

Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 13 (2017) 1–13

On the largest subsets avoiding the diameter of $(0,\pm 1)$ -vectors

Saori Adachi, Hiroshi Nozaki *

Department of Mathematics Education, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan

Received 4 September 2015, accepted 28 October 2015, published online 25 July 2016

Abstract

Let $L_{mkl} \subset \mathbb{R}^{m+k+l}$ be the set of vectors which have m of entries -1, k of entries 0, and l of entries 1. In this paper, we investigate the largest subset of L_{mkl} whose diameter is smaller than that of L_{mkl} . The largest subsets for m = 1, l = 2, and any k will be classified. From this result, we can classify the largest 4-distance sets containing the Euclidean representation of the Johnson scheme J(9, 4). This was an open problem in Bannai, Sato, and Shigezumi (2012).

Keywords: The Erdős–Ko–Rado theorem, s-distance set, diameter graph, independent set, extremal set theory.

Math. Subj. Class.: 05D05, 05C69

1 Introduction

The famous theorem in Erdős–Ko–Rado [8] stated that for $n \ge 2k$ and a family \mathfrak{A} of kelement subsets of $I_n = \{1, \ldots, n\}$, if any two distinct $A, B \in \mathfrak{A}$ satisfy $A \cap B \neq \emptyset$, then

$$|\mathfrak{A}| \le \binom{n-1}{k-1}$$

For n > 2k, the set $\{A \subset I_n \mid |A| = k, 1 \in A\}$ is the unique family achieving equality, up to permutations on I_n . For n = 2k, the largest set is any family which contains only one of A or $I_n \setminus A$ for any k-element $A \subset I_n$. This result plays a central role in extremal set theory, and similar or analogous theorems are proved for various objects [2, 5, 9].

^{*}Work supported by JSPS KAKENHI Grant Numbers 25800011, 26400003.

E-mail addresses: s214m044@auecc.aichi-edu.ac.jp (Saori Adachi), hnozaki@auecc.aichi-edu.ac.jp (Hiroshi Nozaki)

We can naturally interpret $A \subset I_n$ as $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ by the manner $x_i = 1$ if $i \in A$, $x_i = 0$ if $i \notin A$. By this identification, the Erdős–Ko–Rado Theorem can be rewritten that for $n \ge 2k$ and a subset X of $L_k = \{x \in \mathbb{R}^n \mid x_i \in \{0, 1\}, \sum x_i = k\}$ if any distinct $x, y \in X$ satisfy $d(x, y) < D(L_k) = \sqrt{2k}$, then

$$|X| \le \binom{n-1}{k-1},$$

where d(,) is the Euclidean distance, and $D(L_k)$ is the diameter of L_k . We would like to consider the following problem to generalize the Erdős–Ko–Rado Theorem.

Problem 1.1. Let $L_{mkl} \subset \mathbb{R}^{m+k+l}$ be the set of vectors which have m of entries -1, k of entries 0, and l of entries 1. Classify the largest $X \subset L_{mkl}$ with $D(X) < D(L_{mkl})$.

It is almost obvious for the cases m = l (Proposition 2.1) and $m + k \leq l$ (Proposition 2.2). In this paper, we solve the first non-trivial case m = 1, l = 2 and any k (Theorem 2.5). Using the largest sets for the case (m, k, l) = (1, 6, 2), we can classify the largest 4-distance sets containing the Euclidean representation of the Johnson scheme J(9, 4). This was an open problem in [1].

We will give a brief survey on related results. Let \mathfrak{L}_{nm} be the set of $(0, \pm 1)$ -vectors in \mathbb{R}^n which have m non-zero coordinates. For a fixed set D of integers, let V(n, m, D)be the family of subsets $V = \{v_1, \ldots, v_k\}$ of \mathfrak{L}_{nm} such that $(v_i, v_j) \in D$ for any $i \neq j$. There are several results relating to the largest sets in V(n, m, D) for some (n, m, D)[4, 6, 7]. Since $X \subset \mathfrak{L}_{nm}$ is on a sphere, if |D| = s holds, then $|X| \leq \binom{n+s-1}{s} + \binom{d+s-2}{s-1}$ [3]. The case $D = \{d\}$ is investigated in [4]. For non-negative integers $d < m, t \geq 2$, and $n > n_0(m)$ (see [4] about $n_0(m)$), if $X \in V(n, m, \{d, d + 1, \ldots, d + t - 1\})$, then $|X| \leq \binom{n-d}{t} / \binom{m-d}{t}$ [6]. This equality can be attained whenever a Steiner system S(n - d, m - d, t) (equivalently $t \cdot (n - d, m - d, 1)$ design) exists . We also have if $X \in V(n, m, \{-(t-1), -(t-2), \ldots, t-1\})$, then $|X| \leq 2^{t-1}(m - t + 1)\binom{n}{t} / \binom{m}{t}$ [7]. When m = t + 1, this equality can be attained whenever a Steiner system S(n, m, m - 1) exists.

2 Largest subsets avoiding the diameter of L_{mkl}

Let L_{mkl} denote the finite set in $\mathbb{R}^n = \mathbb{R}^{m+k+l}$, which consists of all vectors whose number of entries -1, 0, 1 is equal to m, k, l, respectively. For two subsets X, Y of L_{mkl}, X is *isomorphic* to Y if there exists a permutation $\sigma \in S_n$ such that $X = \{(y_{\sigma(1)}, \ldots, y_{\sigma(n)}) \mid (y_1, \ldots, y_n) \in Y\}$. The *diameter* D(X) of $X \subset \mathbb{R}^n$ is defined to be

$$D(X) = \max\{d(x, y) \mid x, y \in X\},\$$

where d(,) is the Euclidean distance. Let M_{mkl} denote the largest possible number of cardinalities of $X \subset L_{mkl}$ such that $D(X) < D(L_{mkl})$. The diameter graph of $X \subset \mathbb{R}^n$ is defined to be the graph (X, E), where $E = \{(x, y) \mid d(x, y) = D(X)\}$. The problem of determining M_{mkl} is equivalent to determining the independence number of the diameter graph of L_{mkl} . Note that $M_{mkl} = M_{lkm}$ because we have $L_{mkl} = -L_{lkm} = \{-x \mid x \in L_{lkm}\}$. Thus we may assume $m \leq l$. In this section, we determine M_{mkl} , and classify the largest sets for several cases of m, k, l.

