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Abstract

Let Lmkl ⊂ Rm+k+l be the set of vectors which have m of entries −1, k of entries 0,
and l of entries 1. In this paper, we investigate the largest subset of Lmkl whose diameter
is smaller than that of Lmkl. The largest subsets for m = 1, l = 2, and any k will
be classified. From this result, we can classify the largest 4-distance sets containing the
Euclidean representation of the Johnson scheme J(9, 4). This was an open problem in
Bannai, Sato, and Shigezumi (2012).

Keywords: The Erdős–Ko–Rado theorem, s-distance set, diameter graph, independent set, extremal
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1 Introduction
The famous theorem in Erdős–Ko–Rado [8] stated that for n ≥ 2k and a family A of k-
element subsets of In = {1, . . . , n}, if any two distinct A,B ∈ A satisfy A ∩ B 6= ∅,
then

|A| ≤
(
n− 1

k − 1

)
.

For n > 2k, the set {A ⊂ In | |A| = k, 1 ∈ A} is the unique family achieving equality, up
to permutations on In. For n = 2k, the largest set is any family which contains only one
of A or In \ A for any k-element A ⊂ In. This result plays a central role in extremal set
theory, and similar or analogous theorems are proved for various objects [2, 5, 9].
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We can naturally interpret A ⊂ In as x = (x1, . . . , xn) ∈ Rn by the manner xi = 1
if i ∈ A, xi = 0 if i 6∈ A. By this identification, the Erdős–Ko–Rado Theorem can be
rewritten that for n ≥ 2k and a subset X of Lk = {x ∈ Rn | xi ∈ {0, 1},

∑
xi = k} if

any distinct x, y ∈ X satisfy d(x, y) < D(Lk) =
√
2k, then

|X| ≤
(
n− 1

k − 1

)
,

where d(, ) is the Euclidean distance, and D(Lk) is the diameter of Lk. We would like to
consider the following problem to generalize the Erdős–Ko–Rado Theorem.

Problem 1.1. Let Lmkl ⊂ Rm+k+l be the set of vectors which have m of entries −1, k of
entries 0, and l of entries 1. Classify the largest X ⊂ Lmkl with D(X) < D(Lmkl).

It is almost obvious for the cases m = l (Proposition 2.1) and m + k ≤ l (Propo-
sition 2.2). In this paper, we solve the first non-trivial case m = 1, l = 2 and any k
(Theorem 2.5). Using the largest sets for the case (m, k, l) = (1, 6, 2), we can classify
the largest 4-distance sets containing the Euclidean representation of the Johnson scheme
J(9, 4). This was an open problem in [1].

We will give a brief survey on related results. Let Lnm be the set of (0,±1)-vectors
in Rn which have m non-zero coordinates. For a fixed set D of integers, let V (n,m,D)
be the family of subsets V = {v1, . . . , vk} of Lnm such that (vi, vj) ∈ D for any i 6= j.
There are several results relating to the largest sets in V (n,m,D) for some (n,m,D)
[4, 6, 7]. Since X ⊂ Lnm is on a sphere, if |D| = s holds, then |X| ≤

(
n+s−1

s

)
+
(
d+s−2
s−1

)
[3]. The case D = {d} is investigated in [4]. For non-negative integers d < m, t ≥ 2,
and n > n0(m) (see [4] about n0(m)), if X ∈ V (n,m, {d, d + 1, . . . , d + t − 1}),
then |X| ≤

(
n−d
t

)
/
(
m−d
t

)
[6]. This equality can be attained whenever a Steiner system

S(n − d,m − d, t) (equivalently t-(n − d,m − d, 1) design) exists . We also have if
X ∈ V (n,m, {−(t− 1),−(t− 2), . . . , t− 1}), then |X| ≤ 2t−1(m− t+ 1)

(
n
t

)
/
(
m
t

)
[7].

When m = t+ 1, this equality can be attained whenever a Steiner system S(n,m,m− 1)
exists.

2 Largest subsets avoiding the diameter of Lmkl

Let Lmkl denote the finite set in Rn = Rm+k+l, which consists of all vectors whose num-
ber of entries −1, 0, 1 is equal to m, k, l, respectively. For two subsets X,Y of Lmkl, X is
isomorphic to Y if there exists a permutation σ ∈ Sn such that X = {(yσ(1), . . . , yσ(n)) |
(y1, . . . , yn) ∈ Y }. The diameter D(X) of X ⊂ Rn is defined to be

D(X) = max{d(x, y) | x, y ∈ X},

where d(, ) is the Euclidean distance. Let Mmkl denote the largest possible number of
cardinalities of X ⊂ Lmkl such that D(X) < D(Lmkl). The diameter graph of X ⊂ Rn
is defined to be the graph (X,E), where E = {(x, y) | d(x, y) = D(X)}. The problem of
determining Mmkl is equivalent to determining the independence number of the diameter
graph of Lmkl. Note that Mmkl = Mlkm because we have Lmkl = −Llkm = {−x | x ∈
Llkm}. Thus we may assume m ≤ l. In this section, we determine Mmkl, and classify the
largest sets for several cases of m, k, l.

