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Abstract

A bipartite graph is Hamilton-laceable if for any two vertices in different parts there is
a Hamiltonian path from one to the other. Using two main ideas (an algorithm for finding
Hamiltonian paths and a decomposition lemma to move from smaller cases to larger) we
show that the graph of knight’s moves on an m× n board is Hamilton-laceable iff m ≥ 6,
n ≥ 6, and one of m,n is even. We show how the algorithm leads to new conjectures about
Hamiltonian paths for various families, such as generalized Petersen graphs, I-graphs, and
cubic symmetric graphs.
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1 Introduction
Let Nm,n be the graph of knight’s moves on an m×n chessboard. Knight’s tours, which are
Hamiltonian cycles in these graphs, have been considered for over 1000 years and in 1991
Allen Schwenk ([13]; see also [5]) characterized the knight graphs having a Hamiltonian
cycle. Assuming m ≤ n, he proved that Nm,n is Hamiltonian iff at least one of m, n is
even, m is not 1, 2, or 4, and (m,n) is not (3, 4), (3, 6), or (3, 8).

Two related questions arise: Which knight’s graphs are (a) Hamilton-laceable (HL);
(b) traceable? A bipartite graph is HL if for any two vertices in different parts there is
a Hamiltonian path from one to the other. And a graph is traceable if it has at least one
Hamiltonian path.

An HL graph with at least one edge is necessarily Hamiltonian. Here we give a com-
plete characterization of the HL knight’s graphs: Nm,n is HL iff m and n are at least 6 and
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at least one of m, n is even. The problem has been investigated for square boards; Conrad
et al. [5] showed that Nn,n is HL iff n is even and n ≥ 6.

For traceability, the problem has been solved, though unpublished. Mark Krusemeyer
settled it in 1972 (see also [8]). A paper in 1978 by Cull and DeCurtins [6] settles all cases
except N3,n and N4,n. The failure of the 4× 4 case appears in [16, p. 51]. We include here
a simple approach to the 3 × n and 4 × n cases. The complete characterization is that the
only nontraceable, connected knight graphs are N3,5, N3,6, and N4,4.

Our approach uses computation and the algorithms used have broad application to
Hamiltonian properties. We discuss some conjectures inspired by connectivity and lace-
ability computations on several thousand graphs.

2 Knight graph laceability
Our method is similar to that of [5] in that we use computation for small cases and then
settle the general case by decomposition into small cases. Using Mathematica’s Find-
HamiltonianCycle function for the computer search means that the amount of pro-
gramming is quite small. We use HP to abbreviate Hamiltonian path.

Theorem 2.1. Km,n is not HL if m ≤ 5 or both m, n are odd.

Proof. By Schwenk’s Theorem we need only consider K3,n and K5,n. Those cases follow
from the following lemma since the corner vertices satisfy the hypothesis.

Lemma 2.2. If G is bipartite and Hamiltonian and has two vertices of degree 2 that have
exactly one common neighbor, then G is not HL.

Proof. Let u and v be the degree-2 vertices with common neighbor w. Let x be the neigh-
bor of u that is not w and let a be a neighbor of x that is not u. Such must exist because
the graph is Hamiltonian, and so has no degree-1 vertices. Then a is neither w (because
graph is bipartite) nor v (w is the only common neighbor of u and v). There can be no
Hamiltonian path from a to w because once a path strikes one of u, v it must go to w and
therefore end without visiting both u and v.

The main tool for the general result is a decomposition lemma, but there is a complica-
tion. Let S and F denote the start and finish points of an HP. There is one case — where S
and F occupy the rightmost corners of a component board as shown in Figure 1 — where
it is not clear that combining two HL boards leads to an HL board. The lemma that follows
avoids this case. We say that an m× n board is HL if Km,n is HL; the width of an m× n
board is n, the horizontal dimension.

