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Abstract

Graovac and Pisanski [On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53 –
62] applied an algebraic approach to generalize the Wiener index by symmetry group of the
molecular graph under consideration. In this paper, exact formulas for this graph invariant
under some graph operations are presented.
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1 Introduction
Throughout this paper graph means simple connected graphs. The distance between the
vertices u, v of a graphG, dG(u, v) (or d(u, v) for short), is defined as the number of edges
in a shortest path connecting them. The sum of all distances between vertices inG is called
the Wiener index of G [9]. The first study of this number were made by Harold Wiener in
1947 who realized that there are correlations between this graph invariant and the boiling
points of paraffin. We encourage the reader to consult [1, 2] and references therein for
information about the effect of this graph invariant on trees and hexagonal systems and [4]
for some applications in chemistry.

Let G = (V,E) be a simple graph with the vertex set V and the edge set E. Grao-
vac and Pisanski [3] in a seminal paper applied the symmetry group of the graph under
consideration to generalize the Wiener index. To explain, we assume that Γ is the automor-
phism group of G. Then the distance number of an automorphism g, δ(g), is defined as the
average of d(u, g(u)) over all vertices u ∈ V (G) and

δ(G) =
1

|Γ|
∑
g∈Γ

δ(g) =
1

|Γ||V (G)|
∑

u∈V (G)

∑
g∈Γ

d(u, g(u)).
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Define:

Ŵ (G) =
|V (G)|

2|Γ|
∑

u∈V (G)

∑
g∈Γ

d(u, g(u)).

It can be easily shown that

Ŵ (G) =
1

2
|V (G)|2δ(G).

The authors of [3], in their pioneering work used the name “modified Wiener index” for
this graph invariant. Suppose e = uv ∈ E(G) and V (e) = {u, v}. The line graph L(G)
is a graph with E(G) as vertex set. Two different vertices of V (L(G)) are adjacent if
and only if they have a common vertex in G. The subdivision graph S(G) is the graph
obtained by inserting an additional vertex in each edge of G. In other words, each edge of
the subdivision graph is replaced by a path of length 2.

Suppose G is a graph. Following Yan et al. [8], we set EE(G) = {{e, f} | e, f ∈
E(G) & |V (e) ∩ V (f)| = 1} and EV (G) = {{e, v} | v ∈ V (G) & v ∈ V (e) & e ∈
E(G)}, where V (e) is the set of all end vertices of the edge e. Define the line graph
L(G), the subdivision graph S(G), the total graph T (G) and the graphs R(G) and Q(G)
as follows:

V (L(G)) = E(G), E(L(G)) = EE(G),

V (S(G)) = V (G) ∪ E(G), E(S(G)) = EV (G),

V (T (G)) = V (G) ∪ E(G), E(T (G)) = E(G) ∪ EV (G) ∪ EE(G),

V (R(G)) = V (G) ∪ E(G), E(R(G)) = E(G) ∪ EV (G),

V (Q(G)) = V (G) ∪ E(G), E(Q(G)) = EV (G) ∪ EE(G).

Throughout this paper we use the standard notations of group theory and graph theory.
We refer to [5], for the main properties of product graphs. IfG is a connected graph then the
diameter d = diam(G) is defied as the length of the largest distance between two vertices
in G. Moreover, define

D(g, i) = |{{u, g(u)} | u ∈ V (G) & dG(u, g(u)) = i}|; 1 ≤ i ≤ d,

and D(Γ, i) =
∑
g∈ΓD(g, i); 1 ≤ i ≤ d. The number of {u, v} such that d(u, v) = i

in Ŵ (G) is equal to D(G, i) = D(Γ, i). Suppose x and y are vertices of G. We write
x ∼G y to show that x, y are adjacent in G. They are called equivalent, x ≈G y, if there
exists an automorphism α such that α(x) = y. The path, cycle and complete graphs with
n vertices are denoted by Pn, Cn and Kn, respectively. The number of edges in a path P
is denoted by l(P ) and named the length of P . Our other notations are standard and taken
mainly from the standard books on these topics.

Main Theorem. Suppose G is a tree of diameter d. Then the following relations hold:

1. Ŵ (L(G)) = n−1
n Ŵ (G)− n−1

2|Γ|
∑d
i=1D(G, i),

2. Ŵ (S(G)) = 4n−2
n Ŵ (G) + 4n−2

n−1 Ŵ (L(G)),

3. Ŵ (T (G)) = 2n−1
n Ŵ (G) + 2n−1

n−1 Ŵ (L(G)),
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4. Ŵ (Q(G)) = 4n−2
n Ŵ (G),

5. Ŵ (R(G)) > 4n−2
n

|Γ|
|Aut(R(G))|Ŵ (G).

2 Proof of the Main Theorem
In [6], a character theoretical method for computing the modified Wiener index of graphs
is presented and in [8], the authors computed exact formulas for the Wiener index under
five graph operations. The aim of this paper is to continue these papers by computing
the modified Wiener index of trees under the graph operations L(−), S(−), T (−), Q(−)
and R(−). For simplicity of our argument, we assume that Γ = Aut(G) and W (G) =
2|Γ|
|G| Ŵ (G) then W (G) =

∑d
i=1 i.D(G, i). We will start by stating a well-known result in

algebraic graph theory.

Lemma 2.1. SupposeG is a tree with at least three vertices. Then Aut(L(G)) ∼= Aut(G).

Proof. It is an immediate consequence of [7, Corollary 1.4].

Theorem 2.2. Let G be a tree with n ≥ 3 vertices and Γ = Aut(G). Then, Ŵ (L(G)) =
n−1
n Ŵ (G)− n−1

2|Γ|
∑d
i=1D(G, i).

Proof. Suppose e = uv and f = xy are vertices of L(G) such that e ≈L(G) f and
dL(G)(e, f) = i. So, there are σ ∈ Aut(G) and σ̄ ∈ Aut(L(G)) such that σ̄(e) = f ,
σ(u) = x and σ(v) = y. Choose a shortest path e = e0, e1, . . . , ei = f in L(G). Set
e = e0 = u0u1, e1 = u1u2, . . . , ei−1 = ui−1ui, f = ei = uiui+1, u = u0, v = u1,
y = ui and x = ui+1. Since G is a tree, u = u0, u1, . . . , ui, ui+1 = x is a shortest path in
G connecting u = u0 and x = ui+1. Thus dG(u, x) = i + 1. Therefore, for any vertices
e and f of L(G) at distance i, we fined two vertices ue and uf of G at distance i + 1,
corresponding to e and f , respectively.

We now assume that r and s are vertices in G at distance i and r = v0, v1, . . . , vi−1,
vi = s is the unique shortest path connecting r and s. Then the edges v0v1 and vi−1vi are
at distance i− 1 in L(G). Hence, D(L(G), i) = D(G, i+ 1). Therefore,

W (L(G)) =
∑
i

iD(L(G), i)

=
∑
i

(i− 1)D(G, i)

=
∑
i

iD(G, i)−
∑
i

D(G, i)

= W (G)−
∑
i

D(G, i).

Therefore, 2|Aut(L(G))|
|V (L(G))| Ŵ (L(G)) = 2|Γ|

|V (G)|Ŵ (G)−
∑
iD(G, i), which completes our

argument.

Lemma 2.3. Suppose G is a tree. Then Aut(S(G)) ∼= Aut(G).