First we determine Mmkl for the cases m = l and m+ k ≤ l.
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Proposition 2.1. Assume m = l. Then we have

Mmkl =
1

2

(
n

m

)(
k +m

m

)
=

1

2
|Lmkl|,

and the largest sets contain only one of x or −x for any x ∈ Lmkl.

Proof. For any x ∈ Lmkl, we have {y | d(x, y) = D(Lmkl)} = {−x}. Therefore the
diameter graph of Lmkl is the set of independent edges. The proposition can be easily
proved from this fact.

For X ⊂ Lmkl, we use the notation

Ni(X, j) = {(x1, . . . , xn) ∈ X | xi = j}, and ni(X, j) = |Ni(X, j)|.

Proposition 2.2. Assume m+ k ≤ l. Then we have

Mmkl =

(
n− 1

m+ k − 1

)(
m+ k

m

)
.

For m + k > l, the largest set is N1(Lmkl,−1) ∪ N1(Lmkl, 0), up to isomorphism. For
m+ k = l, then the largest sets contain only one of {(x1, . . . , xn) ∈ Lmkl | xi = 1,∀i ∈
J} or {(x1, . . . , xn) ∈ Lmkl | xi = 1,∀i ∈ In \ J} for any J ⊂ In of order l.

Proof. A finite subset X of Lmkl satisfies D(X) < D(Lmkl) if and only if {i | xi =
−1, 0} ∪ {i | yi = −1, 0} is not empty for any distinct (x1, . . . , xn), (y1, . . . , yn) ∈ X .
We can therefore apply the Erdős–Ko–Rado Theorem [8] to determine the positions of
entries −1 or 0. The number of possible positions of −1, 0 is

(
n−1

m+k−1
)
. After fixing the

position, −1, 0 can be placed in
(
m+k
k

)
ways. This determines Mmkl. The largest sets are

classified from the optimal sets of the Erdős–Ko–Rado Theorem.

The remaining part of this section is devoted to proving

M1k2 = Mk =

(
k + 3

3

)
+ 2,

and determining the classification of the largest sets. Note that D(L1k2) =
√
10 and if

X ⊂ L1k2 satisfies D(X) < D(L1k2), then D(X) ≤
√
8. The following two lemmas are

used later.

Lemma 2.3. Let X ⊂ L1k2 with D(X) < D(L1k2). Suppose k ≥ 4, and |X| ≥ Mk.
Then there exists i ∈ {1, . . . , n} such that ni(X, 0) ≥Mk−1.

Proof. This lemma is immediate because the average of ni(X, 0) is

1

n

n∑
i=1

ni(X, 0) =
k|X|
k + 3

≥ kMk

k + 3
= Mk−1 −

6

k + 3
>Mk−1 − 1.

Lemma 2.4. Let G = (V,E) be a connected simple graph, and E′ a matching in G.
Assume that G has an independent set I of size |V | − |E′|. Then for z ∈ I if x ∈ V
satisfies (x, y) ∈ E′ for some y adjacent to z, then x ∈ I .
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Proof. Since the cardinality of I is |V |− |E′|, only one of x or y is an element of I for any
(x, y) ∈ E′. By assumption, y 6∈ I , and hence x ∈ I .

The subsets Sk(i), Tk(i), Uk(i) of L1k2 are defined by

Sk(i) = {(x1, . . . , xn) ∈ L1k2 | x1 = · · · = xi−1 = 0, xi = −1},
Tk(i) = {(x1, . . . , xn) ∈ L1k2 | x1 = · · · = xi−1 = 0, xi = 1},

Uk(i) =

{
(x1, . . . , xn) ∈ L1k2 |

x1 = 1, xl = −1, xj = 1,
∃l ∈ {2, . . . , i},∃j ∈ {l + 1, . . . , n}

}
for i = 2, . . . , k + 2. We define Sk(1) = N1(L1k2,−1), and Tk(1) = N1(L1k2, 1). The
following are candidates of the largest subsets avoiding the largest distance

√
10.

Xk = Tk(k + 1) ∪ (

k+1⋃
i=1

Sk(i)) for k ≥ 1,

Y1 = T1(1), Yk = Tk(k) ∪ (

k−1⋃
i=1

Sk(i)) for k ≥ 2,

Z2 = T2(1), Zk = Tk(k − 1) ∪ (

k−2⋃
i=1

Sk(i)) for k ≥ 3.

