthage, Institut National Agronomique de Tunisie, 43 avenue Charles Nicolle, 1082-Tunis-Mahrajène,Tunisia ,Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Biodiversité, Biotechnologie et Changement Climatique, LR11ES09, 1002, Tunis, Tunisia Mohamed Mourad BEN AMOR Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia POVZETEK Avtorji poročajo o prvem zapisu o pojavljanju lesepske ribje selivke vrste Parupeneus forsskali (Fourmanoir & Guézé, 1976) v vodah okoli otoka Jerba (južna Tunizija). Podatek temelji na fotografiji, ki jo je posnel podvodni fotograf. To je peta vrsta bradačev, ki so bile doslej ugotovljene na obravnavanem območju. Avtorji nadalje razpravljajo o razširjanju vrste. Ključne besede: opis, razširjenost, širjenje areala, Tunizija, osrednje Sredozemsko morje 109 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 CHRISTIAN CAPAPf et al.: FIRST RECORD OF RED SEA GOATFISH PARUPENEUS FORSSKALI (OSTEICHTHYES: MULLIDAE) FROM TUNISIAN WATERS ..., 107-110 REFERENCES Ali, M., Y. Diatta, H. Alkusairy, A. Saad & C. Capape (2016): First record of Red Sea goatfish Parupeneus forsskali (Osteichthyes: Mullidae) from the Syrian coast (Eastern Mediterranean). J. Ichthyol, 56(4), 616-619. Azzouz, K., S. Mansour, M. BoumaTza & C. Capape (2010): Occurrence of the Por's goatfish Upeneus pori (Osteichthyes: Mullidae) in the Lagoon of Bizerte (northern Tunisia, central Mediterranean). Annales, Ser. Hist. Nat., 20(1), 29-32. Azzouz, K., Y. Diatta, S. Mansour, M. BoumaTza, M.M. Ben Amor & C. Capape (2011): First record of the West African goatfish Pseudupeneus prayensis (Osteichthyes: Mullidae) off the Tunisian coast (Central Mediterranean). Acta Ichthyol. Piscat., 41(2), 133-136. Bariche, M., M. Bilecenoglu & E. Azzurro (2013): Confirmed presence of the Red Sea goatfish Parupeneus forsskali (Fourmanoir and Gueze, 1976) in the Mediterranean Sea. Biolnvas. Rec., 2(2), 173-175. Bello, G., R. Causse, L. Lipej & J. Dulcic (2014): A proposal best practice approach to overcome unverified and unverifiable «first records» in ichthyology. Cybium, 38(1), 9-14. Ben Amor, M.M., Y. Diatta, M. Diop, M. Ben Salem & C. Capape (2016): Confirmed occurrence in the Mediterranean Sea of milk shark Rhizoprionodon acutus (Chondrichthyes: Carcharhinidae) and first record off the Tunisian coast. Cah. Biol. Mar., 57(2), 145-149. Ben Souissi, J., H. Mejri, J. Zaouali & C. Capape (2005): On the occurrence of the brownband goatfish, Upeneus pori Ben-Tuvia and Golani, 1989 (Mullidae) in Southern Tunisia (Central Mediterranean). Cybium, 29(4), 410-412. ^inar, M.E., M. Bilecenoglu, M. Ozturk, & A. Can (2006): New records of alien on the Levantine coast of Turkey. Aquat. Invas., 1(2), 84-90. Deidun, A., B. Zava, G. Insacco & M. Corsini-Foka (2018): First record of the Por's goafish (Actinopterygii: Perciformes: Mullidae) from Italian waters. Acta Ichthyol. Piscat., 48(1), 93-97. Erguden, D., Y.K. Bayhan, S. Alagoz Erguden & A. Altan (2018): Occurrence of the Red Sea goatfish, Parupeneus forsskali (Fourmanoir & Gueze, 1976) from the western Mediterranean coast of Turkey. Turk. J. Marit. Mar. Sci., 4(1), 68-72. Golani, D., L. Orsi-Relini, E. Massuti E. & J.-P. Quignard, J. Dulcic & E. Azzurro (2017): CIESM Atlas of Exotic Fishes in the Mediterranean Sea: alien fishes, invasive fishes. World Wide Web electronic publication. http// www.ciesm.org/atlas/appendix1.html, version 01/2017. Mehanna, S.F., U.M. Mahmoud & E.M. Hassanian (2018): First occurrence of the Red Sea goatfish, Parupeneus forsskali (Fourmanoir & Gueze, 1976) in the coastal waters of Egyptian Mediterranean Sea. Int. J. Fish Aquacult., 8(9), 94-97. Sonin, O., P. Salameh, E. Edelist & D. Golani (2013): First record of the Red Sea goatfish, Parupeneus forsskali (Perciformes: Mullidae) from the Mediterranean coast of Israel. Mar. Biodivers. Rec., 6, e105, 1-3. 110 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 short scientific article DOI 10.19233/ASHN.2018.13 received: 2018-08-27 THE NORTHERNMOST RECORD OF THE THERMOPHILIC MEDITERRANEAN PARROTFISH SPARISOMA CRETENSE (LINNAEUS, 1758) (PERCIFORMES, SCARIDAE) IN THE EASTERN MEDITERRANEAN SEA (NORTHWESTERN AEGEAN SEA) Thodoros E. KAMPOURIS & Ioannis E. BATJAKAS Marine Sciences Department, School of the Environment, University of the Aegean, University Hill, Mytilene, Lesvos Island, 81100, Greece E-mail: mard16012@marine.aegean.gr ABSTRACT On July 2018 a specimen of the thermophilic fish Sparisoma cretense, commonly known as Mediterranean par-rotfish, was captured in the Thermaic Gulf in the northwestern Aegean Sea, Greece, constituting the first such record in the region. The species mainly inhabits the southeastern shores of the Mediterranean, and its presence is in line with previous records of other thermophilic species in the northern Aegean which can be associated with the rise of sea temperatures as one of the signs of climate change. This record is the northernmost in the Eastern Mediterranean and the second northernmost record for the whole Mediterranean basin. Key words: Sparisoma cretense, thermophilic species, new records, biodiversity, climate change, Aegean Sea RITROVAMENTO PIÙ A NORD DEL PESCE PAPPAGALLO MEDITERRANEO TERMOFILO SPARISOMA CRETENSE (LINNAEUS, 1758) (PERCIFORMES, SCARIDAE) NEL MEDITERRANEO ORIENTALE (MAR EGEO NORD-OCCIDENTALE) SINTESI Nel luglio 2018 un esemplare del pesce termofilo Sparisoma cretense, comunemente noto come pesce pappagal-lo mediterraneo, è stato catturato nel Golfo Termaico nel mar Egeo nord-occidentale, in Grecia, costituendo il primo ritrovamento della specie nella regione. La specie vive principalmente lungo le coste sud-orientali del Mediterraneo e la sua presenza è in linea con le precedenti segnalazioni di altre specie termofile nell'Egeo settentrionale, che possono venir associate all'innalzamento della temperatura del mare come uno dei segni del cambiamento climatico. Questo ritrovamento è il più settentrionale del Mediterraneo orientale e il secondo più settentrionale per l'intero bacino del Mediterraneo. Parole chiave: Sparisoma cretense, specie termofile, nuovi ritrovamenti, biodiversità, cambiamenti climatici, mar Egeo 111 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Thodoros E. KAMPOURIS & loannis E. BATJAKAS: THE NORTHERNMOST RECORD OF THE THERMOPHILIC MEDITERRANEAN PARROTFISH ..., 111-116 INTRODUCTION The Mediterranean parrotfish, Sparisoma cretense (Linnaeus, 1758) is the only native parrotfish species of the Mediterranean Sea and can be added to the records of a few other temperate species within the Scaridae family (Froese & Pauly, 2018). So far, two alien Scaridae species have been reported within the Mediterranean, Chlorurus rhakoura Randall & Anderson, 1997 off the Italian coast (Insacco & Zava, 2017), and Scarus ghob-ban Forsskal, 1775 reported for the first time off the coasts of Israel in 2002 (Goren & Aronov, 2002). The Mediterranean parrotfish occurs along the east coast of the Atlantic Ocean from Senegal to Portugal and within the Mediterranean Sea, mainly inhabiting the south and east coasts (Louisy, 2015). Similar to Thalassoma pavo (Linnaeus, 1758), the Mediterranean parrot fish is an ancient Mediterranean colonizer of Atlantic origin (Domingues et al., 2008). It can be found at a maximum depth of 50 m (Petrakis & Papaconstantinou, 1990), but more usually between 5-15 m of depth (Guidetti & Boero, 2002). Mainly active during the day (Azzurro et al., 2007; 2013), it is a herbivorous species feeding on algae and seagrasses, e.g. Posidonia oceanica (Linnaeus) Delile, 1813 (de Girolamo et al., 1999) and Cymodocea nodosa (Ucria) Ascherson, 1870 (Del Río et al., 2016). While the adult population prefers mixed habitats with seagrass meadows and reefs, juveniles display no such preferences (Espino et al., 2015). The species commonly measures from 14 to 32 cm (total length) (Petrakis & Papaconstantinou, 1990), but might grow as big as 52 cm (total length) (Filiz & Sevingel, 2015). The Mediterranean parrotfish has a moderate longevity and is a slow-growing fish that may reach up to 8 years of age (Petrakis & Papaconstantinou, 1990). It spawns from July to September (Petrakis & Papaconstantinou, 1990; Guidetti & Boero, 2002), displays sexual dichromatism (de Girolamo et al., 1999) and a dual mating system, with either multi-male groups or one dominant male holding harems (Alfonso et al., 2002). The species has low economic importance but is locally exploited in the Dodecanese (Petrakis & Papaconstanti- Fig. 1: The male S. cretense specimen captured off the Thermaic Gulf. Sl. 1: Samec morske papige ujet v zalivu Thermaikos. nou, 1990). Recent records from the northern Mediterranean coast, off Italy (Azzurro et al., 2011), from the Adriatic Sea, Croatia (Kruschel et al., 2012), from the northwest Greek Ionian Sea (Perdikaris et al., 2012), from Provence, France (Astruch et al., 2016), and from the Genoa Gulf, Italy (Bianchi et al., 2017), as well as observed expansions in the Aegean Sea, on both Greek and Turkish coasts (Papaconstantinou, 2014; Yapici et al., 2016), also suggest a correlation with the sea temperature rise and climate change (Fogarty et al., 2017). MATERIAL AND METHODS A single adult male S. cretense (Fig. 1) was caught on 23 July 2018 in the Thermaic Gulf, at approximately 40° 04' 10.7" N and 23° 19' 59.3" E (Fig. 2), by trammel nets with a mesh size of 22 mm, on hard bottom mixed with P. oceanica meadows. The depth ranged from 30 to 35 m. Morphometric and meristic data were obtained. Lengths (Tab. 1) were measured with the use of digital callipers to the nearest 0.01 mm. Weight (Tab. 1) was measured with an electronic scale to the nearest gram. The specimen was deposited at the Ichthyology laboratory of the Department of Marine Sciences, University of the Aegean. RESULTS AND DISCUSSION The identification was based on the criteria description by Golani et al. (2006) and Louisy (2015). Table 1 presents the related morphometric and meristic data. This study reports the northernmost record in the eastern Mediterranean Sea as acknowledged by F.A.O (2018), and the second northernmost record in the whole basin Fig. 2: Map of the Thermaic Gulf, NW Aegean Sea, indicating sampling location (black dot). Sl. 2: Zemljevid obravnavanega območja (zaliv Thermaikos, SZ Egejsko morje) z označeno lokaliteto ulova morske papige (črna pika). 112 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Thodoros E. KAMPOURIS & loannis E. BATJAKAS: THE NORTHERNMOST RECORD OF THE THERMOPHILIC MEDITERRANEAN PARROTFISH ..., 111-116 (see Kruschel et al., 2012 for details). The species was described by the fishermen as "never before seen," which further supports the importance of this finding. The Aegean Sea has a complex topography (Olson et al., 2007). The area displays important physiochemical variations between north and south (Zervakis & Georgo-poulos, 2002). The northern Aegean Sea is an area of high productivity compared to the eastern Mediterranean, due to its interconnection with the Black Sea (Petihakis et al., 2014). Also, the northern Aegean Sea exhibits unique bottom topography features (the North Aegean Trough) that divide the area into three sub-basins: the Lemnos-Saros Islands Basin in the east, the Athos Basin in the centre, and the North Sporades Basin in the west (Zervakis & Georgopoulos, 2002, Olson et al., 2007). Recently some thermophilic fish species, native and alien, were reported off the northern Aegean Sea, with Kampouris et al. (2013) reporting the first record of oilfish, Ruvettus pretiosus Cocco, 1833, from the Chalkidiki Peninsula. Minos & Economidis (2015) report further occurrences of the tripletail Lobotes surinamensis (Bloch, 1790) from the Thermaic Gulf. The most striking is perhaps the record of the alien fish Plectorhinchus gaterinus (Forsskal, 1775) from the Thracian Sea, with no further records along the southeast Aegean and Levantine coasts (Corsini-Foka & Sarlis, 2016), which presents similarities with the first report of the African surgeonfish Acanthurus monroviae Steindachner, 1876 in Hellenic waters (Batjakas et al., 2015). CONCLUSIONS The in-depth knowledge and experience of fishers has been recognized as a valuable source of scientific information that should be further acknowledged and utilized. Wider collaboration should be established among scientists, practitioners and policy makers (Azzuro et al., 2018). Moreover, the contribution of naturalists and citizen-scientists on biodiversity monitoring Tab. 1: Morphometric and meristic characters of the S. cretense specimen captured off the Thermaic Gulf. Tab. 1: Morfometrija in meristični znaki pri morski papigi, ujeti v zalivu Thermaikos. Morphometric characters Value Total length 262.57 mm Standard length 218.78 mm Head length 65.36 mm Snout length 24.27 mm Eye diameter 11.76 mm Body depth 71.14 mm Depth of caudal peduncle 34.24 mm Max body width 34.94 mm Min body width 26.57 mm Weight 317 g Meristic counts Dorsal fin XI + 10 Anal fin III+9 Pectoral fin 12 Pelvic fin I+5 (e.g., Kampouris et al., 2018a) and on the detection and expansion of invasive alien species is already highly acknowledged (e.g. Kondylatos et al., 2017; Giovos et al., 2018; Kampouris et al., 2018b) and wider stakeholder synergies should be established. ACKNOWLEDGEMENTS Both authors are grateful to professional fishermen Dimitrios and Kyriakos Ganigiannis, for providing the specimen in view and sharing further information. 113 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Thodoros E. KAMPOURIS & loannis E. BATJAKAS: THE NORTHERNMOST RECORD OF THE THERMOPHILIC MEDITERRANEAN PARROTFISH ..., 111-116 NAJSEVERNEJŠI ZAPIS O POJAVLJANJU TOPLOLJUBNE MORSKE PAPIGE SPARISOMA CRETENSE (LINNAEUS, 1758) (PERCIFORMES, SCARIDAE) V VZHODNEM SREDOZEMSKEM MORJU (SEVEROZAHODNO EGEJSKO MORJE) Thodoros E. KAMPOURIS & Ioannis E. BATJAKAS Marine Sciences Department, School of the Environment, University of the Aegean, University Hill, Mytilene, Lesvos Island, 81100, Greece E-mail: mard16012@marine.aegean.gr POVZETEK Julija 2018 je bil v zalivu Thermaikos v severozahodnem Egejskem morju (Grčija) ujet primerek morske papige Sparisoma cretense, kar predstavlja prvi primer pojavljanja te vrste v regiji. Vrsta domuje pretežno v predelih jugovzhodnih obal Sredozemlja. Njeno pojavljanje je tako kot v primerih pojava drugih toploljubnih vrst v severnem Egejskem morju, povezano z dvigom temperature morja in podnebnimi spremembami. Gre za najsevernejši podatek o pojavljanju te vrste v vzhodnem Sredozemlju in drugi najsevernejši podatek za celoten sredozemski bazen. Ključne besede: Sparisoma cretense, termofilna vrsta, nov zapis, biodiverziteta, podnebne spremembe, Egejsko morje 114 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Thodoros E. KAMPOURIS & loannis E. BATJAKAS: THE NORTHERNMOST RECORD OF THE THERMOPHILIC MEDITERRANEAN PARROTFISH ..., 111-116 REFERENCES Alfonso, P., T. Morato, & R.S. Santos (2002): Spatial patterns in reproductive traits of the temperate parrotfish Sparisoma cretense. Fish Res., 90, 92-99. DOI: 10.1016/j.fishres.2007.09.029 Astruch, P., P. Bonhomme, A. Goujard, E. Rouanet, C. Boudouresque, J. Harmelinm & M. Harmelin-Vivien (2016): Provence and Mediterranean warming: The parrotfish Sparisoma cretense is coming. Rapp. Comm. int. Mer Médit., 41, 362. Azzurro, E., A. Pais, P. Consoli & F. Andaloro (2007): Evaluating day-night changes in shallow Mediterranean rocky reef fish assemblages by visual census. Mar Biol. 151, 2245-2253. DOI:10.1007/s00227-007-0661-9 Azzurro, E., G. Agzzi, F. Maynou, J.J. Chiesa, & D. Savini (2013): Diel rhythms in shallow Mediterranean rocky-reef fishes: a chronobiological approach with the help of trained volunteers. J. Mar. Biol. Assoc. U.K, 93(2), 461-470. DOI: 10.1017/S0025315412001166 Azzurro, E., L. Bolognini, B. Dragicevic, D. Drakulovic, J. Dulcic, E. Fanelli, F. Grati, J. Kolitari, L. Lipej, E. Magaletti, O. Markovic, S. Matic-Skoko, B. Mavric, N. Milone, A. Joksimovic, J. Tomanic, A. Scar-pato, P. Tutman, D., Vrdoljak & F. Zappacosta (2018): Detecting the occurrence of indigenous and non-indigenous megafauna through fishermen knowledge: A complementary tool to coastal and port surveys. Mar. Pollut. Bull., In Press. DOI: 10.1016/j.marpolbul.2018.01.016 Azzurro, E., P. Moschella & F. Maynou (2011): Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge. PLoS ONE, 6(9), e24885. DOI: 10.1371/journal.pone.0024885 Batjakas, I.E., T.E. Kampouris & A. Papadas (2015): First Record of the African Surgeonfish Acanthurus monroviae (Osteichthyes: Acanthuridae) In the Hellenic Waters. JAMB, 2(6), 00047. DOI: 10.15406/ jamb.2015.02.00047 Bianchi, C.N., F. Caroli, P. Guidetti & C. Morri (2017): Seawater warming at the northern reach for southern species: Gulf of Genoa, NW Mediterranean. J. Mar. Biol. Assoc. U.K, 98(1), 1-12. DOI: 10.1017/ S0025315417000819 Corsini-Foka, M. & N. Sarlis (2016): A strange occurrence of Plectorhinchus gaterinus (Actinopterygii: Perciformes: Haemulidae) in the Thracian Sea (Eastern Mediterranean). Acta Ichthyol. Piscat., 46(1), 37-41. DOI: 10.3750/AIP2016.46.1.05 de Girolamo, M., M. Scaggiante & M.B. Rasotto (1999): Social organization and sexual pattern in the Mediterranean parrotfish Sparisoma cretense (Teleostei: Scaridae). Mar. Biol., 135(2), 353-360. Del Río, L., J. Vidal, S. Betancor & F. Tuya (2016): Differences in herbivory intensity between the seagrass Cymodocea nodosa and the green alga Caulerpa prolifera inhabiting the same habitat. Aquat. Bot., 128, 48-57. DOI: 10.1016/j.aquabot.2015.10.001 Domingues, V.S., M. Alexandrou, V.C. Almada, D.R. Robertson, A. Brito, R.S. Santos & G. Bernardi (2008): Tropical fishes in a temperate sea: evolution of the wrasse Thalassoma pavo and the parrotfish Sparisoma cretense in the Mediterranean and the adjacent Macaronesian and Cape Verde Archipelagos. Mar. Biol., 154(3), 465-474. Espino, F., J.A. González, R. Haroun & F. Tuya (2015): Abundance and biomass of the parrotfish Spari-soma cretense in seagrass meadows: temporal and spatial differences between seagrass interiors and seagrass adjacent to reefs. Environ. Biol. Fish, 98, 121-133. DOI 10.1007/s10641-014-0241-z F.A.O (2018): Mediterranean and Black Sea (Major Fishing Area 37). World Wide Web electronic publication, www.fao.org/fishery/area/Area37/en (11/2018) Filiz, H. & N. Sevingel (2015): A new maximum length for the parrotfish Sparisoma cretense (Linnaeus, 1758) in the Mediterranean Sea. J. Aquacult. Eng. Fish Res., 1(3), 140-143. DOI: 10.3153/JAEFR15015 Fogarty, H.E., Burrows, M.T., Pecl, G.T., Robinson, L.M. & E.S. Poloczanska (2017): Are fish outside their usual ranges early indicators of climate-driven range shifts? Glob. Change Biol., 23, 2047-2057. DOI: 10.1111/gcb.13635 Froese, R. & D. Pauly (2018): FishBase. World Wide Web electronic publication, www.fishbase.org, version (8/2018). Giovos, I., B. Giacomo, G. Romanidis-Kyriakidis, D. Marmara & P. Kleitou (2018): First records of the fish Abudefduf sexfasciatus (Lacepede, 1801) and Acanthurus sohal (Forsskal, 1775) in the Mediterranean Sea. Bioinvasions Rec., 7(2), 205-210. DOI: 10.3391/bir.2018.7.2.14 Golani, D., B. Oztürk & N. Basusta, (2006): Fishes of the Eastern Mediterranean. Turkish Marine Research Foundation, Istanbul, 260 pp. Goren, M. & A. Aronov (2002): First record of the Indo-Pacific Parrot fish Scarus ghobban in the eastern Mediterranean. Cybium, 26, 239-240. Guidetti, P & F. Boero (2002): Spatio-temporal variability in abundance of the parrotfish, Sparisoma cretense, in SE Apulia (SE Italy, Mediterranean Sea). Ital. J. Zool., 69 (3), 229-232. DOI: 10.1080/11250000209356464 Insacco, G. & B. Zava (2017): Chlorurus rhakoura Randall & Anderson, 1997 (Perciformes, Scaridae), an Indo-Pacific fish new to the Mediterranean Sea. Med. Mar. Sci., 18(2), 285-291. Kampouris, T.E., F. Tiralongo, A. Golemaj, I. Giovos, N. Doumpas & I.E. Batjakas (2018b): Penaeus aztecus Ives, 1891 (Decapoda, Dendrobranchiata, Penaeidae): On the range expansion in Sicilian waters and on the first record from Albanian coast. Int. J. Fish. Aquat. Stud., 6(4), 468-471. Kampouris, T.E., I.E. Batjakas & I. Nikolopoulou (2013): Occurrence of oilfish Ruvettus pretiosus Cocco, 1829 (Perciformes: Gempylidae) in Chalkidiki peninsula, North Aegean Sea, Greece. J. Biol. Res-Thessalon., 19, 165-167 115 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Thodoros E. KAMPOURIS & loannis E. BATJAKAS: THE NORTHERNMOST RECORD OF THE THERMOPHILIC MEDITERRANEAN PARROTFISH ..., 111-116 Kampouris, T.E., V. Kouloumperis & I.e. Batjakas (2018a): First documented record of the Palaemonid shrimp Brachycarpus biunguiculatus (Lucas, 1846) (Decapoda, Caridea, Palaemonidae) from Aegean Sea, Greece. Spixiana. In Press. Kondylatos G., T.E. Kampouris, V. Kouloumperis & M. Corsini-Foka (2017): The Indo-Pacific brachyuran Charybdis (Gonioinfradens) paucidentatus (A. Milne-Edwards, 1861) (Brachyura, Portunidae) in the Cyclades, Aegean Sea. Tyrk. J. Zool., 41(6), 1118-1120. Kruschel, C., I. Zubak & S. Schultz (2012): New records of the parrot fish, Sparisoma cretense and the cleaver wrasse, Xyrichthys novacula, by visual census in the southern Adriatic. Annales, Ser. Hist. Nat. 22(1), 47-53. Louisy, P. (2015): Europe and Mediterranean marine fish. Identification Guide. Ulmer, Paris. pp. 182-183. Minos, G. & P.S. Economidis (2015): More records on the tripletail, Lobotes surinamensis (Bloch, 1790) from the Aegean Sea. Front. Mar. Sci., 00056 Olson, D.B., V.H. Kourafalou, W.E. Johns, G. Samuels & M. Veneziani (2007): Aegean surface circulation from a satellite -tracked drifter array. J. Phys. Oceanogr., 37(7), 1898-1917. Papaconstantinou, C. (2014): Fauna Graeciae. An updated checklist of the fishes in the Hellenic Seas, Monographs on Marine Sciences, 7, HCMR, Athens, 340 pp. Perdikaris, C., E. Konstantinidis & I. Paschos (2012): Sparisoma cretense (L. 1758) from the NW Ionian coast of Greece. p. 164. In: Nicolaidou et al., 2012. New Mediterranean Marine biodiversity records (June 2012). Mediterr. Mar. Sci., 13(1), 162-174. Petihakis G., K. Tsiaras, G. Triantafyllou, S. Kalaroni & A. Pollani (2014): Sensitivity of the N. Aegean Sea ecosystem to the Black Sea Water inputs. Mediterr. Mar. Sci., 15(4), 790-804. Petrakis, G. & C. Papaconstantinou (1990): Biology of Sparisoma cretense in the Dodecanese (Greece). J. Appl. Ichthyol., 6, 14-23. Yapici, S, H. Filiz & G. Bilge (2016): Northwards range expansion of Sparisoma cretense (Linnaeus, 1758) in the Turkish Aegean Sea. J. Aquacult. Eng. Fish Res., 2(4), 201-207. Zervakis, V. & D. Georgopoulos (2002): Hydrology and circulation in the North Aegean (eastern Mediterranean) throughout 1997 and 1998. Mediterr. Mar. Sci., 3(1), 5-19. 116 IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 short scientific article DOI 10.19233/ASHN.2018.14 received: 2018-05-16 OCCURRENCE OF PEARL FISH, CARAPUS ACUS (OSTEICHTHYES: CARAPIDAE) IN ÇEÇME, IZMIR (AEGEAN SEA, TURKEY) ilker AYDIN & Okan AKYOL Ege University Faculty of Fisheries, Urla, Izmir, Turkey E-mail: okan.akyol@ege.edu.tr ABSTRACT A specimen of Carapus acus, 181 mm in total length, was captured by a commercial trawl net off Çeçme, Izmir, on muddy bottom, at a depth of 60-80 m. This paper presents the real occurrence of the rare pearl fish off Izmir in the Aegean Sea. Key words: Pearl fish, measurement, sea cucumber, Izmir, Aegean Sea PRESENZA DI GALIOTTO, CARAPUS ACUS (OSTEICHTHYES: CARAPIDAE), A ÇEÇME, SMIRNE (MAR EGEO, TURCHIA) SINTESI Un esemplare di Carapus acus, 181 mm di lunghezza totale, è stato catturato con una rete commerciale a strascico al largo di Çeçme, Smirne (Izmir), su fondale fangoso, ad una profondità di circa 60-80 m. L'articolo riporta la presenza di questa rara specie ittica al largo di Smirne nel mar Egeo. Parole chiave: galiotto, misurazioni, cetriolo di mare, Smirne, mar Egeo 119 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 ilker AYDIN & Okan AKYOL: OCCURRENCE OF PEARL FISH, CARAPUS ACUS (OSTEICHTHYES: CARAPIDAE) IN gE§ME, IZMIR (AEGEAN SEA, TURKEY), 119-122 INTRODUCTION The pearl fish Carapus acus (Brünnich, 1768) is a non-migratory marine fish species inhabiting the 1-150 m depth range and reaching up to 200 mm in TL. Adults of C. acus live in the body cavities of holothurian species, such as Holothuria tubulosa Gmelin, 1791 and Pa-rastichopus regalis (Cuvier, 1817). At night, the species leaves the host to feed on small benthic invertebrates and small fish (Trott & Olney, 1986; Golani et al., 2006; Froese & Pauly, 2018). C. acus is known throughout the Mediterranean Sea; while it is most commonly found in the western part, mainly around Italy, Spain and France, it also occurs in the Adriatic and Aegean Seas (Gonzalez-Wangüemert et al., 2014). C. acus larvae were identified from a total of 12 individuals in the bongo-net collections during the June 1995 and June 1996 surveys in the northern Aegean Sea (Somarakis et al., 2002). Fischer et al. (2007) stated that the occurrence of the C. acus species was very rare in Ibiza, Spain. In Tunisia, this species was first recorded in the Gulf of Gabes (Enajjar & Bradai, 2016). C. acus used to be mentioned only by name among the fishes of the Turkish waters of the Aegean Sea (Ge-ldiay, 1969), until trawl catch records of C. acus were given by Gücü & Bingel (1994) from the Mersin and Iskenderun Bays in the northeastern Levantine Sea. Fig. 1: Capture sites of the Carapus acus specimens in the Turkish sea, eastern Mediterranean: 1. Bay of Izmir (Geldiay, 1969), 2. Off Mersin Bay (Gucu & Bingel, 1994), 3. Off Bozcaada Island (Eryilmaz, 2003); the black star indicates the sampling location of this study. Sl. 1: Lokalitete, kjer so bili ujeti primerki strmorinca Carapus acus v turškem morju, vzhodno Sredozemsko morje: 1. Izmirski zaliv (Geldiay, 1969), 2. zaliv Mersin (Gucu & Bingel, 1994), 3. otok Bozcaada (Eryilmaz, 2003); črna zvezdica označuje vzorčevalno lokaliteto iz pričujoče raziskave. Fig. 2: A. Carapus acus (ref.: ESFM-PIS/2018-03). B. Sea cucumber, Parastichopus regalis, captured off ^e^me, Izmir (scale bar: 50 mm). Sl. 2: A. Carapus acus (ref.: ESFM-PIS/2018-03). B. Morska klobasa, Parastichopus regalis, ujeta v vodah predela ^e^me, Izmir (merilo: 50 mm). 120 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 ilker AYDIN & Okan AKYOL: OCCURRENCE OF PEARL FISH, CARAPUS ACUS (OSTEICHTHYES: CARAPIDAE) IN gE§ME, IZMIR (AEGEAN SEA, TURKEY), 119-122 Eryilmaz (2003) reported four specimens (149-161 mm TL) from off Bozcaada Island, northern Aegean Sea. This paper presents the real occurrence of the rare pearl fish off the shores of Izmir in the Aegean Sea. MATERIAL AND METHODS On 30 March 2018, a specimen of Carapus acus was captured by a commercial trawl net (44 mm stretched mesh size) off ^e§me, Izmir at 38°25' N - 26°16' E (Fig. 1), on muddy bottom, at a depth of between 60 and 80 m. The specimen (Fig. 2a) was collected together with some sea cucumbers, P. regalis (Fig. 2b), but not in the body cavity of any of them. The specimen was measured to the nearest millimetre, fixed in 5% formaldehyde solution and deposited in the Ichthyological Collection of Ege University, Faculty of Fisheries, under catalogue number ESFM-PIS/2018-03. RESULTS AND DISCUSSION The specimen of Carapus acus measured 181 mm in total length, the morphometric data corresponding to the following ratios as percentages of standard length (TL) or head length (HL): maximum body depth 9.4, head length 13.3, predorsal length 43.6, preanal length 13.8, prepectoral length 12.7 (all in TL); eye diameter 16.7, preorbital distance 12.5, interorbital 20.8, (all in HL); 20 pectoral fin rays. The description, measurements and percentages of total length in C. acus are in complete accordance with Trott & Olney, (1986), Nielsen et al. (1999), Golani et al. (2006) and Froese & Pauly (2018). The small number of records of larvae and adult specimens indicates that C. acus is a very rare species throughout the Mediterranean. The species is known to live in association with the sea cucumber, but recently, Gonzáles-Wangüemert et al. (2014), reported that among the six sea cucumber species, C. acus is only found in P. regalis, and that it apparently chooses its host regardless of its size. The present study, given that C. acus and P. regalis were caught together in the same trawl operation, seems to support this thesis. However, further research is necessary to establish the species' abundance, geographical distribution and the nature of the host with regard to commensalism. ACKNOWLEDGEMENTS The authors thank Captain Mustafa Ta§li and his crew of trawler "Yeni Asya". POJAVLJANJE STRMORINCA, CARAPUS ACUS (OSTEICHTHYES: CARAPIDAE) V PREDELU gE§ME, IZMIR (EGEJSKO MORJE, TURČIJA) ilker AYDIN & Okan AKYOL Ege University Faculty of Fisheries, Urla, Izmir, Turkey E-mail: okan.akyol@ege.edu.tr POVZETEK Primerek strmorinca (Carapus acus), ki je meril v dolžino 181 mm, je bil ujet v ribiško mrežo na lokaliteti Qe$me (Izmir), na muljastem dnu, na globini med 60 in 80 m. Avtorja poročata o dejanskem pojavljanju te redke vrste v vodah okoli Izmirja v Egejskem morju. Ključne besede: strmorinec, meritve, morske klobase, Izmir, Egejsko morje 121 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 ilker AYDIN & Okan AKYOL: OCCURRENCE OF PEARL FISH, CARAPUS ACUS (OSTEICHTHYES: CARAPIDAE) IN gE§ME, IZMIR (AEGEAN SEA, TURKEY), 119-122 REFERENCES Enajjar, S. & M.N. Bradai (2016): First record of Carapus acus (Osteichthyes: Carapidae) in the Gulf of Gabes (southern Tunisia, central Mediterranean Sea). Marine Biodiversity Records, 9:7, pp. 1-4. Eryilmaz, L. (2003): A study on the fishes of Boz-caada Island (North Aegean Sea) Tr. J. Mar. Sci., 9(2), 121-137. Fischer, S., R.A. Patzner, C.H.G. Müller & H.M. Winkler (2007): Studies on the ichthyofaunal of the coastal waters of Ibiza (Balearic Islands, Spain). Rostocker Meeresbiologische Beitrage, 18, 30-62. Froese, R. & D. Pauly (2018): FishBase. World Wide Web electronic publication. www.fishbase.org. Version (02/2018) (accessed date: 09 May 2018). Geldiay, R. (1969): Important fishes found in the Bay of Izmir and their possible invasions. Monogr. Fac. Sci., Ege Univ., 11, 135 [in Turkish]. Golani, D., B. Öztürk & N. Ba^usta (2006): Fishes of the eastern Mediterranean. Turkish Marine Research Foundation (Publication No. 24), Istanbul, 259 pp. Gonzáles-Wangüemert, M., C. Maggi, S. Valente, J. Martinez-Garrido & N.V. Rodrigues (2014): Parasticho-pus regalis- The main host of Carapus acus in temperate waters of the Mediterranean Sea and northeastern Atlantic Ocean. SPC Beche-de-mer Information Bulletin, #34, 38-42. Gücü, A.C. & F. Bingel (1994): Trawlable species assemblages on the continental shelf of the Northeastern Levant Sea (Mediterranean) with an emphasis on Lesseptian migration. Acta Adriat., 35, 83-100. Nielsen, J.G., D.M. Cohen, D.F. Markle & C.R. Robins (1999): FAO Species catalogue. Ophidiiform fishes of the world. FAO Fisheries Synopsis No.125, Vol.18, Rome, 178 pp. Somarakis, S., P. Drakopoulos & V. Filippou (2002): Distribution an abundance of larval fish in the northern Aegean Sea -eastern Mediterranean- in relation to early summer oceanographic conditions. J. Plankton Res., 24(4), 339-357. Trott, L.B. & J.E. Olney (1986): Carapidae. In: Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the north-eastern Atlantic and the Mediterranean. Vol. III, Unesco, Paris, pp. 11721176. 