Proof. Define Φ : Aut(G) −→ Aut(S(G)) given by Φ(α)|V (G) = α and if e = xy ∈
E(G) then Φ(α)(e) = α(x)α(y) ∈ E(G). Notice that if x ∼G y and t, t′ are vertices
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in S(G) such that x ∼S(G) t ∼S(G) y and Φ(α)(x) ∼S(G) t′ ∼S(G) Φ(α)(y) then
Φ(α)(t) = Φ(α)(t′). It can easily be proved that Φ(α) is a permutation of S(G). We
show that ab ∈ E(S(G)) if and only if Φ(α)(a)Φ(α)(b) ∈ E(S(G)). Suppose a ∼S(G) b
and a ∈ G. Then there exists c ∈ G such that a ∼G c and a ∼S(G) b ∼S(G) c. Since
α ∈ Aut(G), ac ∈ E(G) if and only if α(a)α(c) ∈ E(G). Hence, there exists l ∈ S(G)
such that Φ(α)(a) ∼S(G) l ∼S(G) Φ(α)(c). This implies that Φ(α)(b) = l. So, ab ∈
E(S(G)) if and only if Φ(α)(a)Φ(α)(b) ∈ E(S(G)). Similarly, if σ ∈ Aut(S(G)) then
σ = σ|G ∈ Aut(G). Thus, Φ is invertible.

Theorem 2.4. Let G be a tree with n ≥ 3 vertices. Then

Ŵ (S(G)) =
4n− 2

n
Ŵ (G) +

4n− 2

n− 1
Ŵ (L(G)).

Proof. Suppose x, y ∈ V (S(G)) are in the same orbit of Aut(S(G)), dS(G)(x, y) = k
and τ(x) = y, where τ ∈ Aut(S(G)). It is obvious that both of x and y must be together
in V (G) or E(G). We first assume that x, y ∈ V (G). Choose the shortest path P1 : x =
u0, u1, . . . , uk = y in S(G). Obviously, if i is even then ui ∈ G and so k = 2k′. Since G
is tree, P2 : x = u0, u2, . . . , uk′ = y is the unique path connecting x and y in G. Hence,
dS(G)(x, y) = 2dG(x, y).

Next we assume that x, y 6∈ V (G), P3 : x = u0, u1, . . . , uk = y is a shortest path in
S(G). Choose edges ab, cd ∈ E(G) such that a ∼S(G) x ∼S(G) b and c ∼S(G) y ∼S(G) d.
Suppose that x̃ and ỹ are corresponding vertices of x and y in L(G), respectively. Since
S(G) is tree, the path P3 is unique and so the vertices ui, i is even, are corresponding
to vertices ũi in L(G). This proves that k is even, say k = 2k′. In a similar way, there
exists a path P2 : x̃ = ũ0, ũ1, . . . , ũk′ = ỹ in L(G). So, we have again dS(G)(x, y) =
2dL(G)(x̃, ỹ). Thus,

W (S(G)) =
1

2

∑
i

iD(S(G), i)

=
1

2

∑
i

2iD(G, i) +
1

2

∑
i

2iD(L(G), i)

= 2W (G) + 2W (L(G)).

Therefore, |Aut(S(G))|
|V (S(G))| Ŵ (S(G)) = 2|Aut(G)|

|V (G)| Ŵ (G) + 2|Aut(L(G))|
|V (L(G))| Ŵ (L(G)), which

completes our proof.

Lemma 2.5. SupposeG is a tree with at least three vertices. Then Aut(T (G)) ∼= Aut(G).

Proof. The map Φ : Aut(G) −→ Aut(T (G)) defined in a similar way as Lemma 2.3, is
an isomorphism. Since if α ∈ Aut(G) then Φ(α) ∈ Aut(T (G)) and for β ∈ Aut(T (G))
we have α = β|G ∈ Aut(G), as desired.

Theorem 2.6. With hypothesis of Lemma 2.5, Ŵ (T (G)) = 2n−1
n Ŵ (G)+ 2n−1

n−1 Ŵ (L(G)).

Proof. Suppose x and y are vertices of T (G) such that x ≈T (G) y and dT (G)(x, y) = k. If
x, y ∈ G then we claim that dG(x, y) = k. To prove, we first notice that G is a subgraph
of T (G). Next we assume that P : x = u0, u1, . . . , uh = y is the unique path in G
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and P ′ : x = v0, v1, . . . , vk = y is a shortest path in L(G) connecting x and y. If
v1 is a vertex in L(G) and v2 is a vertex in G then by interchanging v0, v1, v2 by v0, v2

we obtain another path P ′′ in L(G) such that l(P ′′) < l(P ′), a contradiction. Thus, if
v1 ∈ V (L(G))) then v2, v3, . . . , vk−1 ∈ V (L(G)) and l(P ) < l(P ′). This shows that
v1 6∈ V (L(G)). By continuing this method, one can see that all vertices of P ′ are in
vertices of G. Therefore, P = P ′. A similar argument shows that in other case that x
and y are corresponding to vertices in L(G), a shortest path in L(G) and T (G) will be
the same and so W (T (G)) = W (G) + W (L(G)). Therefore, |Aut(T (G))|

|V (T (G))| Ŵ (T (G)) =
|Γ|
|V (G)|Ŵ (G) + |Aut(L(G))|

|V (L(G))| Ŵ (L(G)), which completes the proof.

Lemma 2.7. SupposeG is a tree with at least three vertices. Then Aut(Q(G)) ∼= Aut(G).

Proof. Since Q(G) = L(G) ∪ S(G), Lemmas 2.1, 2.3 and a similar argument as Lemma
2.3 completes the proof.

Theorem 2.8. With hypothesis of Lemma 2.7, Ŵ (Q(G)) = 4n−2
n Ŵ (G).

Proof. Suppose x and y are vertices of Q(G) such that x ≈Q(G) y. If x, y are correspond-
ing to the vertices of L(G) then dQ(G)(x, y) = dL(G)(x, y). Suppose x, y are vertices
of G with distance k and P : x = u0, u1, . . . , uk−1, uk = y is a shortest path in G
connecting x and y. If x and y are adjacent in G then distance between them in Q(G)
will be 2. In other case, the path P ′ : x = u0, e1, . . . , ek, uk = y has length k + 1,
where ei = ui−1ui, 1 ≤ i ≤ k. In the case that x, y ∈ L(G), the sum of distances is∑
i iD(L(G), i) and in the second case the summation will be

∑
iD(G, i) +

∑
i D̂(G, i).

Then we have W (Q(G)) = W (G) + 1
2

∑
i D̂(G, i) +W (L(G)). By applying Theorem 1,

the result is obtained.

Lemma 2.9. Suppose G is a tree with at least three vertices. Then Aut(G) is isomorphic
to a proper subgroup of Aut(R(G)).

Proof. It is easy to see that the mapping Φ : Aut(G) −→ Aut(R(G)) given by the same
definition as Lemma 2.3 is a one-to-one homomorphism, as desired. Since G is a tree, it
has at least a pendant vertex and so R(G) has an automorphism of order 2 in Aut(R(G)) \
Φ(Aut(G)), proving the lemma.

Theorem 2.10. With hypothesis of Lemma 2.9, Ŵ (R(G)) > 4n−2
n

|Aut(G)|
|Aut(R(G))|Ŵ (G).

Proof. Suppose x and y are vertices in R(G). Similar to Theorem 2.8, if x, y ∈ G then
dR(G)(x, y) = dG(x, y). In this case, the sum of distances is at least

∑
i iD(G, i). If

x and y are corresponding to vertices w and z of L(G) such that dL(G)(w, z) = k then
dR(G)(x, y) = k+ 1 and so the sum of distances is at least

∑
i iD(L(G), i) +

∑
i D̂(G, i).