Lemma 2.3 (Decomposition Lemma). Suppose the m × n board G splits into two HL
boards by a vertical line. Then G is HL provided

• m is odd; or

• m is even, n is even, and the two component boards have different widths; or

• m is even, n is odd, and the two component boards have widths that differ by 2 or
more.
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Figure 1: A difficult case on a 6× 12 board.
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Figure 2: Building an HP from S to F . Dashed arrows stand for a longer part of a Hamil-
tonian path.

Proof. Note that m ≥ 6 by Theorem 2.1, so there are at least three white and three black
squares in any column. Call the two smaller boards (called halves), each with m rows, left
and right. If S and F are in different halves, just take an HP in S’s half to an end point
near the border, cross over to the F ’s half, and finish by using an HP in that half to reach
F .

Suppose S and F are in the same half, say the left, and C and D are the rightmost
corners of the left half. If one of C or D is neither S nor F , say C, find an HP in the left
from S to F . The path must, just before reaching C, visit A or B, the two neighbors of C.
Assume, by switching S and F if necessary, that it first passes through B, the rightmost of
A and B. Then break at B, go into the right side to X (see Figure 2), and traverse the right
side by an HP from X to Y . Finish by jumping to C and continuing to A and F by the
original path.

This leaves the troublesome case that S and F occupy the corners C and D; here it is
not clear how to build an HP in the large board. Because S and F have opposite colors,
m is even. So we can simply divide G vertically but in the other order, leaving S and F
where they are. Because of the conditions on the widths of the halves, S and F no longer
occupy the two rightmost corner positions of the left half, and the method of the preceding
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Figure 3: A resolution of the single troublesome case for K6,12.

paragraph applies.

The next result is based on an algorithm for finding HPs. Several of these cases were
first done in [5], and even before that Schwenk worked out the K8,8 case by hand. Using
Mathematica, the verification of all 18 cases took about 24 minutes.

Theorem 2.4. Km,n is HL whenever (m,n) ∈ {(7, 8), (7, 10), (9, 10)} or m is 6, 8, 10,
or 12 and 6 ≤ m ≤ n ≤ 13.

Proof. Assume (proof by computation follows) that K6,6, K6,8, and K6,10 are HL. Then
their doubles (transposing as necessary) — 6× 12, 8× 12, 10× 12 — can be handled by
dividing the board in half vertically. Laceability follows from the proof of the decomposi-
tion lemma except in the case that S and F occupy the two right-hand corners of the left
half. But those cases are easily handled computationally by a search for a single HP, using
the algorithm described shortly; the case of 6× 12 is shown in Figure 3.

And having K6,6, we can resolve K12,12. This is because the 12 × 12 board can be
bisected vertically into 12× 6s, and the decomposition proof takes care of all cases except
S and F occupying the rightmost corners of the left half. But then we can divide the board
horizontally into two 6 × 12s, which places S and F in different halves and allows the
proof of the decomposition lemma to be applied. Also, having 6× 13 (proof below) yields
12× 13 by direct application of decomposition.

The remaining 18 cases are 6 × 6, 6 × 7, 6 × 8, 6 × 9, 6 × 10, 6 × 11, 6 × 13, 7 × 8,
7×10, 8×8, 8×9, 8×10, 8×11, 8×13, 9×10, 10×10, 10×11, and 10×13. These are
handled by finding a complete set of HPs. The square cases were done in [5], but we can
take care of all cases with about 18 minutes of computation. Here is an algorithm based on
Mathematica’s fast FindHamiltonianCycle function.

Hamiltonian path algorithm

Input: Graph G and two vertices S, F .
Output: TRUE if there is a Hamiltonian path in G from S to F ; FALSE otherwise.

Step 1. Form graph H from G by adding a new vertex v and the edges v ↔ S and v ↔ F .
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Step 2. Use a Hamiltonian-cycle finder to check if such a cycle exists in H .

