
ON CHOOSING A PLAN FOR THE EKECUTION OF
DATA FLOW PROGRAM GRAPH

INFORIVIATICA3/86

Borut Robič, Jurij Šile
Jožef Štefan Institute, Ljubljana

UDK: 681.519,7

ABSTRACT - In the paper ue present a generalized analisy5 af static data
<low progran graphs. These graphs are allowed to have nodes that use more
than one unit of tioe for their execution. Such graphs are more realisti.c
then graphs with nodes that execute in one itnit of tirne. Ue restrict our
consideration to graphs uith Integer execution times of thelr nodes. In the
paper ue first briefly describe the data flow concept of computation. Next
ue describe the baslc data flow architecture and a comnon way of the
BKecutlon of a graph on it. Ue shou that this way of the eKecution has a
drauback. In the next sections we introduce the notion of a static data
flou prograa graph and describe the state of the execution of such graph.
The State consiste of a few tirne depending sets of nodes. Ue define a plan
for the execution of a program graph uhich is the result of the analysis
of the graph nade before its execution. There are tuo special plans for the
eKecution. Infornation, obtained by these tuo plans is used for defining
the third special plan, uhich ue call the heuristic plan for the graph
execution. The execution of a graph according to this plan iiidy nlniinize
the nuober of processors needed, uithout lengthenlng the total e«ecution
ti«e of the graph. Finally, ue informally describe the algorithm for
obtaining plans for the execution.

O IZBIRANJU NAflRTA ZA IZVRŠEVANJE PODATKOVNO PRETOKOVNIH GRAFOV - V delu je
podana posplošena analiza statiCnih podatkovno pretokovnih grafov. Tofike
taksnih programskih grafov se lahko izvrSujejo poljubna celo Število
Časovnih enot. Uvodoma je opisan koncept podatkovno pretokovnega računanja.
Sledi opis znafiilne podatkovno pretokovne arhitekture ter enega izmed
oolfnih izvrševanj podatkovno pretokovnega grafa na njej. Prikazana je
slabost taksnega naiiina izvrSevanJa. Po opisu statičnega programskega grafa
sledijo definicije onoZic toflk, ki sestavljajo stanje izvrševanja grafa.
Definiran Je naCrt izvrSevanJa programskega grafa, ki Je rezultat njegove
predhodne analize. V sploSnem obstaja vefi naCrtov za izvrševanje. IzvrStve,
ki ustrezajo posaaezni« naCrtom, se razlikujejo po uporabljenem Številu
procesnih elementov in ne podaljšujejo minimalnega Časa, potrebnega za
izvršitev programskega grafa, v kolikor Je na voljo dovolj procesnih
elementov. Obstajata dva posebna naCrta za t.i. takojSnJe in leno
izvrševanje, ki v sploSnea ne ninimizirata Števila potrebnih procesnih
elementov. Ker sistematično pregledovanje vseh možnih naCrtov vodi v
kosbinantorieno eksplozijo, Je v delu predlagan hevristlCni postopek za
izbiro naCrta IzvrSevanJa, ki teži k mininizaciji Števila procesnih
elementov.

1. INTRODUCTION

A data flou systBo oomprises a user-oriented
high-level l_anguage, a low-level base langua-
ge, and a hi9hly-parallel computer architec
ture. User programs are uritten in the high-
level language and , are translated into
corresponding programs in the base language.
A base language program is a graph oomposed
of nodes interconnected via directed arcs.
Eaoh internal node is an operation and re-
presents a separate processing elemet oapable
of accepting, processing and emitting value
tokens travelling along the graph arcs. Each
operation e»ecutes only uhen ali tokens, oar-
rying operands required by that operation
have arrived. At that point the operands are
consumed by the node and neu tokens, carry-
ing results, are placed on the output aros
CC0M82D. This fundaaiental princLple permits

the graph to be napped onto a computer archi
tecture conslsting of a very large nunber of
independent processing elements and suitches,
able to connect any tuo processing elements,
making a data path betueen them. Separate
data paths can cross the suitch simultaneous-
ly CKF6S8«]. For example see Fig.1.