Note that |Xk| = |Yk| = |Zk| = Mk, and they can be inductively constructed by

Xk = {(0, x) | x ∈ Xk−1} ∪N1(L1k2,−1),
Yk = {(0, x) | x ∈ Yk−1} ∪N1(L1k2,−1),
Zk = {(0, x) | x ∈ Zk−1} ∪N1(L1k2,−1).

We also use the following notation.

X ′k = Xk \ Sk(1) = {(0, x) | x ∈ Xk−1} (k ≥ 2),

Y ′k = Yk \ Sk(1) = {(0, x) | x ∈ Yk−1} (k ≥ 2),

Z ′k = Zk \ Sk(1) = {(0, x) | x ∈ Zk−1} (k ≥ 3).

Theorem 2.5. Let X ⊂ L1k2 with D(X) < D(L1k2). Then we have

|X| ≤Mk.

If equality holds, then

(1) for k = 1, X = X1, or Y1,

(2) for k ≥ 2, X = Xk, Yk, or Zk,

up to isomorphism.

This theorem will be proved by induction. We first prove the inductive step.

Lemma 2.6. Let k ≥ 2. Assume that the statement in Theorem 2.5 holds for some k − 1.
Let X ⊂ L1k2 with D(X) < D(L1k2), such that ni(X, 0) = Mk−1 for some i. Then we
have |X| ≤Mk. If equality holds, then X = Xk, Yk, or Zk, up to isomorphism.
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Proof. Without loss of generality, n1(X, 0) = Mk−1, and hence X contains X ′k, Y ′k , or
Z ′k for k ≥ 3, and X ′1, or Y ′1 for k = 2.

(i) Suppose X ′k ⊂ X for k ≥ 2. The set of other candidates of elements of X is
Sk(1) ∪ Uk(k). The diameter graph G of Sk(1) ∪ Uk(k) is a bipartite graph of the partite
sets Sk(1) and Uk(k). Since the three elements

(−1, 0, . . . , 0, 0, 1, 1), (−1, 0, . . . , 0, 1, 0, 1), (−1, 0, . . . , 0, 1, 1, 0) ∈ Sk(1)

are isolated vertices inG, they may be contained inX . LetG′ be the subgraph ofG formed
by removing the three isolated vertices. A perfect matching of G′ is given as follows.

Matching (i)
Sk(1) Uk(k)

(−1, x2, . . . , xk+3) (1, y2, . . . , yk+3)
xi = 1, xj = 1 (2 ≤ i ≤ k, i < j < n) yi = −1, yj+1 = 1

xi = 1, xn = 1 (2 ≤ i ≤ k) yi = −1, yi+1 = 1

By this matching, we can show

|X| ≤Mk−1 + |Sk(1)| = Mk.

We will classify the sets attaining this bound. First assume that x ∈ X for some
x ∈ Sk(1) with x2 = 1. By Lemma 2.4, X must contain any x ∈ Sk(1) with x2 = 1. In
particular, (−1, 1, 1, 0, . . . , 0) ∈ X . Using Lemma 2.4 again, X must contain x ∈ Sk(1)
with x3 = 1. By a similar manner, X must contain any x ∈ Sk(1). Therefore X = Xk.

Assume X does not contain any x ∈ Sk(1) with x2 = 1, namely n2(X, 1) = 0. By
assumption, we have

|X| = n2(X,−1) + n2(X, 0) ≤
(
k + 2

2

)
+Mk−1 = Mk.

If |X| = Mk, then we have n2(X,−1) =
(
k+2
2

)
and n2(X, 0) = Mk−1. This implies that

X is isomorphic to Xk, Yk, or Zk.
(ii) Suppose Y ′k ⊂ X for k ≥ 2. The set of other candidates of elements of X is the

union of Sk(1), Uk(k − 1), and

S1 = {(x1, . . . , xk+3) ∈ L1k2 | x1 = 1, xk = 1, xj = −1, k < j}

for k ≥ 3, and S2(1) ∪ S1 for k = 2. The diameter graph G of Sk(1) ∪ Uk(k − 1) ∪ S1 is
a bipartite graph of the partite sets Sk(1) and Uk(k − 1) ∪ S1. Since the three elements

(−1, 0, . . . , 0, 1, 1, 0, 0), (−1, 0, . . . , 0, 1, 0, 1, 0), (−1, 0, . . . , 0, 1, 0, 0, 1) ∈ Sk(1)

are isolated vertices inG, they may be contained inX . LetG′ be the subgraph ofG formed
by removing the three isolated vertices. A perfect matching of G′ is given as follows.