Now, we assume that u and v are two pendants in G and in the same orbits under
the action of Aut(G) on vertices and e and f are edges such that u is incident to e and
f is incident to v. Then e and f are in the same orbits under the action of Aut(G) on
edges. Hence, in R(G), all elements of {u, v, e, f} are in the same orbits under the action
of Aut(R(G)). Since, corresponding to dG(u, v) in W (G) there exists at least a quantity
in the form of dR(G)(u, v) + dR(G)(e, f) + dR(G)(u, f) + dR(G)(v, e) + dR(G)(u, e) +
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dR(G)(v, f) in W (R(G)), by Theorem 1, W (R(G)) > 2W (G), which completes our
argument.

3 Examples

In this section, we apply our results in the pervious section. We denote the cyclic group
of order n by Zn and the symmetric group on n symbols by Sym(n). We notice that by
Lemmas 2.1–2.7, if G is a tree with at least three vertices then

Aut(G) ∼= Aut(L(G)) ∼= Aut(S(G)) ∼= Aut(T (G)) ∼= Aut(Q(G)),

and also by Lemma 2.9, Aut(G) ≤ Aut(R(G)).

Example 3.1. In this example, Ŵ (Pn), Ŵ (L(Pn)), Ŵ (S(Pn)), Ŵ (T (Pn)), Ŵ (Q(Pn))

and Ŵ (R(Pn)) are calculated where Pn is a path with n vertices. To do this, we assume
that V (Pn) = {vi}ni=1 and E(Pn) = {ei = vivi+1}n−1

i=1 . We first notice that the automor-
phism group of Pn is generated by an element α of order 2, where

α =

{
(v1, vn)(v2, vn−1) . . . (vn

2
, vn+2

2
) n is even

(v1, vn)(v2, vn−1) . . . (vn−1
2
, vn+1

2
) n is odd.

Therefore, Aut(Pn) ∼= Z2. The modified Wiener index of Pn was computed in [3,
Example 5.6] as

Ŵ (Pn) =

{
n3

8 n is even
n3−n

8 n is odd.

On the other hand, if n is even, then

D(Pn, i) =

{
0 i is even

2 i is odd,

and if n is odd, then

D(Pn, i) =

{
2 i is even

0 i is odd.

Therefore,

n−1∑
i=1

D(Pn, i) =

{
n n is even

n− 1 n is odd.
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By applying Theorems 2.2–2.10, we obtained the following equations,

Ŵ (L(Pn)) =

{
n3−3n2+2n

8 n is even
(n−1)3

8 n is odd,

Ŵ (S(Pn)) =
2n3 − 3n2 + n

4
,

Ŵ (T (Pn)) =
2n3 − 3n2 + n

4
,

Ŵ (Q(Pn)) =

{
2n3−n2

4 n is even
2n3−n2−2n+1

4 n is odd,

Ŵ (R(Pn)) =

{
2n3−n2

4 n is even
2n3−n2+2n−1

4 n is odd.

For the last equality, we notice that the automorphism group of R(Pn) can be generated by
three elements α, β and γ as follows:

α = (v1, e1),

β = (vn, en),

γ =

{
(v1, vn)(v2, vn−1) . . .

(
vn

2
, vn

2
+1

)
(e1, en−1)(e2, en−2) . . .

(
en

2
−1, en

2
+1

)
n is even

(v1, vn)(v2, vn−1) . . .
(
vn−1

2
, vn+3

2

)
(e1, en−1)(e2, en−2) . . .

(
en+1

2
, en+3

2

)
n is odd.

It is easy to see that this group is isomorphic to the dihedral group D8.

In the following example to compute the modified Wiener index, we apply the concept
of semidirect product and wreath product of groups together with our results in last section.
Let G be a group with a subgroup H and a normal subgroup N such that G = HN and
H ∩ N = 1. Then G is called the semidirect product of N by H . To define the notion of
wreath product, we assume that A and H are groups, X is a set and H acts on X . Define
K =

∏
w∈X Aw, where Aw ∼= A. If we consider the elements of K as arbitrary sequences

of elements of A with componentwise multiplication then the action of H on X can be
extended in a natural way to an action of H on the group K by h(aω) = (ah−1ω). Then
the wreath product A oH of A by H is the semidirect product H by K.

Example 3.2. Suppose Sn is an star with a vertex of degree n and n pendant vertices. Since
Sn has exactly one vertex of degree n, this vertex will be fixed under each automorphism
of Sn. On the other hand, all pendants can be imaged under permutations to each other.
Thus Aut(Sn) ∼= Sym(n). According to [3, Example 5.8], the modified Wiener index of
Sn with n+ 1 vertices is equal to

Ŵ (Sn) = n2 − 1.

Also,

D(Sn, i) =

{
0 i = 1

(n− 1)n! i = 2.

Therefore, by applying Theorems 2.2–2.10,
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Ŵ (L(Sn)) =
n2 − n

2
,

Ŵ (S(Sn)) = 5n2 − 3n− 3,

Ŵ (T (Sn)) =
6n2 − 3n− 3

2
,

Ŵ (Q(Sn)) = 4n2 − 2n− 2,

Ŵ (R(Sn)) =
8n2 − 2n− 3

2
.

For the proof of last equality, we assume that

V (Sn) = {v0, v1, v2, . . . , vn} and E(Sn) = {ei = v0vi | 1 ≤ i ≤ n}.

The automorphism group of R(Sn) has automorphisms τi such that τi : vi 7→ ei and τi
fixes other vertices of the graph. Suppose Ai = 〈τi〉. Then Ai ∼= Z2 and

K = Z2 × . . .× Z2︸ ︷︷ ︸
n times

is isomorphic to a subgroup of Aut(R(Sn)). On the other hand, Sym(n) acts on K by
α(ai) = (aα−1i). Hence Aut(R(Sn)) ∼= Z2 o Sym(n).
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Abstract

Let Gw be a weighted graph. The inertia of Gw is the triple In(Gw) = (i+(Gw),
i−(Gw), i0(Gw)), where i+(Gw), i−(Gw), i0(Gw) are, respectively, the number of the
positive, negative and zero eigenvalues of the adjacency matrix A(Gw) of Gw including
their multiplicities. A simple n-vertex connected graph is called a (k − 1)-cyclic graph
if its number of edges equals n + k − 2. Let θ(r1, r2, . . . , rk)w be an n-vertex simple
weighted graph obtained from k weighted paths (Pr1)w, (Pr2)w, . . . , (Prk)w by identifying
their initial vertices and terminal vertices, respectively. Set Θk := {θ(r1, r2, . . . , rk)w :
r1 + r2 + · · · + rk = n + 2k − 2}. The inertia of the weighted graph θ(r1, r2, . . . , rk)w
is studied. Also, the weighted (k − 1)-cyclic graphs that contain θ(r1, r2, . . . , rk)w as an
induced subgraph are studied. We characterize those graphs among Θk that have extreme
inertia. The results generalize the corresponding results obtained by Tan and Liu in 2013
and Yu et al., 2014.

Keywords: Weighted k-cyclic graph, adjacency matrix, inertia.

Math. Subj. Class.: 05C50, 15A18

1 The first section
In this paper, we only consider simple weighted graphs on positive weight set. Let Gw

be a weighted graph with vertex set {v1, v2, . . . , vn}, edge set E(Gw) 6= ∅ and weight
set W (Gw) = {w(e) > 0, e ∈ E(G)}. The function w : E(Gw) → W (Gw) is called
a weight function of Gw. It is obvious that each weighted graph corresponds to a weight
function. The adjacency matrix of Gw is defined as the matrix A(Gw) = (aij) such that
aij = w(vivj) if vivj ∈ E(Gw) and 0 otherwise. The eigenvalues λ1, λ2, . . . , λn of
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A(Gw) are said to be the eigenvalues of the weighted graph Gw. The inertia of Gw is de-
fined to be the triple In(Gw) = (i+(Gw), i−(Gw), i0(Gw)), where i+(Gw), i−(Gw) and
i0(Gw) are the numbers of the positive, negative and zero eigenvalues of A(Gw) includ-
ing multiplicities, respectively. i+(Gw) and i−(Gw) are called the positive, negative index
of inertia (for short, positive, negative index) of Gw, respectively. The number i0(Gw)
is called the nullity of A(Gw). The nullity and the rank of A(Gw) are also called the
nullity and the rank of Gw, and denoted by η(G) and R(G), respectively. Obviously,
R(Gw) = i+(Gw) + i−(Gw) and i+(Gw) + i−(Gw) + i0(Gw) = n. For convenience,
in the whole context, we let G denote the unweighted graph with respect to the weighted
graph Gw; G can be also viewed as a trivial weighted graph in which the weight for each
edge is 1.