122 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 short scientific article DOI 10.19233/ASHN.2018.15 received: 2018-10-10 ADDITIONAL RECORDS AND EXTENSION OF THE RANGE OF BLACKFISH, CENTROLOPHUS NIGER (OSTEICHTHYES: CENTROLOPHIDAE) FROM THE TUNISIAN COAST (CENTRAL MEDITERRANEAN SEA) Mohamed Mourad BEN AMOR Institut National des Sciences et Technologies de la Mer, port de pêche, 2060 La Goulette, Tunisia Khadija OUNIFI-BEN AMOR Université de Carthage, Institut National Agronomique de Tunisie, 43 avenue Charles Nicolle, 1082-Tunis-Mahrajène, Tunisia, Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Biodiversité, Biotechnologie et Changement Climatique, LR11ES09, 1002, Tunis, Tunisia Christian CAPAPÉ Laboratoire d'Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr ABSTRACT On 1 May 2018, five specimens of Centrolophus niger (Gmelin, 1789) were captured by a shrimp trawler on the sandy bottom at a depth of 35 m in the Gulf of Gabès; they measured between 185 and 433 mm in total length and weighed between 47.9 and 698.8 g. On 17 May 2018, another, single specimen was captured by a shrimp trawler on the sandy-muddy bottom at a depth of 85 m in the Gulf of Tunis; it measured 271 mm in total length and weighed 195.9 g. These additional captures of C. niger are indicative of an extension of the range of this species toward southern areas and migration toward lower depths. Key words: Distribution, additional records, Centrolophus niger, extension range, depth, Tunisian waters NUOVE SEGNALAZIONI E INTERVALLO DI ESPANSIONE DELLA RICCIOLA DI FONDALE, CENTROLOPHUS NIGER (OSTEICHTHYES: CENTROLOPHIDAE) LUNGO LA COSTA DELLA TUNISIA (MEDITERRANEO CENTRALE) SINTESI Il 1° maggio 2018, cinque esemplari di Centrolophus niger (Gmelin, 1789) sono stati catturati da un pescherec-cio a strascico per la pesca dei gamberi sul fondo sabbioso, a una profondità di 35 m, nel Golfo di Gabès. La loro lunghezza totale variava tra i 185 e i 433 mm, mentre il peso era compreso tra i 47,9 e i 698,8 g. Il 17 maggio 2018, un altro esemplare è stato catturato da un peschereccio a strascico sul fondo sabbioso-fangoso, a una profondità di 85 m, nel Golfo di Tunisi. L'animale misurava 271 mm di lunghezza totale e pesava 195,9 g. Queste nuove catture di C. niger indicano un'estensione della distribuzione della specie verso le aree meridionali e la migrazione verso profondità minori. Parole chiave: distribuzione, segnalazioni aggiuntive, Centrolophus niger, estensione, profondità, acque tunisine 123 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Mohamed Mourad BEN AMOR et al.: ADDITIONAL RECORDS AND EXTENSION OF THE RANGE OF BLACKFISH, CENTROLOPHUS NIGER ..., 123-128 INTRODUCTION Centrolophus niger (Gmelin, 1789) is a pelagic tele-ost species widely distributed throughout temperate and warm temperate marine waters at depths between 200 and 400 m (Haedrich, 1986). It is also known in the Mediterranean Sea (Haedrich, 1986; Dulcic & Lipej, 2002). Having migrated toward eastern areas, the species is at present reported in the Aegean Sea (Akyol, 2008; Ceyhan & Akyol, 2011), in the Gulf of Iskenderun, off the Mediterranean coast of Turkey (Erguden et al., 2012), and in the Levant Basin (Golani, 2005). In southern Mediterranean, juvenile forms have been recorded off the Algerian coasts by Dieuzeide et al. (1955), and a first record has been reported from the Tunisian coast (Capape et al., 2017). Investigations that are regularly conducted throughout the Tunisian coast have allowed us to collect specimens from local areas where C. niger was previously unknown (Bradai et al., 2004). MATERIAL AND METHODS On 1 May 2018, five specimens of Centrolophus niger were captured on the sandy bottom, 35 m deep, in the Gulf of Gabes, southern Tunisia (37° 07' 96'' N and 10° 76' 69'' E). On 17 May 2018, another single specimen was captured on the sandy-muddy bottom Reference INSTM-Cent-nig-01 INSTM-Cent-nig-05 INSTM-Cent-nig-06 Measurements mm %TL %SL mm %TL %SL mm %TL %SL Total length 433 100.0 121.6 185 100.0 127.6 271 100.0 130.9 Fork length 380 87.8 106.7 160 86.5 110.3 226 83.4 109.2 Standard length 356 82.2 100.0 145 78.4 100 207 76.4 100.0 Head length 88 20.3 24.7 55 29.7 37.9 57 21.0 27.5 Pre-orbital length 23 5.3 6.5 13 7.0 9,0 15 5.5 7.2 Pre-dorsal fin length 125 28.9 35.1 84 45.4 57.9 102 37.6 49.3 Pre-pectoral fin length 95 21.9 26.7 64 34.6 44.1 71 26.2 34.3 Pre-anal fin length 192 44.3 53.9 79 42.7 54.5 167 61.6 80.7 Snout length 31 7.2 8.7 20 10.8 13.8 23 8.5 11.1 Eye diameter 19 4.4 5.3 13 7.0 9.0 15 5.5 7.2 Interorbital space 36 8.3 10.1 26 14.1 17.9 33 12.2 15.9 Dorsal fin length 190 43.9 53.4 80 43.2 55.2 155 57.2 74.9 Pectoral fin length 21 4.8 5.9 14 7.6 9.7 16 5.9 7.7 Anal fin length 105 24.2 29.5 78 42.2 53.8 88 32.5 42.5 Pelvic fin length 10 2.3 2.8 7 3.8 4.8 8 3.0 3.9 Body height 120 27.7 33.7 70 37.8 48.3 93 34.3 44.9 Caudal fin length 45 10.4 12.6 31 16.8 21.4 36 13.3 17.4 Counts Dorsal rays V+39 V+37 V+38 Pectoral rays 22 22 22 Pelvic rays 5 5 5 Anal rays III+22 III+21 III+21 Caudal rays 20 20 20 Scales on lateral line 167 165 165 124 Tab. 1: Centrolophus niger. The morphometric measurements in mm and as percentages of total length (% TL) and standard length (% SL), meristic counts, and weight (in gram) recorded in two specimens from the Gulf of Gabes (ref. INSTM-Cent-nig-01 and INSTM-Cent-nig-05) and in the specimen from the Gulf of Tunis (ref. INSTM-Cent-nig-06). Tab. 1: Centrolophus niger. Morfometrične meritve in delež celotne dolžine (% TL) ter standardne dolžine (% SL), meristična štetja in teža (vgramih) pri dveh primerkih iz gabeškega zaliva (ref. INSTM-Cent-nig-01 in INSTM-Cent-nig-05) in pri primerku iz tuniškega zaliva (ref. INSTM-Cent-nig-06). ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Mohamed Mourad BEN AMOR et al.: ADDITIONAL RECORDS AND EXTENSION OF THE RANGE OF BLACKFISH, CENTROLOPHUS NIGER ..., 123-128 at a depth of 85 m in the Gulf of Tunis, northeastern Tunisia (34° 43' 70'' N and 10° 86' 08'' E). All specimens were caught by shrimp trawlers. They were measured by digital calliper to the nearest millimetre and weighed to the nearest decigram. Morphometric measurements, percentages of total length (TL) and standard length (SL), and meristic counts were recorded following Capapé et al. (2017) and summarized in Table 1. All specimens were fixed in 10% buffered formalin, preserved in 75% ethanol and deposited in the Ichthyological Collection of the Institute des Sciences et Technologies de la Mer of Salammbô (Tunisia). The specimens collected from the Gulf of Gabès (Fig. 1) received catalogue numbers INSTM-Cent-nig-01 through INSTM-Cent-nig-05, and the specimen from the Gulf of Tunis received the catalogue number INSTM-Cent-nig-06. RESULTS AND DISCUSSION The Tunisian Centrolophus niger was identified by the following combination of characters: elongate, oval, slightly compressed body with a long, compressed caudal peduncle, small head with pores in the naked skin, large mouth without teeth on palate; eyes large and bright; a single long dorsal, originating slightly behind the head of the pectoral fin base; lateral line slightly arched, with small scales; colour ranges from chocolate brown to dark bluish, with black-edged fins. The description, measurements and percentages of TL and SL (Table 1) recorded in the Tunisian specimens of C. niger are in total accordance with previous descriptions of the species, provided by Headrich (1986), Akyol (2008), Ceyhan & Akyol (2011), Erguden et al. (2012) and Capapé et al. (2017). C. niger is an uncommon species in the areas where it was previously recorded. The first well-documented discovery of Centrolophus niger occurred off Ras Jebel, close to the Cani Rocks in northern Tunisia (Fig. 2). Capapé et al. (2017) noted that such a finding could probably corroborate a southward extension of C. niger in the Mediterranean Sea, supporting the first confirmed record of a large specimen in this area in 1986 (Haedrich, 1986). These additional captures of C. niger attest to an extension of the range of the species toward southern areas and migration toward lower depths. The presence of small and large specimens suggests that a viable population of C. niger is probably established throughout the Tunisian coast. It could also indicate migration from western regions or a population established in poorly explored areas, but such hypotheses remain questionable. Capapé et al. (2017) noted an increase in captures of Centrolophus niger in the eastern Mediterranean coast of Turkey (Akyol, 2008; Ceyhan & Akyol, 2011; Erguden et al., 2012) and suggested it could result from water warming (see Francour et al., 1994; Ben Raïs Lasram & Mouillot, 2009). Such a phenomenon could also explain the recorded occurrence of the species in Fig. 2: Centrolophus niger. Map of the Central Mediterranean Sea copied from Ben Amor et al. (2016) with capture sites of the specimens caught in the Tunisian waters indicated: 1. between Ras Jebel and the Cani Rocks (1), off the northern Tunisian coast (Capape et al., 2017); 2. in the Gulf of Gabes (GG); 3. in the Gulf of Tunis (GT). GH = Gulf of Hammamet. Sl. 2: Centrolophus niger. Zemljevid osrednjega Sredozemskega morja, prirejen po Ben Amor s sod. (2016) z označenimi lokalitetami, kjer so bili ujeti primerki v tunizijskih vodah: 1. med lokalitetami Ras Jebel in Cani Rocks (1), ob severni tunizijski obali (Capape et al., 2017); 2. v gabeškem zalivu (GG); 3. v tuniškem zalivu (GT). GH = Hammameški zaliv. Tunisian waters, yet an improvement of monitoring in the area as a factor cannot be totally ruled out either. The drastic decline of local fisheries due to fishing pressure has forced the fishermen to keep and try to sell in landing sites and/or fish markets even species with poor economic value, instead of discarding them at sea, like they used to. Similar patterns were reported by Capape et al. (2018) for sharpnose sevengill shark Heptranchias perlo (Bonnaterre, 1788), a species previously captured off the northern coast of Tunisia, on deep-sea bottoms (El Kamel-Moutalibi et al., 2014), which has been recently observed at lower depths and in southern Tunisian areas. 125 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Mohamed Mourad BEN AMOR et al.: ADDITIONAL RECORDS AND EXTENSION OF THE RANGE OF BLACKFISH, CENTROLOPHUS NIGER ..., 123-128 Fig. 1: The Centrolophus niger specimen (ref. INSTM-Cent-nig-01) captured in the Gulf of Gabes; scale bar = 80 mm. Sl. 1: Primerek vrste Centrolophus niger (ref. INSTM-Cent-nig-01), ujet v gabeškem zalivu; merilo = 80 mm. 126 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Mohamed Mourad BEN AMOR et al.: ADDITIONAL RECORDS AND EXTENSION OF THE RANGE OF BLACKFISH, CENTROLOPHUS NIGER ..., 123-128 NOVI ZAPIS O POJAVLJANJU ČRNUHA, CENTROLOPHUS NIGER (OSTEICHTHYES: CENTROLOPHIDAE) IZ TUNIZIJSKE OBALE (OSREDNJE SREDOZEMSKO MORJE) Mohamed Mourad BEN AMOR Institut National des Sciences et Technologies de la Mer, port de pêche, 2060 La Goulette, Tunisia Khadija OUNIFI-BEN AMOR Université de Carthage, Institut National Agronomique de Tunisie, 43 avenue Charles Nicolle, 1082-Tunis-Mahrajène, Tunisia, Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Biodiversité, Biotechnologie et Changement Climatique, LR11ES09, 1002, Tunis, Tunisia Christian CAPAPÉ Laboratoire d'Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr POVZETEK Prvega maja 2018 so ujeli pet primerkov črnuha Centrolophus niger (Gmelin, 1789) v mrežo za kozice na peščenem dnu na globini 35 m v Gabeškem zalivu. V dolžino so merili med 185 in 433 mm in tehtali med 47,9 in 698,8 g. Sedemnajstega maja je bil v mrežo za kozice ujet še en primerek te vrste na muljevito-peščenem dnu na 85 m globine v tuniškem zalivu. V dolžino je meril 271 mm in tehtal 195,9 g. Ti novi podatki o vrsti C. niger kažejo na razširitev areala te vrste v smeri proti jugu in pojavljanju v plitvejših globinah. Ključne besede: razširjenost, novi podatki, Centrolophus niger, širjenje areala, globina, tunizijske vode 127 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Mohamed Mourad BEN AMOR et al.: ADDITIONAL RECORDS AND EXTENSION OF THE RANGE OF BLACKFISH, CENTROLOPHUS NIGER ..., 123-128 REFERENCES Akyol, O. (2008): New record of the juvenile black-fish, Centrolophus niger (Centrolophidae), from the Aegean Sea (Izmir Bay, Turkey). Cybium, 32(1), 31-92. Ben Amor, M.M., Y. Diatta, M. Diop, M. Ben Salem & C. Capapé (2016): Confirmed occurrence in the Mediterranean Sea of milk shark Rhizoprionodon acutus (Chondrichthyes: Carcharhinidae) and first record off the Tunisian coast. Cah. Biol. Mar., 57(2), 145-149. Ben Raïs Lasram, F. & D. Mouillot (2009): Increasing southern invasion enhances congruence between endemic and exotic Mediterranean fish fauna. Biol. Invasions, 11(3), 697-711. Bradai, M.N., J.P Quignard, A. Bouain, O. Jarboui, A. Ouannes-Ghorbel, L. Ben Abdallah, J. Zaouali & S. Ben Salem (2004): Ichtyofaune autochtone et exotique des côtes tunisiennes: Recensement et biogéographie. Cybium, 28(4), 315-328. Capapé, C., S. Rafrafi-Nouira & O. El Kamel-Moutal-ibi (2017): On the occurrence of blackfish Centrolophus niger (Osteichthyes: Centrolophidae). Cah. Biol. Mar., 58(1), 117-120. Capapé, C., S. Rafrafi-Nouira, K. Ounifi-Ben Amor & M.M. Ben Amor (2018). Unusual and substantiated records of sharpnose seven-gill shark Heptranchias perlo (Chondrichthyes: Hexanchidae) in the northeastern Tunisian waters (Central Mediterranean Sea). Thal. Sal., 40, 14-24. Ceyhan, T. & O. Akyol (2011): Occurrence of the blackfish, Centrolophus niger (Gmelin, 1798) (Os-teichthyes: Centrolophidae), in Izmir Bay, Aegean Sea. Journal of Applied Ichthyology, 27(2), 139-140. Dieuzeide, R., M. Novella & J. Roland (1955): Catalogue des poissons des côtes algériennes, Volume III. Bull. Sta. Aquic Pêche Castiglione, n. sér., 6, 1-384. Dulcic, J. & L. Lipej (2002): Rare and little-known fishes in the Eastern Adriatic during last two decades. Periodicum Biologorum, 104, 185-194. El Kamel-Moutalibi, O., N. Mnasri-Sioudi, S. Rafrafi-Nouira, M. Boumaïza, C. Reynaud & C. Capapé (2014): Additional records of a rare elasmobranch species, sharpnose seven-gill shark Heptranchias perlo (Hexanchidae) off the northern Tunisian coast (central Mediterranean). Annales, Ser. Hist. Nat., 24(2), 99-106. Erguden, D., D. Yaghoglu, M. Gurlek & C. Turan (2012): An occurrence of the blackfish, Centrolophus niger (Gmelin, 1789), in Iskenderun Bay, (northeastern Mediterranean, Turkey). J. Black Sea/ Medit. Environ., 18(1), 97-102. Francour, P., C.F. Boudouresque, J.G. Harmelin, M.L. Harmelin-Vivien & J.-P. Quignard 1994. Are the Mediterranean waters becoming warmer? Mar. Poll. Bull., 28(4), 523-526. Haedrich, R.L. (1986): Centrolophidae. pp. 11771182. In: Whitehead P.J.P., Bauchot, M.L., Hureau J.C., Nielsen J. & Tortonese. E. (eds). Fishes of the North-western Atlantic and the Mediterranean, Vol III. UNESCO, Paris. 128 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 short scientific article DOI 10.19233/ASHN.2018.16 received: 2018-11-07 OCCURRENCE OF RIBBON FISH (TRACHIPTERUS TRACHYPTERUS) IN SLOVENIAN WATERS (NORTHERN ADRIATIC SEA) Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIC Marine Biology Station, National Institute of Biology, Fornace 41, Piran, Slovenia E-mail: lovrenc.lipej@nib.si ABSTRACT On 6th May 2018 a juvenile specimen of ribbon fish (Trachipterus trachypterus) was collected in shallow waters in Izola (Slovenia, northern Adriatic Sea). It measured 403 mm in total length and weighed 37.1 g. In stomach, fragments of seagrasses, pollen cones of pine, petals of terrestrial plant, fragments of terrestrial grass and beetles were found among food remains. The possible causes of this finding in Slovenian waters could be attributed to the ingression of southern Adriatic waters in its northern part. The specimen studied in this paper is the fifth record of this species in the Slovenian part of the Adriatic Sea. The cooperation between ichthyologists and fishermen proved to be crucial for the detection of the ribbon fish and other rare and less-known fish species, as well. Key words: ribbon fish, Trachipterus trachypterus, occurrence, diet, Adriatic Sea PRESENZA DEL PESCE NASTRO (TRACHIPTERUS TRACHYPTERUS) IN ACQUE SLOVENE (ADRIATICO SETTENTRIONALE) SINTESI Il 6 maggio 2018 un esemplare giovanile di pesce nastro (Trachipterus trachypterus) è stato trovato in acque poco profonde a Isola (Slovenia, Adriatico settentrionale). Il pesce misurava 403 mm di lunghezza totale e pesava 37,1 g. Fra i resti di cibo nello stomaco sono stati trovati frammenti di fanerogame marine, polline di pino, petali di piante terrestri, frammenti di erba terrestre e coleotteri. Le possibili cause di questo ritrovamento nelle acque slovene potrebbero essere attribuite all'entrata delle masse d'acqua dell'Adriatico meridionale nella parte settentrionale. L'e-semplare studiato è il quinto ritrovamento di questa specie nella parte slovena del mare Adriatico. La collaborazione tra ittiologi e pescatori si è dimostrata fondamentale per l'individuazione del pesce nastro e di altre specie ittiche rare e meno note. Parole chiave: pesce nastro, Trachipterus trachypterus, presenza, dieta, mare Adriatico 129 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIC: OCCURRENCE OF RIBBON FISH (TRACHIPTERUS TRACHYPTERUS) IN SLOVENIAN ..., 129-134 INTRODUCTION Despite the centennial tradition in marine research in the Gulf of Trieste, the ichthyological research in Slovenian part of the Gulf deserved considerably less attention than neighbouring areas. Only in last decades the research interest increased substantially. As a consequence, some papers were published on the occurrence of rare and less known species or otherwise neglected fish species which were recorded for the very first time by performing new approaches and non-destructive techniques in the area (Lipej et al., 2005, 2007, 2008, 2009; Orlando-Bonaca & Trkov, 2016; Mavric & Dragicevic, 2018). The cooperation between fishermen and ichthyologists has also brought new insights on the fish fauna in the area. The ribbon fish T. trachypterus is widely distributed in subtropical and tropical seas of the Pacific (Cortes et al., 1995), in waters off Japan and New Zealand, on both sides of the Atlantic Ocean (Smith-Vaniz, 2015) and in Mediterranean Sea (Borme & Voltolina, 2006). It is an offshore fish that inhabits the mesopelagic zone (Borme & Voltolina, 2006). The ribbon fish is considered as a species with the status of least concern (Smith-Vaniz, 2015). However, T. trachypterus is still considered as a poorly studied fish. The majority of records are dealing with the finding of moribund or dead animals, stranded on the coast (Dulcic & Lipej, 1997; Borme & Voltolina, 2006; Farias et al., 2010). In the Adriatic Sea the ribbon fish is rarely observed or caught. Jardas (1980) mentioned 46 cases of captured ribbon fish in over 100 years long period from 1875 to 1980, while Dulcic (1996) reported about the first record of a ribbon fish larva near Stoncica in eastern Adriatic Sea. This paper deal with the new finding of the ribbon fish in Slovenian coastal waters and includes some new information on this species. MATERIAL AND METHODS On 6th May 2018 a specimen of ribbon fish was collected in shallow waters (< 1 m of depth) in Izola (Slo- Figure 2: Biometric measurements on ribbon fish. See Table 1 for abbreviations. Slika 2: Biometrične meritve opravljene na kosici. Glej Tabelo 1 za okrajšave. venia, northern Adriatic Sea) (Fig. 1). The specimen was put on ice and delivered to the Marine Biology Station (National Institute of Biology) in Piran. In the laboratory it was photographed with photocamera Olympus Tough 4. The specimen was then weighed with the Sartorius balance. Subsequently, morphometrical measurements and meristic counts were performed (Fig. 2). Measurements were taken to the nearest 1 mm and weight to 0.1 g. After that the specimen was dissected and internal organs were removed. The gut content was analysed under Olympus SZX16 stereomicroscope and photographed with the microscope camera Olympus DP74. The specimen is housed in the fish collection of the Marine Biology Station. In order to contribute new data on the knowledge of Figure 1: Specimen of the ribbon fish (TL=403 mm), found in Izola at 6th May 2018. Slika 1: Primerek kosice iz Izole (TL=403 mm), z dne 6.5. 2018. 130 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIC: OCCURRENCE OF RIBBON FISH (TRACHIPTERUS TRACHYPTERUS) IN SLOVENIAN ..., 129-134 Tab. 1: Biometry and meristic data of the studied specimen of ribbon fish in comparison with other three specimens, previously reported in Slovenian Sea in 2004, 2006. Specimens marked with an asterisk were already published in work of Borme & Voltolina (2006). Tab. 1: Biometrični in meristični podatki preiskanega primerka kosice v primerjavi s tremi primerki, ujetimi v slovenskem morju v letih 2004 in 2006. Podatki za primerke, označene z zvezdico, so že bili objavljeni v prispevku Borme & Voltolina (2006). specimen I II* III IV* V Morphometric characters (mm) Abbreviation 6 May 2018 15 April 2004 27 Feb 2006 10 August 2006 13 April 2009 total length TL 403 - 1363 1033 427 standard length SL 299 - 1282 925 346 preorbital length PreO 9.3 5 - 23 8.1 eye horizontal diameter ED 14.2 9 46 35 12.6 head length HL 41.7 28 167 98 43.4 head height HH 50.4 37 - 105 52.1 interorbital space IOS 10.3 6 - 22 - predorsal length LPD 11.4 7 158 55 18.9 prepectoral lenght LPP 40.4 29 174 99 44.3 preventral length LPV 47.1 33 - 111 52.1 maximal body height MBH 51.1 39 - 108 62.9 preanal length LPA 151.5 110 - 405 186.5 caudal peduncle height CPH 5.3 - - 11 6.1 dorsal fin rays maximal length MaxFR 35.3 29 - 68 31.7 dorsal fin length DL 275.2 - - 882 322.8 pectoral fin length PL 16.7 7 - 33 15.1 caudal fin length (upper lobe) CUL 105 - - 125 82.3 caudal fin length (lower lobe) CLL 1 - - 1.2 - ventral fin length VL 58.6 46 - 0 38.7 sex - - - male - ribbon fish in the area, we include data about specimens of this species, which were not included in the work of Borme & Voltolina (2006), dealing with T. trachypterus occurrence in the Gulf of Trieste. RESULTS AND DISCUSSION Morphometric and meristic data of the studied specimen are presented in Tables 1 and 2. The body is elongated and laterally compressed. Greatest depth of the body is immediately behind the short head. Body is covered with tiny silvery cuticle and scaleless. Dorsal fin is very long, extending from above the eyes to the caudal fin. Dorsal, pectoral, ventral and caudal fins are reddish. Pectoral fin is rather small with the base inserted almost horizontally. Ventral fin is very small and the anal fin absent. Colour is silvery with three dark blotches. Meristic data of the studied specimen (Tab. 2) are in agreement with the data obtained by Bini (1970), Tortonese (1975), Soljan (1975), Jardas (1980), Palmer (1984) and Borme & Voltolina (2006). It is well known that T. trachypterus and relatives are ongoing considerable morphological changes during their ontogenetic development (Jardas, 1980). Juveniles differ from adults in regards to general body shape, fin length and number and pigmentation patterns (Martin, 2015). 131 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIC: OCCURRENCE OF RIBBON FISH (TRACHIPTERUS TRACHYPTERUS) IN SLOVENIAN ..., 129-134 Tab. 2: Weight, organ weight and meristic data of the studied specimen of ribbon fish in comparison with other specimens previously reported in Slovenian waters. Remarks: * juvenile specimens, ** the number of thorns may be underestimated due to damaged tissue. Tab. 2: Celotna masa in masa notranjih organov ter meristični podatki za preiskani primerek v primerjavi s podatki primerkov, predhodno ujetih v slovenskem morju. Opombi: *mladostni primerki, ** število trnov je zaradi poškodovanega tkiva lahko podcenjeno. specimen I II III Weight (g) 6 May 2018 15 April 2004 10 August 2006 total weight 37.1 - 477.7 heart 0.04 - 0.8 stomach 4.48 1.4 22.5 empty stomach 1.06 0.6 20.9 liver 0.23 - 6.8 pyloric caeca 0.8 - 8 gonads 0.13 - 1.1 Meristic characters dorsal fin rays D 172 - 180 ventral fin rays V 7 5 0 pectoral fin rays 10 10 11 caudal fin rays (upper lobe) 7 - 9 caudal fin rays (inferior) 5 - 5 spines along lateral line 92** - 94 right lower jaw (dental) teeth 4 5* 5 left lower jaw (dental) teeth 3 5* 4 vomer teeth 2 1* 1 right upper jaw (praemaxillary) teeth 4 7* 5 left upper jaw (praemaxillary) teeth 5 4* 4 gillrakers (1st branchial arch) 13 12* 13 Both specimens (Figs. 1 and 3) had 4 dorsal spots and 1 ventral spot which is typical for juveniles. Gradually the number of spots decreases with the increase of total length. Previously, the ribbon fish was reported in the Gulf of Trieste and in the Slovenian part of the Adriatic Sea (Dulcic & Lipej, 1997; Marceta, 1999), as well. It was found on several occasions. Borme & Voltolina (2006) mentioned 15 records in the Gulf of Trieste, with 7 of Figure 3: Specimen of the ribbon fish (TL=427 mm), caught in the Piran Bay at 13th April 2009. Slika 3: Primerek kosice (TL=427 mm) ujet v Piranskem zalivu 13.4.2009. them reported after 2000. Three of them were recorded in the Slovenian part of the gulf. The first case originated from cape Ronek in February 1992, when a 1100 mm Fig. 4: Gut content of the specimen, found in Izola at 6.5.2018 (a). A close-up of the pollen cones of pine (Pinus halepensis) (b). Scale = 5 mm. Sl. 4: Vsebina želodca kosice z dne 6.5.2018 (a). Bližinski posnetek moških socvetij alepskega bora (Pinus halepensis) (b). Merilo = 5 mm. 132 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIC: OCCURRENCE OF RIBBON FISH (TRACHIPTERUS TRACHYPTERUS) IN SLOVENIAN ..., 129-134 ribbon fish was found stranded on the coast (Dulcic & Lipej, 1997). On 15th April 2004 a juvenile specimen, approximately 250 mm in total length was found dead in Piran. At 27th February 2006 a specimen, which was not mentioned in the work of Borme & Voltolina (2006), was caught by hand in Koper. It measured 1363 mm and weighed 3120 g. Later, in 10th August 2006, another specimen was found 2 Nm off Izola, which measured 1033 mm in total length. According to the local newspaper (Suligoj, 2006), the fishermen of Izola caught three other specimens in summer 2006. At 13th April 2009 a 427 mm long juvenile ribbon fish was caught in the Piran Bay. The specimen, found at 6th May 2018, studied in this paper is therefore the fifth documented record of this species in the Slovenian part of the Adriatic Sea. In the stomach the fragments of Cymodocea nodosa and Zostera noltei were found (Fig. 4). The great majority of the diet consisted of pollen cones of pine (Pinus halepensis). In addition, petals of terrestrial plants were found, together with numerous fragments of terrestrial grass. A tiny beetle (Coleoptera) was also found in remains. The obtained data are in agreement with the findings of the Adriatic studies published by Jardas (1980) and Borme & Voltolina (2006) who also found remains of sea grasses, beetles and many fragments of terrestrial origin in stomachs of the ribbon fish. We share the opinion of Borme & Voltolina (2006) that vegetal fragments, especially those of terrestrial origin should be probably considered as accidentally ingested. The possible causes of the finding of T. trachypterus in Slovenian waters could be attributed to the ingres- sion of southern Adriatic waters in the northern part, as already noted by many authors (Dulčic & Lipej, 1997, Dulčic et al., 1999). The pelagic character of these species, which can help their dispersal, is not sufficient to explain this fact. The majority of the studied specimens are juveniles which is in agreement with other records (Jardas, 1980). In fact, juveniles are more abundant and they occur more likely in near shore habitats in comparison with adults (Martin, 2015). There are also other cases of mesopelagic and benthopelagic species, known to arrive in the shallow Gulf of Trieste. For example, there are many records of the occurrence of silver scabbardfish Lepidopus cauda-tus (Euphrasen, 1788) in the same area. The cooperation between ichthyologists and fishermen offers a great opportunity to monitor the fish fauna of the area. Interviews with local fishermen are very useful to track the presence of certain invaders and provide complementary information (Azzurro et al., 2018). This cooperation was crucial in discovering the occurrence of ribbon fish specimens in the area and also for the detection of other rare and less-known fish species. ACKNOWLEDGMENTS We are indebted with the fisherman who provides us with the specimen of ribbon fish. We would like to express our gratitude also to our colleague Bojan Marčeta from the Institute for fisheries in Ljubljana who provided us with the basic data of one of the studied specimen. Special thanks also to our dear friend Milijan Šiško who prepared the drawing for the manuscript. POJAVLJANJE KOSICE (TRACHIPTERUS TRACHYPTERUS) V SLOVENSKEM MORJU (SEVERNI JADRAN) Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIČ Marine Biology Station, National Institute of Biology, Fornace 41, Piran, Slovenia E-mail: lovrenc.lipej@nib.si Šestega maja 2018 je bil najden primerek kosice (Trachipterus trachypterus) v plitvini pri Izoli (Slovenija, severni Jadran). V dolžino je meril 403 mm in tehtal 37,1 g. V prebavilu so bili najdeni fragmenti morskih trav, moška socvetja alepskega bora, cvetovi kopenskih cvetnic, koščki kopenskih trav in hrošč. Možni razlog za pojavljanje te vrste v slovenskem delu Jadrana bi lahko bil povezan z ingresijo južnih jadranskih vodnih mas v severni Jadran. Preiskani primerek predstavlja peti primer pojavljanja te vrste v slovenskem delu Jadrana. Povezovanje med ihtiologi in ribiči se je izkazalo za ključno pri odkritju primerkov kosice in drugih redkih ter manj znanih ribjih vrst. Ključne besede: kosica, Trachipterus trachypterus, pojavljanje, prehrana 133 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Lovrenc LIPEJ, Domen TRKOV & Borut MAVRIC: OCCURRENCE OF RIBBON FISH (TRACHIPTERUS TRACHYPTERUS) IN SLOVENIAN ..., 129-134 REFERENCES Azzurro, E., L. Bolognini, B. Dragicevic, D. Drakulovic, J. Dulcic, E. Fanelli, F. Grati, J. Kolitari, L. Lipej, E. Magaletti, O. Markovic, S. Matic-Skoko, B. Mavric, N. Milone, A. Joksimovic, J. Tomanic, A. Scar-pato, P. Tutman, D.Vrdoljak & F. Zappacosta (2018): Detecting the occurrence of indigenous and non-indigenous megafauna through fishermen knowledge: A complementary tool to coastal and port surveys. Mar Pollut Bull, in press. https://doi.org/10.1016/j.marpol-bul.2018.01.01 Bini, G. (1970): Atlante dei pesci delle coste Italiane. Vol. 3. Osteitti. Mondo Sommerso ed., pp. 183-186. Borme, D. & F. Voltolina (2006): On the occurrence of the Ribbon fish Trachipterus trachypterus in the Gulf of Trieste. Annales, Ser. Hist. Nat., 16, 2, 181-188. Cortes, N., M. Arriaza & C. Oyarzun (1995): Nuevos registros de Trachipterus trachypterus (Gmelin, 1789) para el Pacifico Suroriental, con una revision de ejemplares congenericos de Chile (Osteichthyes, Trachipteri-dae). Revista de Biologia Marina, 30(2), 265-273. Dulcic, J. (1996): First record of ribbon fish larva, Trachipterus trachypterus, from the eastern Adriatic. Cybium, 20, 101-102. Dulcic, J. & L. Lipej (1997): New records of marine fishes in the Slovenian coastal waters. Falco, Journal of Ornithological Association Ixobrychus, 12, 35-490. Dulcic, J., B. Grbec & L. Lipej (1999): Information on the Adriatic ichthyofauna - effect of water warming? Acta Adriat., 40, 33-43. Farias, I., T. Moura, I. Figueiredo, A.R. Vieira, B. Serra-Pereira & L. Serrano Gordo (2010): Northernmost occurrence of the ribbonfish Trachipterus trachypterus (Gmelin, 1789) in the NE Atlantic: the Portuguese continental shelf. J. Applied Ichthyol., 26, 143-144. Jardas, I. (1980): Contribution sur la connaissance des trachipteres dans la med Adriatique. 