Matching (ii)
Sk(1) Uk(k − 1)

(−1, x2, . . . , xk+3) (1, y2, . . . , yk+3)
xi = 1, xj = 1 (2 ≤ i ≤ k − 1, i < j < n) yi = −1, yj+1 = 1

xi = 1, xn = 1 (2 ≤ i ≤ k − 1) yi = −1, yi+1 = 1
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Sk(1) S1
(−1, 0, . . . , 0, 1, 1, 0) (1, 0, . . . , 0, 1,−1, 0, 0)
(−1, 0, . . . , 0, 0, 1, 1) (1, 0, . . . , 0, 1, 0,−1, 0)
(−1, 0, . . . , 0, 1, 0, 1) (1, 0, . . . , 0, 1, 0, 0,−1)

By this maching, we can show |X| ≤Mk.
We will classify the sets attaining this bound. For k = 2, the maximum indepdent sets

of G′ is {(−1, 0, 0, 1, 1), (−1, 0, 1, 0, 1), (−1, 0, 1, 1, 0)} ⊂ S2(1) or S1. This implies that
X = Y2 or Z2. For k ≥ 3, we assume that x ∈ X for some x ∈ Sk(1) with x2 = 1. By
Lemma 2.4, X must contain any x ∈ Sk(1). Therefore X = Yk. If X does not contain any
x ∈ Sk(1) with x2 = 1, namely n2(X, 1) = 0. It can be proved that X is isomorphic to
Xk, Yk, or Zk.

(iii) Suppose k ≥ 3, and Z ′k ⊂ X . The set of other candidates of elements of X is the
union of Sk(1), Uk(k − 2), and

S2 = {(x1, . . . , xk+3) ∈ L1k2 | x1 = 1, xk−1 = 1, xj = −1, k < j}

for k ≥ 4, and S3(1) ∪ S2 for k = 3. The diameter graph G of Sk(1) ∪ Uk(k − 2) ∪ S2 is
a bipartite graph of the partite sets Sk(1) and Uk(k − 2) ∪ S2. Since the four vectors

(−1, 0, . . . , 0, 1, 1, 0, 0, 0), (−1, 0, . . . , 0, 1, 0, 1, 0, 0),
(−1, 0, . . . , 0, 1, 0, 0, 1, 0), (−1, 0, . . . , 0, 1, 0, 0, 0, 1) ∈ Sk(1)

are isolated vertices inG, they may be contained inX . LetG′ be the subgraph ofG formed
by removing the four isolated vertices. A maximum matching of G′ is given as follows.

Matching (iii)
Sk(1) Uk(k − 2)

(−1, x2, . . . , xk+3) (1, y2, . . . , yk+3)
xi = 1, xj = 1 (2 ≤ i ≤ k − 2, i < j < n) yi = −1, yj+1 = 1

xi = 1, xn = 1 (2 ≤ i ≤ k − 2) yi = −1, yi+1 = 1

Sk(1) S2
(−1, 0, . . . , 0, 1, 1, 0, 0) (1, 0, . . . , 0, 1,−1, 0, 0, 0)
(−1, 0, . . . , 0, 0, 1, 1, 0) (1, 0, . . . , 0, 1, 0,−1, 0, 0)
(−1, 0, . . . , 0, 0, 0, 1, 1) (1, 0, . . . , 0, 1, 0, 0,−1, 0)
(−1, 0, . . . , 0, 1, 0, 0, 1) (1, 0, . . . , 0, 1, 0, 0, 0,−1)

Note that the two vectors

(−1, 0, . . . , 0, 1, 0, 1, 0), (−1, 0, . . . , 0, 0, 1, 0, 1) ∈ Sk(1) (2.1)

are unmatched in this matching. By this matching, we can show |X| ≤Mk.
We will classify the sets attaining this bound. If |X| = Mk, then the two vectors

in (2.1) must be contained in X . Therefore X does not contain any element of S2, and
contains an element of Sk(1) which matches some element of S2. For k = 3, X therefore
contains Sk(1), and X = Z3. For k ≥ 4, we assume that x ∈ X for some x ∈ Sk(1) with
x2 = 1. By Lemma 2.4, X must contain any x ∈ Sk(1). Therefore X = Zk. If X does
not contain any x ∈ Sk(1) with x2 = 1, namely n2(X, 1) = 0. Therefore X is isomorphic
to Xk, Yk, or Zk.
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Matchings (i)–(iii) and the notation S1, S2 defined in the proof of Lemma 2.6 are used
again later. The base case in the induction is the case k = 3. We will prove the cases
k = 1, 2, 3 in order.

Proposition 2.7. Let X ⊂ L112 with D(X) < D(L112). Then we have

|X| ≤M1 = 6.

If equality holds, then X = X1, or Y1, up to isomorphism.

