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Abstract. We continue the study of a schematic quasispin model similar to the Nambu –

Jona-Lasinio model. The model is characterized by a finite number of quarks occupying

a finite number of states in the Dirac sea as well as in the valence space (due to a sharp

momentum cutoff and a periodic boundary condition). This allows the use of first quan-

tization and an explicit wavefunction. Most low-lying states in the excitation spectrum

can be interpreted as multi-pion states and one can deduce the effective pion-pion interac-

tion and scattering length. However, the intruder states can be recognized as sigma-meson

excitations or their admixtures to multi-pion states.

1 Introduction

In the Mini-Workshop Bled 2006 [1] we presented a soluble two-level quasispin
model of spontaneous chiral symmetry breaking, inspired by the Nambu – Jona
Lasinio model. It is the hadronic analogue of the Lipkin model in nuclear physics
[2].

In our schematic model we enclose N = N quarks in a periodic box V and
use a sharp momentum cutoff Λ, leading to a finite number N = NcNfVΛ3/3π2

of states in the Dirac sea and the same number of states in the valence “shell”. We
further simplify the one-flavour Nambu – Jona-Lasinio Hamiltonian by taking all
quark kinetic energies equal to 3

4
Λ and by neglecting the interaction terms which

change the individual quark momenta:

H =

N∑

k=1

(
γ5(k)h(k) 3

4
Λ+m0β(k)

)

−
2G

V

( N∑

k=1

β(k)

N∑

l=1

β(l) +

N∑

k=1

iβ(k)γ5(k)

N∑

l=1

iβ(l)γ5(l)

)

Here h = σ ·p/p is helicity and γ5 and β are Dirac matrices. We use the pop-
ular model parameters close to [3,4],Λ = 648MeV, G = 40.6MeV fm, m0 = 4.58
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MeV, which yield the phenomenological values of quark constituent mass, quark
condensate and pion mass both in full Nambu – Jona-Lasinio model as well as
in our quasispin model (using in both cases the Hartree-Fock + RPA approxima-
tions). It has been shown in [1] that in the large N limit the exact results of our
quasispin model tend in fact to the Hartree-Fock + RPA values.

2 What can we learn from the excitation spectrum?

It is very convenient to introduce the quasispin formalism using the fact that the
following operators obey (quasi)spin commutation relations

jx =
1

2
β , jy =

1

2
iβγ5 , jz =

1

2
γ5 ,

The (quasi)spin commutation relations are also obeyed by separate sums over
quarks with right and left helicity as well as by the total sum (α = x, y, z)

Rα =

N∑

k=1

1+ h(k)

2
jα(k) , Lα =

N∑

k=1

1− h(k)

2
jα(k) , Jα = Rα + Lα =

N∑

k=1

jα(k) .

The model Hamiltonian can then be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J2x + J2y) . (1)

It commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is conve-
nient to work in the basis |R, L, Rz, Lz 〉.The Hamiltonian matrix elements can be
easily calculated using the angular momentum algebra. By diagonalisation we
then obtain the energy spectrum of the system.

Table 1. The spectrum of the quasispin model withN = 144, quantum numbers R+L = 36

and model parameters listed in the Introduction

Parity (E − E0)[MeV] n V̄ [MeV] A B C

+ 932 10 -9.5 -0.9 -0.0 0.3

− 803 9 -11.7

+ 771 8 -11.3 -0.0 -0.0 -0.0

− 767 7 -8.8

+ 646 6 -11.4 4.8 0.9 -2.2

+ 634 6 -12.2 0.3 0.1 -0.1

− 580 5 -10.0

+ 482 4 -10.5 -0.3 -0.2 -0.0

− 378 3 -10.1

+ 261 2 -10.3 3.5 2.3 -0.2

− 136 1

+ 0 0 -18.4 -18.4 -30.0
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The ground state is the vacuum. Most excited states can be interpreted as
multi-pion states while the intruder state is suggestive of the sigma mesons. Here
n is the guessed number of pions while other columns will be explained in the
following subsections where we discuss the harvest of the excitation spectrum.

2.1 Pion-pion scattering

Since we are working in a finite volume V with periodic boundary conditions we
cannot impose scattering boundary conditions. Instead of a continuous spectrum
of scattering states we obtain a discrete spectrum. Energy levels of n-pion states
can be interpreted to contain the average effective pion-pion potential V̄ given in
Table 1:

Enπ = nmπ +
n(n − 1)

2
V̄.

Let us repeat our results presented last year [1]. We calculate the s-state scat-
tering length in the first-order Born approximation

a =
mπ/2

2π

∫
V(r)d3r =

mπ

4π
V̄V . (2)

This formula was first quoted by M.Lüscher [5] in 1986 and 1991 and later by
many authors. It was derived in a much more sophisticated way, but in our con-
text it is just the first-order Born approximation.
In our example for N = 144 we have V̄ = −10.3MeV and V = π2N/Λ3 =

40 fm3 This gives

amπ =
m2

π

4π
V̄V = −0.0836. (3)

Since there are no experiments with one-flavour pions we compare with the
two-flavour value (I = 2). The chiral perturbation theory (soft pions) suggests
in leading order aI=2

0 mπ = −m2
π/16πf

2
π = −0.0445. The old analysis of Gasser

and Leutwyler gave -0.019 and the more recent analysis by Lesniak gave -0.034
(“non-uniform fit”) or -0.044 (“uniform fit”). We get about twice larger value in
our one-flavour model due to the artifact that we made up for the second flavour
by replacing G→ 2G.

2.2 The sigma meson

In the spectrum in Table 1 one can clearly distinguish the presence of the sigma
meson by noticing the doubling of the positive parity states at 634 and 646 MeV.
Moreover, the state at 646 MeV has strong transition matrix elements from the
ground state for positive parity one-body operators (see Table 2):

2Â = R+ + L− = Jx + i(Ry − Ly)

2B̂ = R− + L+ = Jx − i(Ry − Ly)

2Ĉ = Rz − Lz

On the other hand, the state at 634 MeV has much smaller transition matrix
elements. This is s a good argument that the state at 646 MeV is a rather pure
sigma meson. To conclude, we are still devising a method how to extract from
the spectrum the width of the sigma meson for the σ → ππ decay
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2.3 Comparison with different particle-hole methods

In particle-hole methods (=approximations) sigma meson is introduced as

|σ〉 = (a Â+ b B̂+ c Ĉ)|g〉 .

In Table 2. we present excitation energies as well as transition matrix ele-
ments A = 〈σ| Â |g〉 and similar for B and C.

Table 2. Excitation energies and transition matrix elements for various approximations

(E − E0)[MeV] A B C

Exact 646 4.8 0.9 -2.2

TD 555 5.8 1.8 -2.4

HOM 530 5.8 1.8 -2.4

RPA 668 5.6 1.0 -2.2

In the Tamm-Dancoff approximation (TD) the coefficients a, b, c are deter-
mined by diagonalizing the 3×3Hamiltonianmatrix in the corresponding particle-
hole space. Similarly, in the Hermitian Operator Method (HOM) [6] a = b and
one diagonalizes a 2×2 Hamiltonian matrix. IN The Random Phase Approxima-
tion (RPA) one solves the RPA equations assuming for O† = (a Â+ b B̂+ c Ĉ):

|σ 〉 = O†|Φ0 〉 , with O|Φ0 〉 = 0 , and |Φ0 〉 = |HF 〉.
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