2. SIHULATION OF DATA FLOU ARCHITECTURE

In general not ali operations (nodes of a
graph) need to be assigned to processing
elements at the same. moment since not ali
operations have avallable ali input operands
at that moment. To make the data flou concept
possible even uithout a very large number of
processing elements data flou computers are

• J ^ . ? ^
Fig.1: In the switch lattice the squares re-
present processing eletnents, circles repre-
sent suitches, lines represent data paths.

PROCESSrNG
UNIT

. PEp
t

•. o
N

ftRV I

SECONDAHV

IX
y

Fig.2: The model of data flou machine.

usually based on a packet communication
machine organizatlon, consisting oj a circu-
lar instruction exeoution pipeline ol resour-
oes. The resources are meiiiory, arbitration,
processing and distributlon unlt. The «eoiory
unit is divlded into the primary and seoon-
dary part, the lormer beeing faster. The pro
cessing unit consists of a number of proces
sing elements (Fig,2).

Nodes, having none of their input operands
arrived reside in the seoondary ine«iory. These
are nonoreated nodes. At the moment uhen the
first input operand has arrived the node is
oreated, i.e. moved to the primary memory to
wait for the other input operands. A created
node becomes executable at the moment when
the last input operand has arrived.
Exeoutable node is ready for the execution
and may be transferred (fired) to the proces
sing unit uhere a processing element čtarts
to execute it. It is the arbitration unit
that deoides which of the nodes are e^ecuta-
ble and vhich processing elements are to be
allocated to. The plaoe in the memory unit
uhich uas occupied by that node is now set
free. While the node is beeing exeouted the
distribution unit finds out uhere the nodes
uaiting for the result are. When the result
is produced, the distribution unit send;, it
to ali nodes uaiting for it, creating iome of
them if neocessary. The node that has been
eKBCuted is now deleted.

Such exeoution raay need more processing ele
ments than there are in the processing unit.
The problem where there are more sKecutable
nodes than processing elements must be solved
during the exeoution of a graph. Ali these
nodes are exeouted in several steps implying
the lengthening the total minimum exec;utiuti
tirne of a graph. Note that after each such
step again the same problem may appear.

An anaysis of the graph before its executian
may prevent the problem discussed above. The
basio observation is that in general not ali
executable nodes have to be fired immedi-
ately, since some of tfiem may wail a pe.riod
of tirne in the memory uithout lengthening
the total iginimum execution tirne of a graph.
Analysing the graph we obtain severa! plani.
for its eKBCution, each execution having its
oun characteristic. Information oblainded b>
the plan is used by the architecture com-
ponents during the actual ext!Culion of a
graph in deciding uhich executable nodes
should be retained. The execution according
to a properly chosen plan may result in roini-
nization of some resources needed, such as
the number of processing elements. Ue point
out three special plans for the executiQn.
Execution according to the first of them is
esBentially the immediate execution, des-
oribed ahove. The execution according to the
second plan is the opposite of the immediate
execution, uhile the executian according to
the third plan often ušes minimum number of
processing elements. Executing graphs accor
ding to this plan we may avoid the problema
discussed above.

STATIC DATA FLOW PROGRAM GRAPH

There are two uays of envisaging a data ilaw
program: as a static or as a dynamic data
flow program graph. Ue limit our discussion
to static graphs. In short, static data flow
program graphs are acyclio, uhile the dynamic
are not.

13

We define a static data fSow program gi-aph
6 = (V,A), in further discussion program
graph, ta be a directed, acyc\ic, and simple
(no inultiple arcs ol the same direction bet-
ween two nodes) gL'aph. The sst V ol noJes is
partitioned into three disjoint sets Vj ,V| ,
Vp ol starting, internal and final nodes,
respectively. The starting nodes have no
input archs uhile the (inal nodes have no
output archs. Furtherinore, there oiust always
eyist a path to any internal or final node
{rosi some starting node and, similarly, a
path troB any starting or internal node to
soae final node. Starting nodes are used to
carry the input values uhile the final nodes
store the results. Internal nodes carry ope-
rations CRQfi863. The tirne of the eKScution of
a node n is t„, uhere t„ = 1 (or ali starting
and (inal nodes n.