Proof. Since the diameter graph G of L112 is isomorphic to C4 ∪ C4 ∪ C4, where C4 is
the 4-cycle, the bound |X| ≤ 6 clearly holds. Considering the permutation of coordinates,
G has the automorphism group S4. Since the stabilizer of X1 in S4 is of order 6, the orbit
of X4 has length 4. Similarly the orbit of Y1 has length 4. Since the number of maximum
independent sets of G is 23 = 8, this proposition follows.

For k = 2, we also classify (M2 − 1)-point sets X with D(X) < D(L122) in order to
prove the case k = 3.

Proposition 2.8. Let X ⊂ L122 with D(X) < D(L122). Then we have

|X| ≤M2 = 12.

If |X| = 12, then X = X2, Y2, or Z2, up to isomorphism. If |X| = 11, then X is

V2 = X ′2 ∪ {(−1, 0, 0, 1, 1), (−1, 0, 1, 0, 1), (−1, 0, 1, 1, 0),
(−1, 1, 1, 0, 0), (1,−1, 1, 0, 0)},

W2 = Y ′2 ∪ {(−1, 1, 1, 0, 0), (−1, 1, 0, 1, 0), (−1, 1, 0, 0, 1),
(−1, 0, 0, 1, 1), (1, 1,−1, 0, 0)},

or the set obtained by removing a point from X2, Y2, or Z2, up to isomorphism.

Proof. First suppose ni(X, 0) = 6 for some i. Then we have |X| ≤ 12, and X with
|X| = 12 is X2, Y2, or Z2 by Lemma 2.6. In order to find X with |X| = 11, we consider
5-point independent sets in the diameter graph of S2(1) ∪U2(2) or S2(1) ∪U2(1) ∪ S1. If
X is not isomorphic to a subset of X2, Y2, or Z2, then X = V2 from S2(1) ∪ U2(2), and
X =W2 from S2(1) ∪ U2(1) ∪ S1.

Suppose ni(X, 0) ≤ 5 for any i. If |X| ≥ 11, then the average of ni(X, 0) is greater
than 4. Without loss of generality, we may assume n1(X, 0) = 5. Since the diameter graph
of L112 is C4 ∪ C4 ∪ C4, we can show that X contains a 5-point subset of X ′2 or Y ′2 .

(i) SupposeX contains a 5-point subset ofX ′2. By considering the automorphism group
of X ′2, we may assume X contains the 5-point subset obtained by removing (0,−1, 0, 1, 1)
or (0, 0,−1, 1, 1). First assume that X contains the 5-point subset obtained by removing
(0,−1, 0, 1, 1). Since other candidates of elements of X are still in S2(1) ∪ U2(2), we
have |X| ≤ 11, and if |X| = 11, then X is isomorphic to a subset of X2, Y2, or Z2.
Assume that X contains the 5-point subset obtained by removing (0, 0,−1, 1, 1). The set
of other candidates of elements of X is S2(1) ∪ U2(2) ∪ {(1, 0, 1,−1, 0), (1, 0, 1, 0,−1)}.
If X does not contain both (1, 0, 1,−1, 0) and (1, 0, 1, 0,−1), then |X| ≤ 11, and X
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attaining this bound is isomorphic to a subset of X2, Y2, or Z2. To make a new set, X may
contain (1, 0, 1,−1, 0). The two vectors (−1, 1, 0, 1, 0), (−1, 0, 0, 1, 1) ∈ S2(1), which are
at distance

√
10 from (1, 0, 1,−1, 0), are not contained in X . The set P1 consisting of the

two isolated vertices
(−1, 0, 1, 0, 1), (−1, 0, 1, 1, 0) ∈ S2(1)

and 6 points

(−1, 1, 1, 0, 0), (−1, 1, 0, 0, 1), (1,−1, 1, 0, 0),
(1,−1, 0, 1, 0), (1,−1, 0, 0, 1), (1, 0, 1, 0,−1)

has the unique maximum 6-point independent set{
(−1, 0, 1, 0, 1), (−1, 0, 1, 1, 0), (1,−1, 1, 0, 0),
(1,−1, 0, 1, 0), (1,−1, 0, 0, 1), (1, 0, 1,−1, 0)

}
,

which gives X isomorphic to Y2, and n2(X, 0) = 6. If X contains a 5-point independent
set in P1 and is not isomorphic to a subset of Y2, then X contains the 5-point independent
set

{(−1, 0, 1, 0, 1), (−1, 0, 1, 1, 0), (−1, 1, 1, 0, 0), (1,−1, 1, 0, 0), (1, 0, 1, 0,−1)}.