1. Trachipterus trachypterus (Gmelin, 1789). Acta Adriat., 21, 3-18. Lipej, L., M. Orlando-Bonaca & M. Richter (2005): New contributions to the marine coastal fish fauna of Slovenia. Annales, Ser. Hist. Nat., 15(2), 165-172. Lipej, L., Dobrajc, Ž., Castellarin C., Odorico R. & Dulčic J. (2007): New records of some rare and less-known fishes in the Gulf of Trieste (northern Adriatic). Annales, Ser. Hist. Nat., 17(2), 171-176. Lipej, L., B. Mavric, V. Žiža & J. Dulčic (2008): The largescaled terapon Terapon theraps: a new Indo-Pacific fish in the Mediterranean Sea. Journal of Fish Biology, 73(7), 1819-1822. Lipej, L., M. Orlando-Bonaca & B. Mavrič (2009): Recent changes in the Adriatic fish fauna - experiences from Slovenia. Varstvo narave, 22, 91-96. Marčeta, B. (1999): Osteichthyes. In: Kryštufek, B. & F. Janžekovič: Key for determination of vertebrates in Slovenia, pp. 47-210. DZS, Ljubljana (In Slovenian). Martin, J. M. (2015): Phylogeny, Ontogeny and Distribution of the Ribbonfishes (Lampridiformes: Trachip-teridae). The Faculty of the School of Marine Science The College of William & Mary in Virginia. pp. 1-215. Mavrič, B. & B. Dragičevic (2018): First record of the Meagre, Argyrosomus regius (Asso, 1801), in Slovenian coastal waters with additional records from the Croatian part of the Adriatic Sea. Annales, Ser. Hist. Nat., 17(2), 43-50. Orlando-Bonaca, M. & D. Trkov (2016): Clinitrachus argentatus (Risso, 1810) (Perciformes: Clinidae) - a less known fish species in Slovenian coastal waters (Adriatic Sea). Annales, Ser. Hist. Nat., 26(2), 191-196. Palmer, G. (1984): Trachipteridae. In: Whitehead et al. (Eds.) Fishes of north-eastern Atlantic and the Mediterranean. Volume II, pp. 729-732. Smith-Vaniz, W.F. (2015): Trachipterus trachypterus. The IUCN Red List of Threatened Species 2015: e.T198608A21911495. http://dx.doi.org/10.2305/ IUCN.UK.2015- 4.RLTS.T198608A21911495.en Šoljan, T. (1975): I pesci dell'Adriatico. Arnoldo Mondadori Editore, 552 pp. Šuligoj, B. (2006): Veso lovi morske pošasti. https:// www.delo.si/druzba/veso-lovi-morske-posasti.html Tortonese, E. (1975): Osteichthyes (Pesci ossei), Parte prima. Fauna d'Italia, Vol. 10. Bologna, Calderini. 134 FLORA FLORA FLORA ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 original scientific article DOI 10.19233/ASHN.2018.17 received: 2018-07-14 SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL GENOTOXICITY Nina REUTOVA Kabardino-Balkarian Scientific Center, Russian Academy of Sciences, 2, Balkarova, Nalchik, 360002 KBR Russia Petimat DZHAMBETOVA Department of Cell Biology, Morphology and Microbiology, Chechen State University, 32, Sheripova, Grozny 364907, Russia E-mail: dzhambetova.csu@yandex.ru Serikbay ABILEV Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina, Moscow 119991, Russia ABSTRACT The present study evaluated the applicability of wild species in investigating environmental genotoxicity. The level of mutation in cells of the root meristem was examined in 8 wild plant species growing in environments affected by different types of pollution. Seeds collected in the disposal areas of a wolfram-molybdenum factory (Kabardino-Balkaria, Russia) were used to study the influence of heavy metal pollution. In the case of pollution with products of oil combustion and refining, the seeds were collected in areas adjacent to mini-factories for domestic oil refining (Chechen Republic, Russia). Pollution induced a 2.5-to-10.2-fold increase in mutation frequency in plant seedlings from contaminated zones compared to plants from "clean" zones. Thus, species of wild flora have proven as convenient and sensitive objects for estimating environmental genotoxicity. Key words: environmental genotoxicity, heavy metals, oil pollution, wild plant species SPECIE DI FLORA SELVATICA QUALI INDICATRICI DI GENOTOSSICITÀ AMBIENTALE SINTESI Il presente studio ha valutato l'applicabilità delle specie selvatiche nello studio della genotossicità ambientale. Il livello di mutazione nelle cellule del meristema radicale è stato esaminato in 8 specie di piante selvatiche che crescono in ambienti affetti da diversi tipi di inquinamento. I semi raccolti nelle aree di smaltimento di una fabbrica di wolfram-molibdeno (Kabardino-Balkaria, Russia) sono stati utilizzati per studiare l'influenza dell'inquinamento da metalli pesanti. Nel caso dell'inquinamento da prodotti di combustione e raffinazione di petrolio, i semi sono stati raccolti in aree adiacenti alle mini-fabbriche per la raffinazione del petrolio (Repubblica Cecena, Russia). L'inquinamento ha indotto un aumento da 2,5 a 10,2 volte della frequenza di mutazione nelle piantine delle zone contaminate rispetto alle piante da zone "pulite". Le specie di flora selvatica si sono pertanto dimostrate utili e sensibili per la stima della genotossicità ambientale. Parole chiave: genotossicità ambientale, metalli pesanti, inquinamento da petrolio, specie di piante selvatiche 137 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et al.: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 INTRODUCTION Understanding the influence of increasing environmental pollution on living organisms has been one of the most important problems to date. The progress of humankind is inseparably linked to the development of industry, which, in turn, inevitably leads to the contamination of the atmosphere, hydrosphere, lithosphere (soil) and biosphere. Water, air and soil pollution adversely affect living organisms, including humans. A contaminated environment has both toxic and genetic effects on living organisms. While the toxic influences, as a rule, can easily be assessed, the impact of pollution on the genetic structures of an organism, including possible remote consequences, is difficult to determine. There are a number of effective methods currently developed to estimate the quality of the environment. The classic methods include sampling of water, air and soil probes, and their laboratory analysis using physical-chemical procedures. This approach, however, does not allow the estimation of the hazardous effect of the detected pollutant on living organisms. Test systems designed to assess the genotoxic effects of pollution, on the other hand, can indicate the possible mutagenic, carcinogenic, teratogenic and other harmful consequences. An impressive number of newly synthesized chemicals and environmental components (soil, air, water and sediments) containing various types of pollutants have already been examined with this method throughout the world (Chen & White, 2004; Ohe et al., 2004; White & Claxton 2004). However, even this approach cannot provide complete information about how a genotoxic effect detected with a test system can influence plants, animals or their associations. Currently, another approach is being developed to estimate the quality of the environment: the assessment of the genotoxic effect of pollution in situ, directly on plants and animals living in a determinate area (Vardar et al., 2014; Watanabe et al., 2014). In this case, the whole complex of hazardous compounds will be taken into consideration, including their synergism and antagonism. Since the 1970s, higher plants have been widely used to screen mutagens and monitor genotoxicants in the environment (de Serres, 1978; Grant & Salamone, 1994; Sandhu et al., 1994; Ma et al., 2005; Sposito et al., 2015; Amato-Lourenco et al., 2017; Sposito et al., 2017). Most experiments in situ were performed using standard test systems with Tradescantia, Allium cepa and Vicia faba (White & Claxton, 2004). Plant test systems have proven to be highly sensitive to heavy metals (Knasmul-ler et al., 1998; Minissi et al., 1998; Majer et al., 2002; Correia et al., 2014), products of oil-processing industry (Minissi et al., 1998; Morais Leme & Aparecida Marin-Morales, 2008) and other organic substances (Herrero et al., 2012; Mesi & Kopliku, 2013; Goujon et al., 2015; Rodriguez et al., 2015), as well as nanoparticles (Ghosh et al., 2016; Panda et al., 2016). Nevertheless, plant test systems do have their limitations (Lazutka et al., 2003), so it is preferable to use naturally growing plant species for genetic monitoring (Gers'kin et al., 2005; Vardar et al., 2014; Watanabe et al., 2014). The aim of this work was to study the suitability of wild flora species to assess the genotoxicity of an environment. MATERIAL AND METHODS Characterization of the studied area and sampling We used species of wild flora to test both inorganic (heavy metals) and organic (products of oil burning and refining) pollutants. The seeds collected at the tailing dump of a wolfram-molybdenum factory (Kabardino-Balkaria, Russia) were used to study the influence of heavy metal pollution. The factory was engaged in wolfram-molybdenum field exploitation and ore concentration until 2000, when it was closed down. The tailing dump we studied had been put into operation in 1967 and was located at an altitude of 1000-1200 meters above sea level. Surrounding areas similar to the studied areas in geo-climatic conditions (slope exposure and plants) were defined as the "clean zone" (background landscape). In the case of pollution by the products of oil burning and refining, the seeds were collected in the Chechen Republic, in the surrounding areas of villages in which mini-factories for domestic oil refining were located. These mini-factories are usually built in the marginal areas of settlements or in woodland belts; their number can vary. Several villages in which primary oil refining was practised for over 13 years were chosen as investigation sites. These were Dolynsk (Groznensky District), Alkhan-Yurt (Urus-Martanovsky District), Mesker-Yurt and Tsotsan-Yurt (Shalinsky Shalinskyi), and Geldegen (Kurchaloevsky District). They were selected for analysis because they are located in the same natural-climatic region and characterized by similar landscape features and vegetation. These villages were defined as the contaminated area. The village of Goity (Urus-Martanovsky District), which is known to be free of this type of industry and belongs to the same natural-climatic region was chosen as the "relatively clean" zone (termed as "relatively" because the benz(a)pyrene content in the soil was 0.03 mg/kg, which exceeds the legal limit of 0.02 mg/kg). The number of mini-factories in the studied polluted settlements ranged from 0 (Goity) to 62 (Dolynsk). The plant collection proceeded as follows: a square territory of 10,000 ± 200 m2 was marked off virtually and divided along the diagonal into areas of approximately 50 m2. In each area, we selected 10 plants characterised by approximately the same behaviour at the stages of flowering and seed ripening, and then collected their seeds. Altogether, at each investigation site we collected seeds from at least 30 specimens of the same plants spe- 138 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et al.: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 cies, and mixed them. Where only a few specimens of a plant species were available, the seeds were collected from all plants growing in that territory. Test organisms Plants of broadly distributed species were preferentially used for the investigation of genotoxicity of the environment in the Chechen Republic. These were waybread (Plantago major L.), medicinal dandelion (Taraxacum officinale Wigg. s.l.), Russian dock (Rumex confertus Willd.), and mayweed (Matricaria recutita L.). When studying the genotoxic effect of the waste from the wolfram-molybdenum factory, we used plants that grew in the surrounding regions and had ripe seeds at the moment of analysis (July-August). From the plants growing in dump areas we chose five species, specifically, cheat-grass (Anisantha tectorum); junegrass (Koeleria cristata); black henbane (Hyoscyamus niger); Jurinea ciscaucasica and medicinal dandelion (Taraxacum officinale Wigg. s.l.) to study the level of mutations; these species belong to distinct genera. Tests procedure The anaphase-telophase method was used to assess the level of chromosomal aberrations in plant seedlings. This method is based on the registration of chromosomal aberration at the anaphase and telophase stages. Owing to dormancy, the seeds only germinated in 1-3 months (or more) after harvesting, depending on plant species. Dandelion and grass seeds can germinate earlier, probably due to a shorter dormant period. It was important for the seeds of the same botanical species collected in "clean" and "contaminated" zone to have the same time of storage. The seeds were germinated in glass Petri dishes on filter paper soaked with tap water in a thermostatic chamber at +26 °C. Germination times varied from 4 to 10 days, depending on the plant species. When necessary, the filter paper was additionally moisturized. The 5-10 mm long roots were fixed in a mix of ethanol and glacial acetic acid (3:1) for at least 2-3 hours. The material fixed this way can be stored up to 1-2 months in a refrigerator at 4 °C. The fixed seedlings were stained in acetocarmine (a 2% solution of carmine in 45% acetic acid) during a 10-12 min water bath. Temporary squash slides were prepared from the root meristem according to the standard method (Dubinina, 1978). At least 1000 anaphases were scored. Chromosome fragments, single and double "bridges" were registered. The percentage of abnormal anaphases against the total number of scored anaphases was calculated. Chemical analysis Soil samples were taken during dry summer days on the terraces of the dump area or in territories located ap- proximately 100±20 m away from the oil-refinery factories, when the seeds of wild plants were also collected. Portions of soil were removed by probe from the upper 0-20 cm horizon in five repeats, then 5 kg of soil was mixed to prepare the sample for analysis (1 kg). The soil samples were put in tightly sealed polyethylene containers and marked with a tag indicating the place and time of sampling. For the purposes of chemical analysis, the soil was dried to obtain air-dry mass. The level of heavy metals in the soils examined was determined using atomic-adsorption spectrophotometry (AAS). Analysis of soil samples for the presence of oil products was carried out in collaboration with the Laboratory of the Soil Sciences Department, Lomono-sov Moscow State University by method of infrared spectroscopy (Orlov & Grishina, 1981). The method of low-temperature fluorescence spectroscopy developed by E. V. Shpolsky was used for the assessment of benz(a) pyrene content in soil (Shpolsky et al., 1968). Statistical processing To determine the reliability of the observed differences we used Fisher's conversion for the match against shares, and two-factor dispersion analysis. RESULTS Tables 1 and 2 summarize the obtained data on heavy metal content in the soils of the studied areas. The content of metals in the tailing dump of the tungsten-molybdenum factory (Kabardino-Balkaria, Russia) was significantly higher (Tab. 1). In the Chechen Republic, where the main pollutants are oil products, the content of heavy metals in the soil in the "relatively clean" village of Goity was not significantly different from other studied villages, in some cases it was even higher (Tab. 2). As for benz(a)pyrene and other petroleum products, their contents in the contaminated zone were 60-80 times higher than those in the "relatively clean" zone of Goity (Tab. 3). In Table 3 and all subsequent tables, the Tab. 1: Heavy metal concentrations in the soils of the disposal areas of a wolfram-molybdenum factory (Kabardino-Balkaria, Russia). Tab. 1: Koncentracije težkih kovin v prsti na odlagališčih tovarne volframa in molibdena (Kabardino-Balkaria, Rusija). Sampling Heavy metal content (mg/kg) area Mo Pb Cu Zn Bi Sn Tailing dump >40 33 37 30-60 6.5 4.5 Clean zone <2 8-13.5 9.5-13 10-15 0 0 139 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et al.: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 Tab. 2: Heavy metal concentration (mg/kg) in the soils of the studied villages of the Chechen Republic. Tab. 2: Koncentracije težkih kovin (mg/kg) v prsti preiskanih naselij v Cečenski republiki. No Site of soil sampling Pb Cd Cr Co Mn 1 Goity 38.21 0.68 56.23 15.41 40.66 2 Tsotsan-Yurt 32.64 1.89 20.14 17.54 18.26 3 Geldegen 59.85 1.35 85.60 18.64 114.68 4 Mesker-Yurt 34.33 1.62 20.28 19.06 15.96 5 Alkhan-Yurt 54.70 1.22 72.44 17.80 136.78 6 Dolynsk 61.22 1.35 95.32 19.48 170.02 villages of the Chechen Republic are listed in order of increasing benz(a)pyrene content. The anaphase-telophase method was used to assess the level of chromosomal aberrations in root meristem cells of plant seedlings. Figures 1a and 1b show a normal anaphase and telophase, respectively. Abnormal anaphases display acentric fragments and "bridges." Fragments of variable sizes emerge as a result of deletions (Fig. 1c) and chromosome lagging (Fig. 1d) during their movement to the poles. The joining of two centromere-containing fragments leads to the formation of a dicentric chromosome, which is affected by two mitotic centres and, being stretched between two daughter groups of anaphase or telophase chromosomes, forms a "bridge." Depending on the type of chromosome damage, different types of "bridges" may occur. The re-joining of two broken sister chromatids leads to the formation of a chromatid (usually single) "bridge" (Fig. Fig. 1: Meristematic cells of Taraxacum officinale Wigg. s.l.: a - normal anaphase; b - normal telophase; c -anaphase with fragments; d - anaphase with lagging chromosomes; e - telophase with single "bridge"; f -anaphase with double "bridge". Fig. 1: Meristemske celice regrata Taraxacum officinale Wigg. s.l.: a - normalna anafaza; b - normalna telo-faza; c - anafaza s fragmenti; d - anafaza z zamikom kromosomov; e - telofaza s posameznim "mostom"; f - anafaza z dvojnim "mostom". 1e), whereas lateral re-joining of two broken chromosomes leads to the formation of a chromosomal (usually double) "bridge" (Fig. 1f). Table 4 shows the results of the estimation of the levels of chromosomal aberrations (CA) in plants collected in the disposal areas of the wolfram-molybdenum factory (Kabardino-Balkaria, Russia) contaminated with heavy metals. The frequency of CA in the root meristem of plants collected in disposal areas was statistically significantly higher than the frequency of CA in plants from the "clean zone." Fragments proved to be the prevailing type of chromosomal aberration in all plant species we studied, with "bridges" found in minor quantities. Wild flora species were also used for genetic monitoring of oil products pollution. Table 5 shows the results of the estimation of mutation level in seedlings obtained from seeds collected in the vicinity of the Chechen villages with mini-factories for domestic oil refining. The study also revealed significantly increased levels of mutation in plant species collected in contaminated zones compared to the "relatively clean" zone of Goity. Of all types of induced alterations, the studied species displayed the highest increase in the frequency of fragments. The highest level of chromosomal rearrangement was recorded in plants from the village of Dolynsk, which is situated in the most contaminated zone. Dispersion analysis has shown that in the case of contamination with oil products, mutation frequency was more dependent on the level of soil pollution than on the plant species used for testing. The influence of soil pollution was 67.1 %, the influence of species 22.5 %, their combined effect only 8.56 %. DISCUSSION In our studies we used 8 plant species, including common (T. officinale, P. major, R. confertus) and rare plants. All of them were quite suitable for genetic monitoring and fairly sensitive to various types of pollutants. All species from contaminated zones showed a significant increase in the level of anaphase/telophase abnormalities compared to the clean zone. In the case of the environmental pollution with heavy metals (dumps 140 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et al.: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 Tab. 3: Oil products and benz(a)pyrene content in the soils of some villages of the Chechen Republic. Tab. 3: Derivati nafte in vsebnost benz(a)pirena v prsti nekaterih naselij v Cečenski republiki. No Soil sample site PH benz(a)pyrene content (mg/kg) Hydrocarbons (%) Oil products (%) 1 Goity 8.30 0.03 0.03 0.02 2 Tsotsan-Yurt 8.42 0.06 0.86 0.73 3 Geldegen 7.79 0.14 0.63 0.52 4 Mesker-Yurt 8.63 0.15 1.17 1.10 5 Alkhan-Yurt 8.42 0.26 1.48 1.48 6 Dolynsk 7.86 1.83 1.72 1.56 of the tungsten-molybdenum factory), the frequency of CA was 1.5-5 times higher compared to the clean zone. In the case of oil and benz(a)pyrene pollution (Chechen Republic), the frequency of mutations increased 5-10 times. A comparison of results related to the two types of pollutants (heavy metals and oil products) revealed both similarities and differences in their actions. In the case of oil product influence, we observed an emergence of double "bridges" in seedlings, which was not detected in the case of contamination with heavy metals. In both cases, fragments were the predominant type of disturbance. The results obtained using species of wild flora are in agreement with data obtained through standard plant test systems (Reutova, 2005, 2017). In these works the genotoxicity of the soil from the tailings of the same tungsten-molybdenum factory was studied using standard plant test systems, and the results indicated a 2-fold increase in the frequency of mutations. The same studies were performed on soils of the villages in the Chechen Republic (Dzambetova & Reutova 2006). Soils contaminated with petroleum products caused a 5-fold increase in the frequency of mutations in plant test systems. Virtually any plant species growing in a particular territory can be used for estimating genotoxic effects on the environment. It should be noted, however, that all species are not equally suitable objects for analysis. It is easier to work with species from the Poaceae and Asteraceae genera, as their seeds germinate easily and the roots are not very thick, which allows for good squash preparations. It is more difficult to work with seeds which have a dense, thick peel, as they germinate poorly and very slowly (e.g. the seeds of black henbane). Mutagenic effects of HM, hydrocarbons, oil products and benz(a)pyrene have been studied for several dec- Tab. 4: Level of chromosomal aberration in a wild plant from areas around a wolfram-molybdenum factory (Kabardino-Balkaria, Russia). Tab. 4: Stopnja kromosomskih aberacij na divje rastočih rastlinah iz predelov okoli tovarne volframa in molibdena (Kabardino-Balkaria, Rusija). Species No of cells (ana/telo) cells with aberrations Aberrations (%) P Yurinea ciscaucasica Clean zone dumps 976 1264 17 46 1.76 3.64 <0,01 Anisantha tectorum Clean zone dumps 1024 1004 15 51 1.46 3.09 <0,05 Koeleria cristata Clean zone dumps 1043 1187 8 41 0.77 3.45 <0,001 Hyoscyanus niger Clean zone dumps 270 322 3 9 1.10 2.79 <0,05 Taraxacum officinale Clean zone dumps 1033 1007 41 194 3.97 19.72 <0,001 141 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et al.: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 ades, using various test systems and providing detailed reports of the results in the reviews (Chen & White, 2004; Ohe et al., 2004; White & Claxton, 2004). But there are very few works devoted to the study of environmental genotoxicity employing wild flora species growing in contaminated areas. In the past years, there have been some studies in which species of wild flora (mostly wood plants) were used for genetic monitoring and determining genotoxic effect on the environment. To this end, a micronuclei (MN) test was applied to the root meristem of pine (Geras'kin et al., 2005) and silver birch (Kalaev et al., 2006) seedlings. In all cases an increase of micronuclei frequencies was observed, even when the types of pollutants were different: ionizing radiation and heavy metals. Herbaceous plants - Arabidopsis thaliana and Crepis tectorum - have previously been used to study the genetic processes in permanently irradiated plant populations. These studies revealed that plants with rearranged karyotypes started to appear two years after the Chernobyl accident, their frequency correlated with the frequency of CA in the cells of the root meristem. Thirty-eight years after the Kyshtym nuclear accident no increase in the frequency of plants with rearranged karyotype has been detected, because such plants did not have any selective advantages and were subjected Tab. 5: Level of chromosomal aberration in a wild plant from areas contaminated with oil refinery products (Chechen Republic, Russia). Tab. 5: Stopnja kromosomskih aberacij na divje rastočih rastlinah iz predelov pod vplivom onesnaženja iz rafinerije (Cečenska republika, Rusija). Plant species Collection site Number of cells (ana/telo) Cells with aberrations Aberrations (%) P Taraxacum officinale Wigg. s.l. Goity 1056 24 2.27 Tsotsan-Yurt 1007 96 9.53 <0.001 Geldegen 1050 114 10.85 <0.001 Mesker-Yurt 1012 104 10.28 <0.001 Alkhan-Yurt 1026 121 11.7 <0.001 Dolynsk 1044 126 12.07 <0.001 Matricaria recutita L. Goity 1164 18 1.55 Tsotsan-Yurt 1062 106 9.98 <0.001 Geldegen 1018 98 9.63 <0.001 Mesker-Yurt 1013 118 11.65 <0.001 Alkhan-Yurt 1071 89 8.31 <0.001 Dolynsk 1070 121 11.31 <0.001 Rumex confertus Willd. Goity 1002 17 1.69 Tsotsan-Yurt 1027 89 8.67 <0.001 Geldegen 1020 106 10.39 <0.001 Mesker-Yurt 1006 96 9.54 <0.001 Alkhan-Yurt 1082 87 8.04 <0.001 Dolynsk 1051 113 10.75 <0.001 Plantago major L. Goity 1018 9 0.89 Tsotsan-Yurt 1101 53 4.81 <0.001 Geldegen 1059 61 5.76 <0.001 Mesker-Yurt 1006 47 4.67 <0.001 Alkhan-Yurt 1023 36 3.52 <0.001 Dolynsk 1004 91 9.06 <0.001 142 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et aL: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 to negative selection along with a decreasing irradiation dose rate (Abramov et al., 2006). The authors also noticed that the plant species they used in their studies could be recommended as test objects for the registration of genetic effects of low-dose ionizing radiation. Our study, too, has proved the suitability of wild flora species for identifying the genotoxicity of an environment when contaminated with inorganic (HM) and organic (hydrocarbons, oil products and benz(a)pyrene) substances. CONCLUSIONS Species of wild flora are very convenient objects for genetic monitoring, because they allow in situ analysis and an evaluation of the effects of all complex of environmental factors, they are highly sensitive to different types of pollutions, and their testing does not require expensive facilities or highly qualified personnel. To perform a comparative analysis of the results it is necessary to have an indicator species with a fairly broad distribution. From our point of view, medicinal dandelion (Taraxacum officinale Wigg. s.l.) is the best candidate. Dandelion proves to be a universal species, as its flowering or fruiting plants can be found throughout the summer period, with massive flowering typically occurring in May and early June. Dandelion seeds have a short dormant period; their germination rate is high and they germinate fast. The seedling roots are of an optimal size for making good squash preparations and the species is sensitive to various types of pollution (heavy metals, organic pollutants). Given all these factors we suggest that dandelion be used as a standard species for the examination of genotoxic effects on the environment. 143 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et aL: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 RASTLINSKE VRSTE KOT INDIKATORJI OKOLJSKE GENOTOKSIČNOSTI Nina REUTOVA Kabardino-Balkarian Scientific Center, Russian Academy of Sciences, 2, Balkarova, Nalchik, 360002 KBR Russia Petimat DZHAMBETOVA Department of Cell Biology, Morphology and Microbiology, Chechen State University, 32, Sheripova, Grozny 364907, Russia E-mail: dzhambetova.csu@yandex.ru Serikbay ABILEV Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina, Moscow 119991, Russia POVZETEK Pričujoča raziskava opredeljuje uporabnost divje rastočih rastlinskih vrst za ugotavljanje okoljske genotoksičnosti. Nivo mutacij v celicah v koreninskem meristemu je bil preiskan na 8 rastlinskih vrstah, ki uspevajo v okolju pod vplivov različnih okoljskih dejavnikov. Za ugotavljanje vpliva onesnaženja s težkimi kovinami so uporabili semena, nabrana na odlagališčih tovarne wolframa in molibdena (Kabardino-Balkaria, Rusija). V primeru onesnaževanja z produkti izgorevanja in rafiniranja nafte so bila semena pobrana v predelih z mini-tovarnami za predelavo nafte (Čečenska republika, Rusija). Onesnaženje je povzročilo 2,5 do 10,2 - kratno povečanje frekvence mutacij na sadikah iz onesnaženega okolja v primerjavi s sadikami v "čistem" okolju. S tega vidika so divje rastoče rastlinske vrste uporabne kot občutljivi objekti za ugotavljanje okoljske genotoksičnosti. Ključne besede: okoljska genotoksičnost, težke kovine, onesnaženje z nafto, divje rastoče rastlinske vrste 144 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et al.: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 REFERENCES Abramov, V.I., A.V. Rubanovich, V.A. Shevchenko, V.V. Shevchenko & L.I. Grynikh (2006): Genetic effects in plant populations growing in the zone of Chernobyl accident. Radiationnaya Biologiya. Radioecologiya, 46(3), 259-267. Amato-Lourenco, L., D. Lobo, E. Guimaraes, T. Moreira, R. Carvalho-Oliveira, M. Saiki, P. Saldiva & Th. Mauad (2017): Biomonitoring of genotoxic effects and elemental accumulation derived from air pollution in community urban gardens. Sci. of The Total Environ., 575, 1438-1444. https://doi.org/10.1016/]'. scitotenv.2016.09.221 Chen, G. & P.A. White (2004): The mutagenic hazards of aquatic sediments: a review. Mutat. Res., 567, 151-225. http://doi.org/10.1016/j.mrrev. 