An induced subgraph ofGw is an induced subgraph ofG having the same weights with
those of Gw. For an induced weighted subgraph Hw of Gw, let Gw −Hw be the subgraph
obtained from Gw by deleting all vertices of Hw and all incident edges. A m-cyclic graph
is a simple connected graph in which the number of edges equals the number of vertices
plusm−1. A weighted path and a weighted cycle of order n are denoted by (Pn)w, (Cn)w,
respectively. An isolated vertex is denoted by K1.

The study of eigenvalues of graph has been received a lot of attention due to its applica-
tions in chemistry (see [2, 7, 10, 15] for details). Gregory et al. [8] studied the subadditivity
of the positive, negative indices of inertia and developed certain properties of Hermitian
rank which were used to characterize the biclique decomposition number. Gregory et al.
[9] investigated the inertia of a partial join of two graphs and established a few relations
between the inertia and biclique decompositions of partial joins of graphs. Daugherty [3]
characterized the inertia of unicyclic graphs in terms of matching number and obtained a
linear-time algorithm for computing it. Yu et al. [19] investigated the minimal positive
index of inertia among all unweighted bicyclic graphs of order n with pendants, and char-
acterized the bicyclic graphs with positive index 1 or 2. Very recently, it is interesting to
see that Marina et al. [1] studied the inertia set of a signed graph in algebraic approach.

The nullity of unweighted graphs has been studied extensively in the literature. Tan
and Liu [18] gave the nullity set of unicyclic graphs and characterized the unicyclic graphs
with maximum nullity. In addition, Nath and Sarma [17] presented another version of
characterization of an acyclic or unicyclic graph to be singular. One of the present authors
[13] studied the nullity of graphs with pendant vertices. Fan and Qian [6] characterized
the bipartite graphs with the second largest nullity and the regular bipartite graphs with the
third largest nullity. Fan and Wang [5] characterized the unicyclic signed graphs of order n
with nullity n− 2, n− 3, n− 4, n− 5, respectively.

Our paper is motivated directly by [4, 11, 13, 19, 20, 21]. On the one hand, Fan et al.
[4] studied the nullity of signed bicyclic graph (which is, in fact, the bicyclic graph with
edge weight 1 or−1); Li [13] and Hu [11] studied the nullity of unweighted bicyclic graph.
On the other hand, Yu et al. [20] characterized all n-vertex weighted uicyclic graphs with
positive index 1 or 2; Tan and Liu [21] studied the nullity of unweighted (k − 1)-cyclic
graphs. It is natural and interesting for us to consider the extremal problems on the inertia
of weighted (k−1)-cyclic graphs, which may generalize the corresponding results obtained
in [20, 21].

This paper is organized as follows. In Section 2, some preliminaries are presented. In
Section 3, we define two classes of weighted (k − 1)-cyclic graph, denoted by Θk and
Γn,k−1. Moreover, we give a method to determine the inertia of a weighted graph in Θk.
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In Section 4, we characterize all weighted (k − 1)-cyclic graphs in Γn,k−1 having just one
or two positive (resp. negative) eigenvalues. In Section 5, we characterize all weighted
(k − 1)-cyclic graphs in Γn,k−1 of rank 2, 3, 4, respectively.

2 Preliminaries
In this section, we list some lemmas which will be used to prove our main results. Suppose
M , N are two Hermitian matrices of order n, if there exists an invertible matrix Q of order
n such that QMQT = N , where QT denotes the conjugate transpose of Q, then we say
that M is congruent to N , denoted by M ∼= N .

Lemma 2.1 ([12]). Let M,N be two Hermitian matrices of order n satisfying M ∼= N .
Then i+(M) = i+(N), i−(M) = i−(N) and i0(M) = i0(N).

Let M be a Hermitian matrix. We denote three types of elementary congruence matrix
operations (ECMOs) on M as follows:

(1) interchanging i-th and j-th rows of M , while interchanging i-th and j-th columns
of M ;

(2) multiplying i-th row of M by a non-zero number k, while multiplying i-th column
of M by k;

(3) adding i-th row of M multiplied by a non-zero number k to j-th row, while adding
i-th column of M multiplied by k to j-th column.

By Lemma 2.1, the ECMOs do not change the inertia of a Hermitian matrix.

Lemma 2.2 ([14]). Let Hw be an induced subgraph of Gw. Then i+(Hw) 6 i+(Gw) and
i−(Hw) 6 i−(Gw).

Lemma 2.3 ([14]). Let Gw be a weighted graph containing a pendant vertex v with its
unique neighbor u. Then i+(Gw) = i+(Gw−u−v)+1 and i−(Gw) = i−(Gw−u−v)+1.

The following result is a direct consequence of Lemma 2.3.

Lemma 2.4. Let (Pn)w be a weighted path of order n. Then In((Pn)w) = (n
2 ,

n
2 , 0) if n

is even and (n−1
2 , n−12 , 1) otherwise.

By Lemma 2.4, we can show that the adjacency matrix of (P2k)w is invertible. In
fact, let {v1, v2, . . . , v2k} be the vertex set of the weighted path (P2k)w such that vivi+1 ∈
E((P2k)w) (i = 1, . . . , 2k − 1) and wii = w(v2i−1v2i) (i = 1, . . . , k), wi,i+1 =
w(v2iv2i+1) (i = 1, . . . , k − 1). Then the adjacency matrix of (P2k)w has the following
block form:

A =


A11 A12 . . . 0 0
A21 A22 . . . 0 0

...
...

. . .
...

...
0 0 . . . Ak−1,k−1 Ak−1,k
0 0 . . . Ak,k−1 Ak,k


where Aii =

(
0 wii

wii 0

)
, (i = 1, . . . , k) and

AT
i+1,i = Ai,i+1 =

(
0 0

wi,i+1 0

)
, (i = 1, . . . , k − 1).
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Let B = (Bij)
k
i,j=1, where

Bij =



 0
1

wii
1

wii
0

 if i = j;

0
wi,i+1 . . . wj−1,j

wi,i . . . wj,j

0 0

 if i < j and j − i ≡ 0 (mod 2);

0 −wi,i+1 . . . wj−1,j

wi,i . . . wj,j

0 0

 if i < j and j − i ≡ 1 (mod 2);

BT
ji, if i > j.

Lemma 2.5. Let A and B be the matrices defined as above. Then AB = I .

Proof. Let C = (Cij)
k
i,j=1 = AB. It suffices to show that Cii = I2 for i = 1, . . . , k,

where I2 is the identity matrix of order 2, and Cij = 0 if i 6= j. Note that the first
(resp. last) row of A contains just two non-zero blocks, whereas each of the rest rows of A
contains just three non-zero blocks, the proofs are a little different between them. First we
consider the cases that i 6= 1, k.

If 1 < i = j < k, then

Cii =

k∑
s=1

AisBsi = Ai,i−1Bi−1,i +AiiBii +Ai,i+1Bi+1,i

=

(
0 wi−1,i
0 0

)(
0 − wi−1

wi−1,i−1wi,i

0 0

)
+

(
0 wii

wii 0

)(
0 1

wii
1

wii
0

)

+

(
0 0

wi,i+1 0

)( 0 0

− wi,i+1

wiiwi+1,i+1
0

)
= I2.