Then X is isomorphic to W2 and n2(X, 0) = 6.
(ii) SupposeX contains a 5-point subset of Y ′2 . By considering the automorphism group

of Y ′2 , we may assume X contains the 5-point subset obtained by removing (0, 1,−1, 0, 1).
The set of other candidates of elements of X is S2(1) ∪ S1 ∪ {(1, 0, 1, 0,−1)}. To make a
new set, X may contain (1, 0, 1, 0,−1). The two vectors (−1, 1, 0, 0, 1), (−1, 0, 0, 1, 1) ∈
S2(1), which are at distance

√
10 from (1, 0, 1, 0,−1), are not contained in X . The set

consisting of the two isolated vertices

(−1, 1, 1, 0, 0), (−1, 1, 0, 1, 0) ∈ S2(1)

and 5 points

(−1, 0, 1, 1, 0), (−1, 0, 1, 0, 1), (1, 1,−1, 0, 0), (1, 1, 0,−1, 0), (1, 1, 0, 0,−1)

has the unique maximum 5-point independent set

{(−1, 1, 1, 0, 0), (−1, 1, 0, 1, 0), (1, 1,−1, 0, 0), (1, 1, 0,−1, 0), (1, 1, 0, 0,−1)},

which gives X is isomorphic to a subset of Z2.

Proposition 2.9. Let X ⊂ L132 with D(X) < D(L132). Then we have

|X| ≤M3 = 22.

If equality holds, then X = X3, Y3, or Z3, up to isomorphism.

Proof. If ni(X, 0) = 12 for some i, then we have |X| ≤ 22, and the set attaining this
bound is X3, Y3, or Z3 by Lemma 2.6.
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Suppose ni(X, 0) ≤ 11 for any i. If |X| > 22, then the average of ni(X, 0) is greater
than 11, which gives a contradiction. Therefore |X| ≤ 22, and if |X| = 22, then the
average of ni(X, 0) is 11, and ni(X, 0) = 11 for any i. By Proposition 2.8, X may contain

V ′3 = {(0, v) ∈ L132 | v ∈ V2},

W ′3 = {(0, w) ∈ L132 | w ∈W2},

or an 11-point set obtained by removing a point from X ′3, Y ′3 , or Z ′3.
(i) Suppose X contains an 11-point subset of X ′3. By considering the automorphism

group of X ′3, X may contain the set in X ′3 obtained by removing (0,−1, 0, 0, 1, 1), (0,−1,
1, 1, 0, 0), (0, 0,−1, 0, 1, 1), or (0, 0, 0,−1, 1, 1). IfX contains the setX ′3 with (0,−1, 0, 0,
1, 1), (0,−1, 1, 1, 0, 0), or (0, 0,−1, 0, 1, 1) removed, then the set of other candidates of X
is still S3(1)∪U3(3), and |X| < 22. SupposeX contains the setX ′3 with (0, 0, 0,−1, 1, 1)
removed. Then new candidates of vectors of X are only (1, 0, 0, 1,−1, 0) and (1, 0, 0, 1, 0,
−1), and X may contain (1, 0, 0, 1,−1, 0). The three vectors (−1, 1, 0, 0, 1, 0), (−1, 0, 1,
0, 1, 0), and (−1, 0, 0, 0, 1, 1), which are at distance

√
10 from (1, 0, 0, 1,−1, 0), are not

contained inX . Therefore by |X| = 22, the other new candidate (1, 0, 0, 1, 0,−1), and two
isolated vectors (−1, 0, 0, 1, 0, 1), and (−1, 0, 0, 1, 1, 0) must be contained inX . Moreover
a 7-point independent set must be obtained from Matching (i). Since (−1, 1, 0, 0, 1, 0) and
(−1, 0, 1, 0, 1, 0) are not contained inX , by Lemma 2.4, (1,−1, 0, 0, 0, 1) and (1, 0,−1, 0,
0, 1) must be contained in X , and consequently any element of U2(2) is contained in X .
This implies n2(X, 1) = 0, and X is isomorphic to X3, Y3, or Z3.

(ii) Suppose X contains an 11-point subset of Y ′3 . By considering the automorphism
group of Y ′3 ,X may contain the set in Y ′3 obtained by removing (0,−1, 0, 0, 1, 1), (0,−1, 1,
1, 0, 0), or (0, 0, 1,−1, 0, 1). IfX contains the set Y ′3 with (0,−1, 0, 0, 1, 1), or (0,−1, 1, 1,
0, 0) removed, then the set of other candidates of X is still S3(1) ∪ U3(2) ∪ S1, and
|X| < 22. SupposeX contains the set Y ′3 with (0, 0, 1,−1, 0, 1) removed. Then a new can-
didate of an element of X is only (1, 0, 0, 1, 0,−1), and X may contain (1, 0, 0, 1, 0,−1).
The three vectors (−1, 1, 0, 0, 0, 1), (−1, 0, 1, 0, 0, 1), and (−1, 0, 0, 0, 1, 1), which are at
distance