This algorithm is quite simple and settles the 18 cases of Theorem 2.4 in 24 minutes.
There is no need to apply it to all pairs (S, F ) from the two parts. One can restrict S
to orbit representatives under the automorphism group. Using a fast algorithm for graph
isomorphism, one can add leaves to each of two vertices to determine if they are in the
same orbit. When working with larger graphs having a lot of symmetry, this use of orbit
representatives cuts down the computation time dramatically.

The algorithm above was suggested by a referee. Our original algorithm was a little
more complicated and can provide more speed in some cases. One can add edge S ↔ F
to the graph if it is not there already, and then consider, one at a time, the other edges
leaving S, checking to see if there is a Hamiltonian cycle that uses that edge. By putting
a time constraint on this search one avoids possible dead ends without examining all the
possibilities. For many HC or HL graphs this leads to a faster algorithm; in essence, it is a
way of tweaking whatever Hamiltonian cycle finder one is using.

Another idea that is sometimes useful when the time limit runs out without a path being
found is to permute the graph and try again. The idea of using permutations to speed up
graph algorithms has been fruitful in other areas, such as the 4-coloring of planar graphs
efficiently [8]. The Hamilton cycle algorithm used by Mathematica has several cases, but
a main one is the Angluin–Valiant heuristic. For larger problems one can use traveling
salesman problem software to search for Hamiltonian cycles (see §5).

Theorem 2.5. Nm,n is Hamilton-laceable iff 6 ≤ m, 6 ≤ n, and one of m, n is even.

Proof. The forward direction follows from Theorem 2.1. For the other direction, assume
m ≤ n.

Case 1. m is odd and m ≤ 13. In this case n is even. If n ≤ 10, we have the
conclusion by computation (Theorem 2.4), so assume n ≥ 12. Then n splits into the
even numbers 6 and n − 6, and the conclusion follows from the decomposition lemma by
induction and Theorem 2.4.

Case 2. m is even and m ≤ 12. If n ≤ 13, we have the conclusion by Theorem 2, so
assume n ≥ 14. Then n splits into 6 and n−6; because (n−6)−6 ≥ 2, the decomposition
lemma and induction yield the result.

Case 3. m is odd and m ≥ 15. In this case n is even. Use induction on m; the cases
7× n, 9× n, 11× n, and 13× n follow from Case 1. For m ≥ 15, an m× n board splits
into 6× n and (m− 6)× n boards. The first is HL by case 2 and the second is HL by the
inductive hypothesis. Because (m− 6)− 6 ≥ 2, the decomposition lemma applies.

Case 4. m is even and m ≥ 14. An m× n board splits into 6× n and (m− 6)× n
boards; because (m − 6) − 6 ≥ 2, the result follows inductively from case 2 (for the base
case) and the decomposition lemma.

A dynamic demonstration at [15] shows all 322 paths in the case of the traditional 8×8
board; Figure 4 shows a typical case. As noted, this classic chessboard case was resolved
in [1]; the work here settles all rectangular boards.

3 Traceable knights
A graph is traceable if it has a Hamiltonian path. Cull and De Curtins [6] proved that Nm,n

is traceable if m ≥ 5. Mark Krusemeyer reports having solved the complete problem in
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Figure 4: A snapshot (start at lower left, finish in center of second row) of a demonstration
[15] that shows all 1024 knight’s paths on a chessboard.

Figure 5: A knight’s path from (1, 1) to (6, 2) on a 3× 7 board. Similar paths exist with 7
replaced by 8 through 13, and hence for widths past 7.

1972 in an addendum to his doctoral thesis. We present here an approach to the m = 3
and m = 4 cases. For m = 3, N3,3 is disconnected, while the HP algorithm shows that
N3,5 and N3,6 are not traceable and N3,n is traceable when n ∈ {4, 7, 8, 9, 10, 11, 12}.
Moreover, for the last six cases, there is an HP that goes from the lower-left corner to the
next-to-last rightmost point of the center row (Figure 5). Therefore it is a simple matter to
chain two such paths together to get an HP in the case of n ≥ 13. This settles the m = 3
case.

