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Abstract: For several decades, computers have helped analog designers with circuit simulation and evaluation. To further simplify and 
speed-up designer’s work, novel methods are being introduced that help to fine-tune numerical parameters to meet the performance 
criteria. With a lack of capable engineers, a shortage of specific knowledge or time to design an analog building block, software 
for fully automated synthesis of both topology and parameters is becoming crucial. Most research in this field is based on circuit 
modifications according to evolutionary principles of survival of the fittest. One of the challenges of the design of appropriate software 
is a representation of a circuit topology that will allow topology modifications with the smallest possible computational effort. Many 
existing solutions suffer either from the uncontrolled growth of the size of the circuit (so-called bloat) or from the limitation of the 
topology structure to a set of predefined blocks. In this paper, we discuss an analog circuit topology representation in a form of a 
binary upper-triangular matrix that is both bloat safe and offers a large solution space. We describe the basic structure of the matrix, 
the redundancy phenomena of logical elements, and the translation of the matrix representation to a regular SPICE netlist. We use an 
evolutionary algorithm to evolve the topology matrix and a classical parameter optimization algorithm to tune the circuit parameters. 
Based on a high-level circuit definition and a fixed building-block bank, our topology representation technique showed success in a 
fully automatic synthesis of passive circuits. We demonstrate the ability to automatically discover a passive high-pass filter topology. 
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Zapis topologije analognega električnega vezja za 
namen avtomatske sinteze in optimizacije
Izvleček: V procesu načrtovanja analognih električnih vezij računalniki že desetletja sodelujejo kot orodje za simulacijo ter evalvacijo. 
V pomoč pri delu razvijalca so že sedaj na voljo orodja, ki so sposobna avtomatično optimizirati numerične parametre vezja in s tem 
doseči določene kriterije delovanja. Zaradi pomanjkanja inženirjev, znanja in časa za razvoj analognih sklopov je smiselno razmišljati 
o programski opremi, ki bi bila zmožna ne samo izbrati primerne parametre za doseganje zahtevanih lastnosti temveč tudi sestaviti 
ustrezno topologijo. Večina dosedanjega dela na tem področju temelji na spreminjanju posameznih delov topologij po evolucijskih 
principih. Eden od glavnih izzivov pri razvoju tovrstnega orodja je računalniška predstavitev topologije vezja na način, ki bo omogočal 
računsko čim manj zahtevno spreminjanje topologije. Ena od slabosti nekaterih obstoječih rešitev je velika možnost nekontrolirane 
rasti sheme vezja preko vseh meja med iskanjem rešitve (t.i. napihovanje, angl. bloat), druga pogosta pomanjkljivost pa je vnaprejšnja 
omejitev strukture topologije. V tem članku predlagamo zapis predstavitve topologije analognega električnega vezja v obliki binarne 
zgornje trikotne matrike, ki omogoča ogromen iskalni prostor, hkrati pa zagotavlja imunost pred razlezenjem med postopkom 
iskanja. Opisujemo osnovno strukturo primernega matričnega zapisa, fenomen redundance logičnih elementov ter razložimo 
pretvorbo matrike v standarden zapis vezja (angl. netlist) primeren za obdelavo v simulatorju SPICE. Matriko nato spreminjamo s 
pomočjo posebnega evolucijskega algoritma, številske parametre vezja pa z eno od obstoječih metod za numerično optimizacijo. 
Primernost zapisa za popolnoma avtomatično sintezo analognega vezja smo preizkusili na primeru razvoja pasivnih vezij. Na podlagi 
visokonivojske zahteve ter vnaprej znane knjižnice možnih električnih elementov je algoritem sestavil pasivni visokoprepustni filter. 

Ključne besede: Avtomatska sinteza, analogna vezja, računalniško-podprto načrtovanje, evolucijski algoritmi
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1 Introduction

The designing of an analog circuit is a demanding task 
even for a skilled analog designer. Due to constantly in-

creasing time-pressure, lack of experienced engineers 
and growing industry needs, designers more and more 
often use computers to support the design process. 
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Computers and dedicated software have been used to 
aid the circuit designers since the introduction of SPICE 
[1]. Soon, designers started to use various mathemati-
cal methods to optimize circuit parameters to reach or 
even overcome the desired performance (e.g., [2], [3], 
[4], [5]). However, the optimization of the parameters 
alone is often not enough to meet the required objec-
tives. In that case, a designer needs to rearrange the 
topology, which means that the parameters have to 
be optimized again. The recent advances in the field of 
analog circuit computer-aided design have to do with 
the combined automatic parameter optimization and 
the topology calculation of a desired circuit [6]. 