K node n is beeing eKtouted at the
moment j we define l'<n,Vf l to be the
sum o(tbe length o(the longest path Irom
the 5et of its sons to the set o(the (inal
nodes and, the tirne neccessary (or the node n
ta finish its evecution.

4. THE STATE OF THE GRAPH EXECUTION

The Etdte of the eKecution of a graph at the
»oment j Is the quintuple Oj =(Nj , C, ,Ej ,fj , Dj)
uhere Nj , Cj ,Ej ,Fi and D, are the sets of non-
created, created, executable, eMecuting and
deleted nodes at the monent J, respectively.
There are also (ew other sets used for com-
puting the sets mentioned. The sets are des-
crlbed bellou:

.'•V:i7'!,

.-v
2 1

i n+1 '• • n + i ';

1

k 1

V

fn+r+i;
^ - .

/-r

•2n+l j

i '

Hlaz , Mheu

Fig.3: Static data (lov program gcaph.

The. length o(a path is defined to be the sum
o(,the execution tiities of the nodes along the
path. The path Irom a set o(nodes A te a set
o(nodes E is de(ined to be any path that
starts at some node o(the set A and ends at
soae node o(the set B. The longest path (rom
the set A" to the set B is a path that has
among ali the paths from the set A to the Siil
B saKioal length. The length o{ the longest
path (rom the set A to the set B is described
by 1<A,B). When the set consists o(only
one element ue substitute the set by its
element. For example, l(n,Vp) is the length
of the longest path from the node n to ' the
set of the final nod = s. Note that sinot; the
program graph as acyolic by assumption, the
lengths l(«i,nJ for any pair of nodes can
easily be computed using one of well knawn
algorithms CLaw743. The evaluation of 1(A,B)
is then trivial for any two disjoint sets of
nodes A and B.

I •

^l

(enecuted nodes) is the set of ali the
nodes fired before the moment j that
have finished their-execution at the
moment j and put their results on ali
output arcs,
(neu created nodes) is the set" jf ali
those nodes that received at ' the
moment j the first input oper and,
(old created nodes) is the set of al!
those nodes that had been created at
any of the moments before the moment j
yet did not fire until the moment j-1
including,

(created nodes) is the union of old
and new created nodes,
(new ejtecutable nodes) is the set a(
ali those nodes that have received the
last input operand at the moment j,
(old executable nodes) is the set D(
ali those nodes that had become eKecu-
table before the moment j but have not
fired until the moment j-1 including,
(enecutable nodes) is the union of the
old and neu eKecutable nodes,
(unoonditionaIly executdbifr nodes) is
the set o(ali those executable node-i
that must be fired at the moment j so
as not to lengthen the total ekeoutior-
tinej

(oonditionally executable nodesi is
the set of ali those executable nodes
that are fired at the moment j
although they oould be fired later
uithot lengthening the total execution
tirne of a graph,
(neu executing nodes) is the set of
ali the nodes that started executing
at the moment j,
(old executing nodes) is the set of
ali those nodes that had been fired
before the moment j yet have not fini
shed their excution till the moment j
including,
(executing nodes) is the union of the
old and neu executing nodes,
(noncreated nodes) is the set of ali
those nodes that have not created till
the moment j including,
(deleted nodes) is the set of ali
those nodes that executed till the mo
ment j including,
(crltical nodes) is the set oi ali
those nodes.that alluays become uncon-
dltionally enecutable at the same
monent j regardless of the plan of the
execution.

5. THE PLAN FOR THE EXECUTION

The plan of the exeoution is a supervisor
that Controls the eKecution of a program

Ef

graph. Conae()uent 1> , the plan Impl/es a
certain degree of control flou in data flow
architeoture and is realized by a time
control vector associated to each node o(a
program graph.