First we determine M_{mkl} for the cases m = l and $m + k \leq l$.

Proposition 2.1. Assume m = l. Then we have

$$M_{mkl} = \frac{1}{2} \binom{n}{m} \binom{k+m}{m} = \frac{1}{2} |L_{mkl}|,$$

and the largest sets contain only one of x or -x for any $x \in L_{mkl}$.

Proof. For any $x \in L_{mkl}$, we have $\{y \mid d(x, y) = D(L_{mkl})\} = \{-x\}$. Therefore the diameter graph of L_{mkl} is the set of independent edges. The proposition can be easily proved from this fact.

For $X \subset L_{mkl}$, we use the notation

$$N_i(X,j) = \{(x_1, \dots, x_n) \in X \mid x_i = j\},$$
 and $n_i(X,j) = |N_i(X,j)|.$

Proposition 2.2. Assume $m + k \leq l$. Then we have

$$M_{mkl} = \binom{n-1}{m+k-1}\binom{m+k}{m}$$

For m + k > l, the largest set is $N_1(L_{mkl}, -1) \cup N_1(L_{mkl}, 0)$, up to isomorphism. For m + k = l, then the largest sets contain only one of $\{(x_1, \ldots, x_n) \in L_{mkl} \mid x_i = 1, \forall i \in J\}$ or $\{(x_1, \ldots, x_n) \in L_{mkl} \mid x_i = 1, \forall i \in I_n \setminus J\}$ for any $J \subset I_n$ of order l.

Proof. A finite subset X of L_{mkl} satisfies $D(X) < D(L_{mkl})$ if and only if $\{i \mid x_i = -1, 0\} \cup \{i \mid y_i = -1, 0\}$ is not empty for any distinct $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in X$. We can therefore apply the Erdős–Ko–Rado Theorem [8] to determine the positions of entries -1 or 0. The number of possible positions of -1, 0 is $\binom{n-1}{m+k-1}$. After fixing the position, -1, 0 can be placed in $\binom{m+k}{k}$ ways. This determines M_{mkl} . The largest sets are classified from the optimal sets of the Erdős–Ko–Rado Theorem.

The remaining part of this section is devoted to proving

$$M_{1k2} = \mathfrak{M}_k = \binom{k+3}{3} + 2,$$

and determining the classification of the largest sets. Note that $D(L_{1k2}) = \sqrt{10}$ and if $X \subset L_{1k2}$ satisfies $D(X) < D(L_{1k2})$, then $D(X) \le \sqrt{8}$. The following two lemmas are used later.

Lemma 2.3. Let $X \subset L_{1k2}$ with $D(X) < D(L_{1k2})$. Suppose $k \ge 4$, and $|X| \ge \mathfrak{M}_k$. Then there exists $i \in \{1, \ldots, n\}$ such that $n_i(X, 0) \ge \mathfrak{M}_{k-1}$.

Proof. This lemma is immediate because the average of $n_i(X, 0)$ is

$$\frac{1}{n}\sum_{i=1}^{n}n_{i}(X,0) = \frac{k|X|}{k+3} \ge \frac{k\mathfrak{M}_{k}}{k+3} = \mathfrak{M}_{k-1} - \frac{6}{k+3} > \mathfrak{M}_{k-1} - 1.$$

Lemma 2.4. Let G = (V, E) be a connected simple graph, and E' a matching in G. Assume that G has an independent set I of size |V| - |E'|. Then for $z \in I$ if $x \in V$ satisfies $(x, y) \in E'$ for some y adjacent to z, then $x \in I$. *Proof.* Since the cardinality of I is |V| - |E'|, only one of x or y is an element of I for any $(x, y) \in E'$. By assumption, $y \notin I$, and hence $x \in I$.

The subsets $S_k(i)$, $T_k(i)$, $U_k(i)$ of L_{1k2} are defined by

$$S_{k}(i) = \{(x_{1}, \dots, x_{n}) \in L_{1k2} \mid x_{1} = \dots = x_{i-1} = 0, x_{i} = -1\},\$$

$$T_{k}(i) = \{(x_{1}, \dots, x_{n}) \in L_{1k2} \mid x_{1} = \dots = x_{i-1} = 0, x_{i} = 1\},\$$

$$U_{k}(i) = \left\{(x_{1}, \dots, x_{n}) \in L_{1k2} \mid \begin{array}{c}x_{1} = 1, x_{l} = -1, x_{j} = 1,\\ \exists l \in \{2, \dots, i\}, \exists j \in \{l+1, \dots, n\}\end{array}\right\}$$

for i = 2, ..., k + 2. We define $S_k(1) = N_1(L_{1k2}, -1)$, and $T_k(1) = N_1(L_{1k2}, 1)$. The following are candidates of the largest subsets avoiding the largest distance $\sqrt{10}$.

$$\begin{split} X_k &= T_k(k+1) \cup (\bigcup_{i=1}^{k+1} S_k(i)) \text{ for } k \ge 1, \\ Y_1 &= T_1(1), \qquad Y_k = T_k(k) \cup (\bigcup_{i=1}^{k-1} S_k(i)) \text{ for } k \ge 2, \\ Z_2 &= T_2(1), \qquad Z_k = T_k(k-1) \cup (\bigcup_{i=1}^{k-2} S_k(i)) \text{ for } k \ge 3. \end{split}$$