Majority of the topology search methods use some kind 
of evolutionary computation, and some early examples 
of the approach are IDAC [7], OASYS [8], OPASYN [9] 
and DARWIN [10]. Those early approaches were based 
on a random selection of topology parts from a pre-
defined library. Consequently, the topology structure 
was fixed in advance, which seriously limited the size 
of the solution space. However, the invention of ge-
netic programming (GP) by Koza et al. [11] has mainly 
removed this limitation and opened door for the first 
serious attempts in automated topology design. GP is 
an idea of automated development of a computer pro-
gram using an evolutionary algorithm. Each program 
is presented by a tree-like structure, where branches 
and leaves represent various computer instructions. 
Koza already proposed this method for automated an-
alog circuit synthesis, where a computer program was 
built using instructions for setting up a circuit topol-
ogy [12].  One of the main problems of GP is so-called 
bloat, a phenomenon of an uncontrolled growing of a 
program tree. Lohn and Colombano [13] proposed a 
linearization of the circuit-building instructions, which 
inherited both advantages and disadvantages of stan-
dard GP. A binary or switching rectangular topology 
matrix representation was proposed by Györök [14]. 
His proposal, however, did not include further repro-
duction mechanisms and was not designed for fast 
checks of a single terminal connectivity. Gan et al. [15] 
suggested an undirected weighted graph representa-
tion where graph vertices represent component nodes, 
while component types and values are represented by 
branch weights. The idea results in a relatively efficient, 
lightweight circuit representation, but is limited to ba-
sic passive two-terminal components.

All the above-mentioned issues mainly stem from an 
inappropriate representation of a circuit topology. It is 
therefore vital for the successful computerizing of the 
analog circuit synthesis to have a suitable topology 
representation, which is the main focus of our paper.  

The structure of this paper is as follows. In the following 
section we discuss the main idea behind of our analog 
circuit representation and its basic properties. We also 
present algorithms that allow conversion to a SPICE 
netlist. Later, in Section 3 we describe the algorithm 
used to alter and evolve the circuit topology in such 
a way that a solution fits the high-level requirements 
given at the beginning. In Section 4, we show that our 
approach is indeed successful in synthetizing an ana-
log circuit from scratch. 

Figure 1: The main idea behind our analog circuit to-
pology synthesis tool.

2 Circuit representation technique

Figure 1 summarizes the concept of our approach. Cen-
tral to the synthesis is an evolutionary algorithm that 
searches for an optimal topology, augmented with an 
additional parameter optimization method. The algo-
rithm builds the population of circuits using the ele-
ments and sub-circuits from the library according to 
the rules that we describe in this section. During the 
evolution and optimization process, a specified high-
level circuit definition serves as a cost function, which 
the algorithm tries to minimize. The whole process can 
be arbitrarily biased with a starting circuit.

There are several requirements that we have to consid-
er in order to obtain a circuit representation suitable to 
be used in the above described process. The represen-
tation should…
… lend itself to computationally inexpensive modifi-

cation of topology;
… be able to prevent uncontrolled growing of a cir-
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… provide a large search space;
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2.1 The Topology matrix

Probably the most obvious way of decoding a circuit 
topology is an upper-triangular square binary matrix as 
shown in Figure 2. The matrix has one row and column 
assigned to each one of the terminals of all of the ele-
ments from the library as well as all the possible main 
terminals such as GND, Vin, Vout and similar. The size of 
the matrix does not change during the evolution. Rath-
er, an element is connected or disconnected from the 
circuit by setting the corresponding matrix elements to 
one or zero. Specifically, in order to connect two termi-
nals together, we put a logical one to a place where a 
row representing the first terminal intersects the col-
umn representing the second terminal. By definition, 
every terminal is connected to itself. That is why the 
matrix has all ones on the principal diagonal. That way, 
we can form any possible topology using the elements 
from the library. 

It is obvious that an element is excluded from the final 
circuit when none of the rows or columns belonging to 
that element contain any ones (except for the diago-
nal elements, which connect each terminal to itself ). 
Notice, however, that there are other cases that also 
exclude an element from the circuit. For example, an 
element is also excluded when only one of its terminals 
is connected elsewhere or all of its terminals are short-
connected together.

Figure 2: An example of a topology matrix, its main sec-
tors, and the actual circuit that the matrix encodes.

Notice that the topology matrix contains several sec-
tors. The first one is a so-called Inner-connections 
sector, where all connections between elements and 
sub-circuits are defined. The second one, the Outer-
connections sector, contains all the connections to the 
outside world. It is easy to detect certain forbidden con-
nections in this sector. Namely, there should only exist 
a single logical one in each row; otherwise, some outer 
terminals would be connected together, which is non-
sense from the design point of view. There is one more 
sector (the Forbidden sector), within which no connec-
tions are allowed. The reason is the same as before—
the outer terminals should not connect to each other. 
It is very important that we are able to detect some of 
these nonsense situations easily even before we start a 
computationally expensive circuit simulation. 