08.005 Correia, S., M. Matos, V. Fer-reira, N. Martins, S. Gon^alves, A. Romano & O. Pinto-Carnide (2014): Molecular instability induced by aluminum stress in Plantago species. Mutat. Res., 770, 105-111. https://doi. org/10.1016/j.mrgentox.2014.06.002 de Serres, F. J. (1978): Utilisation of higher plant systems as a monitor of environmental mutagens. Environ. Health Persp., 27, 3-6. Dubinina, L.G. (1978): Strukturnye mutacii v opytah s Crepis capillaris L. Nauka, Moscow. (In Rus.) Dzambetova, P.M. & N.V. Reutova (2006): Chuvstvitel'nost' rastitel'nyh i bakterial'nyh test sistem pri opredelenii mutagennogo vliyaniya neftezagryaznenij na okruzhayushchuyu sredu (Sensitivity of plant and bacterial test systems in determining the mutagenic effect of oil pollution on the environment.) Ekologicheskaya genetika, 1, 22-27. D0I:10.17816/ecogen4122-27 Geras'kin, S.A., J.K. Kim, A.A. Oudalova, D.V. Vasili-yev, N.S. Dikareva, V.L. Zimin & V.G. Dikarev (2005): Bio-monitoring the genotoxicity of populations of Scots pine in the vicinity of the radioactive waste storage facility. Mutat. Res., 583, 55-66. http://doi.org/10.1016/j. mrgentox.2005.02.003 Ghosh, M., A. Jana, S. Sinha, M. Jothiramajayam, A. Nag, A. Chakraborty, A. Mukherjee & A. Mukherjee (2016): Effects of ZnO na-noparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defences, and cell-cycle arrest. Mutat. Res., 807(1), 25-32. https:// doi.org/10.1016/jj.mrgentox.2016.07.006 Goujon, E., C. Richard, P. Goupil & G. Ledoigt (2015): Cytotox-icity on Allium cepa of the two main sulcotrione photoproducts, xanthene-1, 9-dione-3, 4-di-hydro-6-methylsulphonyl and 2-chloro-4-mesylbenzoic acid. Pes-ticide Biochemistry and Physiology, 124, 3742. https://doi.org/10.1016/jj.pestbp.2015.04.001 Grant, W.F. & M.F. Salamone (1994): Comparative mutagenicity of chemicals selected for the test in the International Program on Chemical Safety's collaborative study on plant systems for the detection of environmental mutagens. Mutat. Res., 310, 187-209. Herrero, O., J.M. Pérez Martín, P. Fernández Freire, L. Carvajal López, A. Peropadre & M.J. Hazen (2012): Toxicological evaluation of three contaminants of emerging concern by use of the Allium cepa test. Mutat. Res., 743(1-2), 20-24. https://doi.org/10.1016/j.mrgentox.2011.12.028 Kalaev, V.N., A.K. Butorina, O.Yu. Shelukhina (2006): Assessment of anthropogenic pollution of Staryi Oskol regions using cytogenetic indices of the silver birch seeds progeny. Ecologicheskaya Genetika, IV(2), 9-21. Knasmuller, S., E. Gottmann, H. Steinkeliner, A. Fo-min, C. Pickl, A. Paschke, R. God & M. Kundie (1998): Detection of genotoxic effects of heavy metal contaminated soil with plant bioassays. Mutat. Res., 420, 37-48. http://doi.org/10.1016/S1383-5718(98)00145-4 Lazutka, J.R., A. Stapulionyte, D.K. Bjerketvedt, A. Odland (2003): Seasonal variation in the frequency of abnormal anaphases and mitotic index values in wild populations of herb-Paris (Paris quadrifolia, L.Trilliaceae): implications for genetic monitoring. Mutat. Res., 534, 113-122. http://doi.org/10.1016/S1383-5718(02)00247-4 Ma, T.H., G.L. Gabrera & E. Owens (2005): Genotoxic agents detected by plant bioassays. Rev. Environ. Health., 20(1), 1-13. https://doi.org/10.1515/ REVEH.2005.20.1.1 Majer, B.J., D. Tscherko, A. Paschke, R. Wennrich, M. Kundi, E. Kandeler, S. Knasmuller (2002): Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat. Res., 515, 111-124. http://doi.org/10.1016/S1383-5718(02)00004-9 Mesi (Dizdari), A., & D. Kopliku (2013): Cytotoxic and Genotoxic Potency Screening of Two Pesticides on Allium cepa. Procedia Technology, 8, 19-26. https://doi. org/10.1016/j.protcy.2013.11.005 Minissi, S., D. Caccese, F. Passafiume, A. Grella, E. Ciccotti & M. Rizzoni (1998): Mutagenicity (micronucleus test in Vicia faba root tips) polycyclic aromatic hydrocarbons and heavy metal content of sediments collected in Tiber river and its tributaries within the urban area of Rome. Mutat. Res., 420, 77-84. http://doi. org/10.1016/S1383-5718(98)00142-9 Morais Leme, D. & M. Aparecida Marin-Morales (2008): Chromosome aberration and micronu-cleus frequencies in Allium cepa cells exposed to petroleum polluted water- A case study. Mutat. Res., 650, 80-85. http://doi.org/10.1016/jj.mrgentox.2007.10.006 Ohe, T., T. Vatanabe & K. Vakabayashi (2004): Mutagens in surface waters: a review. Mutat. Res., 567, 109-149. http://doi.org/10.1016/jj.mrrev.2004.08.003 Orlov, D.S. & L.A. Grishina (1981): Praktikum po himii gumusa. Izdatelstvo MGU, Moscow. (In Rus.) Panda, K.K., V.M.M. Achary, G. Phaomie, K.H. Sahu, N.L. Parinandi & B.B. Panda (2016): Polyvinyl polypyr-rolidone at-tenuates genotoxicity of silver nanoparticles synthesized via the green route, tested in Lathyrus sati- 145 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Nina REUTOVA et aL: SPECIES OF WILD FLORA AS INDICATORS OF ENVIRONMENTAL, 137-146 vus L. root bioas-say. Mutat. Res., 806, 11-23. https:// doi.org/10.1016/j.mrgentox.2016.05.006 Reutova, N.V. (2017): Mutagenic potential of some heavy metals. Russian Journal of Genetics: Applied Research, 7(2), 175-179. https://doi.org/10.1134/ S2079059717020101 Reutova, N.V., T.I. Vorobyeva & T.V. Reutova (2005): Some approaches to evaluation of the mutagenic effect of industrial waste on the environment. Russian Journal of Genetics, 41(6), 608 - 612. https://doi.org/10.1007/ s11177-005-0134-5 Rodriguez, Y.A., C.A. Christofoletti, J. Pedro, O.C. Bueno, O. Malaspina, R.A. Ferreira & C.S. Fontanetti (2015): Allium cepa and Tradescantia pallida bioassays to evalu-ate effects of the insecticide imidacloprid. Chemosphere, 120, 438-442. https://doi.org/10.1016/'. chemosphere.2014.08.022 Sandhu, S.S., F.J. de Serres, H.N. Gopalan, W.F. Grant, D. Svendsgaard, J. Veleminsky & G.C. Becking (1994): Environmental monitoring for genotoxicity with plant sys-tems. Results and recommendations. Mutat. Res., 310, 257-263. Shpol'skij E.H.V., L.A. Klimova, G.N. Nersesova & V.I. Glyadkovskij(1968): Koncentracionnaya zavisi-most' spektrov fluorescencii i pogloshcheniya zam-orozhennyh parafinovyh rastvorov naftalina. Optika i spektroskopiya, 26(1), 52-59. (In Rus.) Sposito, J.C.V., B.A. Crispim, A.I. Roman, R.M. Mus-sury, J.G. Pereira, L.O. Seno & A.B. Grisolia (2017): Evaluation the urban atmospheric conditions in different cities using comet and micronuclei assay in Trades-cantia pallida. Chemosphere, 175, 108-113. https://doi. org/10.1016/j.chemosphere.2017.01.136 Sposito, J.C.V., B.A. Crispim, R.M. Mussury & A.B. Grisolia (2015): Genetic instability in plants associated with vehicular traffic and climatic variables. Ecotox. and Environ. Safety, 120: 445-448. https://doi.org/10.1016/'. ecoenv.2015.06.031 Vardar, E. Basaran, D. Cansaran-Duman, S. Aras (2014): Air-quality biomonitoring: Assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers. Mutat. Res., 759(1), 43-50. https:// doi.org/10.1016/j.mrgentox.2013.09.011 Watanabe, Y., Y. Kubota, S. Fuma, M. Kouichi, S. Ichikawa, M. Kubota & S. Satoshi Yoshida (2014): Cytokinesis block micronucleus assay in field plants for monitoring radiation-induced genotoxicity of the environ-ment. Mutat. Res., 774(1), 41-46. https://doi. org/10.1016/j.mrgentox.2014.08.009 White, P.A. & L.D. Claxton (2004): Mutagens in contaminated soils: a review. Mutat Res., 567, 227-345. http://doi.org/10.1016/jj.mrrev.2004.09.003 146 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 saggio scientifico di rassegna critica di letteratura DOI 10.19233/ASHN.2018.18 ricevuto: 2018-07-14 LE ORCHIDACEAE DEL COMUNE DI PISINO (PAZIN, CROAZIA) Amelio PEZZETTA Via Monte Peralba 34 - 34149 Trieste, Italia E-mail: fonterossi@libero.it SINTESI Pisino (Pazin, Croazia) è un comune situato nelllstria centrale il cui territorio occupa la superfice di circa 135 km2. Nel presente lavoro, tenendo conto di ricerche dirette, fonti bibliografiche e segnalazioni inedite, è riportata e discussa una check-list aggiornata di tutte le Orchidaceae comprendente 40 taxa, di cui 3 ibridi. Inoltre è stata fatta anche l'analisi corologica che evidenzia la prevalenza dell'elemento Mediterraneo seguito dall'Eurasiatico. Parole chiave: Pisino, Orchidaceae, check-list, contingenti floristici THE ORCHIDACEAE OF THE MUNICIPALITY OF PAZIN (CROATIA) ABSTRACT The territory of the Municipality of Pazin covers the surface of ca 135 km2. In the present work we reported an updated check-list of Orchidaceae recorded in the area, comprising 40 taxa, of which 3 are hybrids. The check-list includes unpublished field observations and literature records taking into account direct research, bibliographic sources and unpublished reports. Furthermore, a chorological spectrum was built which highlights the prevalence of the Mediterranean element followed by the Eurasian. Key words: Pazin, Orchidaceae, check-list, floristic composition 147 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Amelio PEZZETTA: LE ORCHIDACEAE DEL COMUNE DI PISINO (PAZIN, CROAZIA), 147-152 INTRODUZIONE Negli ultimi tempi i ricercatori botanici appassionati hanno dimostrato un notevole e crescente interesse verso le Orchidaceae Juss., una famiglia che essendo costituita da circa 27.800 specie ripartite in 880 generi (Givnish et al., 2016), è considerata la più ricca del mondo vegetale dopo le Asteraceae. Grazie al loro importante contributo, le conoscenze in generale su questa famiglia sono note-volmente aumentate ed esse hanno portato alla descrizio-ne di nuovi taxa e a una miglior definizione degli areali di distribuzione delle specie che vi appartengono. Il presente saggio, in linea con la tendenza in pre-cedenza delineata, ha per finalità la compilazione di una check-list comprendente le specie, le sottospecie e gli ibridi di Orchidaceae presenti nell'area d'indagine, attraverso studi noti in letteratura, ricerche sul campo dell'autore e informazioni inedite fornite da studiosi. Allo stato attuale non è stato pubblicato nessun lavoro monografico specifico sulle orchidee spontanee dell'ambito di studio qui considerato, nonostante le numerase ricerche condotte in quest'area da alcuni secoli. Tra i pionieri delle ricerche floristiche nel pisinese va considerato Pospichal (1897) che a Volovica cita il ri-trovamento di Ophrys pseudospeculum (O. sphegodes). Le ricerche sono continuate in seguito e tra esse vanno evidenziate quelle condotte da Biel (2001), Hertel & Hertel (2002) e Griebl (2009) che in tre loro importanti monografie sulle orchidee istriane citano il ritrovamento di vari taxa nel pisinese. Inquadramento dell'area di studio Il Comune di Pisino (Pazin in croato) è situato quasi al centro dell'Istria, in una vasta vallata ove si alter-nano aree pianeggianti e colline con altitudine media compresa tra 300 e 500 metri. La sua superfice copre circa 135 km2 mentre la popolazione residente è di oltre 8600 abitanti con una densità media di circa 66 ab/km2. Di questi, circa 5000 abitanti vivono nel centro storico, mentre il resto si ripartisce in 18 frazioni e vari casolari sparsi che con i loro toponimi ricordano i cognomi delle famiglie che nei secoli passati vissero in quei luoghi (Alberi, 1997). Negli ultimi anni il numero di abitanti delle frazioni e case sparse si è ridotto. Aspetti geologici e geomorfologici Il territorio pisinese si trova in un ambito in cui s'incontrano i terreni e rocce calcaree dell'Istria rossa emersi tra il Giurassico e il Cretaceo con quelli mar-noso-arenacei dell'Istria grigia che si depositarono dal Paleocene fino all'Eocene (D'Ambrosi, 1931; Babic, 2007). Dal Miocene, i terreni marnoso-arenacei della zona sono stati interessati dalla costituzione di ricca idrografia superficiale con la formazione di valli profonde e numerosi canaloni (D'Ambrosi, 1931). I più importanti corsi d'acqua che lo attraversano sono il torrente Foiba (Pazincica) che, dopo un corso superficiale di circa 17 km s'inabissa nel sottosuolo, ed il fiume Bottonega (Butoniga) che alimenta un lago artificiale (Butoniga Jezero). Lungo i percorsi dei torrenti che scendono dalle colline, si osservano depositi allu-vionali di origine postglaciale. Degna di nota nell'area di studio è la cosiddetta Foiba di Pisino, un profondo abisso lungo circa 500 metri, costituito da pareti vertica-li e dirupi alti circa 120 metri che si aprono tra le rocce calcaree del Cretaceo. Il clima La morfologia del territorio e la sua posizione nell'en-troterra istriano influiscono sulle condizioni climatiche del pisinese in cui generalmente si osservano: inverni umidi con gelate occasionali e abbondanti precipita-zioni; estati calde e mediamente secche. Ad avviso di Feresini (1972) e Alberi (1997) la conca di Pisino è caratterizzata da un clima temperato-umido con forti escursioni termiche. I dati termopluviometrici registrati nel periodo 1961-1990 sono stati i seguenti: temperatura minima assoluta -18,7 °C; temperatura massima assoluta 38,2 °C; temperatura media annua 11,1 °C; temperatura media del mese più freddo (gennaio) 2,5 °C e di quello più caldo (luglio) 20,4 °C, valori medi di precipitazioni annue attorno a 1168 mm (Zaninovic et al., 2008). La stagione con precipitazioni più abbondanti è l'autunno, mentre nel periodo estivo si registrano i valori minimi. Il mese con maggiori precipitazioni si colloca attorno a ottobre mentre i valori più bassi si osservano tra luglio e agosto. Tali particolari parametri sono tipici di un clima submediterraneo di transizione (Walter & Lieth, 1960; Segota & Filipcic, 1996). In effetti, la penisola istriana è considerata un'area di transizione climatica fra gli ambiti centro-europeo e mediterraneo. Aspetti botanici, vegetazionali e fitogeografici Dal punto di vista vegetazionale il territorio pisinese appartiene all'orizzonte del bosco misto di latifoglie decidue tendenzialmente termofilo in cui si sviluppa la tipica vegetazione submediterranea e submontana, ma a causa dell''influsso combinato degli elementi del pae-saggio, le sue vicende storico-geologiche, l'andamento climatico e la pressione antropica attuale e del passato, sono osservabili varie formazioni vegetali costituite da entità di diversa origine geografica: varie tipologie di boschi più o meno estesi, arbusteti, associazioni prative, pinete artificiali, etc. II tipo di bosco più diffuso è l'Ostryo-Quercetum pubescentis (Ht.) Trinajstic 74 (Carni, 2003), un'as-sociazione vegetale tipicamente submediterranea. A causa dei forti tagli cui è stato sottoposto sino ad alcuni decenni fa, è presente come una foresta bassa e negli ambiti più degradati Ostrya carpinifolia Scop. è la specie 148 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Amelio PEZZETTA: LE ORCHIDACEAE DEL COMUNE DI PISINO (PAZIN, CROAZIA), 147-152 dominante assieme all'onnipresente Fraxinus ornus. Un'altra associazione arbórea che si rinviene negli ambiti piu freschi e riparati della zona e Il Seslerio autumnalis-Fagetum M. Wraber ex Borhidi 1963 (Sugar, 1984). Nella valle del torrente Foiba (Pazincica) inoltre si rinvengono anche piccoli esempi di boschi con il carpino bianco (Carpinus betulus L.). L'associazione prativa piu diffusa e il Danthonio-Scorzoneretum villo-sae Horvat & Horvatic 1958, che e molto comune nella parte sub-mediterranea della Croazia (Carni, 2003). Accanto a queste associazioni principali si rinvengono altre tipiche degli ambiti rocciosi, delle zone umide e delle aree sottoposte a una forte pressione antropica (associazioni sinantropiche tipiche dei centri abitati, gli orli stradali e le aree coltivate). Dal punto di vista fitogeografico, Sugar (1984), rileva che la vegetazione della zona e un mosaico costituito da piante mesofile e termofile appartenenti a due principali regioni: l'Eurosiberiana-Nordamericana e la Mediterranea. MATERIALI E METODI L'elenco floristico comprende le specie, le sottospe-cie e gli ibridi della famiglia Orchidaceae mentre non sono state prese in considerazione le varieta cromati-che e morfologiche. Nell'elenco non sono riportate le antiche segnalazioni storiche di specie non ritrovate recentemente. In tale sede sono stati inseriti in bibliografia, i saggi botanici pubblicati negli ultimi trent'anni. Le prime osservazioni dello scrivente iniziarono circa 10 anni fa e si sono protratte nel tempo cambiando di anno in anno localita e periodo d'indagine. Le stazioni in cui lo stesso ha fatto dei ritrovamenti sono contrassegnate dai loro nomi con l'aggiunta del punto esclamativo. Accanto ad ogni taxon sono riportati: il tipo corologico, gli autori che l'hanno segnalato, le localita di presenza ed eventuali osservazioni sul rango tassonomico. La nomenclatura segue il recente volume del GIROS (2016) e per le specie non riportate in tale testo si e seguito Delforge (2016). Per l'assegnazione dei tipi co-rologici si e tenuto conto di quanto riportato in Pignatti (1982), Delforge (2016) e Pezzetta (2018). RISULTATI E DISCUSSIONE Elenco floristico Nell'elenco al fine di evitare troppe ripetizioni, sono state utilizzare delle sigle costituite da lettere maiuscole che si riferiscono agli autori delle segnalazioni. Esse hanno il seguente significato: AX: Biel 2001; AY: Pericin 2001; BX: Hertel & Hertel 2002; BY: Griebl 2009; CX: Starmühler 2010; CY: Rottensteiner 2018; DX: Souche inedito (informazione personale). 1. Anacamptis coriophora (L.) R.M. Bateman, Prid-geon & M.W. Chase subsp. coriophora - Eurime-diterraneo. (CY). Stazione di rinvenimento: Pazin. 2. Anacamptis coriophora (L.) R.M. Bateman, Pridgeon & M.W. Chase subsp. fragrans (Pollini) R.M. Bateman, Pridgeon & M.W. Chase - Euri-mediterraneo. (AX, AY, BX). Stazioni di rinvenimento: Beram, Pazin!, Trviz. 3. Anacamptis laxiflora (lam.) R.M. Bateman, Pridgeon & M.W. Chase - Eurimediterraneo. (AX, BX). Stazioni di rinvenimento: Beram, Pazin!, Trviz. 4. Anacamptis morio subsp. morio (L.) R.M. Bateman, Pridgeon & M.W. Chase - Europeo-Caucasico. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram!, Cvitani!, Grdoselo!, Lindar, Marcani, Milicici, Mohorici, Pazin!, Trviz. 5. Anacamptis papilionacea (L.) R.M. Bateman, Pridgeon & M.W. Chase - Eurimediterraneo. (AX). Stazioni di rinvenimento: Beram, Pazin. 6. Anacamptis pyramidalis (L.) Rich. subsp. pyramidalis - Eurimediterraneo. (AX, BX, BY, CX, CY, DX). Stazioni di rinvenimento: Beram!, Grdoselo!, Lindar, Milicici, Pazin!, Trviz!. Sono state ricondotte alla specie tutte le segnalazioni di Anacamptis pyramidalis subsp. serotina. 7. Cephalanthera damasonium (Mill.) Druce - Eurimediterraneo. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram!, Grdoselo!, Lindar, Marcani, Milicici, Mohorici, Pazin!, Trviz 8. Cephalanthera longifolia (L.) Fritsch - Eurasiati-co. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram!, Grdoselo!, Lindar, Marcani, Milicici, Mohorici, Pazin!, 9. Epipactis atrorubens (Hoffm.) Besser - Europeo. Stazioni di rinvenimento: (BY). Beram!. 10. Epipactis helleborine subsp. helleborine (L.) Crantz - Paleotemperato. (AX) Stazioni di rinvenimento: Beram!, Lindar, Pazin. 11. Epipactis microphylla (Ehrh.) Sw. - Europeo-Caucasico (AX). Stazione di rinvenimento: Beram. 12. Epipactis muelleri Godfery - Centro-Europeo. (BX, CY). Stazioni di rinvenimento: Grdoselo!, Pazin!. 13. Epipactis palustris (L.) Crantz - Circumboreale. (AX, BX, CY). Stazioni di rinvenimento: Grdoselo, Lindar, Pazin!, Trviz. 14. Gymnadenia conopsea (L.) R. Br. in W.T. Aiton susbp. conopsea - Eurasiatico. (AX, BX, BY, CX, DX). Stazioni di rinvenimento: Beram!, Grdoselo!, Lindar, Milicici, Mohorici, Pazin!, Trviz. 15. Himantoglossum adriaticum H. Baumann - Eurimediterraneo. (AX, BX, BY, CX, DX) Stazioni di rinvenimento: Beram!, Grdoselo!, Cvitani!, Milicici, Pazin!, Trviz. 16. Limodorum abortivum (L.) Sw. - Eurimediterraneo. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram, Lindar, Marcani, Pazin!, Trviz. 149 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Amelio PEZZETTA: LE ORCHIDACEAE DEL COMUNE DI PISINO (PAZIN, CROAZIA), 147-152 17. Listera ovata (L.) R. Br. - Eurasiatico. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram, Grdose-lo!, Lindar, Milicid, Marcani, Mohorici, Pazin!, Trviz. 18. Neotinea tridentata (Scop.) R.M. Bateman, Pri-dgeon & M.W. Chase - Eurimediterraneo. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram! Grdoselo!, Lindar, Marcani, Milicici, Mohorici, Pazin!, Trviz!. 19. Neotinea ustulata (L.) R.M. Bateman, Pridgeon & M. W. Chase - Europeo-Caucasico. (AX, AY). Stazioni di rinvenimento: Beram, Pazin!, Trviz. 20. Neottia nidus-avis (L.) Rich. - Eurasiatico. (AX, BY). Stazioni di rinvenimento: Lindar, Milicici, Pazin!, Trviz. 21. Ophrys apifera Huds. - Eurimediterraneo. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram, Grdoselo!, Lindar, Milicici, Pazin!, Trviz. 22. Ophrys holosericea (Burm. f.) Greuter subsp. tetraloniae (W.P. Teschner) Kreutz - Appenni-no-Balcanico. (AX, BX). Stazioni di rinvenimento: Grdoselo!, Pazin!, Trviz. 23. Ophrys holosericea (Burm. f.) Greuter subsp. untchjii (M. Schulze) Kreutz - Subendemico. (AX, BX, DX). Stazioni di rinvenimento: Beram, Lindar, Pazin! Sono state ricondotte al taxon le segnalazioni di Ophrys hol. II fatte da Hertel & Hertel (2002). 24. Ophrys incubacea Bianca subsp. incubacea -Stenomediterraneo. (AX, BX, BY). Stazioni di rinvenimento: Beram, Grdoselo, Lindar, Milicici, Pazin!, Trviz. 25. Ophrys insectifera L. - Europeo. (AX, BY, DX). Stazioni di rinvenimento: Beram, Grdoselo!, Lindar, Marcani, Milicici, Mohorici, Pazin!, Trviz. 26. Ophrys sphegodes subsp. sphegodes Mill. -Eurimediterraneo. (AX,, BX,, BY, CX). Stazioni di rinvenimento: Beram!, Cvitani!, Grdoselo!, Marcani, Lindar, Milicici, Mohorici, Pazin!. 27. Ophrys sulcata. Devillers-Tersch. & P. Devillers - Mediterraneo-Occidentale. (AX). Stazione di rinvenimento: Beram. Segnalata da Biel (2001) come O. fusca Link. In accordo con Delforge gli individui vanno assegnati al taxon in oggetto. Secondo Romolini (2002) la specie va assegnata a O. funerea Viv. Il taxon in Istria raggiunge il limite orientale di distribuzione geografica. 28. Orchis mascula L. subsp. speciosa (Mutel) -Centro-Europeo. (AX, AY, BY). Stazioni di rinvenimento: Beram!, Grdoselo!, Lindar, Marcani, Milicici, Mohorici, Pazin!, Trviz. 29. Orchis militaris L. - Eurasiatico. (AX, BX, BY). Stazioni di rinvenimento: Beram, Grdoselo!, Lindar, Milicici, Mohorici, Pazin!, Trviz. 30. Orchis pallens L. - Europeo-Caucasico. (BY). Stazioni di rinvenimento: Grdoselo, Pazin. 31. Orchis purpurea Huds. - Eurasiatico. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram!, Cvitani!, Grdoselo!, Lindar, Marcani, Milicici, Mohorici, Pazin!, Trviz. 32. Orchis simia Lam. - Eurimediterraneo. (AX, BX, BY, DX). Stazioni di rinvenimento: Beram, Grdoselo!, Marcani, Milicici, Mohorici, Pazin!. 33. Platanthera bifolia (L.) Rchb. subsp. bifolia -Paleotemperato. (AX, AY, BX, BY, CX, CY, DX). Stazioni di rinvenimento: Beram!, Butoniga, Cvitani!, Lindar, Milicici, Pazin!, Trviz!. 34. Platanthera chlorantha (Custer) Rchb. - Euro-siberiano. (AX, BY). Stazioni di rinvenimento: Beram, Lindar, Marcani, Milicici, Pazin! 35. Serapias vomeracea (Burm.f.) Briq. subsp. vome-racea - Eurimediterraneo.(AX, BX, BY). Stazioni di rinvenimento: Beram, Pazin!. 36. Spiranthes spiralis (L.) Chevall. - Europeo-Caucasico. (BX). Stazione di rinvenimento: Pazin. 37. Traunsteinera globosa (L.) Rchb. - Orof. Sud-Eu-ropeo. (AX). Stazioni di rinvenimento: Beram, Pazin. Ibridi 1. Ophrys x obscura G. Beck (O. holosericea x O. sphegodes). (BY). Stazione di rinvenimento: Pazin. 2. Ophrys x todaroana Macchiati (O. incubacea x O. sphegodes). (BY). Stazione di rinvenimento: Milicici. 3. Orchis x hybrida (Lindl.) Boenn. ex Rchb. (O. militaris x O. purpurea). (AX, BX). Stazioni di rinvenimento: Beram, Pazin. Nell'elenco floristico sono riportati 37 taxa infrage-nerici. Al loro insieme si aggiungono 3 ibridi e pertanto il numero complessivo dei taxa presenti e di 40. Nel territorio comunale di Pisino sono segnalate oltre il 45.12 % delle Orchidaceae della penisola istriana che ammonta a 82 taxa ripartiti tra specie e sottospecie (Pez-zetta, in prep.) e il 25 % di quelle di tutta la Repubblica di Croazia, che sulla base di quanto riportato in Nikolic (2015) ammonterebbe a 148 taxa, esclusi gli ibridi. L'elenco non riporta entita nuove mentre comprende diverse segnalazioni e stazioni inedite (Cvitani) che contribuiscono ad allargare l'areale di diffusione dei singoli taxa. Le varie entita si ripartiscono in 17 generi, tra cui il piu rappresentato e il genere Ophrys con 7 taxa. Seguono i generi: Anacamptis con 6 taxa, Epipactis e Orchis con 5 taxa ciascuno, Cephalanthera, Platanthera e Neotinea con 2 e poi gli altri con 1. I vari taxa sono segnalati in localita diverse, variano da un minimo di 5 osservati presso Cvitani a un massimo di 31 presenti nei dintorni del Capoluogo e dimostrano che le orchidacee sono ampiamente diffuse in tutto il territorio comunale. 150 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Amelio PEZZETTA: LE ORCHIDACEAE DEL COMUNE DI PISINO (PAZIN, CROAZIA), 147-152 Tab. 1: Corotipi delle Orchidaceae pisinesi. Tab. 1: Horotipi kukavičevk pazinske občine. Elementi geografici Numero taxa % Endemico e Subendemico 1 2,7 Subendemico 1 Mediterraneo 15 40,54 Eurimediterraneo 13 Stenomediterraneo 1 Mediterraneo-Occidentale 1 Eurasiatico 14 37,84 Eurasiatico s.s. 6 Europeo-Caucasico 5 Eurosiberiano 1 Paleotemperato 2 Nordico 1 2,7 Circumboreale 1 Europeo 6 16,22 Europeo s.s. 2 Centro-Europeo 2 Orofita Sud-Europeo 1 Appennino-Balcanico 1 Totale 37 100 La Tabella 1 evidenzia che le Orchidaceae dell'am-bito di studio si ripartiscono in 13 tipi corologici raggruppati in 5 elementi geografici tra cui domina l'elemento Mediterraneo con 15 taxa. Esso è seguito dagli elementi: Eurasiatico con 14 taxa, Europeo con 6, Nordico ed Endemico con un taxon ciascuno. I corotipi in cui si registra la maggior presenza di specie sono: l'Eurimediterraneo (13), l'Eurasiatico (6) e l'Euro-peo-Caucasico (5). Confrontando i valori della Tabella 1 con quelli riguardanti i corotipi delle Orchidaceae presenti nel Co-mune di Valle, situato sulla costa occidentale istriana, a soli 30 Km circa in linea d'aria da Pisino e caratte-rizzato da un numero di entità abbastanza vicino (31 taxa distinti tra specie e sottospecie) (Pezzetta, 2017), si osserva che nel territorio pisinese si ha una forte riduzione in valori assoluti e percentuali dei taxa degli elementi Endemico (da 3 a 1 e in valori percentuali dal 9.7 % al 2.7 %) e Mediterraneo (da 16 a 15 e in valori percentuali dal 51.6 % al 40,1 %); aumentano i taxa degli elementi Europeo ed Eurasiatico. Questi semplici dati confermano che le orchidee dell'ambito di studio presentano un carattere fitogeogra-fico diverso rispetto a quelle di Valle e tale differenza sembra essere legata alle diverse situazioni climatiche e ambientali: Valle risulta essere un'area con ancora una forte impronta mediterranea, mentre l'area presa qui in considerazione mostra un netto passaggio verso un clima temperato in cui sussiste pero ancora una certa mediterraneità: si tratta del clima submediterraneo. CONCLUSIONI L'alto numero di Orchidacee presenti nel pisinese è un importante indicatore della sua ottima qualità e integrità ambientale. Diverse entità ivi presenti si rin-vengono nei prati da sfalcio e potranno persistervi sino a quando le attività umane manterranno un moderato disturbo che assicurerà la conservazione del loro habitat (Kaligaric & Otopal, 2012; Slaviero et al., 2016). 151 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Amelio PEZZETTA: LE ORCHIDACEAE DEL COMUNE DI PISINO (PAZIN, CROAZIA), 147-152 KUKAVIČEVKE PAZINSKE OBČINE (PAZIN, HRVAŠKA) Amelio PEZZETTA Via Monte Peralba 34 - 34149 Trieste, Italia E-mail: fonterossi@libero.it POVZETEK Občina Pazin (Hrvaška) se nahaja v osrednji Istri in pokriva površino približno 135 km2. V pričujočem delu avtor na podlagi neposrednih raziskav, bibliografskih zapisov in neobjavljenih opažanj podaja dopolnjeni seznam kukavičevk, ki šteje 40 taksonov, med kateremi so trije križanci. Poleg tega je opravil še horološko analizo, ki kaže, da prevladujejo sredozemski elementi, tem pa sledijo evraziatski floristični elementi. Ključne besede: Pazin, Orchidaceae, popis, floristična sestava BIBLIOGRAFIA Alberi, D. (1997): Istria, storia, arte, cultura. Ed. Lint, Trieste. Babic, L. (2007): The Middle Eocene age of the supposed late Oligocene sediments In the flysch of the Pazin Basin (Istria, Outer Dinarides). Natura Croatica, 16 (2), 83-103. Biel, B. (2001): Zwei Exkursionen des AHO Unterfranken zur Halbinsel Istrien (Kroatien). Ber. Arbeitskrs. Heim. Orchid, 18(1), 1-21. Carni, A. (2003): Vegetation of forest edges in the central part of Istria. Natura Croatica, 12(3), 1321-140. D'Ambrosi, C. (1931): Note illustrative della Carta Geologica delle Tre Venezie. Foglio Pisino, 1:100000. Ufficio Idrografico del Magistrato alle Acquee, Sezione Geologica, Padova. Delforge, P. (2016): Guide des orchidees d'Europe, d'Afrique du Nord et du Proche Orient. Delachaux et Niestle, Paris. Feresini, N. (1972): La Foiba di Pisino. Tipografia Villaggio del Fanciullo, Trieste. GIROS (a cura) (2016): Orchidee d'Italia: guida alle orchidee spontanee. Ed. Il Castello, Cornaredo (MI). Givnish, T.J., D. Spalink, M. Ames, S.P. Lyon, S.J., Hunter, A. Zuluaga, A. Doucette, GG. Caro, J. Mc-Daniel, M.A. Clements, M.T.K. Arroyo, L. Endara, R. Kriebel, N.H. Williams & K.M. Cameron (2016): Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J. Biogeogr., 43, 1905-1916. Griebl, N. (2009): Die Orchideen Istriens und deren Begleitflora. Ber. Arbeitskrs. Heim Orchid., 26(2), 98165. Hertel, S. & K. Hertel (2002): Beobachtungen zu den Orchideen Istriens. J. Eur. Orch., 24, 493-542. Kaligaric, M. & J. Otopal (2012): Botanical rarities from Slovenia in Istria; the inluence of the Mediterranean edge. 2012. Annales, Ser. Hist. Nat., 22(2), 139-144. Nikolic, T. (ed.) (2015): Flora Croatica Database. On-Line (http://hirc.botanic.hr/fcd). Department of Botany, Faculty of Science, University of Zagreb. Pericin, C. (2001): Fiori e piante dell'Istria, Collana degli Atti, Centro di Ricerche storiche, Extra serie 3, Rovigno, 464 pp. Pezzetta, A. (2017): Le Orchidaceae di Bale-Valle (Istria, Croazia). Annales, Ser. Hist. Nat, 27(2), 107-116. Pezzetta, A. (2018): Le orchidee della flora italiana: distribuzione geografica e origini. GIROS Orch. Spont. Eur., 61(1), 218-248. Pignatti, S. (1982): Flora d'Italia, voll. I-III. Ed. Eda-gricole, Bologna. Pospichal, E. (1897): Flora des Oesterreichischen Küstenlandes 1-2, Leipzig und Wien, 1897-99. Romolini, R. (2002): Escursione orchidologica in Slovenia e Croazia (Istria). GIROS Notizie, 19, 13-15. Rottensteiner, W.R. (2018): Die Pflanzen Istriens in ihren natülichen Ledensräumen. Mediagrafik Hanschitz e U, Klagenfurt. Šegota, T. & A. Filipičic (1996): Klimatologija za geografe II. prera|eno izdanje. Školska knjiga. Zagreb. Šugar, I. (1984): Novi pogledi na biljni pokrov i biljnogeografsku rasclanjenost Istre. Acta Bot. Croat., 43, 225-234. Slaviero, A.S., S. Del Vecchio, E. Pierce, E. Fantinato & G. Buffa (2016): Plant community attributes affect dry grassland orchid establishment. Plant Ecology, 217, 1533-1543. Starmühler, W. (2010): Vorarbeiten zu einer Flora von Istrien Teil 13. Carinthia, 2 (200/120), 465-524. Walter, H. & H. Leith (1960): Klimadiagramm - Weltatlas. Jena. Zaninovic, K., M. Gajic Čapka, M. Perčec Tadic, J. Vučetic Milkovic, A. Bajijc, K. Cindric, L. Cvitan, Z., Katušin, D. Kaučic, T. Likso, E. Lončar, Ž. Lončar, D. Mihajlovic, K. Pandžic, M. Patarčic, L. Srnec & V. Vučetic (2008): Klimatski atlas Hrvatske. DHMZ, Zagreb. 