Note that $|X_k| = |Y_k| = |Z_k| = \mathfrak{M}_k$, and they can be inductively constructed by

$$\begin{split} X_k &= \{(0,x) \mid x \in X_{k-1}\} \cup N_1(L_{1k2},-1), \\ Y_k &= \{(0,x) \mid x \in Y_{k-1}\} \cup N_1(L_{1k2},-1), \\ Z_k &= \{(0,x) \mid x \in Z_{k-1}\} \cup N_1(L_{1k2},-1). \end{split}$$

We also use the following notation.

$$\begin{aligned} X'_{k} &= X_{k} \setminus S_{k}(1) = \{(0, x) \mid x \in X_{k-1}\} & (k \ge 2), \\ Y'_{k} &= Y_{k} \setminus S_{k}(1) = \{(0, x) \mid x \in Y_{k-1}\} & (k \ge 2), \\ Z'_{k} &= Z_{k} \setminus S_{k}(1) = \{(0, x) \mid x \in Z_{k-1}\} & (k \ge 3). \end{aligned}$$

Theorem 2.5. Let $X \subset L_{1k2}$ with $D(X) < D(L_{1k2})$. Then we have

$$|X| \leq \mathfrak{M}_k.$$

If equality holds, then

(1) for k = 1, $X = X_1$, or Y_1 , (2) for $k \ge 2$, $X = X_k$, Y_k , or Z_k ,

up to isomorphism.

This theorem will be proved by induction. We first prove the inductive step.

Lemma 2.6. Let $k \ge 2$. Assume that the statement in Theorem 2.5 holds for some k - 1. Let $X \subset L_{1k2}$ with $D(X) < D(L_{1k2})$, such that $n_i(X, 0) = \mathfrak{M}_{k-1}$ for some i. Then we have $|X| \le \mathfrak{M}_k$. If equality holds, then $X = X_k$, Y_k , or Z_k , up to isomorphism. *Proof.* Without loss of generality, $n_1(X, 0) = \mathfrak{M}_{k-1}$, and hence X contains X'_k , Y'_k , or Z'_k for $k \ge 3$, and X'_1 , or Y'_1 for k = 2.

(i) Suppose $X'_k \subset X$ for $k \geq 2$. The set of other candidates of elements of X is $S_k(1) \cup U_k(k)$. The diameter graph G of $S_k(1) \cup U_k(k)$ is a bipartite graph of the partite sets $S_k(1)$ and $U_k(k)$. Since the three elements

$$(-1, 0, \dots, 0, 0, 1, 1), (-1, 0, \dots, 0, 1, 0, 1), (-1, 0, \dots, 0, 1, 1, 0) \in S_k(1)$$

are isolated vertices in G, they may be contained in X. Let G' be the subgraph of G formed by removing the three isolated vertices. A perfect matching of G' is given as follows.

Matching (i)		
$S_k(1)$	$U_k(k)$	
$(-1, x_2, \ldots, x_{k+3})$	$(1, y_2, \ldots, y_{k+3})$	
$x_i = 1, x_j = 1 \ (2 \le i \le k, i < j < n)$	$y_i = -1, y_{j+1} = 1$	
$x_i = 1, x_n = 1 \ (2 \le i \le k)$	$y_i = -1, y_{i+1} = 1$	

By this matching, we can show

$$|X| \le \mathfrak{M}_{k-1} + |S_k(1)| = \mathfrak{M}_k.$$

We will classify the sets attaining this bound. First assume that $x \in X$ for some $x \in S_k(1)$ with $x_2 = 1$. By Lemma 2.4, X must contain any $x \in S_k(1)$ with $x_2 = 1$. In particular, $(-1, 1, 1, 0, \ldots, 0) \in X$. Using Lemma 2.4 again, X must contain $x \in S_k(1)$ with $x_3 = 1$. By a similar manner, X must contain any $x \in S_k(1)$. Therefore $X = X_k$.

Assume X does not contain any $x \in S_k(1)$ with $x_2 = 1$, namely $n_2(X, 1) = 0$. By assumption, we have

$$|X| = n_2(X, -1) + n_2(X, 0) \le \binom{k+2}{2} + \mathfrak{M}_{k-1} = \mathfrak{M}_k.$$

If $|X| = \mathfrak{M}_k$, then we have $n_2(X, -1) = \binom{k+2}{2}$ and $n_2(X, 0) = \mathfrak{M}_{k-1}$. This implies that X is isomorphic to X_k, Y_k , or Z_k .

(ii) Suppose $Y'_k \subset X$ for $k \ge 2$. The set of other candidates of elements of X is the union of $S_k(1), U_k(k-1)$, and

$$\mathcal{S}_1 = \{ (x_1, \dots, x_{k+3}) \in L_{1k2} \mid x_1 = 1, x_k = 1, x_j = -1, k < j \}$$

for $k \ge 3$, and $S_2(1) \cup S_1$ for k = 2. The diameter graph G of $S_k(1) \cup U_k(k-1) \cup S_1$ is a bipartite graph of the partite sets $S_k(1)$ and $U_k(k-1) \cup S_1$. Since the three elements

$$(-1, 0, \dots, 0, 1, 1, 0, 0), (-1, 0, \dots, 0, 1, 0, 1, 0), (-1, 0, \dots, 0, 1, 0, 0, 1) \in S_k(1)$$

are isolated vertices in G, they may be contained in X. Let G' be the subgraph of G formed by removing the three isolated vertices. A perfect matching of G' is given as follows.