If 1 < i < j < k, we distinguish the following three possible cases to prove our result.

Case 1: j − i ≡ 0 (mod 2). In this case, we have

Cij =

k∑
s=1

AisBsj = Ai,i−1Bi−1,j +Ai,iBi,j +Ai,i+1Bi+1,j

=

(
0 wi−1,i
0 0

)(
0 −wi−1,i...wj−1,j

wi−1,i−1...wjj

0 0

)
+

(
0 wii

wii 0

)(
0

wi,i+1...wj−1,j

wi,i...wjj

0 0

)
+

(
0 0

wi,i+1 0

)(
0 −wi+1,i+2...wj−1,j

wi+1,i+1...wjj

0 0

)
= 0.
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Case 2: j − i = 1. In this case, we have

Cij =

k∑
s=1

AisBsj = Ai,i−1Bi−1,j +Ai,iBi,j +Ai,i+1Bi+1,j

=

(
0 wi−1,i
0 0

)(
0

wi−1,iwi,j

wi−1,i−1wiiwjj

0 0

)
+

(
0 wii

wii 0

)(
0 − wij

wi,iwjj

0 0

)

+

(
0 0

wi,i+1 0

) 0
1

wjj
1

wjj
0


= 0.

Case 3: j − i ≡ 1 (mod 2) and j − i > 1. In this case, we have

Cij =

k∑
s=1

AisBsj = Ai,i−1Bi−1,j +Ai,iBi,j +Ai,i+1Bi+1,j

=

(
0 wi−1,i
0 0

)(
0

wi−1,i . . . wj−1,j

wi−1,i−1 . . . wjj

0 0

)

+

(
0 wii

wii 0

)(
0 −wi,i+1 . . . wj−1,j

wi,i . . . wjj

0 0

)

+

(
0 0

wi,i+1 0

)(
0

wi+1,i+2 . . . wj−1,j

wi+1,i+1 . . . wjj

0 0

)
= 0.

For i = 1 or i = k, all the proofs above are still correct if we set the corresponding
blocks to be 0 whenever one of its subscripts equals 0 or k+1, such as A10 = Ak,k+1 = 0.

If 1 6 j < i 6 k, the proof is similar to the case 1 6 i < j 6 k. We omit the procedure
here.

3 The inertia of weighted graphs in Θk

For m > 1, a m-cyclic graph is a simple connected graph in which the number of edges
equals the number of vertices plus m − 1. Let Pri be a path of order ri (ri > 2) and
{Pri |1 6 i 6 k} be the set of k (k > 2) vertex-disjoint paths, where there exists at
most one path of order 2. Identify the k initial vertices as u0 and terminal vertices as
v0, respectively. The resultant graph, denoted by θ(r1, r2, . . . , rk), is called a Θ-graph.
Denote by Θk the set of all n-vertex weighted Θ-graphs having form θ(r1, r2, . . . , rk)w.
Note that any weighted Θ-graph is also a weighted (k − 1)-cyclic graph. Denote the set
of all weighted (k − 1)-cyclic graphs of order n, which contain a weighted Θ-graph as an
induced subgraph, by Γn,k−1. In this section, we’ll give a method to determine the inertia
of weighted graphs in Θk.
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Figure 1: The structure of θ(r1, r2, . . . , rk)

Let Gw := θ(r1, r2, . . . , rk)w be a graph of order n. Let ni be the number of rj’s
which satisfy rj − 2 ≡ i (mod 4), 1 6 j 6 k, 0 6 i 6 3 and set t := n1 + n3
and q := t + n2. It is easy to see that Gw ∈ Θk, we arrange the structure of Gw as
follows: First come the paths Pr1 , . . . , Prn1

with r1 6 r2 6 . . . 6 rn1
and ri ≡ 3

(mod 4), i = 1, 2, . . . , n1; next Prn1+1 , . . . , Prt with rn1+1 6 rn1+2 6 . . . 6 rt and ri ≡
1 (mod 4), i = n1 + 1, n1 + 2, . . . , t; then Prt+1 , . . . , Prq with rt+1 6 rt+2 6 . . . 6 rq
and ri ≡ 2 (mod 4), i = t + 1, t + 2, . . . , q; finally Prq+1

, . . . , Prk with rq+1 6 rq+2 6
. . . 6 rk and ri ≡ 0 (mod 4), i = q + 1, q + 2, . . . , k. Let ui be the neighbor of v0
in the odd path Pri , i = 1, 2, . . . , t. Let P i = ui1u

i
2 . . . u

i
2si (1 6 i 6 k) be the path in

Pri (1 6 i 6 k) obtained by deleting u0, v0 and ui if ri is odd; see Fig. 1. Further on we
will label the weight for each edge of Gw according to the following possible cases.

Case 1: min{r1, r2, . . . , rk} = 4. In this case, partition the vertex set of Gw as follows:
{u0}, V (P 1), . . . , V (P k), {u1, . . . , ut}, {v0}. Let ai = w(u0u

i
1) (i = 1, . . . , k),

bi = w(uiu
i
2si) (i = 1, . . . , t), bj = w(v0u

j
2sj

) (j = t + 1, . . . , k), di = w(v0ui)

(i = 1, . . . , t), wi
jj = w(ui2j−1u

i
2j) (i = 1, . . . , k; j = 1, . . . , 12 |V (P i)|) and

wi
j,j+1 = w(ui2ju

i
2j+1) (i = 1, . . . , k; j = 1, . . . , 12 |V (P i)| − 1). Then the adja-

cency matrix of Gw has the following form:

A(Gw) =



0 αT
1 . . . α

T
t αT

t+1 . . . α
T
k 0 0

αT
1

...
αT
t

A1

. . .

At

0

β1
. . .

βt

0

αT
t+1

...
αT
k

0

At+1

. . .

Ak

0

βT
t+1

...
βT
k

0

βT
1

. . .

βT
t

0 0

d1
...
dt

0 0 βT
t+1 . . . β

T
k d1 . . . dt 0



,

where αT
i = (ai, 0, . . . , 0) and βT

i = (0, . . . , 0, bi).

We apply the ECMOs onA(Gw): using−αT
i A
−1
i to multiply the (i+1)-th row, then

adding it to the first row, we can cancel αT
i (i = 1, . . . , k) in the first row. Similarly,
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using −βT
i A
−1
i to multiply the (i+ 1)-th row, then adding it to (k+ i+ 1)-th row if

i 6 t, and adding it to the last row if t+ 1 6 i 6 k, we can cancel βT
i (i = 1, . . . , k).

After that, column operations are applied so that each αi and βi are reduced to 0s. By
Lemma 2.5, −αT

i A
−1
i αi = −βT

i A
−1
i βi = 0 and ci = −αT

i A
−1
i βi = −βT

i A
−1
i αi,

where

ci =


−
aibiw

i
12w

i
23 . . . w

i
si−1,si

wi
11w

i
22 . . . w

i
si,si

, if |Ai| = 2si ≡ 2 (mod 4);

aibiw
i
12w

i
23 . . . w

i
si−1,si

wi
11w

i
22 . . . w

i
si,si

, if |Ai| = 2si ≡ 0 (mod 4).

So A(Gw) can be reduced to the following matrix:

B =



0 0 0 c1 . . . ct s

0

A1

. . .
At

0 0 0

0 0
At+1

. . .
Ak

0 0

c1
...
ct

0 0 0
d1
...
dt

s 0 0 d1 . . . dt 0



,

where s =
∑k

i=t+1 ci.