√
10 from (1, 0, 0, 1, 0,−1), are not contained inX . By considering Matching (ii),

we can show |X| < 22.
(iii) Suppose X contains an 11-point subset of Z ′3. By considering the automorphism

group of Z ′3, X may contain the set in Z ′3 obtained by removing (0, 1,−1, 0, 0, 1). Then a
new candidate of an element ofX is only (1, 0, 1, 0, 0,−1), andX may contain (1, 0, 1, 0, 0,
−1). The three vectors (−1, 1, 0, 0, 0, 1), (−1, 0, 0, 1, 0, 1), and (−1, 0, 0, 0, 1, 1), which
are at distance

√
10 from (1, 0, 1, 0, 0,−1), are not contained in X . By considering Match-

ing (iii), we can show |X| < 22.
(iv) Suppose X contains V ′3 . The set of other candidates of X is S3(1) ∪ U3(3) \

{(1,−1, 1, 0, 0, 0)}, and the maximum independent set is of order at most 10 by Matching
(i). Thus |X| < 22.

(v) Suppose X contains W ′3. The set of other candidates of X is S3(1) ∪ U3(2) ∪ S1 \
{(1,−1, 0, 1, 0, 0)}, and the maximum independent set is of order at most 10 by Matching
(ii). Thus |X| < 22.

Therefore this proposition follows.

Finally we prove Theorem 2.5.
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Proof of Theorem 2.5. By Propositions 2.7–2.9, the statement holds for k = 1, 2, 3. By the
inductive hypothesis and Lemma 2.3, if |X| ≥ Mk, then there exists i ∈ {1, . . . , n} such
that ni(X, 0) = Mk−1 for k ≥ 4. By Lemma 2.6, this theorem holds for any k.

3 Classification of the largest 4-distance sets which contain J̃(n, 4)

A finite set X in Rd is called an s-distance set if the set of Euclidean distances of two
distinct vectors in X has size s. The Johnson graph J(n,m) = (V,E), where

V = {{i1, . . . , im} | 1 ≤ i1 < · · · < im ≤ n, ij ∈ Z},
E = {(v, u) | |v ∩ u| = m− 1, v, u ∈ V },

is represented into Rn−1 as the m-distance set J̃(n,m) = L0,n−m,m. Indeed J̃(n,m) ⊂
Rn, but the summation of all entries of any x ∈ J̃(n,m) is m, and J̃(n,m) is on a hy-
perplane isometric to Rn−1. Bannai, Sato, and Shigezumi [1] investigated m-distance sets
containing J̃(n,m). In their paper, for m ≤ 5 and any n, the largest m-distance sets
containing J̃(n,m) are classified except for (n,m) = (9, 4). In this section, the case
(n,m) = (9, 4) will be classified.

The set of Euclidean distances of two distinct points of J̃(9, 4) is {
√
2,
√
4,
√
6,
√
8}.

The set of vectors which can be added to J̃(9, 4) while maintaining 4-distance is the union
of the following sets [1].

X(i) =

((
2

3

)7

,

(
−1

3

)2
)P

, X(ii) =

((
2

3

)8

,−4

3

)P
,

X(iii) =

(
4

3
,

(
1

3

)8
)P

, X(iv) =

((
4

3

)2

,

(
1

3

)6

,−2

3

)P
,

where the exponents inside indicate the number of occurrences of the corresponding num-
bers, and the exponent P outside indicates that we should take every permutation. They
conjectured that J̃(9, 4) ∪ X(i) ∪ X(iii) ∪ {(−4/3, (2/3)8)} ∪ X(iv)′ is largest, where
(−4/3, (2/3)8) ∈ X(ii), and

X(iv)′ =

{
(x1, . . . , x9) ∈ X(iv) | xi = −

2

3
, xj1 =

4

3
, xj2 =

4

3
, i < j1, j2

}
∪

{((
1

3

)6

,
4

3
,−2

3
,
4

3

)
,

((
1

3

)6

,

(
4

3

)2

,−2

3

)}
.

Actually X(iv)′ is isometric to X6 in Section 2 by replacing −2/3, 1/3, 4/3 to −1, 0, 1,
respectively. Let X(iv)′′ (resp. X(iv)′′′ ) be the set obtained from Y6 (resp. Z6) by the same
manner. Using Theorem 2.5, we can classify the largest 4-distance sets containing J̃(9, 4).

Theorem 3.1. Let X ⊂ {(x1, . . . , x9) ∈ R9 | x1 + · · · + x9 = 1} be a 4-distance set
which contains J̃(9, 4). Then we have

|X| ≤ 258.