Watering (ii)			
$S_k(1)$	$U_k(k-1)$		
$(-1, x_2, \ldots, x_{k+3})$	$(1, y_2, \ldots, y_{k+3})$		
$x_i = 1, x_j = 1 \ (2 \le i \le k - 1, i < j < n)$	$y_i = -1, y_{j+1} = 1$		
$x_i = 1, x_n = 1 \ (2 \le i \le k - 1)$	$y_i = -1, y_{i+1} = 1$		

Matching (ii)

$S_k(1)$	\mathcal{S}_1	
$(-1,0,\ldots,0,1,1,0)$	$(1,0,\ldots,0,1,-1,0,0)$	
$(-1, 0, \ldots, 0, 0, 1, 1)$	$(1, 0, \ldots, 0, 1, 0, -1, 0)$	
$(-1, 0, \ldots, 0, 1, 0, 1)$	$(1, 0, \dots, 0, 1, 0, 0, -1)$	

By this maching, we can show $|X| \leq \mathfrak{M}_k$.

We will classify the sets attaining this bound. For k = 2, the maximum indepdent sets of G' is $\{(-1, 0, 0, 1, 1), (-1, 0, 1, 0, 1), (-1, 0, 1, 1, 0)\} \subset S_2(1)$ or S_1 . This implies that $X = Y_2$ or Z_2 . For $k \ge 3$, we assume that $x \in X$ for some $x \in S_k(1)$ with $x_2 = 1$. By Lemma 2.4, X must contain any $x \in S_k(1)$. Therefore $X = Y_k$. If X does not contain any $x \in S_k(1)$ with $x_2 = 1$, namely $n_2(X, 1) = 0$. It can be proved that X is isomorphic to X_k, Y_k , or Z_k .

(iii) Suppose $k \ge 3$, and $Z'_k \subset X$. The set of other candidates of elements of X is the union of $S_k(1), U_k(k-2)$, and

$$\mathcal{S}_2 = \{ (x_1, \dots, x_{k+3}) \in L_{1k2} \mid x_1 = 1, x_{k-1} = 1, x_j = -1, k < j \}$$

for $k \ge 4$, and $S_3(1) \cup S_2$ for k = 3. The diameter graph G of $S_k(1) \cup U_k(k-2) \cup S_2$ is a bipartite graph of the partite sets $S_k(1)$ and $U_k(k-2) \cup S_2$. Since the four vectors

$$(-1, 0, \dots, 0, 1, 1, 0, 0, 0), (-1, 0, \dots, 0, 1, 0, 1, 0, 0), (-1, 0, \dots, 0, 1, 0, 0, 1, 0), (-1, 0, \dots, 0, 1, 0, 0, 0, 1) \in S_k(1)$$

are isolated vertices in G, they may be contained in X. Let G' be the subgraph of G formed by removing the four isolated vertices. A maximum matching of G' is given as follows.

Watering (iii)				
	$S_k(1)$		$U_k(k-2)$	
	$(-1, x_2, \ldots, x_{k+3})$		$(1, y_2, \ldots, y_{k+3})$	
$x_i = 1, x_j = 1 \ (2 \le i \le k - 2, i < j < n)$		$y_i = -1, y_{j+1} = 1$		
$x_i = 1, x_n = 1 \ (2 \le i \le k - 2)$		$y_i = -1, y_{i+1} = 1$		
	$S_k(1)$	\mathcal{S}_2		
	$(-1,0,\ldots,0,1,1,0,0)$	$(1,0,\ldots,0,1,-1,0,0,0)$		
	$(-1, 0, \ldots, 0, 0, 1, 1, 0)$	$(1,0,\ldots,0,1,0,-1,0,0)$		
	$(-1, 0, \ldots, 0, 0, 0, 1, 1)$	$(1,0,\ldots,0,1,0,0,-1,0)$		
	$(-1, 0, \ldots, 0, 1, 0, 0, 1)$	$(1, 0, \ldots, 0)$, 1, 0, 0, 0, -1)	

Matching (iii)

Note that the two vectors

$$(-1, 0, \dots, 0, 1, 0, 1, 0), (-1, 0, \dots, 0, 0, 1, 0, 1) \in S_k(1)$$
 (2.1)

are unmatched in this matching. By this matching, we can show $|X| \leq \mathfrak{M}_k$.

We will classify the sets attaining this bound. If $|X| = \mathfrak{M}_k$, then the two vectors in (2.1) must be contained in X. Therefore X does not contain any element of S_2 , and contains an element of $S_k(1)$ which matches some element of S_2 . For k = 3, X therefore contains $S_k(1)$, and $X = Z_3$. For $k \ge 4$, we assume that $x \in X$ for some $x \in S_k(1)$ with $x_2 = 1$. By Lemma 2.4, X must contain any $x \in S_k(1)$. Therefore $X = Z_k$. If X does not contain any $x \in S_k(1)$ with $x_2 = 1$, namely $n_2(X, 1) = 0$. Therefore X is isomorphic to X_k, Y_k , or Z_k . Matchings (i)–(iii) and the notation S_1 , S_2 defined in the proof of Lemma 2.6 are used again later. The base case in the induction is the case k = 3. We will prove the cases k = 1, 2, 3 in order.

Proposition 2.7. Let $X \subset L_{112}$ with $D(X) < D(L_{112})$. Then we have

$$|X| \le \mathfrak{M}_1 = 6$$

If equality holds, then $X = X_1$, or Y_1 , up to isomorphism.

Proof. Since the diameter graph G of L_{112} is isomorphic to $C_4 \cup C_4 \cup C_4$, where C_4 is the 4-cycle, the bound $|X| \leq 6$ clearly holds. Considering the permutation of coordinates, G has the automorphism group S_4 . Since the stabilizer of X_1 in S_4 is of order 6, the orbit of X_4 has length 4. Similarly the orbit of Y_1 has length 4. Since the number of maximum independent sets of G is $2^3 = 8$, this proposition follows.

For k = 2, we also classify $(\mathfrak{M}_2 - 1)$ -point sets X with $D(X) < D(L_{122})$ in order to prove the case k = 3.