Define

D =


0 s
s 0

c1 . . . ct
d1 . . . dt

c1 d1
...

...
ct dt

0

 . (3.1)

After interchanging rows and columns, we get the equivalent matrix of B:


D

A1

. . .
Ak

 . (3.2)
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It follows that

i+(Gw) = i+(D) +

k∑
j=1

i+(Ak) = i+(D) +
1

2

k∑
j=1

|Ai|

= i+(D) +
1

2

 t∑
j=1

(ri − 3) +

k∑
j=t+1

(ri − 2)


= i+(D) +

1

2

 k∑
j=1

(ri − 2)− t


= i+(D) +

1

2
(n− 2− t).

Similarly, i−(Gw) = i−(D) + 1
2 (n− 2− t), i0(Gw) = t+ 2− R(D).

Case 2.: min{r1, r2, . . . , rk} = 3. We suppose, without loss of generality, that the first `
paths Pi = u0uiv0 (i = 1, . . . , `) are of length 3. Partition the vertex of Gw as
follows: {u0}, V (P `+1), . . . , V (P k), {u1, . . . , u`},{u`+1, . . . , ut}, {v0}. Then we
label the weight for each edge of Gw as follows: ci = w(u0ui) (i = 1, . . . , `),
di = w(v0ui) (i = 1, . . . , t), ai = w(u0u

i
1) (i = `+ 1, . . . , k), bi = w(uiu

i
2si) (i =

` + 1, . . . , t), bj = w(v0u
j
2sj

) (j = t + 1, . . . , k) and wi
jj = w(ui2j−1u

i
2j) (i =

` + 1, . . . , k; j = 1, . . . , 12 |V (P i)|), wi
j,j+1 = w(ui2ju

i
2j+1) (i = ` + 1, . . . , k; j =

1, . . . , 12 |V (P i)| − 1). Then the adjacency matrix of Gw has the following form:

A(Gw) =



0 αT
`+1 . . . α

T
t αT

t+1 . . . α
T
k c1 . . . c` 0 0

αT
`+1

...

αT
t

A`+1

. . .

At

0 0

β`+1

. . .

βt

0

αT
t+1

...

αT
k

0

At+1

. . .

Ak

0 0

βT
t+1

...

βT
k

c1
...

c`

0 0 0 0

d1
...

d`

0

βT
`+1

. . .

βT
t

0 0 0

d`+1

...

dt

0 0 βT
t+1 . . . β

T
k d1 . . . d` d`+1 . . . dt 0



.

After applying ECMOs on the above matrix, we can get a diagonal matrix similar to
(3.2), hence the result is still holds in this case.
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Case 3: min{r1, r2, . . . , rk} = 2. Let ct+1 = w(u0v0), then we only need to delete the
row and the column corresponding to At+1 and replace the upper right and the lower
left elements of A(Gw) with ct+1, and the rest arguments are similar.

Theorem 3.1. Let Gw = θ(r1, r2, . . . , rk)w be a weighted graph of order n. Denote by
ni the number of rj’s which satisfy rj − 2 ≡ i (mod 4) (1 6 j 6 k, 0 6 i 6 3) and let
t = n1 + n3. The matrix D is defined as in (3.1). Then

(i+(Gw), i−(Gw), i0(Gw)) =

(
i+(D) +

1

2
(n− 2− t), i−(D)

+
1

2
(n− 2− t), t+ 2− R(D)

)
. (3.3)

In particular,

(i) if n1 + n3 = 0, s = 0, then (i+(Gw), i−(Gw), i0(Gw)) =
(
1
2n− 1, 12n− 1, 2

)
.

(ii) if n1 + n3 = 0, s 6= 0, then (i+(Gw), i−(Gw), i0(Gw)) =
(
1
2n,

1
2n, 0

)
.

(iii) if n1n3 > 0, then

(i+(Gw), i−(Gw), i0(Gw)) =

(
1

2
(n− t) + 1,

1

2
(n− t) + 1, t− 2

)
.

(iv) if n1 + n3 6= 0, n1n3 = 0 and dict 6= cidt holds for some i ∈ {1, 2, . . . , t− 1}, then

(i+(Gw), i−(Gw), i0(Gw)) =

(
1

2
(n− t) + 1,

1

2
(n− t) + 1, t− 2

)
.

(v) if n1 + n3 6= 0, n1n3 = 0, s > 0 and dict = cidt holds for i = 1, 2, . . . , t, then

(i+(Gw), i−(Gw), i0(Gw)) =
(
1
2 (n− t), 12 (n− t) + 1, t− 1

)
, if n1 > 0, n3 = 0;(

1
2 (n− t) + 1, 12 (n− t), t− 1

)
, if n3 > 0, n1 = 0.

(vi) if n1 + n3 6= 0, n1n3 = 0, s = 0 and dict = cidt holds for i = 1, 2, . . . , t, then

(i+(Gw), i−(Gw), i0(Gw)) =

(
1

2
(n− t), 1

2
(n− t), t

)
.

(vii) if n1 + n3 6= 0, n1n3 = 0, s < 0 and dict = cidt holds for i = 1, 2, . . . , t, then

(i+(Gw), i−(Gw), i0(Gw))

=


(
1
2 (n− t) + 1, 12 (n− t), t− 1

)
, if n1 > 0, n3 = 0;(

1
2 (n− t), 12 (n− t) + 1, t− 1

)
, if n3 > 0, n1 = 0.
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Proof. By the discussion of Cases 1-3 above, the first part of Theorem 3.1 follows directly.
Furthermore, by the first part of Theorem 3.1 it is routine to check that (i) and (ii) hold.

(iii) If n1n3 > 0, applying ECMOs on D yields the following matrix:
0 s
s 0

0 . . . ct
α1 . . . dt

0 α1

...
...

ct dt

0

 ,

where αi = di − dt

ct
ci. Noted that c1 > 0 and ct < 0, hence α1 6= 0, which implies that

i+(D) = i−(D) = 2 and R(D) = 4. By (3.3), we have (i+(Gw), i−(Gw), i0(Gw)) =
( 1
2 (n− t), 12 (n− t) + 1, t−1). By a similar discussion as in the proof of (iii), we can show

that (iv) also holds.
(v) In this case, applying ECMOs to D yields the following matrix:

0 s 0 . . . 0
s 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . . 0

0 0 0 . . . − 2ctdt

s

 .

If n1 > 0, n3 = 0, then− 2ctdt

s < 0 for ct > 0, hence i+(D) = 1, i−(D) = 2 and R(D) =
3. In view of (3.3), we have (i+(Gw), i−(Gw), i0(Gw)) = ( 1

2 (n−t), 12 (n−t)+1, t−2). If
n1 = 0, n3 > 0, then− 2ctdt

s > 0 for ct < 0, hence i+(D) = 2, i−(D) = 1 and R(D) = 3.
In view of (3.3), we have (i+(Gw), i−(Gw), i0(Gw)) = ( 1

2 (n − t) + 1, 12 (n − t), t − 2).
By a similar discussion, we can also show that (vi) and (vii) hold.

This completes the proof.

4 Characterization of weighted graphs in Γn,k−1 with small positive
(negative) indices

In this section, we’ll characterize all the weighted graphs in Γn,k−1 with 1 or 2 positive
(negative) indices.

Theorem 4.1. Let Gw ∈ Γn,k−1. Then i+(Gw) = 1 if and only if Gw is one of the
following graphs: the weighted graph θ(3, . . . , 3)w with ckdi = cidk, i = 1, 2, . . . , k; the
weighted graph θ(3, . . . , 3, 2)w with ck−1di = cidk−1, i = 1, 2, . . . , k − 1.

Proof. The sufficiency follows directly from Theorem 3.1. Here we only show the neces-
sity in what follows.