If equality holds, then X is one of the following, up to permutations of coordinates.
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(1) J̃(9, 4) ∪X(i) ∪X(iii) ∪ {(−4/3, (2/3)8)} ∪X(iv)′ ,

(2) J̃(9, 4) ∪X(i) ∪X(iii) ∪ {(−4/3, (2/3)8)} ∪X(iv)′′ ,

(3) J̃(9, 4) ∪X(i) ∪X(iii) ∪ {(−4/3, (2/3)8)} ∪X(iv)′′′ .

Proof. For any x ∈ X(i) ∪ X(iii), y ∈ ∪4j=1X
(j), the Euclidean distance of x, y is in

{
√
2,
√
4,
√
6,
√
8}, and hence X may contain X(i) ∪ X(iii). The set X(iv) is isomet-

ric to L162 by replacing −2/3, 1/3, 4/3 to −1, 0, 1, respectively. Therefore the largest
subsets of X(iv) with distances {

√
2,
√
4,
√
6,
√
8} are X(iv)′ , X(iv)′′ , and X(iv)′′′ , up to

permutations of coordinates. If X does not contain any element of X(ii), then

|X| ≤ |J̃(9, 4) ∪X(i) ∪X(iii)|+ |X(iv)′ | = 257.

If X contains x ∈ X(ii) with xi = −4/3, then X cannot contain y ∈ X(iv) with
yi = 4/3. By re-ordering the vectors, we may assume that the set

X(ii)(t) = {x ∈ X(ii) | xi = −4/3,∃i ∈ {1, . . . , t}}

is in X for some t. Clearly, from the definition of X(ii)(t), this set must have size t. For
t = 7, 8, 9, X contains at most one element of X(iv), and hence

|X| ≤ |J̃(9, 4) ∪X(i) ∪X(iii)|+ t+ 1 ≤ 181.

If the set X(ii)(t) is in X for 1 ≤ t ≤ 6, then consider the set of vectors in X ∩ X(iv)

in which the entry 1/3 occurs in all of the first t positions. The final 9 − t entries of
one of these vectors forms a vector from L1,6−t,2; no two vectors in this set can be at the
maximum distance. Thus the size of

|{x ∈ X ∩X(iv) | xi = 1/3,∀i ∈ {1, . . . , t}}|

is bounded by M6−t. It is clear that

|{x ∈ X ∩X(iv) | xi = −2/3, xj1 = 4/3, xj2 = 4/3,

∃i ∈ {1, . . . , t},∃j1, j2 ∈ {t+ 1, . . . , 9}}|

is bounded by t
(
9−t
2

)
. Thus, for 1 ≤ t ≤ 6, we have

|X| ≤ |J̃(9, 4) ∪X(i) ∪X(iii)|+ t+M6−t + t

(
9− t
2

)
=
t3

3
− 9t2

2
+

31t

6
+ 257 ≤ 258,

and equality holds only if t = 1. The sets attaining this bound are only the three sets in the
statement.

4 Remarks on other Mmkl

Actually it is hard to determine Mmkl for other (m, k, l) by a similar manner in Section 2.
Fix m, l, where m < l. By Proposition 2.2, if k ≤ l −m, then Mmkl =

(
n−1

m+k−1
)(
m+k
m

)
.
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In general there are many largest sets for k = l −m. For k > l −m, we can inductively
construct a large set Xk ⊂ Lmkl satisfying D(Xk) < D(Lmkl) as follows

Xk = {(0, x′) | x′ ∈ Xk−1} ∪ {(x1, . . . , xn) ∈ Lmkl | x1 = −1},

where Xl−m is a largest set for k = l −m. Therefore we have

Mmkl ≥Mmkl :=

(
m+ l − 1

m− 1

)(
k +m+ l

m+ l

)
+

(
m+ l − 1

m

)
.

We can generalize Lemma 2.3 as follows.

Lemma 4.1. Let X ⊂ Lmkl with D(X) ≤ D(Lmkl). Suppose k ≥ m
(
m+l
m

)
−m− l+ 1,

and |X| ≥Mmkl. Then there exists i ∈ {1, . . . , n} such that ni(X, 0) ≥Mm,k−1,l.

Proof. This lemma is immediate because the average of ni(X, 0) is

1

n

n∑
i=1

ni(X, 0) =
k|X|

m+ k + l
≥ kMmkl

m+ k + l

= Mm,k−1,l −
m+ l

m+ k + l

(
m+ k + l

l

)
>Mk−1 − 1.

In the manner of Section 2, it is hard to classify Mmkl for m− l+1 ≤ k ≤ m
(
m+l
m

)
−

m − l. Moreover it seems to be difficult to give matchings, like Matching (i) or (ii), of
many possibilities of Xk. We need another idea to determine other Mmkl.
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