152 FAVNA FAUNA FAUNA ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 short scientific article DOI 10.19233/ASHN.2018.19 received: 2018-05-14 FIRST RECORD OF THE BRYOZOAN TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) FROM THE SLOVENIAN SEA Ana FORTIČ & Borut MAVRIČ Marine Biology Station, National Institute of Biology, Fornace 41, Piran, Slovenia E-mail: ana.fortic@nib.si ABSTRACT In this paper we present the first record of Tricellaria inopinata dHondt & Occhipinti Ambrogi, 1985 for the Slovenian coastal sea. The colonies of this bryozoan were found attached to the mussel shells in the sight of Sečovlje, Strunjan and Debeli rtič mussel cultures from April to October 2018 and in Valdoltra harbour in November 2018. After the introduction into the Lagoon of Venice in the 1980s and its rapid spread throughout the lagoon in the following years, the species was regarded as an invasive taxon for that area and it is highly expected to colonize the whole Northern Adriatic region. The status of T. inopinata and its ecological impact has yet to be determined for the Slovenian coastal sea. Key words: Tricellaria inopinata, alien species, Gulf of Trieste, Adriatic Sea, mussel aquaculture PRIMA SEGNALAZIONE DEL BRIOZOO TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) PER IL MARE SLOVENO SINTESI L'articolo tratta il primo ritrovamento di Tricellaria inopinata dHondt & Occhipinti Ambrogi, 1985 per le acque costiere slovene. Le colonie di questo briozoo sono state trovate attaccate ai gusci delle cozze nelle mitilicolture di Sicciole, Strugnano e Punta grossa da aprile a ottobre 2018, e nel mandracchio di Valdoltra nel novembre 2018. Dopo l'introduzione della specie nella Laguna di Venezia negli anni '80 e la rapida diffusione in tutta la laguna negli anni seguenti, la specie e stata considerata invasiva per quell'area e si prevede che colonizzi l'intero Adriatico settentrionale. Lo stato di T. inopinata e il suo impatto ecologico devono ancora venir determinati per le acque costiere slovene. Parole chiave: Tricellaria inopinata, specie aliena, Golfo di Trieste, mare Adriatico, mitilicoltura 155 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Ana FORTIC & Borut MAVRIC: FIRST RECORD OF THE BRYOZOAN TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) FROM THE ..., 155-160 INTRODUCTION The arborescent Cheliostomatid Bryozoan Tricellaria inopinata d'Hondt & Occhipinti Ambrogi, 1985 (Bryo-zoa: Candidae) is creamy-light brown in colour and it forms bushy colonies on hard substrata. The species is tolerant to a broad range of temperatures and salinity and it is capable of year-round reproducing, which makes it very competitive (Cook et al., 2013). T. inopinata was first described from the Venice lagoon (Mediterranean Sea) in 1982 (d'Hondt & Occhipinti Ambrogi, 1985). Although the precise native origin of the Bryozoan remains unclear, it is assumed that the species originates from the Pacific (Dyrnda et al., 2000), where the T. inopinata -occidentals - porteri complex of several closely related morphospecies occurs (Occhipinti Ambrogi & d'Hondt, 1994). The complex of species is widespread in the whole Pacific, classified either as an introduced species in the case of New Zealand (Gordon & Mawatari, 1992) or as a cryptogenic species on the coast of the USA, Canada, Japan and Australia (Dyrynda et al., 2000). It has been reported from several locations in the Eastern Atlantic: Portugal, Spain, Scotland, Ireland, Southern coast of England, France, Germany, Belgium and Netherlands (De Blauwe & Faasse, 2001; Breton & d'Hondt, 2005; Arenas et al., 2006; Marchini et al., 2007; Buschbaum et al., 2012; Cook et al., 2013); in the Western Atlantic: Massachusetts (Johnson et al., 2012); as well as in the Arctic Ocean: Norwegian Sea (Porter et al., 2015). In the Mediterranean Sea, T. inopinata has most frequently been recorded in the Italian part of the Northern Adriatic (Occhipinti-Ambrogi, 2000). It has also been reported in some other parts of Italy (harbours La Spezia and Olbia in Ligurian and Tyrrhenian Sea, respectively) (Lodola et al., 2012), in Tunisia (Ben Souissi et al., 2006) and in marinas of Agde and Le Grau-du-Roi, France and Heraklion in Greece (Ulman et al., 2017). Besides the records from the Italian part of the northern Adriatic there were no other records so far in the Adriatic. The finding presented in this work is thus the first record of T. inopinata outside Italian waters of the Adriatic Sea and the first record for the Slovenian Sea. MATERIAL AND METHODS The colony of T. inopinata was collected from the mussel aquaculture in Secovlje (GPS coordinates: 45°29'21.18", 13°34'57.96") on 6th of April 2018 (Fig. 1). It was found attached to a shell of Mytilus gallopro-vincialis from the depth of 0.5 m. Mussels were scraped Fig. 1: Map of the Gulf of Trieste with four locations where colonies of Tricellaria inopinata were found (circle). Sl. 1: Zemljevid Tržaškega zaliva z označenimi štirimi območji (krogec), kjer so bile najdene kolonije vrste Tricellaria inopinata. Fig. 2: Photographs of the colony of Tricellaria inopinata: A - a broad view of the colony, B - a close-up view of one branch of the colony with autozoids (photos: A. Fortič). Sl. 2: Fotografije kolonije mahovnjaka Tricellaria inopinata: A - široki posnetek razvejane kolonije, B -približani posnetek dela kolonije z vidnimi avtozoidi (fotografiji: A. Fortič). 156 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Ana FORTIC & Borut MAVRIC: FIRST RECORD OF THE BRYOZOAN TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) FROM THE ..., 155-160 off a buoy and a rope with a scraping net and brought back to the laboratory. Detailed inspection of the fouling community with the dissection microscope revealed a cream-coloured arborescent bryozoan colony (Fig. 2A). It was preserved with an ethanol-based fixation reagent (FineFIX) and is stored as a part of species record collection of Marine Biology Station (National Institute of Biology) in Piran. Consequent samplings were performed on three sites of mussel aquaculture in Strunjan, Debeli rtic and Secovlje. On six occasions we found several colonies of T. inopinata, using the same sampling procedure. We employed the similar protocol, when sampling in some Slovenian harbours. Fouling community was scraped off the hulls of boats and later inspected in the laboratory. T. inopinata was found in Valdoltra harbour, attached both to mussel shells and directly to the boat hull (Tab. 1). RESULTS AND DISCUSSION The colonies of T. inopinata were found attached to the mussel shells and in one case on the boat hull with smooth rhizoids. The bryozoan was determined due to certain diagnostical features. The stem is dichotomously branched, bearing autozoids arranged in two rows, with large lateral avicularia. The colony is composed of auto-zoids with or without distally positioned globular shaped brooding chambers (ovicells), which are multi-pored. The scuta, partially covering opesia are highly diverse throughout the colony, but are mainly antler-shaped (Fig. 2B). Some of the proximal external spines have double tips, but not all. The specimen was assigned to the species T. inopinata, following the description from Dyrynda et al. (2000), Johnson et al. (2012) and Lodola et al. (2012). Tab. 1: Dates and sites of sampling in three Slovenian mussel aquacultures and one harbour when colonies of T. inopinata were found. Tab. 1: Datumi in lokacije vzorčenja v treh slovenskih školjčiščih in enemu mandraču, kjer smo našli mahovn-jaka T. inopinata. Date Site GPS coordinates 6.4.2018 Sečovlje 45°29'21.18", 13°34'57.96" 7.5.2018 Sečovlje 45°29'21.18", 13°34'57.96" 5.6.2018 Debeli rtič 45°35'54.31", 13°42'29.32" 3.7.2018 Strunjan 45°31'50.22", 13°35'45.78" 27.9.2018 Sečovlje 45°29'38.00", 13°34'36.00" 5.10.2018 Debeli rtič 45°36'01.68", 013°42'19.92" and 45°35'58.56", 13°42'33.00" 5.10.2018 Sečovlje 45°29'24.54", 13°34'56.76" 16.11.2018 Valdoltra 45°34'47.68", 13°43'32.42" The ability to colonize brackish and fully saline environments, combined with high tolerance to temperature variations and eutrophication levels, along with high reproductive potential, caused the rapid spread of T. inopinata (Occhipinti Ambrogi & d' Hondt, 1994; Dyrynda et al., 2000; Occhipinti Ambrogi, 2000). Ecological consequences of introduction of T. inopinata to the Lagoon of Venice were quickly evident. A rapid spread of T. inopinata through the canals of Venice, caused a disappearance of some native bryozoan species, consequently reducing biodiversity in the fouling community (Occhipinti Ambrogi, 2000). Competition with other bryozoan species was also observed in other parts of the world (Johnson et al., 2012). Another mention-worthy aspect of the colonisation of T. inopinata into new environments, is harbouring of the mobile alien fauna, such as Caprella scaura, Monocorophium sextonae (both Amphipoda) and Paracerceis sculpta (Isopoda) in Cádiz, Spain (Gavira-O'Neill et al., 2016). Most likely the bryozoan is being transferred by means of shipping or aquaculture and secondary diffused by small boat traffic (Watts et al., 1998; de Blauwe & Faasse, 2001; Occhipinti Ambrogi, 2002; Lodola et al., 2012; Porter et al., 2015), as concluded from the occurrence of the species in harbours and marinas (Dyrynda et al., 2000). It was also found in Japanese tsunami debris that landed on the coast of North America in 2011 (Calder et al., 2014). Recently, Johnson and Woollacott (2015) have successfully assessed the introduction and spread of T. inopinata in Western Atlantic through multiple introduction events by the means of characterizing polymorphic microsatellite loci. It might be sensible to perform a similar study analysing both Pacific and Mediterranean specimens. Although this species is highly expected for the whole area of the northern Adriatic, this is the first record of T. inopinata in Slovenian coastal sea. Currently we do not have enough data to assess the population status of this species in Slovenia. Up to date we have found the colonies of T. inopinata in Sečovlje, Strunjan and Debeli rtič mussel aquacultures, however in neither of those sites was the bryozoan abundant. We have yet to discover, whether the species is mostly present in mussel aquacultures, or it is already established and distributed over larger area. As earlier data show, T. inopinata often appears in marinas, harbours, ports and canals (d'Hondt & Occhipinti Ambrogi, 1985; Breton & d'Hondt, 2005; Porter et al., 2015). Our sampling effort in Slovenian harbours has in fact recently revealed few colonies of this bryozoan in the Valdoltra harbour. In the future, we are keen on continuing to study the spatial and temporal patterns of T. inopinata in Slovenian waters and to assess its possible impact on the ecosystem. The unclear taxonomic status of T. inopinata -occidentals - porteri complex, caused by the missing type species for T. occidentalis and lack of conclusive 157 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Ana FORTIC & Borut MAVRIC: FIRST RECORD OF THE BRYOZOAN TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) FROM THE ..., 155-160 morphological and molecular information on both T. occidentalis and T. porteri (Dyrynda et al., 2000), causes confusion around the origin and introduction pathways of T. inopinata. The status of Tricellaria inopinata in the Northern Adriatic remains unclear and further studies, namely ecological and molecular, are necessary in order to elucidate it. ACKNOWLEDGEMENTS We are grateful to prof. dr. Lovrenc Lipej and Domen Trkov for providing us with samples from Valdoltra harbour and the former for the support and useful advice. We would also like to thank two anonymous reviewers, who helped to improve our manuscript. 158 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Ana FORTIC & Borut MAVRIC: FIRST RECORD OF THE BRYOZOAN TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) FROM THE ..., 155-160 PRVI ZAPIS O POJAVLJANJU MAHOVNJAKA TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) IZ SLOVENSKEGA MORJA Ana FORTIČ & Borut MAVRIČ Marine Biology Station, National Institute of Biology, Fornace 41, Piran, Slovenia E-mail: ana.fortic@nib.si POVZETEK V članku predstavljamo prvi primer pojava mahovnjaka Tricellaria inopinata dHondt & Occhipinti Ambrogi, 1985 v slovenskem morju. Kolonije mahovnjaka smo našli na lupinah klapavic v školjčiščih Sečovlje, Strunjan in Debeli rtič med aprilom in oktobrom 2018 in v mandraču v Valdoltri novembra 2018. Po vnosu v Beneško laguno v osemdesetih letih prejšnjega stoletja in naglem širjenju v naslednjih letih, so vrsto označili za invazivno za to območje in jo zato lahko pričakujemo v celotni regiji severnega Jadrana. Status vrste T. inopinata v slovenskem priobalnem morju še ni jasen, prav tako je potrebno v prihodnje razjasniti možne vplive mahovnjaka na tukajšnji ekosistem. Ključne besede: Tricellaria inopinata, tujerodna vrsta, Tržaški zaliv, Jadransko morje, školjčišče 159 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Ana FORTIC & Borut MAVRIC: FIRST RECORD OF THE BRYOZOAN TRICELLARIA INOPINATA (D'HONDT & OCCHIPINTI AMBROGI, 1985) FROM THE ..., 155-160 REFERENCES Arenas, F., J.D.D. Bishop, J.T. Carlton, P.J. Dyrynda, W.F. Farnham, D.J. Gonzalez, M.W. Jacobs, C. Lambert, G. Lambert, S.E. Nielsen, J.A. Pederson, J.S. Porter, S. Ward & C.A. Wood (2006): Alien species and other notable records from a rapid assessment survey of marinas on the south coast of England. J. Mar. Biol. Assoc. United Kingdom, 86(6), 1329-1337. Ben Souissi, J., M. Ben Salem & J. Zaouali (2006): Tricellaria inopinata (Bryozoa, Cheilostome), récolté pour la première fois en Tunisie (Lagune sud de Tunis: Tunisie septentrionale). In: Actes de la 8ème Conference Internationale des Limnologues d'Expression Francaise 17-21 March 2006, Vol. Abstract, Hammamet, (Tunisie), 1 p. de Blauwe, H. & M. Faasse (2001): Extension of the range of the bryozoans Tricellaria inopinata and Bu-gula simplex in the north-east Atlantic ocean (Bryozoa: Cheilostomatida). Ned. Faun. Meded., 14, 103-112. Breton, G. & J-L. d'Hondt (2005): Tricellaria inopinata d'Hondt et Occhipinti Ambrogi, 1985 (Bryozoa: Cheilostomatida) dans le port du Havre (Manche orientale). Bull. Soc. géol. Normandie Amis Mus. Havre, 92(2), 67-72. Buschbaum, C., D. Lackschewitz & K. Reise (2012): Nonnative macrobenthos in the Wadden Sea ecosystem. Ocean Coast Manag., 68, 89-101. Calder, D.R., H.H.C. Choong, J.T. Carlton, J.W. Chapman, J.A. Miller & J. Geller (2014): Hydroids (Cnidaria: Hydrozoa) from Japanese tsunami marine debris washing ashore in the northwestern United States. Aquat. Invasions, 9(4), 425-440. Cook, E.J., J. Stehlíková, C.M. Beveridge, M.T. Burrows, H. de Blauwe & M. Faasse (2013): Distribution of the invasive bryozoan Tricellaria inopinata in Scotland and a review of its European expansion. Aquat. Invasions, 8(3), 281-288. Dyrynda, P.E.J., V.R. Fairall, A. Occhipinti Ambrogi & J.-L. d'Hondt (2000): The distribution, origins and taxonomy of Tricellaria inopinata d'Hondt and Occhip-inti Ambrogi, 1985, an invasive bryozoan new to the Atlantic. J. Nat. Hist., 34(10), 1993-2006. Gavira-O'Neill, K., J.M. Guerra-García, J. Moreira & M. Ros (2016): Mobile epifauna of the invasive bryo-zoan Tricellaria inopinata: is there a potential invasional meltdown? Mar. Biodivers., 2016, 1-10. Gordon, D.P. & S.F. Mawatari (1992): Atlas of marine-fouling Bryozoa of New Zealand ports and harbours. Miscellaneous Publications of the New Zealand Oceanographic Institute, 107, 1-52. d'Hondt, J.-L. & A. Occhipinti Ambrogi (1985): Tricellaria inopinata, n. sp., un nouveau Bryozoare Cheilostome de la faune méditerranéenne. Marine Ecology, 6(1), 35-46. Johnson, C.H., J.E. Winston & J.E. Woollacott (2012): Western Atlantic introduction and persistence of the marine bryozoan Tricellaria inopinata. Aquat. Invasions, 7(3), 295-303. Johnson, C.H. & R.M. Woollacott (2015): Analyses with newly developed microsatellite markers elucidate the spread dynamics of Tricellaria inopinata d'Hondt and Occhipinti-Ambrogi, 1985 - a recently established bryozoan along the New England seashore. Aquat. Invasions, 10(2), 135-145. Lodola, A., D. Savini & A. Occhipinti Ambrogi (2012): First record of Tricellaria inopinata (Bryozoa: Candidae) in the harbours of la Spezia and Olbia, Western Mediterranean Sea (Italy). Mar. Biodivers. Rec., 5, 1-8. Marchini, A., M.R. Cunha & A. Occhipinti Ambrogi (2007): First observations on bryozoans and ectoprocts in the Ria de Aveiro (NW Portugal). Marine Ecology, 28 (Suppl. 1), 154-160. Occhipinti Ambrogi, A. & J. d'Hondt (1994): The invasion ecology of Tricellaria inopinata into the lagoon of Venice: morphological notes on larva and ancestrula. In: Hayward, P. J., J.S. Ryland & P. D. Taylor (eds.): Biology and Palaeobiology of Bryozoans: proceedings of the 9th International Bryozoology Conference, School of Biological Sciences, University of Wales, Swansea, 1992. Olsen & Olsen, Fredensborg, pp. 139-144. Occhipinti Ambrogi, A. (2000): Biotic invasions in a Mediterranean Lagoon. Biol. Invasions, 2(2), 165-176. Occhipinti Ambrogi, A. (2002): Susceptibility to invasion: assessing scale and impact of alien biota in the Northern Adriatic. In: CIESM Workshop Monographs, 20, pp. 69-73. Porter, J., M. Jones, P. Kuklinski & S. Rouse (2015): First records of marine invasive non-native Bryozoa in Norwegian coastal waters from Bergen to Trondheim. BioInvasions Rec., 4(3), 157-169. Ulman, A., J. Ferrario, A. Occhipinti-Ambrogi, C. Arvanitidis, A. Bandi, M. Bertolino, C. Bogi, G. Chatzigeorgiou, B.A. Çiçek, A. Deidun, A. Ramos-Espla, C. Koçak, M. Lorenti, G. Martinez-Laiz, G. Merlo, E. Princisgh, G. Scribano & A. Marchini (2017): A massive update of non-indigenous species records in Mediterranean marinas. PeerJ, 5: e3954. Watts, P.C., J. P. Thorpe & P.D. Taylor (1998): Natural and anthropogenic dispersal mechanisms in the marine environment: a study using cheilostome Bryozoa. Philos. Trans. R. Soc. B. Biol. Sci., 353(1367), 453-464. 160 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 original scientific article DOI 10.19233/ASHN.2018.20 received: 2018-04-20 MACROZOOBENTHOS OF ARID WATERCOURSES OF KAZAKHSTAN: THE ILEK RIVER CASE Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA Department of Technical and Natural Science Disciplines, Kazakh-Russian International University, Address: 52 Aiteke-bi St., Aktobe, 030006, Kazakhstan E-mail: grishaeva.kriu@bk.ru ABSTRACT The paper aims to study the quantitative characteristics, taxonomic composition and structure of the macrozoobenthos of the arid Ilek River (Kazakhstan). The topic is relevant to the global biodiversity preservation problem. The frequency of taxon occurrence, abundance, biomass and composition of macrozoobenthos were established. Informational indices of the dominance structure, diversity and evenness of species were calculated. The macrozoobenthos of the arid water bodies and rivers included 24 taxa. In terms of abundance and biomass, the Chironomidae were predominant. The study revealed an interconnection between the level of macrozoobenthos biomass and water mineralization. This information can be used in assessing the fodder base for fish, the saprobity and the anthropogenic impact in the Aktobe Region, in performing an ecological analysis of the said region, as well as in establishing the condition of the Ural River ecosystem. Key words: macrozoobenthos, biodiversity, dominance structure, habitation conditions, hydrochemical regime MACROZOOBENTHOS DI CORSI D'ACQUA ARIDI DEL KAZAKISTAN: IL CASO DEL FIUME ILEK SINTESI Gli autori hanno studiato le caratteristiche quantitative, la composizione tassonomica e la struttura del macrozoobenthos del fiume arido Ilek (Kazakistan). L'argomento e rilevante per la conservazione della biodiversita globale. Nello studio hanno valutato la frequenza dei taxa, l'abbondanza, la biomassa e la composizione del macrozoo-bentos. Sono stati inoltre calcolati diversi indici: di dominanza, diversita e uniformita delle specie. E risultato che il macrozoobentos dei corpi idrici e dei fiumi aridi comprende 24 taxa. In termini di abbondanza e biomassa hanno prevalso i Chironomidi. Lo studio ha inoltre rivelato un'interconnessione tra il livello della biomassa del macrozoobentos e la mineralizzazione dell'acqua. Queste informazioni possono venir utilizzate per valutare la base di foraggio per il pesce, la saprofagia e l'impatto antropogenico nella regione di Aktobe, nell'effettuare un'analisi ecologica della regione, nonche nello stabilire le condizioni dell'ecosistema del fiume Ural. Parole chiave: macrozoobentos, biodiversita, struttura dominante, condizioni abitative, regime idrochimico 161 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 INTRODUCTION The preservation of biodiversity is a global problem. In the conditions of intensifying processes of aridifica-tion in most regions of Kazakhstan and in other Asian countries, this problem is of a most acute nature (Alpe-ysov et al., 2017). One of the approaches to addressing such environmental issues is the study of communities of aquatic organisms, including macrozoobenthos (Rosenberg & Gelashvili, 2013). Kazakhstan is a terminal territory for the drainage of many inland basins of Central Asia. The intensifying desertification processes and increased use of water reservoirs for economic needs create a scarcity of water resources. As a result, Kazakhstan risks compromising the biodiversity of the hydrobionts living in the reservoirs and watercourses of its arid zones, which will result in the degradation of the ecosystems of internationally important transboundary watercourses and lead to a violation of the basin principle of their use. The Aktobe Region is the second largest of Kazakhstan. It is located in the western part of the country and occupies more than 300,000 km2. The region borders Russia in the north and Uzbekistan in the south. Its largest rivers (Emba, Or, Ilek, Irgiz, Turgai) originate in the mountains of Mugodzhary and belong to the basin of the Caspian Sea. Endorheic rivers and lakes drying up in the summer are characterized by brackish waters. In scientific literature, the problem of studying the ecological state of rivers based on the structure and quantitative characteristics of macrozoobenthos is well covered (Hakiki et al., 2017; Kenderov et al., 2017) in connection with environmental conditions, including water mineralization (Zinchenko et al., 2014; Zinchenko et al., 2017a). Bioindication properties of macrozoobenthos allow an evaluation of water quality (Pawhestri el al., 2015; Shitikov et al., 2004). Specific features of the formation of bottom community of organisms in artificial reservoirs, represented by numerous and diverse insects (Bakanov, 2003; Furey et al., 2006) as well as by Oligochaeta and molluscs (Yakovleva & Yakovlev, 2011), are considered separately. Fragmentary information on the macrozobenthos of the Ilek River is provided in the reports of the Kazakh Research Institute of Fishery (Kazakhstan, Almaty) on the monitoring research of fishery water bodies. Currently, the biodiversity of watercourses with a high level of mineralization is markedly understudied (Gallardo et al., 2014; Zinchenko et al., 2017b). The available information on the structure and composition of the macrozoobenthos of the Irgiz River (Balymbetov & Grishaeva, 2008; Petrakov, 2015; Seitkasymova, 2016), Jai'yq River (a tributary of the Ilek River) (Kenzhebaev et al., 2017; Pilin & Alpeisov, 2017) and other water bodies of the basin of the Ural River in the territory of Kazakhstan (Pilin, 2012; Pilin & Oskina, 2017) in condi- Tab. 1: Collected hydrobiological data, 2015-2017. Tab. 1: Zbrani hidrobiološki podatki v obdobju 2015-2017. Waterbody Station Coordinates/ reference points Number of collected samples 2015 2016 2017 A B C A B C A B C Aktobe Reservoir AR-1.1 050°11'58,5" N - 057°20'54,7" E 1 1 - 1 1 - 2 1 1 AR-1.2 050°13'59,1" N - 057°20'32,4" E - - - 1 1 - 1 1 1 AR-1.3 050°14'56,8" N - 057°21'44,4" E - - - 1 - - 2 1 1 AR-2 050°22'37,1" N - 057°29'54,5" E 1 - - 1 - - 1 1 1 AR-3 050°07'45,8" N - 057°35'58,7" E 1 - - 1 - - 1 1 1 Sazda River S-1 050 °23'93,1" N - 057 °15'58,2" E 1 1 - 3 1 - - S-2 050 °23'62,3" N - 057 °15'13,6" E 2 - - 1 2 - - Ilek River I-1 050°18'45,3" N - 057°13'23,3" E 1 1 - 2 1 - 1 1 1 I-2 050°16'52,9" N - 057°15'46,1" E - - - 2 - - 1 1 1 I-3 050°15'16,7" N - 057°19'38,2" E - - - 2 - - 1 1 1 I-4 050°17'40,4" N - 057°15'35,3" E 1 1 1 Aktobe City AC-1 050°17'71,5" N - 057°13'75,8" E 2 1 Kargala River K-1 050°20'06,6" N - 057°21'11,8" E - 1 - - 2 - 1 Note: A - quantitative samples of macrozoobenthos, B - qualitative samples of macrozoobenthos, C - samples of insect imagoes caught with light traps. 162 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 tions of aridification indicate insufficient coverage of this problem in literature. The study of the modern macrozoobenthos of arid reservoirs and rivers of the Aktobe Region is of interest as a source of additional information for integrated environmental monitoring research and preservation of biodiversity in Kazakhstan. Investigation of the state of macrozoobenthos in the Ilek River, which flows on the territories of Kazakhstan and Russia, is especially important, as it affects the ecological interests of both countries. The aim of this study was to examine the quantitative characteristics, taxonomic composition and structure of macrozoobenthos of the arid Ilek River (Kazakhstan). MATERIAL AND METHODS The hydrobiological research of the Ilek River, its tributaries (the rivers Sazda and Kargala) and the Aktobe Reservoir, which is fed by their waters, was carried out in the period between 2015 and 2017. In sampling macrozoobenthos for quantitative research, in which the density of distribution of organisms per unit of bottom area was relevant, 37 samples were collected using a Peterson bottom grab. An additional 18 samples were collected using a scraper net in sampling macrozoob-enthos for quantitative research, in which the density of distribution of organisms per unit of bottom area was not relevant. To obtain more comprehensive information on the taxonomic composition of the Chironomidae (Diptera) and Trichoptera, the capture of insect imagoes with light traps was performed for 13 samples, using entomological scoop nets. The entire volume of hydro-biological material was collected from 13 stations (Table 1). The coordinates of the stations were determined by means of a GARMIN 64s GPS navigator. To collect the hydrobiological material in the reservoir at a depth of over 0.8 m, we used the Petersen bottom grab with a bottom capture area of 0.025 m2. For rivers with stony beds or bottoms overgrown with vegetation, a scraper net with netting made of gauze sieve with 10 holes per 1 cm2 was used. The netting was stretched on a semi-circular metal frame with a diameter of 400 mm, the depth of the netting was 700 mm, the length of the handle 1,200 mm. Collection of samples by bottom grab and scraper net was carried out at least twice per each station. The macrozoobenthos samples were labelled and fixed with an aqueous solution of formaldehyde (10%). For the capture of insect imagoes, an entomological scoop net made of gauze sieve with 0.25 mm wide holes at a quantity of 24 per 1 cm2 was used in all reservoirs. The diameter of the scoop net was 300 mm, the depth of the netting 700 mm, the length of the handle 200 mm. Insects were collected from the scoop net after every 10 strokes and placed in 300 ml and 500 ml plastic containers (Zinchenko & Shitikov, 1999; Sharapova & Falomeeva, 2006; Krasheninnikov, 2011). When catching insects with light traps, 10 repetitions were made at each station. The macrozoobenthos samples were labelled and fixed with a solution of ethyl alcohol (70%) for further processing. The taxonomic composition of the macrozoobenthos was determined using MBS-10 and MS-300 microscopes according to specific determinants (Tsalolikhin, 1995; Ivanov, 2011; Kenderov et al., 2017; Krasheninnikov, 2011; Malicky, 1986; 2004; Morse, 2013; Olah & Ito, 2013). For each quantitative sample, the abundance and biomass were calculated for taxa adjusted to 1 m2 of the water body bottom, followed by summation over groups (Oligochaeta, Chironomidae, Trichoptera, Crustacea). The organisms were weighed on torsion (from 0 to 1000 mg) and pharmacy scales. The frequency of occurrence was calculated as the ratio of the number of samples in which a certain species was present to the total number of samples. To describe the structure of the macrozoobenthos, informational indices were calculated. The dominance index (Basyuni et al., 2018) depended on the frequency of occurrence, abundance and biomass of the taxa according to Equation 1: Di = 100 p^NB/V NsBs, (1) wherein pi is the frequency of occurrence of the taxon i; Ni is the abundance of the taxon i in the sample; Bi is the biomass of the taxon i in the sample; Ns is the total number of organisms in the sample; Bs is the total biomass of the organisms in the sample. The diversity of communities that reflects the number of species and their share in the total quantitative characteristics was estimated according to the ShannonWiener index using Equation 2 (Basyuni et al., 2018): H = -Z pilg2pi, (2) wherein H is the diversity index, bits/spec, bits/g; pi is the specific abundance (or biomass) of the taxon i; pi = N/N or B/B ; IN. is the number of each taxon i; N is the i s i s' i ' s total number of all taxa; Bi is the biomass of each taxon i; Bs is the total biomass of all organisms. The Pielou evenness index was calculated according to Equation 3 (Furey, 2006): I = H/lg2S, (3) wherein S is the number of taxa; 0 < I > 1. The calculations and statistical processing of the obtained data were carried out using Excel 2017 and STATISTICA 2015 programs. The data are presented as average values +/- standard deviations. STUDY AREA The study covered water bodies that belong to the ecosystem of the transboundary Ural River in the terri- 163 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 Tab. 2: The taxonomic composition of the macrozoobenthos of the Ilek River, its tributaries (the Kargala, the Sazda) and the Aktobe Reservoir, 2015-2017. Tab. 2: Taksonomska sestava makrozoobentosa na reki Ilek, njenih pritokih (Kargala, Sazda) in v zadrževalniku Aktobe v obdobju 2015-2017. Taxon Name Ilek Kargala Sazda Aktobe Reservoir Vermes Annelida Oligochaeta Tubificidae Tubificidae gen. sp. + + + + Naididae Naididae gen. sp. - - + + Arthropoda Insecta Diptera Chironomidae Tanypus punctipennis Meigen, 1818 + - + + Ablabesmyia gr. lentiginosa Fries, 1823 - - - + Ablabesmyia gr. monilis Linne, 1758 - - - + Procladius sp. - - - + Chironomini gen. sp. + + + + Parachironomus gr. pararostratus Lenz, 1938 - - - + Cryptochironomus gr. defectus Kieffer, 1921 - - - + Lipiniella arenicola Shilova, 1961 + + + + Chironomus plumosus Linne, 1758 + + + + Limnochironomus sp. - - + + Endochironomus sp. + - + + Tanypus sp. + + + + Diamesa sp. - - - + Ceratopogonidae Ceratopogon sp. + + + + Trichoptera Ecnomidae Ecnomus tenellus Rambur, 1842 + + - + Limnephilidae Limnephilus sp. + + - + Limnephilus stigma Curtis, 1834 - - - + Odontoceridae Odontoceridae gen. sp. + - - + Lepidostomatidae Lepidostomatidae gen. sp. - + - + Leptoceridae Athripsoides sp. - + - - Phryganeidae Phryganea sp. + - + - Crustacea Amphipoda Gammaridae Dikerogammarus sp. + - - - Note: »+« - taxon was found in the reservoir; »-« - taxon was not found in the reservoir. 