Note that ifGw ∈ Γn,k−1 with pendants, then assume, without loss of generality, that x
is a pendent vertex of Gw. Let N(x) = {y} and G′w = Gw − {x, y}. It’s routine to check
that G′w is not a weighted empty graph, which contradicts to the fact that i+(Gw) = 1.

Now we consider the case that Gw contains no pedants and i+(Gw) = 1. In view of
Theorem 3.1,

• t = 0 and s = 0. In this subcase, we have i+(Gw) = 1
2n − 1 = 1 holds for n = 4.

Then Gw = θ(2, 4)w with weighted condition c1w2
11 = a2b2 for s = 0. Note that the
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weighted graph θ(2, 4)w with c1w2
11 = a2b2 is, in fact, the weighted graph θ(3, 3)w with

c2di = cid2, i = 1, 2.

• t = 0 and s 6= 0. In this subcase, we have n > 4, hence i+(Gw) = n
2 > 2.

• n1 > 0 and n3 > 0. In this subcase, we have n− t > 4, hence i+(Gw) = 1
2 (n− t) +

1 > 3.

• Just one of n1 and n3 is 0, and dict 6= cidt holds for some i ∈ {1, 2, . . . , t}. In
this subcase, we have n − t > 2 if n3 = 0 and n − t > 6 if n1 = 0. Hence i+(Gw) =
1
2 (n− t) + 1 > 2.

• Just one of n1 and n3 is 0, s = 0 and dict = cidt holds for i = 1, 2, . . . , t. In this
subcase, we have n− t > 2 if n3 = 0 and n− t > 6 if n1 = 0. Hence, i+(Gw) = 1 if and
only if n− t = 2 and n3 = 0. This gives that Gw must be the weighted graph θ(3, . . . , 3)w
with ckdi = cidk holding for i = 1, 2, . . . , k.

• Just one of n1 and n3 is 0, s > 0 and dict = cidt holds for i = 1, 2, . . . , t. In this
subcase, we have n − t > 2 if n3 = 0 and n − t > 4 if n1 = 0. Hence, i+(Gw) = 1
if and only if n − t = 2 and n3 = 0. This gives that Gw must be the weighted graph
θ(3, . . . , 3, 2)w with ck−1di = cidk−1 holding for i = 1, 2, . . . , k − 1.

• Just one of n1 and n3 is 0, s < 0 and dict = cidt holds for i = 1, 2, . . . , t. In this
subcase, we have n − t > 4 if n3 = 0 and n − t > 6 if n1 = 0, which implies that
i+(Gw) = 1

2 (n− t) + 1 > 1.
Hence, we conclude that i+(Gw) = 1 if and only if Gw is the weighted graph

θ(3, . . . , 3)w with ckdi = cidk holding for i = 1, 2, . . . , k or, Gw is the weighted graph
θ(3, . . . , 3, 2)w with ck−1di = cidk−1 holding for i = 1, 2, . . . , k − 1.

Theorem 4.2. Let Gw ∈ Θk. Then i+(Gw) = 2 if and only if Gw is one of the fol-
lowing graphs: the weighted graph θ(2, 4, 4)w with c1 = a2b2

w2
11

+ a3b3
w3

11
; the weighted

graph θ(3, . . . , 3)w with dict 6= cidk for some i ∈ {1, 2, . . . , k}; the weighted graph
θ(3, . . . , 3, 2)w with dick−1 6= cidk−1 for some i ∈ {1, 2, . . . , k − 1}; the weighted graph
θ(3, . . . , 3, 2, 4)w with ck−2di = cidk−2, i = 1, 2, . . . , k − 2 and ck−1wk

11 > akbk.

Proof. The sufficiency is clear by Theorem 3.1. To prove the necessity, suppose that Gw ∈
Θk with i+(Gw) = 2. We proceed by distinguishing the following subcases.

• t = 0 and s = 0. In this subcase, i+(Gw) = 1
2n−1 = 2, hence we have n = 6. Then

Gw may be θ(2, 4, 4)w, θ(2, 6)w or θ(4, 4)w. If Gw is the weighted graph θ(2, 4, 4)w, then
c1w

2
11 = a2b2 for s = 0, whereas the s of θ(2, 6)w is positive and the s of θ(4, 4)w is

negative, which contradicts the assumption that s = 0.

• t = 0 and s 6= 0. In this subcase, i+(Gw) = 1
2n = 2, hence we have n = 4. Then

Gw is just the weighted graph θ(2, 4)w with c1w2
11 6= a2b2. In fact, the weighted graph

θ(2, 4)w with c1w2
11 6= a2b2 is also the weighted graph θ(3, 3)w with ckdi 6= cidk for

i = 1, 2.

• n1 > 0, n3 > 0. In this subcase, we have n−t > 4.Hence, i+(Gw) = 1
2 (n−t)+1 >

3, which implies that there does not exist such weighted graph Gw.

• Just one of n1 and n3 is 0, and dict 6= cidt holds for some i ∈ {1, 2, . . . , t}. In this
subcase, by a similar discussion in the proof of Theorem 4.1, i+(Gw) = 2 holds only if
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n3 = 0 in which i+(Gw) = 1
2 (n− t) + 1. So we have n− t = 2. Hence Gw must be the

weighted graph θ(3, . . . , 3)w with dict 6= cidk for some i ∈ {1, 2, . . . , k}, or the weighted
graph θ(3, . . . , 3, 2)w with dick−1 6= cidk−1 for some i ∈ {1, 2, . . . , k − 1}.

• Just one of n1 and n3 is 0, s = 0 and dict = cidt holds for i = 1, 2, . . . , t. In this
subcase, i+(Gw) = 1

2 (n − t). Hence, by a similar discussion in the proof of Theorem
4.1, i+(Gw) = 2 if and only if n − t = 4 and n3 = 0, which implies that Gw must
be the weighted graph θ(3, . . . , 2, 4)w with ck−2di = cidk−2 i = 1, 2, . . . , k − 2 and
ck−1w

k
11 = akbk.

• Just one of n1 and n3 is 0, s > 0 and dict = cidt holds for i ∈ {1, 2, . . . , t}. In
this subcase, i+(Gw) = 1

2 (n− t). Hence, by a similar discussion in the proof of Theorem
4.1, i+(Gw) = 2 if and only if n − t = 4 and n3 = 0, which implies that Gw must be
the weighted graph θ(3, . . . , 2, 4)w with ck−2di = cidk−2 for i ∈ {1, 2, . . . , k − 2} and
ck−1w

k
11 > akbk.

• Just one of n1 and n3 is 0, s < 0 and dict = cidt holds for i ∈ {1, 2, . . . , t}. In this
subcase, by a similar discussion in the proof of Theorem 4.1, we have n− t > 4 if n3 = 0
and n− t > 6 if n1 = 0. Hence, we have i+(Gw) = 1

2 (n− t) + 1 > 2.
This completes the proof.

Theorem 4.3. Let Gw ∈ Γn,k with pedants. Then i+(Gw) = 2 if and only if G ∼=
G1, G2, . . . , G9 or G10 (see Fig. 2) and the corresponding weighted conditions are as
shown in Table 1, where the empty cell means that there is no correlation between the
inertia index of Gw and its weight set.

