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Abstract
Tetrapodal junctions are used to construct diamond-like networks and dodecahedral architectures. They can be associa-

ted with the already synthesized spongy carbon, consisting only of sp2 covalent carbon atoms, and the zeolites, periodic

structures in the Euclidean space. In this paper, the structure and stability of two zigzag tetrapodal junctions are discus-

sed. Series of objects are built up by connecting a various number of junctions. Geometry optimization and single point

computations (total energy Etot and HOMO-LUMO gap energy Egap) were performed at the Hartree-Fock level of theo-

ry in view of evaluating their stability. The genus of such nanostructures was calculated from the number of consisting

tetrapodal junctions.
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1. Introduction

In 1991 Mackay and Terrones1 studied the effect of
introducing rings larger than the hexagon in the planar
graphitic sheet. They designed structures embedded in
surfaces of negative curvature, called ,,schwarzites”, in
honor of the German mathematician Schwarz.2,3 Mode-
ling such structures led to the conclusion that they are mo-
re stable than the closed fullerenes and could compete in
this respect with C60, the reference structure in Nanoscien-
ce. Their stability has the origin in the very low strain
induced by heptagons and octagons contained in such
structures while keeping the sp2 character of the graphite.
The genus of schwarzite4–6 units is 2 (for tetrahedral
symmetry) or 3 (for octahedral symmetry). Such structu-
res can be viewed as carbon nanotube junctions.

The tetrahedral/tetrapodal junctions are particularly
interesting due to their similarity with the tetrahedral sp3

hybridized carbon atom: the valences are now nanotubes
while the atom is an opened cage embedded in a surface
of genus 2. Similar to the tetrahedrally coordinated carbon
atom, a tetrapodal junction can be used to build various
hyper-nanostructures such as dendrimers and multitori,
which could act as molecular sieves.7

Multitori8 are complex structures consisting of more
than one single torus;9 they are supposed to result by self-
assembly of some repeating units/monomers, formed by
opening of cages/fullerenes and appear in spongy carbon
and in natural zeolites. Networks of sp2 spongy carbon,
with large porosity, have already been synthesized10 and
their properties studied.11,12 The high porosity of these
materials has found applications in catalysis,13–15 in
hydrogen storage,16 thermal insulators17,18 and molecular
sieving,19 as well.

2. Results and Discussion

We have investigated the structure and stability of
two tetrapodal junctions Tj40 and Tj52, their optimized geo-
metries are presented in Figure 1. At each opening a (3,0)
zigzag carbon nanotube can be attached, which were
found to be narrow-gap semiconductors.20 The junctions
were designed from the corresponding tetrahedral non
IPR fullerenes21 C44 (T) and C56 (Td) by deleting the cen-
tral atom in the pentagon triples. The tetrapodal junctions
have only hexagonal rings, and can be connected by three
octagons at each junction.22
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2. 1. Energetics of Tetrapodal Junctions
The geometry optimization was performed (by

Gaussian 09)23 at the Hartree-Fock level of theory, with
HF/6-31G(d,p) set of parameters for the junctions and ful-
lerenes and HF/3-21G* for the hyper pentagons and hexa-
gons. All the structures were optimized in hydrogenated
form. According to the simple Hückel model the studied
fullerenes have pseudo-closed, while the junctions have
pseudo-open electron configuration.24 Therefore, to ob-
tain the highest possible symmetry in case of the Tj40

–4

junction, charges were added as required. The framework
of both junctions consists of four phenalene motifs, in ca-
se of Tj40 each fragment shares one bond with the neigh-
boring motifs, and in case of Tj52 the fragments are dis-
joint separated be one bond. It has been reported25 that the
13-carbon phenalene cation an anion motif has a diatropic
perimeter ring current like in the case of coronene,26 pre-
dicted by the ipsocentric model.

Data obtained using HF/6-31G(d,p) method are li-
sted in Table 1 while the data computed by HF/3-21G* are
listed in Table 2. The strain energy, evaluated according to
POAV theory of Haddon27,28 is also included in these tab-
les. One can see that the closed fullerenes (Table 1, entries
1, 4 and 6) show a higher strain in comparison to the open
structures, the lowest value being for the IPR fullerene
C60, the reference structure in nanoscience. Observe the
higher symmetry of the charged Tj40

–4 resulted in higher
strain, when compared with the neutral lower symmetry
Tj40. Even the presence of hydrogen atoms on the open
structures prohibits a direct comparison with the close ful-
lerenes, data in Table 1 suggest the stability of the tetrapo-
dal structure stability is close to that of C60.

The strain decreases in structures with more than
one repeating unit (see Table 2) while the HOMO-LUMO
gap increases for the (hyper) cycles (Table 2, entries 3 and
6), with Tj40-hexagon being the most stable structure in
Table 2.