164 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 tories of Kazakhstan and Russia (Evseeva, 2010; Evseeva & Kushnikova, 2017), which is important for the basin approach in the use of this river (Sivokhip, 2016; Wolf et al., 2003). The Ilek River originates in the western slope of the Mugodzhary Mountains. Its length in the territory of the Aktobe Region is 257 km. The riverbed is meandering, with steep or abrupt banks (2-4 m), its width increasing downstream from 15 to 50 m (in some places, up to 170 m). The bottom is loamy, less often sandy-loamy with pebbles, in shallow water silty (Dzhubanova, 2008). The Kargala River is the right tributary of the Ilek River, 114 km long and with a constant drainage. Its riverbed is meandering, well developed, its width expanding downstream from 20 to 200 m. In the upper and middle reaches, the banks are about 1-2 m high, sloping, while in the lower reaches they are 3-4 m high, steep, abrupt. The bottom of the reaches is stony or clayey, sometimes silty; it is stony or stony-sandy on slopes. The Sazda River is the left tributary of the Ilek River, only 40 km long and with a constant drainage. Its riverbed widens downstream from 15 to 50 m. The banks are 2-4 m high, gently sloping, sometimes abrupt; in the estuary, they are reduced to 1-1.5 m. The bottom of the riverbed is sandy. The Aktobe Reservoir stands out among the investigated water bodies. This is an artificial perennial reservoir with seasonal drops in the water level (Balymbetov & Grishaeva, 2004). The favourable conditions it provides for the development of hydrobionts are determined by various factors, including anthropogenic ones (hydrologi-cal regime, pollution of the environment, etc.), as well as internal processes of interaction among ecosystem components. The Aktobe Reservoir, which occupies an area of 3,570 hectares, is fed by the water from the Ilek River. RESULTS During the 2015-2017 research period, the depths of macrozoobenthos sampling sites varied from 0.2 to 0.8 m on the rivers Ilek, Kargala and Sazda, and from 0.5 to 3.2 m at the Aktobe Reservoir. The average water temperature in spring reached up to +21.2 °C in the rivers and up to +20.3 °C in the reservoir. In spring, the water was characterized by transparency to the bottom in sandy areas and by considerable muddiness in silty areas. The most common bed types in the rivers are sand, gray silt and small pebbles. At the Aktobe Reservoir, the riverbed types include sand, gray, brown and black silt, stones and ground, densely overgrown with aquatic plants. In the spring of 2017, the water in all the investigated reservoirs was characterized by a slightly alkaline reaction. The water mineralization in the rivers Ilek, Kargala and Sazda was up to 100-200 mg/dm3. The water mineralization in the coastal zone of the Aktobe Reservoir did not exceed 100 mg/dm3 (Erkeeva, 2017b). During the 2015-2017observation period, the macrozoobenthos of the Ilek River, its tributaries (the Kargala and the Sazda) and the Aktobe Reservoir was represented by two families of Annelida (Oligochaeta) and nine families of Arthropoda (Insecta, Crustacea) (Table 2). The Insecta class was the most diverse. It included two orders - Diptera with two families (Chironomidae, Ceratopogonidae) and Trichoptera with six families (Ecno-midae, Odontoceridae, Lepidostomatidae, Phryganeidae, Leptoceridae, Limnephilidae). The Chironomidae family had the highest number of identified invertebrate taxa. The highest frequency of occurrence (81.5 %) in the examined rivers and the reservoir was recorded for Oligochaeta, which mainly included representatives of the Tubificidae family. The frequency of occurrence of Chironomidae larvae averaged 72 %. In terms of abundance and biomass, the Chironomidae were the dominant group: the highest percentages were recorded in the Aktobe Reservoir - 66.15 and 91.38%, respectively. In the Ilek River, the maximum abundance of macrozoobenthos was recorded in 2016 - 420 spec/m2 (Table 3). In 2015, the macrozoobenthos of the Sazda River had the largest biomass - 5.2 mg/m2. In 2015 and 2017, the highest abundance of macrozoobenthos was ascertained in the Aktobe Reservoir - 912 spec/m2 and 14.2 mg/m2, respectively. The dynamics of the Shannon-Wiener and Pielou indices (Table 4) showed that the maximum diversity and evenness of macrozoobenthos in the rivers and in the Aktobe Reservoir were recorded in the summers of 2015 and 2016. Tab. 3: The abundance and biomass of the macrozoobenthos of the Ilek River, its tributaries (the Kargala, the Sazda) and the Aktobe Reservoir, 2015-2017. Tab. 3: Abundanca in biomasa makrozoobentosa na reki Ilek, njenih pritokih (Kargala, Sazda) in v zadrževalniku Aktobe v obdobju 2015-2017. Year Ilek Kargala Sazda Aktobe Reservoir Abundance (spec/m2) 2015 227* - 120±23 912±97 2016 420±68 268* 184±42 710±63 2017 348±73 223* - 817±92 Average 332±56 245±23 152±32 813±58 Biomass (g/m2) 2015 2.2* - 5.2±0.9 12.6±2.2 2016 2.6±0.5 2.4* 4.6±1.0 10.2±1.8 2017 3.2±0.8 1.7* - 14.2±3.2 Average 2.7±0.3 2.1±0.4 4.9±0.3 12.3±1.2 Note: » - the data were collected from a single station. 165 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 DISCUSSION In the studied rivers and reservoir, the following types of bed resulted the most common: gray silt, sand with gray silt deposits, and black silt with sapropel in areas with abundant vegetation. In the springs of the 20152017 period, the maximum density of invertebrates was observed for gray silt and sand with gray silt deposits: most often Diptera (Chironomidae, Trichoptera), less often Oligochaeta, and sporadically other representatives of the macrozoobenthos, for a total of 24 taxa. In the previous period of study, from 2005 to 2009, a wider representation of benthic invertebrates was observed, namely 30 taxa. The macrozoobenthos included Oligochaeta, as well as Nematoda, Hirudinea, Hydraca-rina, larvae of Diptera (Chironomidae), Ephemeroptera, Trichoptera and Coleoptera, with the greatest diversity in the vegetation zone. On gray silt and silty sand, we found representatives of the order Trichoptera belonging to the families Lepidostomatidae, Ecnomidae, Lep-toceridae and Odontoceridae. During the 2009-2012 (Smirnova, 2012; 2016) and 2015-2017 examination periods, we also observed representatives of other taxa of the Trichoptera order, including, in particular, Ecnomustenellus; Limnephilus stigma; Limnephilus sp.; Athripsodes sp.; Phryganea sp.; Odontoceridae gen. sp., and Lepidostomatidae gen. sp. In terms of species occurrence and quantitative characteristics, larvae of Diptera (Chironomidae) and Trichoptera were predominant, which is typical of arid rivers and reservoirs with variable filling levels (Kenzhebaev et al., 2017; Pilin & Alpeisov, 2017; Pilin & Oskina, 2017). As a rule, the macrozoobenthos of brackish and highly mineralized rivers is represented by a taxonomically stable community of organisms that are resistant to changes in water salinity. Rivers in arid zones are characterized by certain species specificity; for example, Diptera (Chironomidae) are abundantly represented in the diverse silted biotopes of the Ilek River with its tributaries and the rivers of the saline lake Elton basin (Russia) (Orel (Zorina) et al., 2014; Zinchenko, 2017), while Trichoptera (Malicky, 1986) are abundantly represented in the arid rivers of Iran and Afghanistan. The study revealed an ambiguous relationship between quantitative characteristics of the macrozoob-enthos in the Aktobe Reservoir and the influence of the Ilek River on its hydrological and hydrochemical conditions. For instance, a decrease in the water level in 2004 led to an increase in the total content of dissolved salts, whereas a reduction in its surface area caused the desiccation of the coastal zone and the death of shallow and coastal macrophytes, which constituted a biotope for mass representatives of macrozoobenthos. At the same time, in the composition of benthic invertebrates, the share of molluscs Theodoxus pallasi as well as that of the amphipod Dikerogammarus aralensis decreased. The decrease in the diversity of these groups of invertebrates Tab. 4: The dynamics of diversity and Evenness indices in the macrozoobenthos community of the Ilek River, its tributaries (the Kargala, the Sazda) and the Aktobe Reservoir, 2015-2017. Tab. 4: Dinamika indeksov pestrosti in enakomernosti porazdelitve makrozoobentoške skupnosti v reki Ilek, njenih pritokih (Kargala, Sazda) in v zadrževalniku Aktobe v obdobju 2015-2017. Year Ilek Kargala Sazda Aktobe Reservoir Shannon-Wiener indices, bits/spec 2015 0.7* - 1.3±0.1 1.5±0.1 2016 1.3±0.03 1.1* 1.4±0.04 1.6±0.04 2017 0.5±0.03 0.7* - 0.6±0.04 Pielou Evenness indices 2015 0.8* - 0.8±0.2 0.8±0.04 2016 0.8±0.02 0.8* 0.8±0.03 0.9±0.02 2017 0.4±002 0.6* - 0.6±0.04 Note: * - the materials were collected from a single station. led to a decrease in the total biomass of macrozoobenthos by an order of magnitude in comparison with the previous year (Balymbetov & Grishaeva, 2004). The natural hydrochemical background of the watercourses of the Aktobe Region of Kazakhstan is affected by anthropogenic factors, especially cattle grazing, melioration works, drainage regulation, exploitation of mineral deposits, etc. During the study period in May 2015, the depth of the Aktobe Reservoir was 0.5-0.8 m at the site of water sampling, whereas the water temperature was up to +21.2 °C. The water showed a slightly alkaline reaction and the concentration of dissolved oxygen was up to 10.3 mg/dm3. During the post-flood period, the low concentration of carbon dioxide and low mineralization corresponded to low-mineralized waters (Petrakov, 2015). In May 2017, the chemical composition of the Ilek River, its tributaries (the Sazda and the Kargala) and the Aktobe Reservoir was characterized by a slightly elevated level of hardness, in particular, 4.8, 4.9, 5.3 and 7.2 mg-eq/L, and an iron content of 0.13, 0.12, 0.22 and 0.40 mg/dm3, respectively (Erkeeva, 2017a; 2017b). In the period of high water, the level of the Ilek River increased abnormally because of the large influx of melt water. For the first time in the last 25 years, the Aktobe Reservoir was filled to its maximum capacity. The flooding of coastal areas resulted in soil washout and destruction of the macrozoobenthos structure. As the drainage volume of the Ilek River into the Aktobe Reservoir increased in May 2017, the water salinity dropped to 100 mg/dm3, whereas its average value in spring during the 2004-2008 (Balymbetov & Grishaeva, 166 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 2004; 2008) and 2011-2016 (Petrakov, 2015; Grishaeva & Erekeeva, 2017) study periods was 550 mg/dm3. In May 2017, the minimum abundance and biomass of the macrozoobenthos over the periods of 2004-2008 (Balymbetov & Grishaeva, 2004; 2008) and 2015-2016 were recorded. The dominant group in the composition of the macrozoobenthos was Chironomidae (DCh = 79%). Between 2015 and 2017, despite a decline in the biomass of the macrozoobenthos, the Aktobe Reservoir was mesotrophic-eutrophic, the Ilek River and Kargala River were oligotrophic, the Sazda River mesotrophic. Similar results were obtained from studies of the macrozoobenthos of the saline rivers of the Prieltonie, an arid zone in the south of Russia, where Chironomidae larvae formed the basis of the benthic zoocoenosis. Its quantitative characteristics consistently changed under the influence of hydrological and hydrochemical regimes of the watercourses. At the same time, the detected patterns of change in the structure of the aquatic ecosystem depended not only on the faunistic composition of the hydrobionts, but also on the type of water body, water expenditure, flowage, turbidity, flow velocity and other hydrological, hydrophysical and hydrochemical features (Choi1 et al., 2013; Gallardo et al., 2014; Zinchenko et al., 2017). The small depths of rivers in the arid zone result in the instability of their functioning under conditions of seasonal and climatic fluctuations. As extreme habitats, they are unique and represent hydro-ecosystems of the highest biological productivity in the dry landscapes of the intracontinental arid zones of Eurasia (Gallardo et al., 2014; Zinchenko et al., 2014), including Kazakhstan, Southern Russia, Central Asian countries, East and Northeast China, Korea, Iran, and Afghanistan (Choi et al., 2013; Malicky, 1986), all located far from the oceans. CONCLUSIONS In the spring-summer periods during the 2015-2017 time frame, the macrozoobenthos of the investigated rivers and the Aktobe Reservoir included 24 taxa consisting of three groups: Anellida (Oligochaeta), Crustacea (Amphipoda), Insecta (Diptera, Trichoptera). The highest frequency of occurrence was observed for the Oligochaeta (81.5%) and Diptera (Chironomidae) (72%). The maximum values with regard to the abundance and biomass of the Diptera (Chironomidae) (664 spec/m2 and 8.2 g/m2, respectively), as well the highest diversity (1.6±0.04 bits/spec) and evenness (0.9 ± 0.02) of species were observed in the Aktobe Reservoir. During the observation period, the trophic level of the reservoir was characterized as mesotrophic-eutrophic. The value of the biomass of river zoobenthos characterized the Ilek and Kargala Rivers as oligotrophic, and the Sazda River as a mesotrophic watercourse. In general, the Chironomidae larvae were dominant in the benthic community of invertebrates of the investigated rivers and reservoir - the value of their dominance index reached 79%. The diversity and evenness of zoo-benthos species were at a low level, which is typical of water bodies and watercourses of arid zones with high anthropogenic impact. An ambiguous relationship was established between the biomass of macrozoobenthos and the water salinity of the Aktobe Reservoir, which depended on the volume of river drainage. The decrease in the biomass of macrozoobenthos with an increase in the river drainage into the reservoir may be due to the destruction of existing biotopes - ground and aquatic vegetation. The obtained hydrobiological data indicate a typically low level of fodder base for bottom-feeders and a low trophicity that is characteristic of arid watercourses. A gradual reduction in the species diversity of zoobenthos, the predominance of the larvae of secondary aquatic insects under conditions of an unstable hydro-logical regime, and anthropogenic impact are leading to a degradation of aquatic ecosystems. The loss of species diversity results in a reduced functionality of the ecosystem, an invasion of new species and a significant change in the biomass production. The theoretical significance of the obtained information about the structure of the macrozoobenthos of the Ilek River is related to the progressive desertification of the territory of Kazakhstan, a Central Asian country. Desertification is a major global ecological and socioeconomic problem. The study of the condition of the macrozoobenthos of water bodies and watercourses of arid zones should be continuous, as the data obtained could importantly contribute to the formation of a global database on the status of the biodiversity of aquatic ecosystems. The practical significance of the present research results lies in the possibility of their application to the development of a scientific foundation for a rational use and protection of biological resources in arid countries. 167 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 MAKROZOOBENTOS ARIDNIH VODNIH TELES V KAZAHSTANU: PRIMER REKE ILEK Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA Department of Technical and Natural Science Disciplines, Kazakh-Russian International University, Address: 52 Aiteke-bi St., Aktobe, 030006, Kazakhstan E-mail: grishaeva.kriu@bk.ru POVZETEK Članek obravnava kvantitativne značilnosti, taksonomsko sestavo in strukturo makrozoobentosa na primeru aridne reke Ilek (Kazahstan). Pričujoča tematika je pomembna z vidika problematike ohranjanja globalne biodiverzitete. Avtorji so raziskovali frekvenco pojavljanja taksonov, abundanco, biomaso in strukturo makrozoobentosa. Izračunali so dominanco, pestrost in enakomernost pojavljanja. Makrozoobentos aridnih vodnih teles in rek je sestavljalo 24 taksonov, med katerimi so v abundanci in biomasi prevladovale ličinke trzač (Chironomidae). Raziskava je pokazala povezavo med stopnjo biomase makrozoobentosa in mineralizacijo. Ti izsledki so lahko uporabni za krmo za ribe, za ugotavljanje saprobnih razmer in antropogenih vplivov v regiji Aktobe, pri ekoloških analizah omenjene regije in tudi za opredelitev ekološkega stanja v uralskem rečnem ekosistemu. Ključne besede: makrozoobentos, biodiverziteta, dominanca, okoljske razmere, hidrokemični režim 168 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 REFERENCES Alpeysov, S.A., O.V. Grishaeva, A.A. Evseeva, V.N. Kraynyuk, L.B. Kushnikova, D.V. Pilin, O.N. Sklyarova, D.A. Smirnova, S.R. Timirkhanov & Y.V. Epova (2017): The Trichoptera of Kazakhstan. Kazakh National Agrarian University, Almaty, 396 pp. Bakanov, A. I. (2003): Present-Day state of Zooben-thos in the Upper Volga Reservoirs. Water Resources, 30(5), 559-568. Balymbetov, K.S. & O.V. Grishaeva (2004): Hydro-fauna of the Reservoirs of Aktobe Region. Newsletter of Agricultural Science in Kazakhstan, 12, 44-46. Balymbetov, K.S. & O.V. Grishaeva (2008): Fish-Feeding Base of Some Reservoirs of the Irgiz-Turgai System. Newsletter of Agricultural Science in Kazakhstan, 11, 53-55. Basyuni, M., K. Gultom, A. Fitri, I.E. Susetya, R. Wati, B. Slamet, N. Sulistiyono, E. Yusriani, Th. Balke & P. Bunting (2018): Diversity and habitat characteristics of macrozoobenthos in the mangrove forest of Lubuk Kertang Village, North Sumatra, Indonesia. Biodiversi-tas, 19(1), 311-317. Choi, J.W., J.Y. Seo & S. An (2013): The Community Structure of Macrozoobenthos and Its Temporal Change on the Gapo Artificial Tidal Flat in Masan Bay, Korea. Open Journal of Marine Science, 3, 190-200. Dzhubanova, O.A. (2008): Physical-Geographical Characteristics of the Transboundary River Ural. Geography of Society, 2, 59-62. Erkeeva, G.S. (2017a): Hydrochemical Behavior of Water Reservoirs in Aktobe, the Aktobe Region. Newsletter of the Kazakh-Russian International University, 3(20), 50-52. Erkeeva, G.S. (2017b): On the Problems of Chemical Pollution and Ecological Disbalance of Some Water Bodies in the Aktobe Region. Proceedings of the Fourth International Scientific-Practical Conference ''Scientific and Technological Progress: Current and Perspective Directions of the Future'', Aktobe, 132-135. Evseeva, A.A. (2010): Results of Hydrobiological Survey of Transboundary Stream flows of East Kazakhstan in 2009. Proceedings of the Scientific-Practical Conference ''Regional Component in the System of Ecological Education and Upbringing, Ust-Kamenogorsk, 129-134. Evseeva, A.A. & L.B. Kushnikova (2017): Biological Water Quality Control as a Component of the Monitoring System of Transboundary Stream flows. Proceedings of the Third All-Russian Conference with International Participation ''Transboundary Water and Environmental Problems of Siberia and Central Asia''. Barnaul, 13-26. Furey, P.C., R.N. Nordin, & A. Mazumder (2006): Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. J. N. Am. Benthol. Soc., 25(1), 19-31. Gallardo, B., S. Doledec, A. Paillex, D.B. Arscott, F. Sheldon, F. Zilli, S. Merigoux, E. Castella & F.A. Comin (2014): Response of benthic macroinvertebrates to gradients in hydrological connectivity: a comparison of temperate, subtropical, Mediterranean and semiarid river floodplains. Freshwater Biology, 59, 630-648. Grishaeva, O.V. & G.S. Erkeeva (2017): Trichoptera and Hydrochemical Characteristics of Some Reservoirs and Rivers of the Aktobe Region. Colloquium Journal, 9, 4-6. Hakiki, T. F., I. Setyobudiandi & S. Sulistiono (2017): Macrozoobenthos community structure in the estuary of Donan River, Cilacap, Central Java Province, Indonesia. Omni-Akuatica, 13(2), 163-179. Ivanov, V. D. (2011): Caddisflies of Russia: Fauna and biodiversity. Zoosymposia, 5, 171-209. Kenderov, L., D. Dashinov, E. Kanev, L. Lyubomirova, E. Uzunova (2017): Ecological status of upper part of Iskar river catchment according regulation N4 based on macrozoobenthos and fish fauna. Ecological Engineering and Environment Protection, IX, 32-38. Kenzhebaev, A.Zh., D.V. Margitsky, V.M. Evstigneev, N.M. Yumina, D.I. Sholny, G.S. Ermakova & V.P. Pokhors-kaya (2017): Regularities, Assessment and Factors of Current and Future Changes in Runoff and Water Regime of Rivers in the Basin of the Zhayyq River (the Urals). Proceedings of the Third All-Russian Conference with International Participation ''Transboundary Water and Environmental Problems of Siberia and Central Asia'', Barnaul, 27-39. Krasheninnikov, A.B. (2011): Mounting technique of entomological preparations in sandarac medium. Euroasian Entomological Journal, 10(3), 283- 284. Malicky, H. (1986): Die köcherfliegen (Trichoptera) des Iran und Afganistans. Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen, 38, 8. Malicky, H. (2004): Atlas of European Trichoptera. Second edition. Springer Verlag, Dordrecht, 359 pp. Morse, J.C. (2013): Trichoptera World Checklist. Retrieved from http://entweb.clemson.edu/database/ trichopt/index.htm. Olah, J. & T. Ito (2013): Synopsis of the Oxiethira flavicornis species group with new Japanese Oxiethira species (Trichoptera, Hydroptilidae). Opuscula Zoologica, 44(1), 23-46. Orel (Zorina), O.V., A.G. Istomina, I.I. Kiknadze, T.D. Zinchenko & L.V. Golovatyuk (2014): Redescription of larva, pupa and imago male of Chironomus (Chironomus) salinarius Kieffer from the saline rivers of the Lake Elton basin (Russia), its karyotype and ecology. Zootaxa, 3841(4), 528-550. Pawhestri, S.W., J.W. Hidayat, S.W. Putro (2015): Assesment of water quality using macrobenthos as bioindikator and its aplication on abundance-biomass comparison (ABC) curves. International Journal of Science Education, 8(2), 84-87. 169 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Olga Valentinovna GRISHAEVA & Kulyash Baizukeevna KALIEVA : MACROZOOBENTHOS OF ARID WATERCOURSES OF ..., 161-170 Petrakov, I. A. (2015): Surface Water Quality in the Republic of Kazakhstan in 2015. Water Component Review of the Newsletter of the Department of Environmental Monitoring of the ''Kazgidromet'' RSE, ''On the State of the Environment in the Republic of Kazakhstan in 2015''. Departmentf of Ecological monitoring RGP "Kazgidromet", Astana, 131 pp. Pilin, D.V. (2012): Comparative Assessment of Fishery Reservoirs of the West Kazakhstan Region According to the Values of the Natural Forage Base of Benthic Fish. Proceedings of the International Scientific-Practical Conference ''Eurasian Integration: The Role of Science and Education in the Implementation of Innovative Programs'', Oral, Part 1, 93-97. Pilin, D.V. & Sh.A. Alpeisov (2017): Fauna of Trichoptera of the Zhayyq River. Newsletter of the National Academy of Sciences. Series of Agricultural Sciences, 4, 6-9. Pilin, D.V. & A.A. Oskina (2017): Fauna of Zoo-benthos Communities of the Ural-Caspian IrrigationWatering System (North-West Kazakhstan). In Anikin, V.V. Collection of Scientific Works: Entomological and Parasitological Research in the Volga Region, Saratov, 17, 30-34. Rosenberg, G.S. & D.B. Gelashvili (2013): 100 Major Environmental Problems: A View from the UK. Interdisciplinary Scientific and Applied Journal "Biosphere", 5(4), 374-382. Seitkasymova, G.Zh. (2016): Quality Assessment of the Natural 'Surface Water-Soil' System on the Example of the Irgiz Village in the Aktobe Region. Hygiene of Labor and Medical Ecology, 1(50), 77-80. Sharapova, L.I. & A.P. Falomeeva (2006): Methodical Guide for the Research of Hydrobiological Fisheries in the Water Bodies of Kazakhstan (Plankton, Zoobenthos). Limited Liability Partnership "Maria", Almaty. Shitikov, V.K., T.D. Zinchenko & L.V. Golovatyuk (2004): Assessing surface water quality based on indicator zoobenthos species. Water Resources, 31(3), 323-332. Sivokhip, Zh.T. (2016): Sustainable Water Use as a Factor of Hydroecological Safety in the Transboundary Basin of the Ural River. Newsletter of Orenburg State University, 7(195), 78-84. Smirnova, D., L. Kushnikova, A. Evseeva, O. Grishaeva, V. Kraynyuk, D. Pilin, O. Sklyarova, Ju. Epova, Zh. Baymukanova & Timirkhanov, S. (2012): The Trichoptera of Kazakhstan: review. XIV International Symposium on Trichoptera, Vladivostok, 56. Smirnova, D., L. Kushnikova, A. Evseeva, O. Grishaeva, V. Kraynyuk, D. Pilin, O. Sklyarova, Ju. Epova, Zh. Baymukanova & S. Timirkhanov (2016): The Trichoptera of Kazakhstan: A review. Proceedings of the 14th International Symposium on Trichoptera, Magnolia Press, Auckland, 398 pp. Tsalolikhin, S.J. (Eds.). (1995): Key to Fresh Water Invertebrates of Russia and Adjacent Lands. Nauka, Saint Petersburg, 396 pp. Wolf, A.T., K. Stahl & M.F. Macomber (2003): Conflict and cooperation within international river basins: the importance of institutional capacity. Water Resources Update, 125, 31-40. Yakovleva, A.V. & V.A. Yakovlev (2011): Impact of Dreissena polymorpha and Dreissena bugensis on structure of zoobenthos in the upper reaches of the Kuybyshev Reservoir (Russia). Russ. J. Biol. Invas, 2(4), 312-319. Zinchenko, T.D., M.I. Gladyshev, O.N. Makhutova, N.N. Sushchik, G.S. Kalachova, & L.V. Golovatyuk (2014): Saline rivers provide arid landscapes with a considerable amount of biochemically valuable production of chironomid (Diptera) larvae. Hydrobiologia, 722, 115-128. Zinchenko, T.D., L.V. Golovatyuk, E.V. Abrosimova & T.V. Popchenko (2017a): Macrozoobenthos in Saline Rivers in the Lake Elton Basin: Spatial and Temporal Dynamics. Inland Water Biology. 10(4): 384-398. Zinchenko, T.D. & V.K. Shitikov (1999): Hydrobio-logical monitoring as a basis of typology of small rivers in Samara region. Proceedings of Samara Scientific Centre of Russian Academy of Science, (1), 118-127. Zinchenko, T.D., L.V. Golovatyuk & E.V. Abrosimova (2017b): Specific Diversity of Benthic Communities of Salty Rivers in Extreme Natural Conditions of the Arid Landscapes of Lake Elton. Russian Journal of Applied Ecology, 1(9), 14-21. 170 MISCELLANEA ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 izvirni znanstveni članek DOI 10.19233/ASHN.2018.21 prejeto: 2018-09-06 PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO IN SMOGANICA NAD MOSTOM NA SOČI Matjaž URŠIČ Veterinarska fakulteta v Ljubljani, Gerbičeva 60, 1000 Ljubljana, Slovenija, E-mail: matjaz.ursic@vf.uni-lj.si Matija KRIŽNAR Prirodoslovni muzej Slovenije, Prešernova 20, 1000 Ljubljana, Slovenija, E-mail: mkriznar@pms-lj.si Pavel JAMNIK Kočna 5, 4273 Blejska Dobrava, Slovenija, E-mail: pavel.jamnik@telemach.net IZVLEČEK V prispevku smo podali zgodovinski pregled raziskav jam Bele vode nad Gorenjo Trebušo in Smoganica nad Mostom na Soči. S preučitvijo fosilnega gradiva iz jame Bele vode smo ovrednotili prvotno študijo določitve vrste jamskega medveda iz leta 1895 ter taksonomsko opredelili nove najdbe ostankov jamskih medvedov in navadnega jelena. V jami Smoganica smo poleg kosti jamskega medveda potrdili tudi prisotnost fosilnih ostankov tura ali bizona in konja. Primerjalno smo analizirali tudi možnost nastanka lezij na najdenih kosteh, ki po obliki in glede podobne razporeditve po značilnem vzorcu 1 + 2 spominjajo na luknje, odkrite na kosti s paleolitskega najdišča Divje babe I, in potrdili domnevo, da so nastale kot posledica grizenja jamskega medveda. Ključne besede: jama Bele vode, jama Smoganica, jamski medved, zobje, ugrizne kostne lezije, koščena piščal RASSEGNA DELLA FAUNA PLEISTOCENICA E DEI SEGNI DI MORSI EVIDENZIATI SULLE OSSA FOSSILI NELLE GROTTE DI BELE VODE VICINO A TRIBUSSA E SMOGANICA VICINO A SANTA LUCIA D'ISONZO SINTESI Nel contributo gli autori passano in rassegna la storia delle ricerche paleontologiche nelle grotte Bele vode vicino a Tribussa e Smoganica vicino a Santa Lucia d'Isonzo. Con l'analisi del materiale fossile della grotta Bele vode hanno rivalutato la determinazione dell'orso delle caverne proposta nell'anno 1895, e definito le categorie tassonomiche dei neo rinvenuti resti di orsi delle caverne e del cervo nobile. Nella grotta Smoganica, oltre ai reperti ossei dell'orso delle caverne, hanno confermato la presenza di resti fossili di uro o di bisonte, e di cavallo. Hanno inoltre eseguito l'analisi comparativa per verificare la possibilità di formazione di lesioni sulle ossa rinvenute e confermato l'ipotesi che i fori sono da attribuire ai morsi lasciati sulle ossa dall'orso delle caverne, che per la loro forma e la distribuzione secondo il tipico schema 1 + 2 mostrano una marcata somiglianza con i fori presenti sulle ossa rinvenute nel sito paleolítico Divje babe I. Parole chiave: grotta Bele vode, grotta Smoganica, orso delle caverne, denti, lesioni ossee da morso, flauto d'osso 173 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 UVOD Jama Bele vode nad potokom Trebuščica nad Go-renjo Trebušo (Medvedova jama), kat. št. JZS 2966, in jama Smoganica na pobočju Drobočnika nad Mostom na Soči (Jama pod Smoganico), kat. št. JZS 823, sta poleg jam Divje babe I in II na Cerkljanskem in Idrijskem ter v Posočju zaenkrat edini znani jami, v katerih so bili odkriti fosilni ostanki pleistocenske favne. Prve najdbe iz Belih vod so bile znane že konec 19. stoletja (Mar-chesetti, 1895), iz Smoganice pa v tridesetih letih 20. stoletja (Jelinčič, 1956, 571). Nekaj fosilnih kosti, ki so bile iz jam pobrane v preteklosti, so v zasebnih zbirkah, nekaj pa so jih že pred desetletji predali Tolminskemu muzeju. V letih 2016 in 2017 so tolminski jamarji pri raziskovanju obeh jam ponovno našli mesta prvotnega odkritja kosti. Nove najdbe so predali Tolminskemu muzeju. Ker so pleistocenski kostni ostanki v tem delu Sl. 1: Položaj jame Bele vode (1) pri Gorenji Trebuši (zgoraj). Tloris jame Bele vode z označenim območjem, kjer so bili odkriti ostanki pleistocenske favne. A - razprostranjenost fosilonosnih jamskih sedimentov, ki jih je največ zlasti v Medvedovi dvorani (tloris jame po Francetu Habetu in Petru Habiču, (Kataster JZS) risba: Matija Križnar). Fig. 1:Location of the Bele vode cave (1) in the vicinity of Gorenja Trebuša. Ground plan of the Bele vode cave showing the marked fossil bearing sediments. A - distribution of fossil bones within Pleistocene cave sediments mostly restricted on the Medved hall/Medvedova dvorana (Cave ground plan by France Habe and Peter Habič, adapted drawing: Matija Križnar). Slovenije redki in je sedaj v obeh jamah znana tudi mikrolokacija najdišč, smo poskušali zbrati vse znane najdbe in jih preliminarno paleontološko opredeliti. Za najdbe iz jame Bele vode smo z analizo preverili tudi prvotno določitev vrste medveda, ki je bila opravljena v 19. stoletju. Jama Bele vode (Medvedova jama) Okoli 40 višinskih metrov nad cesto iz Gorenje Trebuše proti Vojskarski planoti je pod skalno steno v obliki slapišča občasen izvir potoka Bele vode, ki se prek lehnjakastih pragov, širokih do 7 metrov, spušča v dolino, tam pa se izlije v potok Trebuščica (slika 1). Pod isto skalno steno, le nekaj metrov nad izvirom, je na nadmorski višini 375 metrov velik vhod v jamski sistem (sliki 1 in 2A). Ob večjem deževju priteče voda na prosto tudi skozi jamski vhod, v sušnih obdobjih pa ostaja v manjših kotlicah v vhodnem delu jame. Izvir pod jamskim vhodom je le odvod vode iz spodnjih etaž jamskega sistema, kjer z vodo zapolnjeni rovi otežujejo nadaljnje raziskovanje jame. Jama skupne dolžine 233 metrov je po 23 metrih višinske razlike med vhodom in jamskimi rovi oblikovana v dveh etažah. Takoj za vhodom se po dobrih 5 metrih glavni rov začenja dvigovati. Glineno-ilovnati sedimenti, ki jih meteorna voda izpira iz zgornje etaže jame, se ob vhodu v jamo ujamejo v nekajmetrsko kotanjo pod kapom vhoda. Rovi zgornje etaže so danes suhi, dno je prekrito s plastjo sige in glineno-ilovnatimi sedimenti. Ti rovi so delno zasigani. Po večini jamskih sten je množica kotlic, ki jih je oblikovala hitro tekoča in vrtinčasta voda. Zgornji suhi rovi in z vodo napolnjeni spodnji rovi so med seboj povezani z nekaj manjšimi brezni oz. navpičnimi rovi. Spodnja etaža se na koncu raziskanega jamskega sistema konča s sifonskim rovom. Takoj za vhodom v jamo je v desni skalni steni le nekaj metrov širok prehod, skozi katerega je mogoče obiti glavni rov in priti v zgornje etaže. Rov se nato nekoliko razširi in dvigne (približno 10 x 5 m2 površine in do 3 m višine). Na tleh je odložena mokra ilovica s kosi apnenca, odpadlega z jamskih sten (slika 2B). Na več mestih je bila ilovica že preložena in izkopana (sekundarno mesto). Mestoma kapljajoča voda odkriva do nekaj centimetrov velike drobce fosilnih kosti, ob robovih pa se med kosi skal ter grušča najdejo tudi nekoliko večji fragmenti. V letih 2016 in 2017 sta tolminska jamarja Jani Kutin in Nejc Maver prve kosti in nekaj zob našla že v kotanji med sedimenti, naplavljenimi iz jame, takoj pod kapom vhoda v jamo. V nadaljevanju jame sta kosti opazila le v stranskem rovu neposredno za vhodom in iz ilovice pobrala fragmente kosti, kjer jih siga ni zlepila z gruščem. Ob tem sta našla še skoraj celo lobanjo, ki so jo kasneje odkopali pod vodstvom arheologa Miha Mlinarja iz Tolminskega muzeja. Lobanjo je muzej skupaj s preostalimi kostmi, najdenimi v jami, tudi prevzel v hrambo (slika 2C). 