The plan lor the eKeoution o(a graph is de-
terained by the rule whloh selects the sets

Ej. There are two trivial plans for the ene
cution of a graph. These are a plan for inne-
diate and a plan for lazy eKeoution, The plan
for iamediate eKecution is determined by

choosing E] to consists of ali those enecuta-

ble nodes at the moment j Ihat could be fl-

red even later. The plan for the lazy enecu

tion is determined by forcing Ej to be eaipty

at ali ooinents j. Consequently, the inimediate

e«ecution fires the nodes as soon as possible
while the la2y eKecution defers firing to
the last possible moment. In gener.al, none of
these tuo eKecutions minimizes the number of
prooessing elements needed. The plan for the
eKecution that ušes minimum number of proces-
sing elements could be found by sistematic
eKaminatiun of ali possible rules for the
choosinc) tne sets E' . Sinoe ue want to avoid
the co»t)indt.ori 3! explosion we try to find a
heuristic rule sucn tnat the eKecution accor-
ding to the associated heuristic plan wouId
use the number of processing elements as
close as possible to the theoretical louei-
bound. For eKample, enecution of the graph on
Fig.3 according to the immediate plan needs
n+1 processing eleoients, since at the moment
j = 1 the node 1 is fired simultaneousIy uith
the nodes n + i, 14iin. Similarly, the la2y
plan implies the execution that tnvolves n+1
processing elements, too. Namely, at the last
step the node n is fired together uith the
nodes n + i, 1iiin. On the other hand, the
heuristic plan offers ar\ eKecution uith only
twa processing elements for at each step only
the pair of nodes k, and r*k are beeing exe-
cuted.

The plan for the heuristic eKecution uill be
discussed belou.

6. THE TIME CONTROL VECTOR

Every node n is associated uith a time con
trol VeCtor T„ = (Tc„ , tE.„ , Tfn) .

^Cn t 'E.n "̂"̂ V.n ^^^ the iiioments uhen the
node n becomes created, eKecutable and fired.
Time control vectors are camputed for each
node uhile the plan for the execution is bee
ing constructed. Sinoe ali the sets described
above are affected by the rule for choosing
the set Ej , the time control vectors depend
on 3 plan constructed. Every plan for the
eKecution has its oun set of time control
vectors. To point out that the time control
vector of a node n is coraputed according to
the plan for immediate or lazy eKecution we

t i " * urite Ti(™"or ti?'", respectively.

7. THE PLAN FOR HEURISTIC EXECUTION

7.1. CRITICAL NODES

and tl,"i = <t||"» ,i'^'„' .T̂ "̂ ") time control vec
tors of a node n according to lazy eKecuti
on. Then ue Bay that an internal node n is

crltical if TJ!;;'" = T|?̂ »

THEOREH 1.

'F.n

Every oritlcal node n is fired at the

noaent T^'„ , regardless of the plan of
the eKecution.

PROOF; tp"^ is the first possible moment uhen
the node'n can be fired, regardless oi the
plan of the execution of a program graph. On

the other hand, T|?̂ » is the last moment uhen
the node can be fired uithout lengthening the
total eKecution time, taken over a\\ possible
plane of the execution. Consequently, if n is

a critical node, then T'J TS' uhich

means, that the moment T̂ /„ is the only moment
uhen the node n can be fired in ali possible
plans of the eKecutions. O.E.O.

LEMMA 1.

There Is at least one crltical node in
the program graph.

PROOF: Let be p the longest path from the set
of starting nodes to the set of flnal nodes.
Then, in any plan of the execution the son of
starting node on the path p must be fired at
the moment j=I so as not to lengther the
total eKecution tirne. Consequently, the son
of the starting node is critical. Q.E.D.

THEOREM 2.

A node is critical If and only if it Is
on a longest path from the set of star
ting nodes to the set of flnal nodes.

PROOF 1 Let p be some longest path from the
to the set Ve By Lemma 1 the son of

™) be time control
vectors of "a nod'e n according to immediate

sat
the starting node on the path p is critical.
Nou suppose that ali flrst k > D internal
nodes n, , n2 i. .., n,, on the path p are criti
cal. Consec|uently, the flrst moment at uhich
the node nj,̂ , can be fired Is the moment