Proposition 2.8. Let $X \subset L_{122}$ with $D(X) < D(L_{122})$. Then we have

$$|X| \le \mathfrak{M}_2 = 12.$$

If |X| = 12, then $X = X_2$, Y_2 , or Z_2 , up to isomorphism. If |X| = 11, then X is

$$\begin{split} V_2 &= X_2' \cup \{(-1,0,0,1,1), (-1,0,1,0,1), (-1,0,1,1,0), \\ &\qquad (-1,1,1,0,0), (1,-1,1,0,0)\}, \end{split}$$

$$W_2 = Y'_2 \cup \{(-1, 1, 1, 0, 0), (-1, 1, 0, 1, 0), (-1, 1, 0, 0, 1), (-1, 0, 0, 1, 1), (1, 1, -1, 0, 0)\},\$$

or the set obtained by removing a point from X_2 , Y_2 , or Z_2 , up to isomorphism.

Proof. First suppose $n_i(X,0) = 6$ for some *i*. Then we have $|X| \leq 12$, and X with |X| = 12 is X_2, Y_2 , or Z_2 by Lemma 2.6. In order to find X with |X| = 11, we consider 5-point independent sets in the diameter graph of $S_2(1) \cup U_2(2)$ or $S_2(1) \cup U_2(1) \cup S_1$. If X is not isomorphic to a subset of X_2, Y_2 , or Z_2 , then $X = V_2$ from $S_2(1) \cup U_2(2)$, and $X = W_2$ from $S_2(1) \cup U_2(1) \cup S_1$.

Suppose $n_i(X, 0) \leq 5$ for any *i*. If $|X| \geq 11$, then the average of $n_i(X, 0)$ is greater than 4. Without loss of generality, we may assume $n_1(X, 0) = 5$. Since the diameter graph of L_{112} is $C_4 \cup C_4 \cup C_4$, we can show that X contains a 5-point subset of X'_2 or Y'_2 .

(i) Suppose X contains a 5-point subset of X'_2 . By considering the automorphism group of X'_2 , we may assume X contains the 5-point subset obtained by removing (0, -1, 0, 1, 1)or (0, 0, -1, 1, 1). First assume that X contains the 5-point subset obtained by removing (0, -1, 0, 1, 1). Since other candidates of elements of X are still in $S_2(1) \cup U_2(2)$, we have $|X| \leq 11$, and if |X| = 11, then X is isomorphic to a subset of X_2 , Y_2 , or Z_2 . Assume that X contains the 5-point subset obtained by removing (0, 0, -1, 1, 1). The set of other candidates of elements of X is $S_2(1) \cup U_2(2) \cup \{(1, 0, 1, -1, 0), (1, 0, 1, 0, -1)\}$. If X does not contain both (1, 0, 1, -1, 0) and (1, 0, 1, 0, -1), then $|X| \leq 11$, and X attaining this bound is isomorphic to a subset of X_2 , Y_2 , or Z_2 . To make a new set, X may contain (1, 0, 1, -1, 0). The two vectors (-1, 1, 0, 1, 0), $(-1, 0, 0, 1, 1) \in S_2(1)$, which are at distance $\sqrt{10}$ from (1, 0, 1, -1, 0), are not contained in X. The set P_1 consisting of the two isolated vertices

$$(-1, 0, 1, 0, 1), (-1, 0, 1, 1, 0) \in S_2(1)$$

and 6 points

$$(-1, 1, 1, 0, 0), (-1, 1, 0, 0, 1), (1, -1, 1, 0, 0), (1, -1, 0, 1, 0), (1, -1, 0, 0, 1), (1, 0, 1, 0, -1)$$

has the unique maximum 6-point independent set

$$\left\{\begin{array}{c} (-1,0,1,0,1), (-1,0,1,1,0), (1,-1,1,0,0), \\ (1,-1,0,1,0), (1,-1,0,0,1), (1,0,1,-1,0) \end{array}\right\}$$

which gives X isomorphic to Y_2 , and $n_2(X, 0) = 6$. If X contains a 5-point independent set in P_1 and is not isomorphic to a subset of Y_2 , then X contains the 5-point independent set

 $\{(-1, 0, 1, 0, 1), (-1, 0, 1, 1, 0), (-1, 1, 1, 0, 0), (1, -1, 1, 0, 0), (1, 0, 1, 0, -1)\}.$

Then X is isomorphic to W_2 and $n_2(X, 0) = 6$.

(ii) Suppose X contains a 5-point subset of Y'_2 . By considering the automorphism group of Y'_2 , we may assume X contains the 5-point subset obtained by removing (0, 1, -1, 0, 1). The set of other candidates of elements of X is $S_2(1) \cup S_1 \cup \{(1, 0, 1, 0, -1)\}$. To make a new set, X may contain (1, 0, 1, 0, -1). The two vectors $(-1, 1, 0, 0, 1), (-1, 0, 0, 1, 1) \in$ $S_2(1)$, which are at distance $\sqrt{10}$ from (1, 0, 1, 0, -1), are not contained in X. The set consisting of the two isolated vertices

$$(-1, 1, 1, 0, 0), (-1, 1, 0, 1, 0) \in S_2(1)$$

and 5 points

$$(-1, 0, 1, 1, 0), (-1, 0, 1, 0, 1), (1, 1, -1, 0, 0), (1, 1, 0, -1, 0), (1, 1, 0, 0, -1)$$

has the unique maximum 5-point independent set

$$\{(-1, 1, 1, 0, 0), (-1, 1, 0, 1, 0), (1, 1, -1, 0, 0), (1, 1, 0, -1, 0), (1, 1, 0, 0, -1)\},\$$

which gives X is isomorphic to a subset of Z_2 .