The case of N4,n is harder. Using the HP algorithm with some edges deleted led to the
gadget in Figure 6, which is the key to a proof that HPs exist for all N4,n

Theorem 3.1 (Krusemeyer, Cull, De Curtins). The only connected knight graphs that are
not traceable are N3,5, N3,6, N4,4.

Proof. Cull and De Curtins [6], using methods similar to the methods of the present paper
(decomposition and induction), showed that Nm,n is traceable when 5 ≤ m ≤ n. The
case m = 3 was discussed above. A computer search shows that N4,4 is not traceable; this
can also be proved by hand [16, p. 51]. Figure 6(b) shows N4,5, N4,6, and N4,7 with HPs
from the lower left corner to the upper left corner. The gadget of Figure 6(a) can be used
to extend any such path leftward to one with the same property, but on a board with three
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Figure 6: (a) The two disjoint paths in the 4× 3 board allow one to construct Hamiltonian
paths in any 4× n board with n ≥ 5. (b) Corner-to-corner paths for 4× 5, 4× 6, 4× 7.

more columns. This gives corner-to-corner HPs for all (4, n) with n ≥ 5. The gadget was
found by using the HP algorithm on a larger graph with various edges deleted so to force
the condition of one edge out and one edge in.

4 Further applications of the algorithm
The HP algorithm can be used on many families of bipartite graphs and works as well to
study whether a nonbipartite graph is Hamilton-connected (HC), which means that there is
a Hamiltonian path between any two vertices. Mathematica’s GraphData database has
572 graphs that are bipartite, Hamiltonian, vertex-transitive, and not a cycle; the largest has
2048 vertices. Using the HP algorithm we have shown that all 572 are HL. In particular,
the HP algorithm shows that all the Foster graphs (connected, cubic, edge-transitive, and
vertex-transitive) with 768 or fewer vertices (as well as the known Foster graphs up to 1000
vertices) are HL when bipartite and HC otherwise. Recall the folklore conjecture (based on
a question by Lovász about traceabiliy of vertex-transitive graphs; see [10]) that connected
vertex-transitive graphs are Hamiltonian except for five small examples. Computations
show that one almost always gets stronger Hamiltonian properties than just the existence
of a Hamiltonian cycle.

Question 4.1. Are even cycles the only bipartite, Hamiltonian, vertex-transitive graphs that
are not Hamilton-laceable?

And the same behavior has been observed for edge-transitive graphs.

Question 4.2. Are even cycles the only bipartite, Hamiltonian, edge-transitive graphs that
are not Hamilton-laceable?
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One can ask similar question for Hamilton-connected graphs. Of the 1557 nonbipartite,
vertex-transitive, Hamiltonian graphs in the database (cycles excluded), the HP algorithm
resolved the Hamilton-connected status of all of them. Only one — the dodecahedral
graph — failed to be Hamilton-connected. Several of these graphs had over 1000 vertices;
the largest was Kneser14,6 with 3003 vertices.

Question 4.3. Are the odd cycles and the dodecahedral graph the only nonbipartite, Hamil-
tonian, vertex-transitive graphs that are not Hamilton-connected? And we have the same
question with edge-transitivity replacing vertex-transitivity.

Here are more detailed summaries for some interesting families:

Generalized Petersen graphs GP(n, k). These cubic graphs, generalizations of the Pe-
tersen graph, are defined when n ≥ 3 and k < n/2. They are all Hamiltonian except
GP(6q + 5, 2) and isomorphs (Alspach [1]). These are bipartite when n is even and k
is odd. It is easy to see that GP(n, 1) is HL when bipartite, HC otherwise. Alspach and
Liu [2] have shown that GP(2m, 3) is HL; some authors include cases such as GP(5, 3),
which is isomorphic to the non-Hamiltonian Petersen graph GP(5, 2), but here we restrict
to k < n/2. A recent paper [12] by Richter contains further results on Hamiltonian paths
in this family. The HP algorithm shows that GP(n, k) is HL when n ≤ 100 and so it is
reasonable to conjecture that all bipartite graphs in the family are HL. Alspach and Qin [3]
proved that GP(4m, 2m− 1) is HL.