l + E-L, tn.. Slnce the node njĵ ^ is on the longest

path' from the set V^ to the set Vp this is
also the last moment, uhen it can be fired,
so as not to lengthen the total eKecution
time of the graph lmplylng that the node n,,̂ ,
is critical. Canversely, suppose a node n
is .critical. Conslder the longest path p of
the ali paths from V^ to Vp , passlng the node
n. Ue d e d n e the subpath p' of the path p tu
be the path consistlng of ali the nodes from
Vg to the father of the node n. Simllarly,
the subpath p" of the path p consists of ali
the nodes from the son of the node n to the
set Vp . Ue deflne l(p') and U p ") to be the
lengthfi of the paths p' and p", respectively.
Note, that slnce p is the longest path from
Vg to Vf through the node n, the path p' must
b« the longest of the paths from V^ to the
tet of fathers of n. Similarly, the path p"
oust be the longest path from the set of sons
of the node n to the Vp . Suppose the relation
Hp')+tn+l<p") < KVg.Vp) holds. Then there
must be some node oi on the path p, that can
be fired at at least tuo different moments.
The node m must be either on the path p' or
on the path p", slnce the node n is criti
cal, by assumptlon. Uere the node m on the
path p' the node n could be fired at

it least two different itioments contradic-
ting the assumption that it is critical. If
the node « were on the path p", a similar
argument would result. Consequently, relation
1 (p')+tn+ 1 (p" ' = HVsjVp) is true, implyincj
that the path p is one of the longest paths
fr(i« Vs to Vp Q.E.D.

Let Ej be the set ol ali critical internal
nodes at the mooient j. We call the value

5 = na« I E'' I, whtre lij^t* the mdxi»al ci^i-
tical parallelisn of a program graph, uhere
t*= KVs ,Vf)-1 .

Constructing the longest paths from Vs to Vf
LLavlbl and considering their nodes, the cri
tical internal nodes are easil/ computed.
Ue could deternine the critical nodes also
by coaputing the tirne control vectors associ-
ated to the plan for the immediate and lazy
e«ecution and oomparing their third compo-
nents, for each internal node.

7.3. THE PLAN FOR HEURISTIC EXECUTION

Since the lower bound on the aiinlnuin number
of processing units needed is given by a, ue
choose the sets E* in such a way, that the
nunber IFj - Vp I is on each step j, Mjit", as
close as possible to a. To do this we first

of consider the number c = I Eĵ - Vf I + 1 F"'"
the processors that are already needed at the
noment J. If this number is gceater than or
equal to o, nothing is put into the set Ef .
On the other hand, if o < a, we consider the
executable nodes, that need not to be fired

i.e. at the moment j
are at most m = m - c
of them into the set Ej , Houever, if
are more than m such nodes n, we choose
them, having the highest values l(n,Vf), and
put the« into the set E* (Fig.A).

the set Ej -E* . If there
such nodesi we put ali

there
«1 of

7.2. UPPER ANO LOUER BOUNOS ON ji„i„

Let us define Pminto be the minimum numbar of
processing elements needed for the execution
of a program graph, taken over ali possible
plans of the executian. Me want to bound Pmin
as much as possible.

'-^' Cimm "̂'̂ •'ia/y deoote the number of piroces-
sing elements needed in the immediate ana
lazy GKecution of a program graph, respec-
tively. Ue define the average paral lel isiu of
a program graph to be n *'Seq /t*, wherfc
^&eq = rtn , ne V| , and maximal paral lel ism
to be Tnl' . We also define o = max<rnT,C>,'
and p = oin<pimm , >iia2y >• Then the following
theorea illustrates the upper and lower
bounds on p„i„ .

eise Choose m nodes n from Ej - E* having
the longest values l(n,Vp) and put
them into the set E' ;

end;

T H E O R E « 3.

Minioal number of processing elements
needed is bounded by ct ^ î̂ in - ?•.

PHOOFi In čase of ?
since there exist5
^ critical nodes mus
that 5<rit1 . Let m ,
number of internal e

ž ril the proof is evident
a moment j uhen at least
t be fired. Suppose nQw
j = 1,2,...,t' denote the
xecuting nodes at the mo-

Fig.^!-Heurlstic choosing the sets Ej

8. ALGORITMU FOR OBTAINING EXECUTION PLANS

»ent j. Then

(ij < » .

''Seq

for

<.

ali j
. rt*

Pj = tse, . Suppose that

= 1,2,...,t* . Then ue have

•-Pi = t seq a contradic-

tion. ConsequentIy,
Since the number p
have Pj- i TitT , and
right side of the
dent. O.E.D.

pj- ia, for some j', lijit.
j. is an integer, we also
a fortiorl Pmjn- 1̂ "̂ • The
nonei^uation is also evi-

In this section we desoribe the algorithm for
obtaining a plan of the execution. Different
plans may be obtaind according to the rule by
uhich the subsets E' are chosen (see step 15).