Proposition 2.9. Let $X \subset L_{132}$ with $D(X) < D(L_{132})$. Then we have

$$|X| \le \mathfrak{M}_3 = 22.$$

If equality holds, then $X = X_3$, Y_3 , or Z_3 , up to isomorphism.

Proof. If $n_i(X,0) = 12$ for some *i*, then we have $|X| \le 22$, and the set attaining this bound is X_3, Y_3 , or Z_3 by Lemma 2.6.

Suppose $n_i(X, 0) \le 11$ for any *i*. If |X| > 22, then the average of $n_i(X, 0)$ is greater than 11, which gives a contradiction. Therefore $|X| \le 22$, and if |X| = 22, then the average of $n_i(X, 0)$ is 11, and $n_i(X, 0) = 11$ for any *i*. By Proposition 2.8, X may contain

$$V'_{3} = \{(0, v) \in L_{132} \mid v \in V_{2}\},\$$
$$W'_{3} = \{(0, w) \in L_{132} \mid w \in W_{2}\},\$$

or an 11-point set obtained by removing a point from X'_3 , Y'_3 , or Z'_3 .

(i) Suppose X contains an 11-point subset of X'_3 . By considering the automorphism group of X'_3 , X may contain the set in X'_3 obtained by removing (0, -1, 0, 0, 1, 1), (0, -1, 1, 1, 0, 0), (0, 0, -1, 0, 1, 1), or (0, 0, 0, -1, 1, 1). If X contains the set X'_3 with (0, -1, 0, 0, 1, 1), (0, -1, 1, 1, 0, 0), or (0, 0, -1, 0, 1, 1) removed, then the set of other candidates of X is still $S_3(1) \cup U_3(3)$, and |X| < 22. Suppose X contains the set X'_3 with (0, 0, 0, -1, 1, 1) removed. Then new candidates of vectors of X are only (1, 0, 0, 1, -1, 0) and (1, 0, 0, 1, 0, -1), and X may contain (1, 0, 0, 1, -1, 0). The three vectors (-1, 1, 0, 0, 1, 0), (-1, 0, 1, 0, 1, 0), and (-1, 0, 0, 0, 1, 1), which are at distance $\sqrt{10}$ from (1, 0, 0, 1, -1, 0), are not contained in X. Therefore by |X| = 22, the other new candidate (1, 0, 0, 1, 0, -1), and two isolated vectors (-1, 0, 0, 1, 0, 1), and (-1, 0, 0, 1, 1, 0) must be contained in X. Moreover a 7-point independent set must be obtained from Matching (i). Since (-1, 1, 0, 0, 1, 0) and (-1, 0, 1, 0, 1, 0) are not contained in X, by Lemma 2.4, (1, -1, 0, 0, 0, 1) and (1, 0, -1, 0, 0, 1) must be contained in X, and consequently any element of $U_2(2)$ is contained in X. This implies $n_2(X, 1) = 0$, and X is isomorphic to X_3, Y_3 , or Z_3 .

(ii) Suppose X contains an 11-point subset of Y'_3 . By considering the automorphism group of Y'_3 , X may contain the set in Y'_3 obtained by removing (0, -1, 0, 0, 1, 1), (0, -1, 1, 1, 0, 0), or (0, 0, 1, -1, 0, 1). If X contains the set Y'_3 with (0, -1, 0, 0, 1, 1), or (0, -1, 1, 1, 0, 0) removed, then the set of other candidates of X is still $S_3(1) \cup U_3(2) \cup S_1$, and |X| < 22. Suppose X contains the set Y'_3 with (0, 0, 1, -1, 0, 1) removed. Then a new candidate of an element of X is only (1, 0, 0, 1, 0, -1), and X may contain (1, 0, 0, 1, 0, -1). The three vectors (-1, 1, 0, 0, 0, 1), (-1, 0, 1, 0, 0, 1), and (-1, 0, 0, 0, 1, 1), which are at distance $\sqrt{10}$ from (1, 0, 0, 1, 0, -1), are not contained in X. By considering Matching (ii), we can show |X| < 22.

(iii) Suppose X contains an 11-point subset of Z'_3 . By considering the automorphism group of Z'_3 , X may contain the set in Z'_3 obtained by removing (0, 1, -1, 0, 0, 1). Then a new candidate of an element of X is only (1, 0, 1, 0, 0, -1), and X may contain (1, 0, 1, 0, 0, -1). The three vectors (-1, 1, 0, 0, 0, 1), (-1, 0, 0, 1, 0, 1), and (-1, 0, 0, 0, 1, 1), which are at distance $\sqrt{10}$ from (1, 0, 1, 0, 0, -1), are not contained in X. By considering Matching (iii), we can show |X| < 22.

(iv) Suppose X contains V'_3 . The set of other candidates of X is $S_3(1) \cup U_3(3) \setminus \{(1, -1, 1, 0, 0, 0)\}$, and the maximum independent set is of order at most 10 by Matching (i). Thus |X| < 22.

(v) Suppose X contains W'_3 . The set of other candidates of X is $S_3(1) \cup U_3(2) \cup S_1 \setminus \{(1, -1, 0, 1, 0, 0)\}$, and the maximum independent set is of order at most 10 by Matching (ii). Thus |X| < 22.

Therefore this proposition follows.

Finally we prove Theorem 2.5.

Proof of Theorem 2.5. By Propositions 2.7–2.9, the statement holds for k = 1, 2, 3. By the inductive hypothesis and Lemma 2.3, if $|X| \ge \mathfrak{M}_k$, then there exists $i \in \{1, \ldots, n\}$ such that $n_i(X, 0) = \mathfrak{M}_{k-1}$ for $k \ge 4$. By Lemma 2.6, this theorem holds for any k.