174 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 2: Jama Bele vode. A - vhod v jamo; B - pogled na jamske sedimente v Medvedovi dvorani; C - izkopavanje lobanje jamskega medveda (glej tudi tablo 1). Fotografije: Jani Kutin. Fig. 2: The Bele vode cave. A - cave entrance; B - the Medved hall (Medvedova dvorana) with fossil bearing cave sediments; C - excavation of cave bear skull (see Plate 1). Photos: Jani Kutin. Najdišče fosilnih medvedovih kosti iz jame Bele vode je znano že od konca 19. stoletja dalje. Kosti je leta 1894 odkopal tržaški arheolog Carlo Marchesetti in leto pozneje o najdbah iz te takrat imenovane Jame pri Trebuši tudi objavil prispevek (Marchesetti, 1895). Poleg objave podatkov o fosilnih kosteh pleistocenskih živali iz Postojnske jame, kjer je leta 1821 raziskoval Guiseppe de Volpi (Habe, 1968), iz Križne jame po poročilih Dominika Bilinecka leta 1847 (Križnar, 2017) ursus ligusticus Sl. 3: Lobanja jamskega medveda Ursus ligusticus iz jame Bele vode (it. Caverna di Tribussa), kot jo je leta 1895 prikazal in določil Carlo Marchesetti. Fig. 3: Cave bear skull of Ursus ligusticus from the Bele vode cave (Caverna di Tribussa), represented and determinated by Carlo Marchesetti, 1895. ter iz Mokriške jame, kjer sta kosti jamskega medveda našla in izkopavala Johann Pezhar (leta 1837) in Henrik Freyer (leta 1838) (Božič, 2013; Križnar, 2014), je to bila ena prvih objav, ki vključuje najdišča z ozemlja današnje Slovenije, za katera se omenjajo pleistocenski fosilni ostanki. Marchesetti je članek iz leta 1895 vnovič objavil leta 1907 (Marchesetti, 1907). Izkopane kosti je na podlagi merskih primerjav z jamskim medvedom Ursus spelaeus pripisal starejši vrsti medveda, in sicer drugi vrsti Ursus ligusticus (slika 3), katerega taksonom-ski status še ni bil revidiran. Smoganica (Jama pod Smoganico) Jama Smoganica spada med izvirne jame. Velik vhod vanjo se odpira na pobočju Drobočnika nad Mostom na Soči na nadmorski višini 480 metrov (sliki 4 in 5A). Izoblikovana je v apnenčevi breči, nastala pa je v freatičnih razmerah. Jamski sistem tvori preplet manjših rovov, ki so se razvili znotraj breče v vseh smereh. Oblikovanje jame lahko opredelimo kot poligenetsko, saj je njene dele že povsem preoblikovala voda, ki pronica s površja in polzi po jamskih stenah (Knez et al., 2005). Kljub razvejanosti in prepletu rovov pa je v grobem mogoče zgornje, manj mokre rove ločiti od spodnjih, po katerih teče voda, ki se iz zaledja jame pretaka skozi jamske rove ponovno na površje, od tod pa po strmi strugi odteka proti hudourniškemu potoku Lisičnik in nato proti Soči. Med zgornjo in spodnjo etažo jame je več prehodov v obliki manjših brezen ali poševnih rovov. Smoganica je dolga 492 metrov, višinska razlika med najnižjim in najvišjim rovom je 15 metrov. Nahajališče kosti v jami Smoganica so leta 1924 odkrili člani ilegalnega planinskega kluba Krpelj, ki so v Posočju in na Idrijskem prvi raziskovali tudi jamski svet. Ko so zaznali, da se za jame na tamkajšnjem območju zanimajo Italijani, so kot zavedni Slovenci sami najprej začeli raziskovati Smoganico (Rovšček, 2015, 43). Leta 1956 je član društva Zorko Jelinčič ob odkritju »črepinje« jamskega medveda zapisal: » ... Pač mu je bila usodna ona skala. Končno smo staknili v gornji, suhi jami, kjer je potoček tekel že pred davnimi desettisočletji, preden si je izdolbel strugo ca. 5 m globlje, pod plastjo kapnika in sige, v debeli naplavini ilovice tudi pravo ležišče ali pokopališče medvedov brlogarjev.« (Jelinčič, 1956, 571) Tolminska jamarja Jani Kutin in Nejc Maver sta leta 2016 jamo večkrat pregledala, da bi našla nahajališče kosti. V spodnji etaži, skozi katero se prevaja manjši potok, sta našla le nekaj drobcev, ki jih je voda zajela nekje globlje v jami in jih na svoji poti odložila blizu izhoda iz jame. V zgornji, bolj suhi etaži pa sta našla rov, ki so ga Krpljarji prepoznali kot »ležišče ali pokopališče medvedov brlogarjev«. Gre za ozek, le nekaj več kot meter širok in od 0,5 do 2 metrov visok rov. Ta se odpira nad breznom, ki povezuje zgornjo in spodnjo etažo (slika 5B) in se konča s podorom, skozi katerega je mogoče zlesti še nekaj metrov naprej v jamo (slika 5C). Ali je ta podor morda 175 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 4: Položaj jame Smoganica (2) nad dolino Soče (zgoraj). Tloris jame Smoganica z označenimi območji pojavljanja fosilonosnih plasti in obrusov; A - razprostranjenost plasti s fosilnimi ostanki, B - dokumentirani in opazni obrusi na jamskih stenah (nastali ob obiskih jamskih medvedov), C - podor v jamskem rovu (glej tudi sliko 5C). Tloris jame po Umbertu Mikolicu in Giorgiu Colombettu, risba: Matija Križnar). Fig. 4: Location of the Smoganica cave (2) above the Soča River valley. Ground plan of the Smoganica cave; A - distribution of fossil bones within Pleistocene cave sediments, B - walls brushed by cave bears, C - collapsed walls/ceiling in cave tube (see Figure 5C). (Cave ground plan Umberto Mikolic and Giorgio Colombetta, adapted drawing Matija Križnar). zapolnil staro povezavo rova s površjem, ni mogoče presoditi, so pa tudi v tem delu za njim še fosilne kosti. Ker je rov s kostmi precej oddaljen od vhoda in je dostop do njega otežen, se zdi, da so medvedi morda imeli drugo, krajšo pot in za dostop niso uporabljali današnjega vhoda. Jamska tla v rovu so zapolnjena z ilovico, ki leži na plasti sige. Kot je videti, je bila ilovica skoraj po celi dolžini okoli 10 metrov dolgega rova že precej prekopana. Kjer je bila plast sige odstranjena ali razbita, je pod njo plastovito odložena ilovica skoraj brez grušča. Sl. 5: Jama Smoganica nad dolino reke Soče. A - jamski vhod, B - pogled na rove z ostanki fosilnih kosti, C - rov, ki se konča z večjim podorom. Fotografije: PavelJamnik. Fig. 5: The Smoganica Cave above the Soča River valley. A - cave entrance, B - part of the cave with fossil remains, C - Cave tube with collpased walls and ceiling on the end. Photos: Pavel Jamnik. Kosti in zobje ležijo v ilovici, ki je pod odstranjeno sigo. Nekaj kosti je tudi v ilovici na začetku rova, nad 176 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 6: A, B: Obrusi na površini jamskih sten v jami Smoganica kot posledica obiskovanja jamskega medveda. Fotografije: Pavel Jamnik. Fig. 6: A, B: Cave walls with brush marks, probably made by cave bears in the Smoganica cave. Photos: Pavel Jamnik. breznom, kjer spodaj sige ni opaziti. Na jamskih stenah po celi dolžini rova so številni medvedovi obrusi (slika 6), zaglajene skalne stene, ki so v medvedovih brlogih nastale, ko so se medvedi drgnili ob kamnite izbokline in si tako lajšali srbenje. Številni medvedovi obrusi so tudi v dostopnem rovu pred breznom, prek katerega iz smeri današnjega vhoda vstopimo v rov s kostmi. Tam na jamskih tleh ni več ilovnatega sedimenta, so pa ravno obrusi dokaz za prisotnost medvedov na obeh straneh rovov nad breznom. MATERIAL IN METODE Kosti s sledmi ugrizov Med nabranimi, celimi in fragmentiranimi kostnimi ostanki smo v jami Bele vode našli tudi nekaj kosti s sledmi ugrizov v obliki jamic ali krožnih poškodb, pri katerih kostna stena ni bila predrta v celoti. Take lezije smo našli na kosteh, ki pripadajo jamskemu medvedu, in sicer na štirih rebrnih fragmentih (slike 8-11), na ledvenem vretencu (slika 12), na desni petnici (slika 13) in na levi nadlahtnici (slika 14). V nekaj primerih lahko opazimo, da si po tri jamice neenakomerno sledijo v navidezni liniji, kar pomeni, da eni sledita dve med seboj nekoliko zbližani (1 + 2). Da bi pojasnili možnost za nastanek okroglih jamic oz. lezij na kosteh iz jame Bele vode, smo poskušali z analizo načina ugrizov jamskega medveda in domnev- nega nastanka sledi na kosteh odgovoriti na vprašanje, ali perforativne lezije na kosteh lahko naredi jamski medved s premolarji in molarji. Iz analize smo izključili vse druge zveri, saj je bilo najdišče fosilnih kosti v jami Bele vode brlog jamskega medveda in med najdbami fosilnih kostnih ostankov ni bila dokazana navzočnost drugih zveri in glede na mesto najdbe tudi ne prisotnost kamenodobnega človeka. Za primerjalno analizo smo imeli na razpolago dve fosilni lobanji z najdišča Križna jama (paleontološka zbirka Prirodoslovnega muzeja Slovenije), tri spodnje čeljustnice, ki ustrezajo velikosti vzorčnih lobanj povprečnega odraslega jamskega medveda, in manjšo lobanjo rjavega medveda, vključno s spodnjima čelju-stnicama (Veterinarska fakulteta Univerze v Ljubljani). Izmerili smo dolžino lobanj, tj. projekcijo razdalje med rostralnim koncem interincizivnega šiva (pro-sthion) in sredinsko točko zunanje zatilnične štrline (inion) na osnovno ploskev. Domnevne odtise zobovja smo na vzorčnih kosteh dokazovali s prileganjem lezij na grizne površine oz. vrške zobnih grbic (slike 8-14). Izdelali smo odtis ličnikov zgornje čeljustnice jamskega medveda, na podlagi katerega smo izrisali shemo vrškov grbic na griznih površinah (slika 7), in z zobovjem jamskega oz. rjavega medveda rekonstruirali posamezne lezije. Vzorce ugrizov smo na slikah primerjali s shemo in tako morfološko ocenjevali predvsem medsebojni položaj, obliko, velikost in globino posameznih poškodb. 177 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 7: Ličniki zgornje čeljustnice jamskega medveda. A -lateralni pogled in izdelava odtisa, B - grizne površine in obris, C - odtisi grbic in izohiptični prikaz globine odtisov, D - shema razporeditve odtisov posameznih grbic »1 + 2 + 2« na zgornjih ličnikih. Okrajšave: max - zgornja čeljustnica; P4 - četrti premolar; M1 - prvi molar; M2 - drugi molar; p, m, m', m2, m2' - oznake odtisov grbic ustreznih ličnikov. Fotografije: Matjaž Uršič. Fig. 7: Cheek teeth of the cave bear upper jaw. A - lateral view and tooth print, B - cheek teeth's occlusal surfaces and their contour, C - the order of imprints of tooth tubercles with their depth contour lines, D -schematic diagram of the upper jaw cheek teeth and their tubercles arrangement "1 + 2 + 2". Abbreviations: max - maxilla; P4 - the fourth premolar; M2 - the first molar; M2 - the second molar; p, m, m', m2, m2' - the marks indicate tooth prints of the corresponding cheek teeth. Photos: Matjaž Uršič. REZULTATI IN RAZPRAVA Osnovne funkcionalne in morfološke značilnosti zobovja jamskega medveda Zobovje je skupaj z drugimi deli žvekalnega aparata namenjeno jemanju in mehanični drobitvi hrane. Ker obstajajo med obliko zobovja in vrsto hrane tesni vzajemni odnosi, se je zobovje pri razvoju živalskih vrst po obliki prilagajalo predvsem načinu prehranjevanja. Tako v grobem lahko razlikujemo med zobovjem mesojedov (carnívora), vsejedov (omnívora) in rastlinojedov (herbívora). Sesalci imajo zobe v zgornji in spodnji čeljusti, in sicer štiri vrste zob, ki opravljajo različno funkcijo (Rigler, 2000; Nickel et al., 1979). Sekalci I (dentes incisivi) so pri mesojedih namenjeni sekanju, paranju in strganju tkiv od kosti, lahko tudi čiščenju dlake in odstranjevanju na kožuhu sprijetih tujkov. Podočniki, tudi grabilci C (dentes canini), se pri zbliževanju čeljusti in škarjastem ugrizu, značilnem za mesojede, nekoliko prekrižajo. Gre za koničaste, eno- koreninske zobe, ki so pri mesojedih izraziti in dobro razviti. Z njimi lahko plenu povzročijo smrtonosne vbodne rane, prav tako grabijo, držijo in trgajo plen. Hkrati so podočniki opora pri ohranjanju položaja jezika v ustni votlini. Zobni lok za podočniki zapolnjujejo ličniki iz skupine predmeljakov ali premolarjev P (dentes premolares), ki so pri mesojedih sicer najštevilnejši zobje, prisotni tako v mlečnem kot tudi v stalnem zobovju, pri jamskem medvedu pa so se med filogenetskim razvojem skoraj povsem izgubili. Živali jih uporabljajo za drža-nje, glodanje, lomljenje in drobljenje. Sledijo ličniki iz skupine meljakov oz. kočnikov ali molarjev M (dentes molares), ki izrastejo le enkrat. Potegnjeni so globlje v ustno votlino in so navadno zunaj pogleda, za ustno režo. Razporeditev ličnikov s svojimi vrški nekoliko spominja na škarje z ostrim nazobčanim rezilom (Nickel et al., 1979; Rigler, 2000; Evans & de Lahunta, 2013; Singh, 2018). Pri jamskem medvedu se je med filogenetskim razvojem v stalnem zobovju v obeh čeljustnicah ohranil le četrti, tj. zadnji premolar P4, v zgornji čeljustnici sta od molarjev zrasla samo dva, v spodnji pa trije. Zgornji ličniki imajo pri medvedu na nebnem odseku le rahlo grbičasto in izravnano grizno ploskev (Vila Taboada et al., 2001), kar mu omogoča predvsem zvečenje in dodatno drobljenje. Morfološke značilnosti žvekalnega aparata jamskega medveda, obsežne grizne ploskve molarjev, vključno z izgubo premolarjev in s podaljšanjem brezzobničnega roba tako v zgornji kot tudi v spodnji čeljustnici, ter izrazitost žvekalne muskulature kažejo na način njihovega hranjenja. Raziskave kažejo, da je bil sicer precejšen delež njihove prehrane rastlinskega izvora (Kurten, 1976; Bocherens et al., 1994; Stiner et al., 1998; Vila Taboada et al., 2001; Fernández-Mosquera et al., 2001), kljub temu pa zobje predvsem v zgornji čeljustnici razvojno še vedno do neke mere ohranjajo lastnosti zverskega zobovja. Značilna oblika sekalcev, veliki podočniki in izrazitejši vrški na grbicah zgornjih ličnikov kažejo značilnosti bunodontnega oz. prehodnega buno-seko-dontnega tipa. Spodnji ličniki (premolar in molarji) s svojimi številnimi neizrazitimi grbicami in obsežnimi griznimi ploskvami predstavljajo izrazitejše zobovje bunodontnega tipa (Vila Taboada, et al., 2001), kar je sicer značilnost omnivorov. Izraženost vrškov je odvisna tudi od vrste in načina prehrane ter starosti osebka, kar se odraža predvsem v okluzalni obrabi zobovja (Stiner, 1999; Baryshnikov 1998; Jones & Desantis 2016). Ostanki pleistocenske favne Marchesetti (Marchesetti, 1907) je pri uvrščanju ostankov jamskega medvedov v vrsto Ursus ligusticus upošteval zgolj kondilobazalno dolžino lobanje, ne pa tudi zob in drugih parametrov, ki jih danes uporabljamo za določevanje vrst jamskih medvedov (Rabeder et al., 2004). Njegova primerjava (z objavljenih fotografij) lo- 178 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Tabla 1: Kostni ostanki fosilne favne iz jame Bele vode. Ursus cf. ingressus: 1 - čeljust mladega osebka, 2 - podočnik (C), 3 - čeljust mladega osebka z neizraslim podočnikom, 4 - čeljust mladega osebka z izraslim spodnjim prvim molarjem (M), 5 - skupek kostnih fragmentov in zob, vezanih s karbonatnim vezivom, 6 - plečnica jamskega medveda z vidnimi poškodbami/ugrizi (puščice); Cervus elaphus: 7- distalna prstnica (parkeljnica). 1, 2,3: zbirka Tolminskega muzeja; 4, 6: zbirka Janija Kutina; 5, 7: zbirka Nejca Mavra. Merila 1, 3, 6 - 10 cm, 2, 4, 5, 7 - 1 cm. Predstavljeno fosilno gradivo ni inventarizirano. Fotografije: Matija Križnar. Plate 1: Bone remains of fossil fauna from Bele vode cave. Ursus cf. ingressus: 1 - lower jaw of young specimen, 2 - canine (C), 3 - lower jaw of juvenile specimen with canine, 4 - lower jaw of juvenile specimen with first molar (M1), 5 - bone fragments and teeth aggregate in carbonate sediment, 6 - scapula with visible marks/bite (arrows); Cervus elaphus: 7 - distal phalanx. (1, 2, 3: Collection Tolminski muzej; 4, 6: Collection Jani Kutin; 5, 7: Collection Nejc Maver), Scale bar 1, 3, 6 - 10 cm, 2, 4, 5, 7 - 1 cm. The inventory of presented fossil material has not been taken. Photos: Matija Križnar. 179 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Tabla 2: Lobanja jamskega medveda (Ursus cf. ingressus) iz jame Bele vode (iz zbirke Tolminskega muzeja). 1 -pogled s strani (desna), 2 - pogled od zgoraj. Fotografiji: Matija Križnar. Plate 2: Cave bear skull (Ursus cf. ingressus), the Bele vode cave (Collection Tolminski muzej). 1 - lateral view (right side), 2 - dorsal view. Photos: Matija Križnar. banj jamskih medvedov Ursus ligusticus in Ursus spela-eus je dokaj nazorna, a brez pregleda zob in dodatnih morfometričnih podatkov vrste ni mogoče opredeliti oziroma potrditi. Med Marchesettijevima predstavljenima lobanjama je več razlik, ki bi jih lahko pripisali različnim dejavnikom: (1) dokaj izrazit spolni dimorfizem pri jamskem medvedu - ta lahko pri rjavem medvedu Ursus arctos dokazano vpliva na razlike celo v 20 % do 30 %, analogno pa tudi pri jamskem medvedu Ursus spelaeus sensu stricto (Baryshnikov et al., 2003; Grandal d'Anglade, 2001; Weinstock, 2001); (2) razlike med lobanjama so lahko tudi ontogenetsko pogojene, pri čemer imajo mlajši osebki drugače oblikovano lobanjo z značilnimi morfometričnimi podatki, kar pomeni, da bi lahko Marchesettijeva lobanja medveda vrste Ursus ligusticus pripadala mlajšemu ali neodraslemu osebku, verjetneje drugi vrsti jamskega medveda (Toškan, 2007); (3) za potrditev, da lobanja, ki jo je preučeval Mar-chesetti, res pripada novi vrsti Ursus ligusticus, bi bilo treba primerjalno analizirati še druge vrste oz. podvrste jamskih medvedov Ursus deningeri, Ursus spelaeus ladinicus, Ursus spelaeus eremus in Ursus ingressus kakor tudi tudi nekatere bolj vzhodne, kot so Ursus Tabla 3: Kostni ostanki fosilne favne iz jame Smoganica. Equus ferus caballus: 1 - zgornji levi premolar (P ); Bos primigenius seu Bison priscus: 4 - spodnji molar (M3); Ursus ingressus: 2,3 - podočnika (C), 5 - zgornji molar (M1), 6,7 - zgornja molarja (M3). (1,4-7: zbirka Tolminskega muzeja, 2: zbirka Nejca Mavra, 3: zbirka Bruna Blažina). Merila 1 cm. Predstavljeno fosilno gradivo ni inventarizirano. Fotografije: Matija Križnar. Plate 3: Bone remains of fossil fauna from the Smoganica cave. Equus ferus caballus: 1 - Upper left molar (P3); Bos primigenius seu Bison priscus: 4 - Lower molar (M3); Ursus ingressus: 2,3 - canine (C), 5 - Upper molar (M1), 6, 7 - Upper molar (M3). (1, 4-7: collection Tolminski muzej, 2: collection Nejc Maver, 3: collection Blažina), Scale bar 1 cm. The inventory of presented fossil material has not been taken. Photos:Matija Križnar. kudarensis, Ursus kanivetz in Ursus rossicus (Rabeder & Hofreiter, 2004; Rabeder et. al, 2004; Baryshnikov & Puzachenko, 2011). Morfotipi slednjih so bili na podlagi novih raziskav mlajših pleistocenskih jamskih medvedov prepoznani v preteklih dveh desetletjih, a je njihov taksonomski status še vedno nedorečen. Prisotnost ostankov mladih in manjših jamskih medvedov kaže, da je bila Medvedova dvorana v jami Bele vode občasno brlog samic in da je bila v tistem času prehodnost jame drugačna. Bolj zaščiten vhodni del je bil primernejši za bivanje. Pregled sedimentov je pokazal, da je po odložitvi kosti prišlo do delnega premika kostnih ostankov in kasneje do ponovne sedimentacije. Mnoge kosti in kostni fragmenti so vezani v peščen se- 180 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 8: Dorzalni fragment desnega rebra jamskega medveda. A - kranialni (cr) pogled, B - kavdalni (ca) pogled, C - rekonstrukcija medvedjega ugriza, D - prikaz skladnosti odtisov z grbicami na P4 in M1 jamskega medveda. Okrajšave: max - zgornja čeljustnica; P3 - tretji premolar; P4 - četrti premolar; M1 - prvi molar; M2 - drugi molar; p, m, m', m'' - oznake odtisov ustreznih grbic na ličnikih. Fotografije: Jasna Šporar in Matjaž Uršič. Fig. 8: Dorsal fragment of the right cave bear rib. A - cranial (cr) view, B - caudal (ca) view, C - reconstruction of the bear bite, D - shows the matching of imprints with the cave bear P4 and M1 teeth tubercles. Abbreviations: max - maxilla; P3 - the third premolar; P4 - the fourth premolar; M1 - the first molar; M2 - the second molar; p, m, m', m'' - the marks indicate tooth prints corresponding to cheek teeth. Photos: Jasna Šporar and Matjaž Uršič. diment z močnim karbonatnim vezivom. Čeprav premik kosti in zob znotraj jame ni bil izrazit, pa ta dislokacija kaže na kasnejše izpiranje ob prisotnosti vodnega toka. Ker v nadaljevanju jame v večini rovov ni najti fosilnih kosti, najdene so bile le v omenjenem stranskem rovu ob vhodu, domnevamo, da je bila v jami voda že v času, ko so vanjo zahajali medvedi. Vlažna jama je bila sicer za brlog manj primerna, a izbor take jame za jamskega medveda ni bil nič nenavadnega. Verjetno je iskati enega od vzrokov za izbiro takega brloga v večji populaciji medveda v določenem obdobju. Vodoravnih jam na tem območju sicer ni veliko, v bližini se nahaja še Hvalova jama (kat. št. 1862), v kateri pa raziskav oziroma odkritij pleistocenske favne še ni bilo. Med gradivom je tudi manjša lobanja, ki jo hrani Tolminski muzej in pripada starejšemu osebku (tabla 2). Na podlagi dimenzij, tj. dolžine zgornjega M2 (44,5 mm) in skupne razdalje od P4 do M2 v zgornji čeljustnici (91 mm), bi jo lahko pripisali vrsti Ursus ingressus. Stranski profil lobanje je zelo podoben omenjeni vrsti (glej Rabeder et al., 2004; Rabeder & Hofreiter, 2004). Na vrsto Ursus ingressus kažejo morfološke značilnosti (zobne grbice, dimenzije in oblika zob) nekaterih molarjev (zgornji in spodnji M2). Preostali kostni ostanki kažejo na znatno prisotnost mlajših in nedoraslih osebkov. Preliminarno smo zbrano gradivo jamskih medvedov iz jame Bele vode uvrstili v vrsto Ursus cf. ingressus (Rabeder et al., 2004) (tabla 1/1-6 in tabla 2). 181 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 9: Dorzalni fragment levega rebra jamskega medveda. A - kranialni (cr) in kavdalni (ca) pogled, B in C -rekonstrukcije ugrizov s čeljustnicama jamskega medveda, D - prikaz ujemanja griznih lezij z vrški zobnih grbic jamskega medveda. Okrajšave: max - zgornja čeljustnica; mand - spodnja čeljustnica; P4 oz. P4 četrti premolar; M1 oz. Mt - prvi molar; M2 oz. M2 - drugi molar; p, ma, mb, m'' - oznake griznih lezij glede na ustrezne grbice ličnikov. Fotografije: Jasna Šporar in Matjaž Uršič. Fig. 9: Dorsal fragment of the left cave bear rib. A - cranial (cr) and caudal (ca) view, B and C - bite reconstructions with the cave bear's jaws, D - the matching of the imprints with the cave bear's teeth tubercle cusps. Abbreviations: max - maxilla; mand - mandible; P4 or P4 - the fourth premolar; M1 or Mt - the first molar; M2 or M2 - the second molar; p, m, mb, m'' - marks indicate lesions corresponding to the cheek teeth tubercles. Photos: Jasna Šporar and Matjaž Uršič. V Medvedovem rovu je bila najdena tudi distalna prstnica (parkeljnica) jelena, ki morfološko ustreza navadnemu jelenu Cervus elaphus (tabla 1/7). Slednji je v Sloveniji zastopan tako med pozno pleistocensko favno kot tudi v mnogih holocenskih najdiščih (Pohar, 1994). Skromni ostanek navadnega jelena bi lahko v Bele vode vnesle tudi različne pleistocenske zveri. Najdeni fosilni ostanki favne iz Smoganice večinoma pripadajo jamskemu medvedu (tabla 3/2-3, /5-7). Med ostanki so bili prepoznani tudi redki ostanki konja in goveda oz. bizona. Delni pregled gradiva jamskega medveda iz Smoganice je pokazal, da večji del kosti in zob spada k mladim osebkom. Dimenzije in morfološke značilnosti zobnih kron (zobnih grbic), predvsem zgornjih in spodnjih M2, kažejo na razvitejšo vrsto Ursus ingressus (Rabeder & Hofreiter, 2004). Fosilne ostanke jamskega medveda umeščamo v vrsto Ursus ingressus (Rabeder, Hofreiter, Nagel & Withalm, 2004). Domnevamo, da so jamski medvedi jamo uporabljali kot prezimovalni brlog oz. za kotenje mladičev, kar potrjuje predvsem prisotnost kostnih najdb zgolj v enem delu jame. O dolgotrajnosti obstoja brloga pričajo številni obrusi na nekaterih jamskih stenah (slika 6). Poleg kosti jamskega medveda so bili v Smoganici 182 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 10: Dorzalni fragment desnega rebra jamskega medveda. A - kranialni pogled (cr), B - kavdalni pogled (ca) z C - rekonstrukcijo ugriza, D - prikaz sovpadanja griznih lezij z grbicami P4 in M1 jamskega medveda. Okrajšave: max - zgornja čeljustnica; P4 - četrti premolar; M1 - prvi molar; M2 - drugi molar; p, m, m', m'' - grizne lezije povzročene z ustreznimi grbicami ličnikov. Fotografije: Jasna Šporar in Matjaž Uršič. Fig. 10: Dorsal fragment of the right cave bear rib. A - cranial view (cr), B - caudal view(ca), C - bite reconstruction of the cave bear cheek teeth, D - shows the matching of the lesions with the cave bear P4 and M1 teeth tubercles. Abbreviations: max - maxilla; P4 - the fourth premolar; M1 - the first molar; M2 - the second molar; p, m, m', m'' marks indicate lesions corresponding to the cheek teeth tubercles. Photos: Jasna Šporar and Matjaž Uršič. najdeni še ostanki bovidov in konja. Bovidu pripadajo trije zobje iz spodnje čeljustnice: sekalec ter ličnika P3 in M3 (tabla 3/4). Taksonomija fosilnih ostankov rodu Bos in Bison temelji na morfometričnih podatkih kosti, zato so zobje manj uporabni za natančno določevanje vrst. Zob M3 lahko pripada tako turu Bos primigenius kot stepskemu bizonu Bison priscus, zato smo jih pripisali obema vrstama Bos primigenius seu Bison priscus. Ostanki turov oz. bizonov so na pleistocenskih najdiščih v Sloveniji redki (Rakovec, 1973; Pohar, 1994). V Smoganici je bil najden še ostanek P4 iz zgornje leve čeljustnice konja Equus ferus caballus (tabla 3/1), ki morfološko ustreza zobovju pleistocenskih konj. Ostanke konja so v jamo lahko zanesli tudi kateri od večjih plenilcev (jamski lev ali jamska hijena), so pa tudi v drugih slovenskih najdiščih najdbe ostankov pleistocenskih konj dokaj redke (Rakovec, 1958; Pohar, 1994). Morfološka analiza in rekonstrukcije ugrizov Lobanji jamskega medveda, ki sta nam služili za primerjavo, sta bili po velikosti primerljivi. V dolžino sta merili 42 cm, medtem ko je bila dolžina lobanje rjavega medveda občutno krajša, le 30 cm. Pri jamskem medvedu so bili ohranjeni vsi izrasli ličniki in podočniki, od sekalcev pa le tretji v eni od spodnjih čeljustnic. Slednji je enostaven z dvorežnjasto krono. Izraziti podočniki so enostavni, veliki in ostrostožčaste oblike. Spodnji so nekoliko večji. Od bolj kompliciranih ličnikov so v zgornji čeljustnici razvojno edini ostali četrti predmeljak P4 in dva le v trajnem zobovju navzoča meljaka M1 in M2. Izrazitost sekodontnega grebena se kaže na ličnem (bukalnem) odseku, tj. la-teralnem delu grizne (okluzalne) površine. Na ličnem odseku vsakega ličnika sta po dve izrazitejši stožčasti 183 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 11: Koščeni del, domnevno drugega sternalnega rebra jamskega medveda. A - kavdalni (ca) in kranialni (cr) pogled, B - rekonstrukcija griznih lezij, C - prikaz ujemanja lezij z vrški grbic na P4 in M1. Okrajšave: max - zgornja čeljustnica; P4 - četrti premolar; M1 - prvi molar; M2 - drugi molar; p, m, m', m'' - oznake griznih lezij glede na vrške ustreznih grbic ličnikov. Fotografije: Jasna Šporar in Matjaž Uršič. Fig. 11: A bony part probably of the right second sternal cave bear rib. A - caudal (ca) and cranial (cr) view, B - reconstruction of bite lesions, C - shows the matching of the cave bear P4 and M1 teeth tubercles with the bite lesions. Abbreviations: max - maxilla; P4 - the fourth premolar; M1 - the first molar; M2 - the second molar; p, m, m', m'' -indicate lesions corresponding to the cheek teeth tubercles. Photos: Jasna Šporar and Matjaž Uršič. grbici z vzdolžno nekoliko sploščenima vrškoma. V spodnji čeljustnici so izrasli štirje ličniki: premolar P4 in trije molarji M1, M2 in M3. Vršek na sprednji zgornječeljustnični grbici premo-larja je znatno višji od vrška kavdalne grbice, medtem ko sta na obeh molarjih sprednja vrška ličnega odseka le neznatno višja (slika 7A). Zobni lok je v okviru ličnikov zgornje čeljustnice le rahlo ukrivljen. Odtisi vrškov obeh molarjev so v zobnem loku postavljeni skoraj premočrtno (slika 7/C, /D). Manjše odstopanje se kaže le pri premolarju P4, tj. četrtem ličniku. Ta ustreza lomilcu ali deraču (dens sectorius) (Rigler, 2000; Nickel et al., 1979) in je rahlo rotiran (slika 7/B, /D), zato je vršek njegove izrazitejše sprednje grbice nekoliko zamaknjen proti mediani ravnini, kar krivuljo zobnega loka v tem delu nekoliko poudari. Opazna je značilna anizognatija. Spodnječeljustnični zobni lok je ožji kot zgornječeljustnični. Vrški ličnega odseka grizne ploskve zgornječeljustničnih ličnikov tako pri zapiranju čeljusti s svojim grebenom zdrsnejo čez ustnično oz. lično ploskev ustreznih zob v spodnji čeljustnici, ob tem pa se medialni nebni odsek grizne ploskve zgornjih ličnikov prileže ličnemu odseku spodnjih griznih ploskev ličnikov. V spodnji čeljustnici so zlasti molarji drobnogrbičasti in z obsežnimi griznimi ploskvami. Tri jamice p, m, m' (slika 8) na fragmentu desnega rebra so kranialno na telesu v višini rebrnega kota: dor- 184 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 12: Ledveno vretence jamskega medveda, primerjalno peto ali šesto. A - lateralni (la), ventrolateralni (vl) in ventralni (ve) pogled, B - rekonstrukcije ugrizov, C - shematski prikazi skladnosti posameznih lezij z grbicami P4 in M1 jamskega medveda. Okrajšave: max - zgornja čeljustnica; P4 - četrti premolar; M1 - prvi molar; M2 - drugi molar; p, p', m, m' -grizne lezije, povzročene z ustreznimi grbicami ličnikov P4 in M1. Fotografije: Jasna Šporar in Matjaž Uršič. Fig. 12: A cave bear's lumbal vertebre comparatively the fifth or the sixth. A - lateral (la), ventrolateral (vl) and ventral (ve) view, B - reconstruction of bites, C - schemes shows the matching of the cave bear P4 and M1 teeth tubercles with the adequate bite lesions. Abbreviations: max - maxilla; P4 - the fourth premolar; M1 - the first molar; M2 - the second molar; p, p', m, m' - marks indicate lesions corresponding to tubercles of the cheek teeth P4 and M1. Photos: Jasna Šporar and Matjaž Uršič. zalna jamica p je neposredno ventralno od rebrne grbice, ventolateralno pa sta druga ob drugi dve jamici m in m' (slika 8/A, /C, /D). Primerjava kaže, da je jamica p odtis večjega vrška na rostralni grbici P4 zgornje čeljustnice, m in m' pa sta domnevno nastali kot odtisa obeh vrškov grbic na M1. Razdalje med jamicami ustrezajo razdaljam med vrški zobnih grbic medveda. Rekonstrukcija ugriza prikazuje, da sta pri tem ugrizu udeležena oba zoba, tj. P4 in M1 zgornje čeljustnice (slika 8C), shema (slika 8D) pa dokazuje popolno skladnost oz. prileganje jamic tudi na vrške grbic P4 in M1 hipotetično sorazmerno velikega 185 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 13: Desna petnica jamskega medveda. A - lateralni pogled (lv), B - medialni pogled (mv), C - rekonstrukcija ugriza v petnično grčo (zobovje rjavega medveda), D - prikaz ujemanja ugriznih odtisnih lezij z grbicama M1 zgornje čeljustnice jamskega medveda. Okrajšave: max - zgornja čeljustnica; P4 - četrti premolar; M1 - prvi molar; M2 - drugi molar; m, m' - ugrizna odtisa, povzročena z grbicama M1. Fotografije: Jasna Šporar in Matjaž Uršič. Fig. 13: A cave bear's right calcaneus. A - lateral view (lv), B - medial view (mv), C - reconstruction of a brown bear's bite into a calcaneal tuber, D - the matching of the bite impressions with the cave bear's upper jaw M1 teeth tubercles. Abbreviations: max - maxilla; P4 - the fourth premolar; M1 - the first molar; M2 - the second molar; m, m' - bite impressions of M1 teeth tubercles. Photos: Jasna Šporar and Matjaž Uršič. jamskega medveda. V rebrnem žlebu so zaznavne le abrazije m'' (slika 8B) zaradi delovanja antagonistov spodnje čeljustnice. Leziji ma in mb (slika 9) sta domnevno povzročila ugriza z vrškom sprednje grbice na M1 zgornje čeljustnice, medtem ko se je sprednja grbica na P4 ob tem le rahlo zasukala znotraj iste jamice p. Na nasprotni strani je na kraniolateralnem delu telesa odrgnina m'' (slika 9/A, /B). Sprednja grbica na M1 zgornje čeljustnice je med grizenjem zaporedoma povzročila nastanek obeh lezij ma in mb ter ob domnevnem hkratnem pritisku antagonista M2 spodnje čeljustnice tudi frakturo ventralnega dela telesa. Odrgnina m'' je posledično nastala zaradi pritiska vrška grbice na M1 v spodnji čeljustnici (slika 9B). Iz slike (slika 9/B, /C, /D) je prav tako razvidno, da se grbice zob prilegajo na grizne poškodbe. Pri rekonstrukciji gre za dva