2. 2. Hyper-Structures

The Tj40–hexagon, obtained by connecting six tetra-
podal units and having the structure of the chair confor-
mer of cyclohexane, is favored by the “intercalate” struc-
ture of Tj40-dimer.4 Further addition Tj40-units, one can
build adamantane-like Tj40_ada and diamantane-like
Tj40_dia and finally a hyper-diamond structure (Figure 2).

The Tj52-pentagon is favored by the “eclipsed” Tj52-
dimer. Twelve such hyper-pentagons can self-assembly to
form a hyper-dodecahedron (Figure 3).

Table 1. Energetic data of tetrapodal junctions and their spanned

fullerenes using HF/6-31G(d,p).

Struc- Etot Egap Strain Sym
tures (eV) / C (eV) Energy

atom (kcal/mol)
1 C44 –37.852 6.595 12.73 T
2 Tj40 –38.021 6.681 5.80 D2

3 Tj40
–4 –38.006 7.414 6.70 T

4 C56 –37.854 5.505 10.65 Td

5 Tj52 –37.986 6.144 5.44 D2d

6 C60 –37.864 7.418 8.256 Ih

Table 2. Energetic data of tetrapodal junctions using HF/3-21G*.

Struc- Etot Egap Strain Sym
tures (eV)/ C (eV) Energy

atom (kcal/mol)
1 Tj40-dimer–37.768 1.698 5.31 C3

2 Tj40-trimer–37.755 0.927 5.03 C2

3 Tj40-hexagon–37.728 7.382 4.57 D3

4 Tj52-dimer–37.741 1.247 4.90 D3h

5 Tj52-trimer–37.731 0.891 4.67 C2v

6 Tj52-pentagon–37.711 6.755 4.25 D5h

Figure 1. Tetrapodal open units: Tj40 (left) and Tj52 (right)

Figure 2. Hyper-diamond substructures designed by Tj40_unit:

Tj40_ada (left) and Tj40_dia (right)

Figure 3. Multitori by Tj52_unit: 10 units (left) and 20 units, clo-

sing a hyper-dodecahedron (right)

Design of the above structures was made by our
software programs CVNET29 and Nano Studio.30
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2. 3. Genus in Multitori

An embedding is a representation of a graph on a
surface S such that no edge-crossings occur.31 A polyhe-
dral lattice, embedded in an orientable surface S obeys the
Euler formula:32 v – e + f = χ(M) = 2(1 – g), with χ being
the Euler characteristic. The genus g (i.e., the number of
simple tori consisting a given network) is related to the
Gaussian curvature of the surface S by means of Euler’s
characteristic χ of S (Gauss-Bonnet theorem33) as: for g =
0 (case of sphere) χ > 0 (positive curvature); for g = 1 (ca-
se of torus) χ = 0 while for g > 1 (surfaces of high genera),
χ < 0, S showing a negative curvature. A surface is orien-
table, when it has two sides, or it is non-orientable, when
it has only one side, like the Möbius strip.4,5

In open multitori built up from u tetrapodal junction
units, the genus of structure is calculated as: g = u + 1, ir-
respective of the unit tessellation. In closed unit multitori,
the genus can be calculated by formula g = u – ∑c(uc × c/2)
+ 1 where c represents the number of closures per unit,
while uc is the number of units with c closures. Table 3 lists
examples representing the proof of the above theorem (in
agreement with the Euler’s formula) in both open and clo-
sed structures built up by using the tetrapodal junctions.

3. Conclusions

Tetrapodal junctions are proved to be stable structu-
res possible to self-assembly in building diamond-like
networks and hyper-dodecahedral architectures. They can
be associated to the already synthesized spongy carbon,
consisting only of sp2 covalent carbon atoms. Structural
relatedness to zeolites was evidenced by the presence of
large hollows.

Series of objects were built up by connecting a vari-
ous number of junctions. The structure stability of tetrapo-
dal junctions, performed at the Hartree–Fock level of the-
ory was proved to be close to the reference fullerene C60.

Genus in both open and closed hyper-structures,
consisting of tetrapodal units, was calculated both by
applying the Euler’s formula and by the newly proposed
formula using the number of repeating units.
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Povzetek
Terapodalna sti~i{~a smo uporabili pri konstrukciji diamantnih in do dekahhedralnih omre`ij. Ta so lahko povezana z `e

sintetiziranim gobastim ogljikom, ki ima samo sp2 kovalentne ogljikove atome ali pa z zeoliti, to je, periodi~nimi struk-

turami v Evklidskem prostoru. V tem ~lanku obravnavamo strukturo in stabilnost dveh cik-cak tetrapodalnih sti~i{~.

Izgradili smo vrsto objektov s pomo~jo razli~nih povezav sti~i{~. Izvedli smo vrsto ra~unov geometrijske in eno

to~kovne optimizacije (skupna energija Etot in HOMO-LUMO vrzelv energiji Egap) naravni Hartree-Fockteorije, da

smo lahko ocenili stabilnost obravnavanih nanostruktur. Rodovno funkcijo tehnano struktur pa smo izra~unali iz {tevila

tetrapodalnih sti~i{~.