Table 1: The weighted condition for eachGw ∈ Γ(n, k) with pedants satisfying i+(Gw) =
2.

weighted graph Gw weighted conditions of Gw

G1
w, G

2
w, G

3
w, G

4
w

G5
w ck−1di = cidk−1 (1 6 i 6 k − 1)

G6
w, G

7
w ckdi = cidk (1 6 i 6 k)

G8
w ck−1di = cidk−1 (2 6 i 6 k − 1)

G9
w, G

10
w ck−1di = cidk−1 (1 6 i 6 k − 1)

Proof. It is routine to check that i+(Gi
w) = 2 holds for i = 1, 2, . . . , 10. To show the

converse, suppose that i+(Gw) = 2. Since Gw has at least one pendent x, let N(x) = {y}
and G′w = Gw − {x, y} = Hw + pK1, where Hw is obtained from G′w by deleting all the
isolated vertices. By Lemma 2.3 we have 2 = i+(Gw) = i+(G′w) + 1 = i+(Hw) + 1.
Hence, i+(Hw) = 1. Recall that Gw contains a Θ-graph as an induced subgraph, we
conclude that Hw is either isomorphic to a weighted star or one of the weighted graphs
described in Theorem 4.1. If Hw is a star, then G must be isomorphic to Gi, i = 1, 2, 3, 4.
IfHw is the weighted graph θ(3, . . . , 3)w, thenGmust be isomorphic toGi, i = 5, 6, 7 and
ifHw is the weighted graph θ(3, . . . , 3, 2)w, thenGmust be isomorphic toGi, i = 8, 9, 10.
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1G 2G 3G 4G 5G

6G 7G 8G 9G 10G

Figure 2: Graphs G1, G2, . . . , G9 and G10.

If G is isomorphic to G5, without loss of generality, assume that x is adjacent to the
internal vertex of the k-th path P3 (see Fig. 2), so the weighted condition is that ck−1di =
cidk−1 holds for i = 1, 2, . . . , k−1. IfG is isomorphic toG6 orG7, the weighted condition
is ckdi = cidk for i = 1, 2, . . . , k.

If G is isomorphic to G8, without loss of generality, assume that x is adjacent to the
internal vertex of the first path P3 (see Fig. 2), so the weighted condition is that ck−1di =
cidk−1 holds for i = 2, 3, . . . , k − 1. If G is isomorphic to G9 or G10, the weighted
condition is ck−1di = cidk−1 for i = 1, 2, . . . , k − 1.

Similarly, we can have the following theorems:

Theorem 4.4. Let Gw ∈ Γn,k−1. Then i−(Gw) = 1 if and only if Gw is the weighted
θ(3, . . . , 3)w with the weighted condition that ckdi = cidk holds for i = 1, 2, . . . , k.

Theorem 4.5. Let Gw ∈ Θk. Then i−(Gw) = 2 if and only if Gw is one of the fol-
lowing graphs: the weighted graph θ(3, . . . , 3, 2)w with an arbitrary weighted condi-
tion; the weighted graph θ(2, 4, 4)w with weighted condition c1 = a2b2

w2
11

+ a3b3
w3

11
; the

weighted graph θ(3, . . . , 3)w with the weighted condition that dick 6= cidk holds for
some i ∈ {1, 2, . . . , k}; the weighted graph θ(3, . . . , 3, 2, 4)w with the weighted con-
dition that ck−2di = cidk−2 holds for i = 1, 2, . . . , k − 2 and ck−1wk

11 6 akbk; the
weighted graph θ(3, . . . , 3, 4)w with the weighted condition that ck−1di = cidk−1 holds
for i = 1, 2, . . . , k − 1.

Theorem 4.6. Let Gw ∈ Γn,k−1 with pedants. Then i−(Gw) = 2 if and only if Gw is
one of the following graphs: the weighted graph Gw has G1 (resp. G2, G3, G4) as its
unweighted graph and its weight set is arbitrary; the weighted graph Gw has G5 as its
unweighted graph satisfying the weighted condition ck−1di = cidk−1, i = 1, 2, . . . , k−1;
the weighted graph Gw has G6 (resp. G7) as its unweighted graph satisfying the weighted
condition ckdi = cidk, i = 1, 2, . . . , k.

5 Weighted graphs in Γn,k−1 with rank 2, 3, or 4

In this section, we characterize all the weighted (k − 1)-cyclic graphs in Γn,k−1 with rank
2, 3, 4, respectively.
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Theorem 5.1. Let Gw ∈ Γn,k−1. Then R(Gw) = 2 if and only if Gw is the weighted
θ(3, . . . , 3)w with the weighted condition ckdi = cidk holding for i = 1, 2, . . . , k.

Proof. Let Gw ∈ Γn,k−1, i+(Gw) > 1 and i−(Gw) > 1 since it contains P2 as an induced
subgraph. Then r(Gw) = 2 if and only if i+(Gw) = i−(Gw) = 1. By Theorems 4.1–4.6,
we know Gw must be the weighted θ(3, . . . , 3)w satisfying the weighted condition that
ckdi = cidk for any 1 6 i 6 k.

Theorem 5.2. Let Gw ∈ Γn,k−1. Then R(Gw) = 3 if and only if Gw is the weighted
θ(3, . . . , 3, 2)w with the weighted condition that ck−1di = cidk−1 holds for i = 1, 2, . . . ,
k − 1.

Proof. Let Gw ∈ Γn,k−1, i+(Gw) > 1 and i−(Gw) > 1 since it contains P2w as an
induced subgraph. Then R(Gw) = 3 if and only if i+(Gw) = 1, i−(Gw) = 2 or i+(Gw) =
2, i−(Gw) = 1. Note that either i+(Gw) or i−(Gw) equals 1, hence by Theorems 4.1 and
4.4 we know Gw must be the weighted graph θ(3, . . . , 3)w satisfying ckdi = cidk for
1 6 i 6 k.

Theorem 5.3. Let Gw ∈ Θk. Then R(Gw) = 4 if and only if Gw is one of the follow-
ing graphs: the weighted graph θ(2, 4, 4)w with weighted condition c1 = a2b2

w2
11

+ a3b3
w3

11
;

the weighted graph θ(3, . . . , 3) with the weighted condition that dick 6= cidk holds for
some i ∈ {1, 2, . . . , k}; the weighted graph θ(3, . . . , 3, 2)w with the weighted condi-
tion that dick−1 6= cidk−1 holds for some i ∈ {1, 2, . . . , k − 1}; the weighted graph
θ(3, . . . , 3, 2, 4)w with the weighted condition that ck−2di = cidk−2 holds for i = 1, 2, . . . ,
k − 2 and ck−1wk

11 = akbk.

Proof. Let Gw be a weighted (k − 1)-cyclic graph, it is routine to check that i+(Gw) > 1
and i−(Gw) > 1. Then R(Gw) = 4 if and only if (i+(Gw), i−(Gw)) = (1, 3) or
(i+(Gw), i−(Gw)) = (3, 1) or (i+(Gw), i−(Gw)) = (2, 2). If one of i+(Gw) and i−(Gw)
equals 1, by Theorems 4.1 and 4.4, Gw must be the weighted graph θ(3, . . . , 3)w or
θ(3, . . . , 3, 2)w. In this case, by Theorems 4.1, 4.2, 4.4 and 4.5 we know the rank of such
graphGw is no less than 3. Hence, it should only consider that (i+(Gw), i−(Gw)) = (2, 2).
In this case, based on Theorems 4.2 and 4.5, (i+(Gw), i−(Gw)) = (2, 2) if and only if Gw

is one of the weighted graphs characterized in the above result.

Similarly, we can have the following theorem:

Theorem 5.4. Let Gw ∈ Γn,k−1 with pedants. Then R(Gw) = 4 if and only if G ∼=
G1, . . . , G7, what’s more, the weighted condition of G1

w (resp. G2
w, G

3
w, G

4
w) is arbitrary;

G5
w satisfies the weighted condition that ck−1di = cidk−1 holds for i = 1, 2, . . . , k − 1;

while G6
w (resp. G7

w) satisfies the weighted condition that ckdi = cidk holds for i =
1, 2, . . . , k.
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