domnevno zaporedna ugriza ob rahlem premiku rebra, kar potrjujeta leziji ma in mb na robu frakture. Vršek sprednje grbice na P4 pri obeh zaporednih ugrizih ostaja znotraj jamice p. Pri analizi dorzalnega fragmenta koščenega dela desnega rebra (slika 10) predstavlja odtis grbice na P4 jamica p na kranialni strani rebrnega telesa ventralno ob rebrnem kotu, opazna odrgnina m na medialni strani, lezija m' na robu frakture in odlom (slika 10/A, /C, /D) pa so nastali kot posledica delovanja sile M1 ob učinkovanju antagonistov spodnje čeljustnice. Oznake smiselno ustrezajo posameznim grbicam ličnikov P4 in M1. Odrgnine m'' na nasprotni, kavdalni strani (slika 10B) so lahko posledica delovanja ličnikov v spodnji čeljustnici. Hkrati shema griznih površin (slika 10D) dokazuje izrazito sovpadanje lezij na grbice ličnikov. Enotna lezija p in p' na kavdalni strani telesa, ventralno ob rebrnem kotu, po vsej verjetnosti drugega desnega sternalnega rebra (slika 11), je domnevno posledica odtisa obeh grbic na P4 zgornje čeljustnice. Odrgnino m' je povzročil vršek kavdalne grbice na M1, vršek sprednje grbice pa ni dosegel kostne površine. M1 spodnje čeljustnice je na kranialni strani v višini rebrnega kota pri ugrizu povzročil zaznavno odrgnino m''. Prileganje posameznih zobnih grbic na lezije je izrazito (slika 11C). Ledveno vretence (slika 12). Tri jamice m', m in p oblikujejo navidezno kavdoventralno potekajočo linijo na desni strani vretenca (slika 12/A1, /B1 in /C2). Domnevno so se med ugrizom odtisnili sprednja grbica na P4, lezija p in obe grbici na M1, leziji m in m' leve zgornje čeljustnice, pri tem pa vršek kavdalne grbice na P4 ni dosegel površine vretenca (slika 12B1). Dve globlji poškodbi, ena na levi lateralni strani telesa (slika 12/A2, /B2 in /C2), druga pa kavdalno na ventralnem grebenu (slika 12/A2, /B3 in /C2), lahko pojasnimo kot domnevna odtisa obeh grbic p in p' na P4 zgornje čeljustnice. Vrška grbic na M1 sta zaradi zaobljenosti vretenčnega telesa povzročila le neznatni odrgnini m oz. m'. Preostale odrgnine in lezije so nastajale 186 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Sl. 14: Leva nadlahtnica jamskega medveda. A - kavdalni (ca) in kranialni (cr) pogled, B - poškodovan proksimalni okrajek (1) in domnevni nastanek lezije s podočnikom jamskega medveda (2), C - rekonstrukcija nastanka lezij na nadčvršu (1) in rekonstrukcija poškodbe večje grbice z zgornječeljustničnimi ličniki (2), D - prikaz skladnosti posameznih lezij z grbicami jamskega medveda pri dveh načinih ugriza. Okrajšave: max - zgornja čeljustnica; P4 - četrti premolar; M1 - prvi molar; M2 - drugi molar; c, c'', p, m, m', m'' - grizne lezije. Fotografije: Jasna Šporar in Matjaž Uršič. Fig. 14: A cave bear's left humerus. A - caudal (ca) and cranial (cr) view, B - damaged proximal epiphysis (1) and reconstruction of the lesion with a cave bear's canine tooth (2), C - reconstruction of bite lesions on the epicondile (1) and reconstruction of the edge of damage on the great tubercle (2) with bear upper jaw teeth set, D - the matching of the bite lesions with the cheek teeth tubercles of a cave bear's upper jaw at two bite variants. Abbreviations: max - maxilla; P4 - the fourth premolar; M1 - the first molar; M2 - the second molar; c, c'', p, m, m', m'' - bite lesions. Photos: Jasna Šporar and Matjaž Uršič. pri dodatnem grizenju, nekatere tudi zaradi delovanja antagonistov v spodnji čeljustnici. Sheme na sliki 12C kažejo, da se obravnavane lezije izrazito prilegajo na posamezne zobne grbice. Jamici m in m' na lateralni strani petnične grče (slika 13) se popolnoma prilegata zobovju vzorčne lobanje rjavega medveda. Nastali sta kot domnevna odtisa obeh grbic na M1 zgornje čeljustnice. Lezija m'' na nasprotni medialni strani petnične grče (slika 13B) je verjetna posledica delovanja antagonista v spodnji čeljustnici. Razvidno je, da se leziji m in m' popolnoma ujemata tudi z grbicama na M1 sorazmerno velikega jamskega medveda (slika 13D). Pri levi nadlahtnici (slika 14) so jamice m, m' in m2, m2', ki so lateralno na stranskem nadčvršu, domnevno posledica odtisov grbic na ličnikih M1 (m, m') oz. M2 (m2, m2') leve zgornje čeljustnice (slika 14C1), kar potrjuje tudi enotna oz. združena lezija m in m' oz. m2 na sredinskem nadčvršu (slika 14D/1, /2), ki predstavlja sočasno nastalo poškodbo z M1 (slika 14D1) ali, kar je manj verjetno, z M2 v nasprotni, desni čeljustnici (slika 14D2). Razdalja med poškodbami na obeh nadčvrših primerjalno ustreza širini zgornječe- 187 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 ljustničnega zobnega loka sorazmerno velikega jamskega medveda v višini obeh zgornjih molarjev M1 (slika 14D1). Pri obgrizenem proksimalnem okraju lahko grizni poškodbi c in c' (slika 14A) na mestu večje grbice oz medgrbičnega žleba po obliki, globini in skladnosti pripišemo podočniku, kar potrjuje tudi poškodba c'' na kavdolateralnem delu vratu in glave (slika 14B2), ki je domnevno nastala kot posledica delovanja antagonista v spodnji čeljustnici. Distalni obrobni del lezij p, p' in m na večji grbici reliefno ustreza odtisom ličnikov zgornje čeljustnice (slika 14C2). S prileganjem poškodb na vrške zobnih grbic in s slikovno analizo ugotavljamo, da gre za grizne poškodbe, kjer sodelujejo ličniki zgornje čeljustnice jamskega medveda. Vrška grbic na M1 sta bližje drug drugemu, vršek sprednje večje grbice na P4 pa je nekoliko odmaknjen in zamaknjen z linije grbic na M1, kar pri popolnem odtisu predstavlja razporeditev jamic 1 + 2. Razdalje med jamicami oz. griznimi lezijami predvsem na rebrnih fragmentih, ledvenem vretencu in petnici (slika 8-13) povsem ustrezajo razdaljam med posameznimi grbicami na P4 oz. M1 zgornje čeljustnice. Ličniki v spodnji čeljustnici delujejo le kot podlaga, saj so vrški grbic na obsežnejših griznih ploskvah manj izraziti in agresivni ter posledično povzročijo le manj zaznavne odrgnine (abrazije). Nekateri ugrizi po razmerju med odtisi ustrezajo velikosti vzorčne lobanje jamskega medveda, na petnici (slika 13), enem izmed rebrnih fragmentov (slika 8) in nadlahtičnih nadčvrših (slika 14D) pa je grizne poškodbe povzročila manjša žival, po vsej verjetnosti manjši jamski medved, katerega lobanja je bila po velikosti primerljiva vzorčni lobanji rjavega medveda, ki smo jo uporabili za rekonstrukcijo. Makroskopsko gre namreč za zelo podobno zobovje. P4 in M1 zgornjih čeljustnic sta v višini ustne reže in sta po funkciji in položaju namenjena drobljenju hrane. Rostralno se namreč nahaja brezzobnični rob (diastema). Opravljena primerjava kaže, da pri nastanku večine griznih lezij na preučevanih kosteh sodelujeta prav P4 in M1. Razdalje med lezijami, če jih primerjamo z oddaljenostjo posameznih vrškov na grbicah, kažejo, da M2 zgornje čeljustnice ni pogosteje sodeloval pri nastanku odtisnih poškodb na analiziranih fragmentih, seveda pa ga, čeprav je pomaknjen relativno v ozadje ustne votline, ni mogoče povsem izključiti. Rekonstrukcija nastanka poškodb na nadlahtničnem nadčvršu pri eni od variant nakazuje prav možnost soudeležbe sprednje grbice na M2 (slika 14D2). Na cevastih kosteh so izpostavljeni predvsem okrajki oz. epifize, ki jih pod tanko površinsko kompakto zapolnjuje predvsem gobasta kostnina. Spongiozni epifizni deli kosti so mehkejši in zato dovzetnejši za nastanek griznih lezij v obliki jamic z vgreznjeno kompakto (Diedrich, 2015). Podobne grizne lezije se pri kostnih najdbah lahko pojavljajo tudi na kosteh pretežno gobaste notranjosti, kot je v našem primeru vretenca ali fragmentov reber in petnične grče. Poznane so tudi kosti s poškodbami oz. luknjami na diafizah, npr. stegnenica mladega jamskega medveda (Turk, 1997; Turk et al. 1995, 2001, 2003, 2014), in druge naluknjane diafize (Brodar, 1985; Diedrich, 2015), a jamic ali lukenj na tršem, votlem, cevastem telesu nadlahtnice v našem primeru ni bilo. Predpostavljamo, da lahko podobne lezije tako po velikosti kot tudi obliki nastanejo tudi na diafizah dolgih cevastih kosti, ko zveri z ličniki, premolarji ali molarji prebijejo kompakto na diafizah. Menimo, da se večina takih griznih poškodb lahko pojavi predvsem na juvenil-nih kosteh oz. kosteh mlajših živali. Zakostenele adultne kosti s tršo diafizno steno so proti takim poškodbam odpornejše, obenem pa močnejše sile točkovnih pritiskov vrškov zobnih grbic na kompakto diafize večinoma rezultirajo v njihovi fragmentaciji predvsem zaradi debelejše stene, večje trdote in posledične krhkosti adultnih kosti (Diedrich, 2015). V jami Bele vode je bilo tudi nekaj ostankov kosti z večinoma po tremi neenakomerno razporejenimi jamicami (1 + 2). Po takem razporedu izstopata predvsem ugriza na fragmentu rebra (slika 8) in nadčvršu nadlahtnice (slika 14). V obeh primerih gre za razpored, ki zbuja zanimanje zaradi podobnosti z razporedom lukenj v specifični kostni najdbi z najdišča Divje babe I, ki je bila po obsežnih in večstranskih analizah interpretirana kot neandertalčeva koščena piščal. Tudi sicer se razpored odtisnih jamic 1 + 2, lahko tudi 2 + 2, pojavlja pri vseh tistih ugrizih medveda, pri katerih gre za hkraten odtis dveh sosednjih ličnikov zgornje čeljustnice. V takih primerih kot je v naši analizi, nadlahtnice (slika 14/A1, /D1, /D2), enega rebrnega fragmenta (slika 8) in ledvenega vretenca (slika 12), so razdalje med jamicami vedno ustrezale razdaljam med vrški grbic ustreznih ličnikov (P4 in M1). Pri dokazovanju namenske izdelave koščene piščali oz. izključevanju možnosti nastanka lukenj z ugrizi so avtorji izhajali tudi iz njihovega razporeda (Turk, 1997; Turk et al. 1995, 2001, 2003, 2014). Že pred najdbo iz Divjih bab je po preučitvi preluknjanih kosti s paleolitskih najdišč prevladala razlaga, da so luknje nastale ob ugrizu s podočniki (Brodar: 1985). Morda je bil prav poudarek na podočnikih kot možnih povzročiteljih razlog, da je bila nekoliko zanemarjena možnost nastanka lukenj oz. poškodb z živalskim grizenjem s premolarji in molarji. Poškodbe na kosteh, ki so jih povzročili podočniki (gra-bilci), so redke, saj zveri z njimi plen predvsem grabijo (Rigler 2000). Take lezije se lahko pojavljajo na delih kosti, ki so manj podvrženi drobljenju oz. fragmentaciji in so jih povzročili koničasti vrški, lahko sočasno ob grizenju. Na preučevanih kosteh jih pripisujemo le lezijam na proksimalnem okrajku nadlahtnice (slika 14/A, /B). Pričakovano je pojavnost takih ugriznih lezij manj pogosta, saj podočniki niso namenjeni drobljenju ali mletju. Možnosti, da bi luknje na kosteh nastajale tudi ob ugrizu z drugimi zobmi in ne le s podočniki, pa se je avtor zavedal že od začetka preučevanja lukenj na kosti iz Divjih bab, saj je zapisal, da »tako predrejo kosti zveri predvsem z derači« - torej enem izmed ličnikov - »in ne 188 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 s podočniki, kot se običajno misli« (Turk,1997: 71). Na možnost luknjanja in poškodovanja kosti s premolarji in molarji, še zlasti na vzorec razporeditve takih poškodb, je bilo opozorjeno tudi na primeru recentne, največ nekaj sto let stare svinjske kosti iz rudarskega naselja na Pokljuki, ki ima razpored poškodb povsem identičen, kot je razpored lukenj na stegnenici iz Divjih bab (Jamnik, 1999). Prav tako je C. G. Diedrich (Diedrich, 2015) nastanek takih lezij na juvenilnih kosteh kakor tudi same luknje na koščeni neandertalčevi piščali pripisal premo-larjem zobovja hiene. I. Turk je Diedrichu v odgovoru očital precej netočnosti v navajanju dejstev z najdišča, kar zadeva način ugriza pa zapisal, da mora biti zob za predrtje kosti oster in šiljast (angl. pointy), saj bi bilo kost s topim zobom težje prebosti (Turk et al., 2016: 404); celovitejša predstavitev argumentov (Turk et al., 2018). Na podlagi naše analize lezij na najdenih kosteh, načina in možnosti grizenja jamskega medveda menimo, da bi luknje v razporedu, kot so na stegnenici iz Divjih bab, lahko povzročil tudi jamski medved s predmeljaki (premolarji) in meljaki (molarji). Vsekakor bi bilo omenjeno domnevo vredno tudi podrobneje preučiti. ZAKLJUČKI Jami Bele vode in Smoganica sta poleg Divjih bab I in II edini jami v zahodnem delu Slovenije, v katerih je bila doslej najdena pleistocenska favna. V jami Bele vode smo z analizo vnovič ovrednotili prvotno določitev vrste medveda. Marchesetti je leta 1895 najdene kosti pripisal vrsti Ursus liguisticus. Zaradi več nejasnosti Marcheset-tijevi umestitvi ne moremo povsem pritrditi in zaenkrat preliminarno zbrane ostanke jamskih medvedov iz jame Bele vode pripisujemo vrsti Ursus cf. ingressus. Od drugih živalskih vrst je bila v jami Bele vode poleg kosti medveda najdena le še prstnica navadnega jelena (Cervus elaphus). V jami Smoganica smo z analizo fosilnih kostnih ostankov potrdili prisotnost jamskega medveda Ursus ingressus ter ostanke bovidov, tura (Bos primigenius) ali stepskega bizona (Bison priscus) in konja (Equus ferus caballus). V fosilnem gradivu je tudi več kosti s sledmi ugrizov. Na podlagi morfološke primerjave med zobnimi grbicami ličnikov ter poškodbami na teh kosteh in njihovo medsebojno razporeditvijo z rekonstrukcijami posameznih ugrizov jamskega medveda potrjujemo domnevo, da so lezije na kosteh iz jame Bele vode z vzorčnim razporedom 1 + 2 nastale kot posledica odtisov treh grbic zaporednih ličnikov zgornje čeljustnice. Pri takem ugrizu je namreč razporeditev lezij vedno ustrezala medgrbični razdalji na ustreznem ličniku, običajno na M1 zgornje čeljustnice, oz. razdalji med ustreznima grbicama dveh sosednjih ličnikov, navadno med zgornječeljustničnima P4 in M1. 189 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 REVIEW OF PLEISTOCENE FAUNA AND THE ANALYSIS OF BONE BITE MARKS IN THE CAVES BELE VODE NEAR GORENJA TREBUŠA AND SMOGANICA NEAR MOST NA SOČI Matjaž URŠIČ Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia E-mail: matjaz.ursic@vf.uni-lj.si Matija KRIŽNAR Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia E-mail: mkriznar@pms-lj.si Pavel JAMNIK Kočna 5, 4273 Blejska Dobrava, Slovenia E-mail: pavel.jamnik@telemach.net SUMMARY The paper presents a historical overview of the discovery and research of the Bele vode cave in the vicinity of Gorenja Trebuša (Fig.1) and the Smoganica cave at Most na Soči (Fig. 4) in the western part of Slovenia. One of the first paleontological finds from Bele vode cave dates back to the end of the 19th century. The first Pleistocene mammal bones were excavated by Carlo Marchesetti (1895) and determinated as a new species of bear Ursus ligusticus (Fig. 3). At the Bele vode cave most of fossil bones were discovered in the small hall, mostly in cave clay and partly as bone breccia. After examining the pictures taken by Marchesetti and new cave bear remains from the Tolmin Museum collection (Plate 1, 2), the bones of the cave bear are attributed to the species (Ursus cf. ingressus). The finds of fossil bones, mostly of the cave bear from the Smoganica cave (Fig. 4) have been known since the 1930s. Most of the fossil bones were found in the small cave tube (Fig. 5). Cave bear bones and teeth probably belong to Ursus ingressus, a few bone finds belong to other mammals, such as Pleistocene horse (Equus ferus) and the aurochs (Bos primigenius) or steppe bison (Bison pricus) (Plate 3). In addition, the cave bear used the cave as a den, signs of wear and scratches on walls are still visible (Fig. 6). The examination of cave bear bones collection revealed some bone specimens with very distinctive perforative or circular bite lesions (Figs. 8-14). The position of some lesions is arranged in pattern 1 + 2. It is a quite similar alignment to the puncture holes on the femur body found in Divje babe I which is interpreted as a Neanderthal bone flute. In the study, the possibility of the formation and alignment of bone lesions from fossil material was morphologically analyzed. A morfological comparison was made between the alignment of cave bear cheek teeth tubercles and the alignment of bite lesions on the bones. The reconstruction of cave bear bites confirms the assumption that lesions on the bones from the Bele vode cave arranged according to the 1 + 2 pattern are the result of the cave bear upper jaw cheek teeth tubercles cusp bite impressions. The performed comparison shows that the biting lesions on the examined bones are mainly caused by the bite action of the upper P4 and M1 cheek teeth (Figs. 8-14). In such a bite, the alignment of the bone lesions and distances beetwen them always correspond to the intertubercular distance often on the upper yaw M1 cheek tooth or the distance between the corresponding teeth tubercles of two adjacent cheek teeth, mainly upper P4 and M1. Otherwise, the layout of bone lesions in the pattern distribution 1 + 2, as well as 2 + 2, can occur in all those cases of the bear bites where of the two adjacent upper jaw cheek teeth tubercles act simultaneously, like in the rib fragment (Fig. 8) and in the epicondyle of the humerus (Fig. 14) or lumbal vertebre (Fig. 12). The distances between all these bite lesions are the same as the distances between both tooth tuberceles of M1 or between P4 and M1 teeth tuberceles of the adequately large cave bear upper jaw. We assume that such lesions and perforations could also occur on the diaphyses on the compact, hollow, and tubular body of long, especially juvenile bones. Fully ossified, adult bones with a thicker and solid wall are more resistant to such injuries and the pressure of the P4 and/or M1 teeth tubercles cusps on such bone largely cause the fragmentation of bone wall. Therefore large expressive canine teeth are not likely to form the bone lesions in the layout pattern distribution 1 + 2. Key words: Bele vode cave, Smoganica cave, cave bear, teeth, bite bone lesions, bone flute 190 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 LITERATURA Baryshnikov, G. F. (1998): Cave bears from the paleolithic of the greater caucasus. In: J. J. Saunders, B. W. Styles, and G. F. Baryshnikov (edit.). Quaternary Paleozoology in the Northern Hemisphere. Illinois State Museum Scientific Papers, Vol. XXVII. Springfield. Baryshnikov G., M. Germonpré & M. Sablin (2003): Sexual dimorphism and morphometric variability of cheek teeth of the cave bear (Ursus spelaeus). Belg. J. Zool., 133, 2, 111-119. Baryshnikov, G. & A.Y. Puzachenko (2011): Cra-niometrical variability in the cave bears (Carnivora, Ursidae): multivariate comparative analysis. Quaternary International, 245, 350-368. Bocherens, H., Fizet, M., Mariotti, A. (1994): Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemist-ry: implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 213-225. Božič, D. (2011): O okostju jamskega medveda in lobanji divjega prašiča iz Mokriške jame. In: B. Toškan (edit). Drobci ledenodobnega okolja. Zbornik ob življenjskem jubileju Ivana Turka. Opera Instituti Archaeologici sloveniae 21. 267-274. Brodar, M. (1985): Fossile Knochendurch-lochun-gen. Razprave IV. Razreda SAZU, 26, 29-48. Diedrich, C. G. (2015): Neanderthal bone flutes: simply products of Ice Age spotted hyena scavenging activities on cave bear cubs in European cave bear dens. Royal Society Open Science, 2, 140022, 1-16. Evans, H.E., de Lahunta, A. (2013): Miller's Anatomy of the Dog (4th edition). Elsevier Saunders, St. Louis, Missouri. Fernandez-Mosquera, D., Vila-Taboada, M., Gran-dald'Anglade, A. (2001): Stable isotopes data (S 13C, 8 15N) from the cave bear (Ursus spelaeus): A new approach to its palaeoenviront and dormacy. Proceedings Royal Society London, B, 268 (1472), 1159-1164. Grandal d'Anglade A. (2001): A review of the cave bear sex dimorphism. Cadernos Lab. Xeolóxico de Laxe Coruña, 26, 399-405. Habe, F. (1968): Vodniška literatura Postojnske jame. Naše jame, 10, 15-32. Jamnik, P. (1999): Je domnevno neandertalčevo piščal le naredila žival? Proteus 61, št. 9-10, 443-451. Jelinčič, Z. (1956): Planinski klub „Krpelj". Planinski vestnik 11, l- 12, 570-576. Jones, D. B., & Desantis L. R. G. (2016): Dietary ecology of the extinct cave bear: Evidence of omnivory as inferred from dental microwear textures. Acta Palae-ontol. Polonica, 61, 4, 735-741. Knez, M., T. Slabe & S. Šebela (2005): Smoganica - a cave developed in under cretaceus breccia. Acta carso-logica, 34/2, 425-438. Križnar, M. (2014): Ledenodobna favna severozahodne Gorenjske. Konkrecija, 3, 46-49. Križnar, M. (2017): Križna jama - grobišče jamskih medvedov. Konkrecija, 6, 35-39. Kurten, B. (1976): The cave bear story: Life and death of a vanished animal. Columbia university press, New York, 163 pp. Marchesetti, C. (1895): L'Ursus ligusticus Iss. nelle Alpi Giulie. Atti Museo Civico di Storia Naturale, Ser. 3, 9, 265-271. Marchesetti, C. (1907): L'Ursus ligusticus Iss. nelle Alpi Giulie. V: ,Uomo paleolitico nella regione Giulia. Congresso dei naturalisti Italiani, Milano 15-19-settem-bre 1906, 1-7. Nickel R.,-Schummer A.,-Seiferle E., Sack W. O. (1979): The Viscera of the Domestic Mammals (2nd revised edition). Springer-Verlag Berlin Heidelberg. Pohar, V. (1994): Veliki sesalci iz viška zadnjega glaciala v Sloveniji (Great Mammals descending from the culmination point of the Last Glacial in Slovenia). Razprave 4. razreda SAZU, 34, 85-100. Rabeder, G. & M. Hofreiter (2004): Der neue Stammbaum der Höhlenbären. Die Höhle, 55, 1-19. Rabeder, G., M. Hofreiter, D. Nagel, & G. Withalm (2004): New Taxa of Cave Bears (Ursidae, Carnivora). Cahiers Scientifiques, 2, 49-68. Rakovec, I. (1958): Pleistocenski sesalci iz jame pri Črnem Kalu (The Pleistocene Mammalia from the cave Črni Kal in Northern Istria). Razprave 4. razreda SAZU, 4, 365-433. Rakovec, I. (1973): Razvoj kvartarne sesalske favne Slovenije. Arheološki vestnik, 24, 225-270. Rigler, L. (2000): Anatomija domačih živali. Splan-chnologia. Veterinarska fakulteta, Univerza v Ljubljani. Rovščak, Ž. (2015): Ilegalni planinski klub Krpelj in današnji čas. Planinski vestnik, 2, l. 115, 42-44. Singh B. (2018): Dyce, Sack, and Wensing's Textbook of Veterinary Anatomy, 5th Edition, Elsevier, St. Louis, Missouri. Stiner, M. C. (1999): Cave bear ecology and interactions with pleistocene human. Ursus, 11, 41-58. Stiner, M. C., Achyuthan, H., Arsebük, G., Howell, F. C., Josephson, S., Juell, K., Pigati, J. & Quade, J. (1998): Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of Middle Pleistocene bears from Yarimburgaz Cave, Turkey.Paleobiology, 24, 1, 74-98. Toškan, B. (2007): Metrična študija lobanj jamskega medveda iz Divjih bab I. In: I. Turk (ed.) Divje babe I, Pa-leolitsko najdišče mlajšega pleistocena v Sloveniji, I. del: Geologija in paleontologija / Divje babe I, Upper Pleistocene Palaeolithic site in Slovenia, Part 1: Archaeology. Opera Instituti Archaeologici Sloveniae, 13, 357-362. Turk, I. (ed.) (1997): Mousterienska "koščena piščal" in druge najdbe iz Divjih bab I v Sloveniji (Mousterian "bone flute" and other finds from Divje babe I cave site in Slovenia). Opera Instituti Archaeologici Sloveniae, 2, 223 p. 191 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 Matjaž URŠIČ et al.: PREGLED PLEISTOCENSKE FAVNE IN ANALIZA UGRIZOV NA KOSTEH V JAMAH BELE VODE NAD GORENJO TREBUŠO..., 173-192 Turk, I., J. Dirjec & B. Kavur (1995): Ali so v Sloveniji našli najstarejše glasbilo v Evropi? (The oldest musical instrument in Europe discovered in Slovenia?). Razprave 4. razreda SAZU, 36, 287-293. Turk, I., J. Dirjec, G. Bastiani, M. Pflaum,, T. Lauko, F. Cimerman., F. Kosel,, J. Grum, & P. Cevc (2001): Nove analize "piščali" iz Divjih bab I (Slovenija) / New analyses of the "flute" from Divje babe I (Slovenia). Arheološki vestnik, 52, 25-79. Turk, I., G. Bastiani, B. A. B. Blackwell & F. Z. Horu-sitzky (2003): Domnevna musterjenska piščal iz Divjih bab I: psevdoartefakt ali prava piščal ali kdo je naredil luknje (Putative Mousterian flute from Divje babe I (Slovenia): pseudoartefact or true flute, or who made the holes). Arheološki vestnik, 54, 67-72. Turk, I., J. Dirjec & M. Turk (2014): Piščal (glasbilo) 19 let po odkritju. Kritika tafonomske razlage najdbe (Flute (musical instrument) 19 years after its discovery. Critique of the taphonomic interpretation of the find). In: I. Turk (ed.) Divje babe I, Paleolitsko najdišče mlajšega pleistocena v Sloveniji, II. del: Arheologija / Divje babe I, Upper Pleistocene Palaeolithic site in Slovenia, Part 2: Archaeology. Opera Instituti Archaeologici Sloveniae, 29, 235-268. Turk, I., M. Turk & B. Toškan (2016): Could a cave hyena have made a musical instrument? A reply to Cajus G. Diedrich. Arheološki vestnik, 67, 401-407. Turk, M., Turk, I., Dimkaroski, L., Blackwell, B. A. B., Zoltán Horusitzky, F., Otte, M., Bastiani, G. & L. Korat (2018): The Mousterian Musical Instrument from the Divje babe I cave (Slovenia): Arguments on the Material Evidence for Neanderthal Musical Behaviour. L'anthropologie, 122(4), 679-706. https://doi. org/10.1016/j.anthro.2018.10.001 Vila Taboada, M., Fernández Mosquera, D., Grandal d'Anglade, A. (2001): Cave bear's diet: a new hypothesis based on stable isotopes La dieta del Oso de las Cavernas: nueva hipótesis basada en isótopos estables. Cadernos Lab. Xeolóxico de Laxe Coruña, 26, 431-439. Weinstock, J. (2001): Age structure and sex ratio of cave bears in the Zoolithenhohle, southern Germany. Cadernos Lab. Xeolóxico de Laxe Coruña, 26, 289-299. 192 OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 OCENE IN POROČILA, 191-193 Book review: LA BIOLOGIA MARINA A TRIESTE E NELL'ALTO ADRIATICO Autori: Nicola Bettoso & Giuliano Orel Editore: Circolo di Cultura Istro-Veneto "Istria", 120 pp. La presente monografía sulla biologia marina a Trieste e nell'Alto Adriatico non e solo un lavoro originale sull'evolversi di questa scienza nella regione dell'Adriatico settentrionale, ma e pure un contributo che getta luce sugli albori delle scienze naturali marine. Non a caso Trieste, con i suoi dintorni, e considerata la culla delle scienze naturali marine, poiché i primi lavori pionieristici furono pubblicati proprio in questa zona. Leggendo la monografía possiamo cosí acquisire nozioni nuove sui quattro secoli in cui le scienze naturali si sono evolute nella nostra area geografica. Anche se gia Aristotele e Plinio il Vecchio dedicarono spazio nelle loro opere alla vita nel mare, il profondo interesse odierno e lo sviluppo delle scienze marine sono nati e cresciuti solo grazie ad un intenso traffico marittimo e alla scoperta di nuovi ambienti. Nel vero senso del concetto, la ricerca della vita nel mare inizio solo dopo il XV secolo, mentre il termine biologia, come ci insegnano gli autori, e entrato nell'uso moderno dal 1802. Sebbene la ricerca degli organismi marini si sia da allora estesa a tutte le parti del mondo, molti studiosi considerano la spedizione scientifica Challenger, svoltasi tra il 1872 e il 1876, come momento d'inizio della biologia marina quale disciplina scientifica. Fino a quel momento le co-noscenze sul mare rimasero molto limitate, mentre della vita nelle profondità marine non si sapeva quasi nulla. A quel tempo era comune e diffuso il pensiero che non ci fosse vita negli ambienti profondi. E proprio riguardo alla scoperta del mondo degli abissi, gli autori ci spiega-no che gli inizi furono tutt'altro che accurati e coerenti, come ad esempio per il misterioso organismo chiamato Bathybius haeckelii. Quando il famoso T.H. Huxley, uno dei più grandi difensori di Darwin in quei tempi turbolenti, ottenne dalla spedizione Challenger alcuni campioni dai mari profondi, denomino erroneamente la massa gelatinosa come B. haeckelii, ossia "vívente nel profondo". Più tardi si scopri che non era un essere vivente, ma un precipitato di CaSO4. Gli autori della monografía raccontano numerosi episodi interessanti di questo tipo, associati a vari ricercatori attivi a Trieste o nell'Adriatico settentrionale. Nel libro cosí leggiamo come il famoso studioso Lazzaro Spallanzani descrisse vividamente la sua esperienza con una torpedine e le scosse da essa ripetutamente inflittegli. Particolarmente produttiva dal punto di vista scien-tifico e divulgativo per l'Alto Adriatico fu la scuola di Chioggia, dove a quel tempo operavano grandi nomi dell'ittiologia, quali Giandomenico Nardo, Fortunato Naccari, lo zoologo Giuseppe Olivi e molti altri. Giuseppe Olivi divento famoso in tutta Europa con il suo ampio lavoro intitolato "Zoología Adriatica" (1792), che incoraggio molti altri ricercatori all'esplorazione del mare. La scuola di biologia marina di Trieste ebbe un'importanza crescente a partire dal XIX secolo, quando l'Adriatico settentrionale comincio ad attrarre molti naturalisti provenienti da tutta Europa, compresa la lontana Svezia. La nascita del Museo zoologico di Trieste contribuí certamente ad aumentarne la fama. Fra i più celebri naturalisti di Trieste di quel tempo ricordiamo Simeone Adamo de Syrski, Carl Friedrich Wilhelm Claus, Adolf Stossich ed Eduard Heinrich Graeffe. Alla fine del secolo si arrivo alla fondazione della Stazione zoologica di Rovigno, in cui si dedico alla scienza anche il padre della moderna planctologia, Adolf Steuer. Gli autori naturalmente non dimenticano di menzionare anche Aristocle Vatova, uno dei pionieri della bionomia moderna, che ha gettato le basi per la comprensione delle comunità bentoniche anche fuori dal Nord Adriatico. Oltre ai ricercatori più importanti e famosi di Trieste, gli autori hanno reso omaggio anche allo zoologo e ittiologo sloveno, il prof. Miroslav Zei. Pure il prof. Zei è stato legato strettamente a Trieste, poiché nacque nella vicina Aurisina (Nabrezina), dove oggi ha sede il Laboratorio di biologia marina dell'Istituto Nazionale di Oceanografía e Geofísica Sperimentale. Proseguendo nella lettura della monografía, non possiamo liberarci della sensazione che Trieste abbia CIRCOLO DI CULTURA ISTRO-VENETO "ISTRIA' Micula lïeTtiïso & Ciulidno Orel LA BIOLOGIA MARINA A TRIESTE E NELL'ALTO ADRIATICO Viaggio tni quattro secoli di pesci, uomini e memorabili imprese ■ , P n 195 ANNALES ■ Ser. hist. nat. ■ 28 ■ 2018 ■ 2 lilustrazione medievale di un capodoglio a Pirano, arenato nelle saline di Sicciole il 1° giugno 1555. Fu dipinto nel 1555 dal famoso erudito Konrad Gessner (1516-1565), autore della celebre monografía "Historia animalium", considerata quale base della moderna zoologia. Srednjeveška ilustracija kita glavača iz Pirana, ki je 1. junija 1555 nasedel v Sečoveljskih solinah. Narisal jo je leta 1555 sloviti Konrad Gessner (1516 - 1565), avtor odmevnega dela „Historia animalium", ki ga smatrajo za temelj sodobne zoologije. OCENE IN POROČILA, 191-193 Nuper (inquit Hoferus) KaIendJunij,(dicfabbarïno(?hoanniDominiM. d. lv. propePi-ranum oppidum,in ualle S iciol en fi, fînuTergc (t efï Adrîatici maris, deprehenfus cft p/icis u/uus m uado hœrens,ira Ui propter aqua m moli fue non Îàtis profunda, (quanuis ad quatuor paiTus pro fundttas erat) natarc non pofiet, Itac^ occifus bombardis,haftis,uncis,& alijs inftrumentis,ad prç diduin Venctœ ditionis oppidum cum plurimis nauibus in aqua dedu<5his,8£ in licus protradîus eft.Pellis eius fine fquamis erat,a1uta: elaborate iim il is,colore plumbi. ipfe lôgus paiTus quatuor* decim.craiTus uero per corporis medij ambttS,paiTus odo.Mandibula inferior, lôga pedes XItir. dentibusquadraginta quatuor inftruda: quorum finguli longitudineôicrafsitudine arquabant maximaspyram ides ligncas il!as,quibus ïn Pyramidum ludo (gîobo ligneo prouoluto ftcrncdis) utuntur;Hi omnes appendcbanteentumHbrîfyOLVî.untUrtimnimirum.) Superior ueromandibiï la uacua & fine dentib.infenoris'dentes claudêdos in fe reCipicbatCauda lata pedes trcdecim, 8>C iuxta proper tione m fatts era (Ta^um appçndicibus quibufdam clypei infiar rorundis. Oculi pau* 16 minores ferèequinis.afpedu obfairo.èaputlongum trespaiTus.RitfHïsîatus pafTumunum,et fimiliter lingua.Pinna en a m ( to toco quo br