At the moment j

Fj , and Fj"*" are
starting nodes.
the set V - V„ .

Q the sets - I '

initialized to the set Vj of
The set Nj is initialized to

A U the other sets are empty.

If ue • get a = p then at least one of the
plans for immediate or lazy execution is also
ar\ optiaal one. If o < p, uhich is much more
possible, ue oan try to push the upper bnund
3 doun by additional coinputations uhere
ue chose another plan of the program
graph execution. For example, ue may try to
choose the sets E* on each step in such a
way, that IF - Vp I , Ižjsf, is as close as
possible to a. The details are discussad in
next section.

" TrT is the louest integer, greater or equal
to r.

The plans for immediate and for lazy execution

are computed by choosing Ej" := Ej - E* and

E' := 0, respeotively, on each step (15). The
plan for the heuristlc execution is obtaind by
choosing the sets E" on each step (15) accor
ding to the sequence desoribed on Fig.^.

The algorithm is implemented on LSI-11/23 Com
puter under RT-11 operating system and tested
on several program graphs. The Fig.7 describes
an analysed program graph and the resulting
tirne control vectors obtained.

16

(1) Evaluate l(iD,n) lor ali nodes m,n by coniputing the transitive
closure of the program graph ;

(2) initialize sets ; j := 0;

(3) while Dj * V do

beoin

J := j + 1 i

Fj t = < n I n linished enecution at the moment j } (5)

(6)

(7)

(f i)

(9)

i\0)

(1 1)

(1 2)

(1 3)

(U)

(1 5)

(1 6)

(1 7)

(1 8)

(1 9)

(2 0)

,new
i

o Id
i

C

C

E

E;

l ' (F i

= C , . , •^i-i

< n 1 n r e o e i v e d a t t h e moment J i t s f i i - s t i i i p u t o p e r a n d }

= cr U cr

= E, i-1
= < n I n reoeived at the moment j its last input operand)
_ pold

= F|-,

old

U Ej"'

, V p) : = fflax l ' (n , V F) , u h e r e n e Fj

: = { n e E: I K n . V p) = 1 (E , , V F) l ' (F ° ,Vp) > U (E j n Vp) i

Choose a subset E; of the set E

:= E' U E'
old

:= Dj.i

U FP

U Fi*

V - (Ci U F, U Di)

Adjust the components of tirne control vectors for the nodes
in c;"" , E™"" and Fj""" ;

Fig.5: Algorithm for ohtaining execution plans of a program graph.

CONCLUSION

Uhat
on F
is O
of
ali
plEX
sine
each
coiop
tiae
IS O

is the tiin
ig.5? The t
(IVl^) , sin
the comput
nodes in a
ity of the
e the loop
of the ste
lEKitv 0(I V

COAplBKit
(IVt^) .

e coalexity at the algorithm
ime coaplexit/ of the step (1)
ce this is the tirne complexity
ing the longest paths between
graph CLaw7fc3. The tirne com-
steps (2) to (20) is 0(IVI^) ,
(3) is entered O(IVI) times,
ps (A) to (20) having tirne
I). Consequently, the overall
y of the algorithm on Fig.5 is

The
gener
nodes
was o
than
botn
of ca
risti
optim
proce
o, a
this
very
cuted
resul

algorithm w
ated progra
. In only O
btained. In
or equal to
immediate a

ses. Furthe
C execution
al, since th
ssing elemen
s uas the ca
number is
probably gr
using only

ts are depic

as tested
m Qi'aphs
Sy. of ana
ali other

Heuri
nd lazy e
r m • r e , m a
s were
e associ
ts needed
se on the
pesimisti
aphs tha
a proces

ted on Fi

on
uit

lysed
čase
Stic
xecut
ny (5
also
ated
equa
Fig

C si
t cou
sing
g.6.