3 Classification of the largest 4-distance sets which contain $\tilde{J}(n, 4)$

A finite set X in \mathbb{R}^d is called an s-distance set if the set of Euclidean distances of two distinct vectors in X has size s. The Johnson graph J(n,m) = (V, E), where

$$V = \{\{i_1, \dots, i_m\} \mid 1 \le i_1 < \dots < i_m \le n, i_j \in \mathbb{Z}\},\$$

$$E = \{(v, u) \mid |v \cap u| = m - 1, v, u \in V\},\$$

is represented into \mathbb{R}^{n-1} as the *m*-distance set $\tilde{J}(n,m) = L_{0,n-m,m}$. Indeed $\tilde{J}(n,m) \subset \mathbb{R}^n$, but the summation of all entries of any $x \in \tilde{J}(n,m)$ is *m*, and $\tilde{J}(n,m)$ is on a hyperplane isometric to \mathbb{R}^{n-1} . Bannai, Sato, and Shigezumi [1] investigated *m*-distance sets containing $\tilde{J}(n,m)$. In their paper, for $m \leq 5$ and any *n*, the largest *m*-distance sets containing $\tilde{J}(n,m)$ are classified except for (n,m) = (9,4). In this section, the case (n,m) = (9,4) will be classified.

The set of Euclidean distances of two distinct points of $\tilde{J}(9,4)$ is $\{\sqrt{2}, \sqrt{4}, \sqrt{6}, \sqrt{8}\}$. The set of vectors which can be added to $\tilde{J}(9,4)$ while maintaining 4-distance is the union of the following sets [1].

$$\begin{aligned} X^{(i)} &= \left(\left(\frac{2}{3}\right)^7, \left(-\frac{1}{3}\right)^2 \right)^P, \qquad X^{(ii)} = \left(\left(\frac{2}{3}\right)^8, -\frac{4}{3} \right)^P, \\ X^{(iii)} &= \left(\frac{4}{3}, \left(\frac{1}{3}\right)^8\right)^P, \qquad X^{(iv)} = \left(\left(\frac{4}{3}\right)^2, \left(\frac{1}{3}\right)^6, -\frac{2}{3} \right)^P, \end{aligned}$$

where the exponents inside indicate the number of occurrences of the corresponding numbers, and the exponent P outside indicates that we should take every permutation. They conjectured that $\tilde{J}(9,4) \cup X^{(i)} \cup X^{(iii)} \cup \{(-4/3,(2/3)^8)\} \cup X^{(iv)'}$ is largest, where $(-4/3,(2/3)^8) \in X^{(ii)}$, and

$$X^{(iv)'} = \left\{ (x_1, \dots, x_9) \in X^{(iv)} \mid x_i = -\frac{2}{3}, x_{j_1} = \frac{4}{3}, x_{j_2} = \frac{4}{3}, i < j_1, j_2 \right\}$$
$$\cup \left\{ \left(\left(\frac{1}{3}\right)^6, \frac{4}{3}, -\frac{2}{3}, \frac{4}{3} \right), \left(\left(\frac{1}{3}\right)^6, \left(\frac{4}{3}\right)^2, -\frac{2}{3} \right) \right\}.$$

Actually $X^{(iv)'}$ is isometric to X_6 in Section 2 by replacing -2/3, 1/3, 4/3 to -1, 0, 1, respectively. Let $X^{(iv)''}$ (*resp.* $X^{(iv)'''}$) be the set obtained from Y_6 (*resp.* Z_6) by the same manner. Using Theorem 2.5, we can classify the largest 4-distance sets containing $\tilde{J}(9, 4)$.

Theorem 3.1. Let $X \subset \{(x_1, \ldots, x_9) \in \mathbb{R}^9 \mid x_1 + \cdots + x_9 = 1\}$ be a 4-distance set which contains $\tilde{J}(9, 4)$. Then we have

$$|X| \le 258.$$

If equality holds, then X is one of the following, up to permutations of coordinates.

- (1) $\tilde{J}(9,4) \cup X^{(i)} \cup X^{(iii)} \cup \{(-4/3,(2/3)^8)\} \cup X^{(iv)'},$
- (2) $\tilde{J}(9,4) \cup X^{(i)} \cup X^{(iii)} \cup \{(-4/3,(2/3)^8)\} \cup X^{(iv)''},$
- (3) $\tilde{J}(9,4) \cup X^{(i)} \cup X^{(iii)} \cup \{(-4/3,(2/3)^8)\} \cup X^{(iv)'''}.$

Proof. For any $x \in X^{(i)} \cup X^{(iii)}$, $y \in \bigcup_{j=1}^{4} X^{(j)}$, the Euclidean distance of x, y is in $\{\sqrt{2}, \sqrt{4}, \sqrt{6}, \sqrt{8}\}$, and hence X may contain $X^{(i)} \cup X^{(iii)}$. The set $X^{(iv)}$ is isometric to L_{162} by replacing -2/3, 1/3, 4/3 to -1, 0, 1, respectively. Therefore the largest subsets of $X^{(iv)}$ with distances $\{\sqrt{2}, \sqrt{4}, \sqrt{6}, \sqrt{8}\}$ are $X^{(iv)'}$, $X^{(iv)''}$, and $X^{(iv)'''}$, up to permutations of coordinates. If X does not contain any element of $X^{(ii)}$, then

$$|X| \le |\tilde{J}(9,4) \cup X^{(i)} \cup X^{(iii)}| + |X^{(iv)'}| = 257.$$

If X contains $x \in X^{(ii)}$ with $x_i = -4/3$, then X cannot contain $y \in X^{(iv)}$ with $y_i = 4/3$. By re-ordering the vectors, we may assume that the set

$$X^{(ii)}(t) = \{ x \in X^{(ii)} \mid x_i = -4/3, \exists i \in \{1, \dots, t\} \}$$

is in X for some t. Clearly, from the definition of $X^{(ii)}(t)$, this set must have size t. For t = 7, 8, 9, X contains at most one element of $X^{(iv)}$, and hence