The situation regarding HC and HL for k ≤ 3 is:

GP(n, 1) is HL when n is even, HC otherwise (Alspach and Liu [2]).
GP(n, 2) is HC iff n ≡ 1 or 3(mod 6) [2, 12]
GP(n, 3) is HL when n is even, HC otherwise [2].

Pensaert [11] found that GP(6, 2) and GP(12, 4) are not HC and conjectured that
GP(n, k) is HC or HL whenever n ≥ 3k + 1. The case GP(3k + 1, k) is isomorphic
to GP(3k + 1, 3), a settled case. The HP algorithm extends the Pensaert examples by
showing that GP(6q, 2q) is not HC when q ≤ 12. The algorithm also shows that, with the
exceptions mentioned for bipartite, non-Hamiltonian (GP(6q + 5, 2)), and GP(6q, 2q), the
graphs GP(n, k) are HC for k ≤ 16 and 2k + 1 ≤ n ≤ 100. So we have the conjectures
that these last two results, positive and negative, hold in all cases.

The I-graph computations discussed next show that GP(n, k) is HL in all the bipartite
cases with n ≤ 100.

I-graphs I(n, j, k). These cubic graphs, where 1 < j, k < n and j, k 6= n/2, are
generalizations of the GP family; GP(n, k) = I(n, 1, k) when k < n/2. An I-graph is
bipartite and connected iff n is even, j and k are odd, and gcd(n, j, k) = 1. Horvat et al
[7] give a simple condition for two I-graphs to be isomorphic. Computation suggests that
all connected I-graphs, except the generalized Petersen exceptions, are Hamiltonian; that
has been recently proved by Bonvicini and Pisanski [4]. Even stronger Hamiltonian prop-
erties appear to hold: the HP algorithm can be used to check for laceability: all bipartite,
connected I(n, j, k) for n ≤ 100 are HL.

Bipartite Kneser graphs Hn,k. It is a well-known conjecture that the connected ones
(k 6= n/2) are Hamiltonian; this has been proved for n ≤ 27 [14]. These graphs are
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vertex- and edge-transitive, so it suffices to restrict the start point for a Hamiltonian path
to a single vertex, v. Further, using permutations on the underlying n-set shows that one
need only consider k+1 types of pairs (v, F ), the type being the size of the intersection of
the set represented by v with that represented by F . These considerations speed up the HP
algorithm, and the results are that Hn,k is HL for all 4 ≤ n ≤ 14 and k < n/2, and also for
(n, 2) with n ≤ 43 and (n, 3) with n ≤ 25. Note that H3,1 is a 6-cycle and so is not HL.

5 Conclusion
The work presented here shows how one can call on fast algorithms even for NP-complete
problems as a way of learning about families of graphs, so long as the graphs are not
terribly large. There are 853 bipartite Hamiltonian graphs in Mathematica’s database and
the algorithms presented here have resolved the laceability of all of them.

Since finding Hamiltonian cycles or paths is NP-complete, it is not surprising that our
methods fail for some large graphs. An idea that has proved useful on the larger examples
(such as Kneser13,6, Kneser14,5, Kneser14,6, and an alternating group Cayley graph with
2520 vertices) is to use the cutting-edge technology of traveling salesman problem soft-
ware, such as Concorde or LKH. One can turn a graph into a weighted complete graph with
weights 0 on the edges and 1 on the nonedges; then if a shortest traveling salesman tour
has weight 0, one has a Hamltonian cycle; if not, then no such cycle exists. This idea was
used to determine Hamilton-connectivity in the large examples.
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