'iOO randomIy
h at most ti
graphs >Jhou >&

s fĵ ou uas less
plan inprovsd

ion in SC1.2S7.
5.75'/.) of heu-
proved to be

numbers of the
led the values
7. Note, that
nce thure uere
Id not be exe-
elements. The

It is to point out that the algorithm on
Fig.5 oan be used for minimiiation of some
other resources suoh as the number of primary
meaory locations needed .

Mheu > P
(O .SQX>

-̂,:;:.î |f|ip^
I T-i]

I I

Mhou = p
(' . 9 . 2 5 X)

Mheu < e
(5 0 . 2 5 X)

Mheu « «
(5 5 . 7 5 1)

Flg.6i The behavior of the heuristic plan.

1 v I Ti"«" 1 T'i'y I TJ«" I F. v ^.v r.v + + + + +
I a K O, O, 0)I(O, Q, 0)I(O, 0. 0)I
+ + + + • +
I b I C Q, Q, 0) I(O, O, 0) I (O, O, 0)I
+ + + + • +
I C K O, O, 0)I(O, O, 0)I(O, O, 0)I
+ + • • +
I d I C 1, 1, 1)I(1, 1, 6)I(1 , 1 , 1)1
+ + + + . +
I e 1(1, 1, 1)I(1, 1, 1)I(1 , 1 , 1)1
+ + + • •
1 I K 1 , 1 , 1) I (1 , 1 ,10) I C -1, 1 , *) I
+ + + + •
I g K 1, 1, 1) I (1 , 1 , 9) I (1 , 1 , 1)1
+ + + • + •
I h K 2, 7, 7)I(7, 7, 7)I(2, 7, 7)1
+ + + . + f
I i K 1, 1, 1)I C 1, 1 ,19) 1 (1, 1 , 9)1
+ + 4 .• + 4
I j K 1, 1, 1)I(1, 1 ,10) I (1 , 1 , 2) I
+ + + + +
1 k K 1, 1, 1)I(1, 1,18)1 (1, 1 , 6) I
+ • + + +
I 1 K 1 , 1 , 1) I (1 , 1 ,1',) I (1 , 1 , 4) I
+ + + + *
I a K 3,12,12)I(12,12,12) I C A,12,12)1
•. + + 1 +
1 n K 1, 1, 1)I< 1, 1 ,15) K 1; 1 , 6) I
t-..^^ + + 1
I o M 3,1A,1',) I (1<,,16,16) I (6,1',,U)I
+ + + 1 1
I p K 1,1',,1'i)l(1,1'i,1'>)l(1 , H , U) I
• *--• + + •
I q I (16,16,16)I(16,16,16)I(16,16,16)I
+ + + •-- + +
I r K 5,19,19)1(19,19,19)1(10,19,19)1
+ + + + 1
I s K 3,21,21)I(19,21 ,21) 1 (9,21,21)1
+ + + .__ + _• +
I t 1(22,22,22)1(22,22,22)1(22,22,22)1

. M imm ~ '

? = 1
Mheu

In thls čase the heuristic
plan is also optiaal1

Fig.7: Plans (or immediate, la2y and heuristic execution
of a given program graph.

10. LITERATURE

CC0MB23 COMPUTER, Soecial Issue On OataflGw
SvBlems, Vol.15, No.2, Feb.1982

CKFSSa^D Kapauan A
L.Snyder

J.T.Field, O.B.Gannoni
The Pringle Parallel

Computer', Proč. 11th Int'1 S/op.
Conp. Arch., IEEE Press, New York,
198'., pp.12-20

CRaSfi6] RobiC B., J.Silo : 'Analyeis o(
Static Data Flow Program Graphs' ,
to be published in Elektrotehniški
vestnik, (in Slovene)

CTJSS3] Tokoro M., J.R,Jagannathan, H.Suna-
hara: 'On the Uorking Set Concept
for Data-llow Machines', Proč. 10th
Int'1 Syiiip. Computer Architecture,
IEEE Press, New Vork, 1983, pp.90-
97

CLaw76: Lauler E.: Combinatorial Optimiza-
tioni Networks and Matroids, Holt,
RinehartiWinston, New Vork, 1976

CSiRasa Silo J., B.RobiC : 'Basic .Princip-
les ol Data Flou Systeiiis' , Infor-
matica 2/85, pp.10-15 (in Slovene)