$$|X| \le |\tilde{J}(9,4) \cup X^{(i)} \cup X^{(iii)}| + t + 1 \le 181.$$

If the set $X^{(ii)}(t)$ is in X for $1 \le t \le 6$, then consider the set of vectors in $X \cap X^{(iv)}$ in which the entry 1/3 occurs in all of the first t positions. The final 9 - t entries of one of these vectors forms a vector from $L_{1,6-t,2}$; no two vectors in this set can be at the maximum distance. Thus the size of

$$|\{x \in X \cap X^{(iv)} \mid x_i = 1/3, \forall i \in \{1, \dots, t\}\}|$$

is bounded by \mathfrak{M}_{6-t} . It is clear that

$$|\{x \in X \cap X^{(iv)} \mid x_i = -2/3, x_{j_1} = 4/3, x_{j_2} = 4/3, \\ \exists i \in \{1, \dots, t\}, \exists j_1, j_2 \in \{t+1, \dots, 9\}\}|$$

is bounded by $t\binom{9-t}{2}$. Thus, for $1 \le t \le 6$, we have

$$|X| \le |\tilde{J}(9,4) \cup X^{(i)} \cup X^{(iii)}| + t + \mathfrak{M}_{6-t} + t \binom{9-t}{2}$$
$$= \frac{t^3}{3} - \frac{9t^2}{2} + \frac{31t}{6} + 257 \le 258,$$

and equality holds only if t = 1. The sets attaining this bound are only the three sets in the statement.

4 Remarks on other M_{mkl}

Actually it is hard to determine M_{mkl} for other (m, k, l) by a similar manner in Section 2. Fix m, l, where m < l. By Proposition 2.2, if $k \le l - m$, then $M_{mkl} = \binom{n-1}{m+k-1}\binom{m+k}{m}$. In general there are many largest sets for k = l - m. For k > l - m, we can inductively construct a large set $X_k \subset L_{mkl}$ satisfying $D(X_k) < D(L_{mkl})$ as follows

$$X_k = \{(0, x') \mid x' \in X_{k-1}\} \cup \{(x_1, \dots, x_n) \in L_{mkl} \mid x_1 = -1\},\$$

where X_{l-m} is a largest set for k = l - m. Therefore we have

$$M_{mkl} \ge \mathfrak{M}_{mkl} := \binom{m+l-1}{m-1} \binom{k+m+l}{m+l} + \binom{m+l-1}{m}$$

We can generalize Lemma 2.3 as follows.

Lemma 4.1. Let $X \subset L_{mkl}$ with $D(X) \leq D(L_{mkl})$. Suppose $k \geq m \binom{m+l}{m} - m - l + 1$, and $|X| \geq \mathfrak{M}_{mkl}$. Then there exists $i \in \{1, \ldots, n\}$ such that $n_i(X, 0) \geq \mathfrak{M}_{m,k-1,l}$.

Proof. This lemma is immediate because the average of $n_i(X, 0)$ is

$$\frac{1}{n}\sum_{i=1}^{n}n_{i}(X,0) = \frac{k|X|}{m+k+l} \ge \frac{k\mathfrak{M}_{mkl}}{m+k+l}$$
$$= \mathfrak{M}_{m,k-1,l} - \frac{m+l}{m+k+l}\binom{m+k+l}{l} > \mathfrak{M}_{k-1} - 1. \quad \Box$$

In the manner of Section 2, it is hard to classify M_{mkl} for $m - l + 1 \le k \le m {\binom{m+l}{m}} - m - l$. Moreover it seems to be difficult to give matchings, like Matching (i) or (ii), of many possibilities of X_k . We need another idea to determine other M_{mkl} .

5 Acknowledgments

The authors thank Sho Suda for providing useful information.

References

- [1] E. Bannai, T. Sato and J. Shigezumi, Maximal *m*-distance sets containing the representation of the Johnson graph J(n, m), Discrete Math. **312** (2012), 3283–3292, doi:10.1016/j.disc.2012.07. 028, http://dx.doi.org/10.1016/j.disc.2012.07.028.
- [2] P. Borg, Intersecting families of sets and permutations: a survey, *Int. J. Math. Game Theory* Algebra **21** (2012), 543–559 (2013).
- [3] P. Delsarte, J. M. Goethals and J. J. Seidel, Spherical codes and designs, *Geometriae Dedicata* 6 (1977), 363–388.
- [4] M. Deza and P. Frankl, Every large set of equidistant (0, +1, -1)-vectors forms a sunflower, *Combinatorica* 1 (1981), 225–231, doi:10.1007/BF02579328, http://dx.doi.org/10. 1007/BF02579328.
- [5] M. Deza and P. Frankl, Erdős-Ko-Rado theorem—22 years later, SIAM J. Algebraic Discrete Methods 4 (1983), 419–431, doi:10.1137/0604042, http://dx.doi.org/10.1137/ 0604042.
- [6] M. Deza and P. Frankl, On t-distance sets of (0, ±1)-vectors, *Geom. Dedicata* 14 (1983), 293–301, doi:10.1007/BF00146909, http://dx.doi.org/10.1007/BF00146909.
- [7] M. Deza and P. Frankl, Bounds on the maximum number of vectors with given scalar products, *Proc. Amer. Math. Soc.* **95** (1985), 323–329, doi:10.2307/2044537, http://dx.doi.org/ 10.2307/2044537.

- [8] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, *Quart. J. Math. Oxford Ser.* (2) **12** (1961), 313–320.
- [9] P. Frankl, The shifting technique in extremal set theory, in: Surveys in combinatorics 1987 (New Cross, 1987), Cambridge Univ. Press, Cambridge, volume 123 of London Math. Soc. Lecture Note Ser., pp. 81–110, 1987.