2.2 Redundant connections

Consider the Inner-connections sector of the topology 
matrix depicted in Figure 2. It turns out that exactly the 
same topology can be represented by four different en-
coding patterns as shown in Figure 3. Namely, as soon 
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Figure 3: Four different Inner-connections parts of the 
topology matrix that represent the same T-type circuit. 
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as we connect two different terminals to a third termi-
nal, we automatically connect the first two terminals 
together as well. We can observe a similar phenom-
enon in the genetic code of living organisms, referred 
to as degenerate genetic code [16]. Code degeneracy is 
important in preserving genotypic diversity as differ-
ent genotypes (matrix encodings in our case) can rep-
resent the same phenotype (a resulting circuit in our 
case). It is however crucial to have all the connections 
(even the redundant ones) encoded in the matrix when 
it comes to creating a netlist to be used by a simula-
tion software like SPICE. By creating a fully redundant 
matrix, terminals are identified with all joint nodes. As 
seen on Figure 3 d), all logical fields marked grey be-
long to a joint node between R1, R2 and C1.  The first 
step of building a SPICE netlist from a topology matrix 

Input:
Topology matrix

Output:
Fully redundant 
topology matrix

Step 1: Step 2: Step 3:
Repeat until no new logical element can be set:

x

y

Figure 4: A procedure of finding all the redundant logical ones to build a full topology matrix.

is therefore filling the matrix with all the redundant 
connections. 

The basic idea behind the procedure of filling the ma-
trix with all the redundant connections is to find all the 
incomplete rectangles (formed by exactly three logical 
ones in any three of their four vertices) and fill the re-
maining vertex with a logical one as well. The algorithm 
that implements this reads as follows (see also Figure 
4):

Repeat
(check up and right, insert diagonally) Scans the ma-
trix along its diagonal from left to right and looks for 
a missing logical one in the direction (x, -y). This finds 
all the rectangles with one existing vertex placed verti-
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cally and the other horizontally from a certain diagonal 
element.

(check right and diagonally, insert up) Scans the matrix 
along its diagonal from right to left and looks for a 
missing element in the direction -y. It finds all the rec-
tangles with two existing vertices in the same column.

(check up and diagonally, insert right) Scans the matrix 
along its diagonal from left to right and looks for a 
missing element in the direction x. It finds all the rec-
tangles with two existing vertices in the same row.

Until no new logical one was inserted

2.3 Parameter vector

Apart from the circuit topology, we also need to en-
code the numerical parameters such as resistances, 
capacitances, or transistor gate widths and lengths, in 
order to fully describe a circuit. We simply store those 
parameter values in a plain one-dimensional real vec-
tor, which leaves us with a complete genotype of a cir-
cuit, represented by a topology matrix and parameter 
vector. 

2.4 Matrix-to-netlist conversion

Since we will analyze the circuit using numerical SPICE 
models, we need to translate the topology matrix to-
gether with the parameter vector into a SPICE netlist. 
The netlist has a simple syntax as shown on the right of 
Figure 5. Each line starts with the name of an element, 
the first character of which defines the element or 
sub-circuit type. The number that follows is simply the 
number of the element if there are more of the same 
type. Following the element name, there are the num-
bers of the nodes in the circuit to which the element 
is connected. At the end of each line there is usually a 
numerical parameter of the element or a model name. 

Once we have calculated a fully-redundant topology 
matrix, there is not much work left to do to build a 
netlist. We demonstrate the whole procedure on the 
case shown in Figure 5. Let us first identify the node 
number of terminal Vout. The terminal is represented by 
the diagonal logical one in the bottom right corner of 
the matrix, pointed to by the darkest gray arrow. From 
this point, we search for the topmost logical one within 
the same column. The row index of this logical one rep-
resents the node number to be used in the netlist.  We 
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Figure 5: The conversion from a topology matrix to a netlist.
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repeat the same procedure for each and every terminal 
contained in the matrix. In Figure 5, there are two ad-
ditional arrows indicating the node number identifica-
tion for terminals Vin and ground although all the termi-
nals follow the same procedure. 

It could happen that a diagonal logical one is the only 
non-zero logical element in the column. In that case, 
the node number assigned to the terminal is simply the 
row number of that diagonal logical one (i.e., the left 
terminals of R0, R2, C12 and C14). The matrix, netlist, and 
topology in Figure 5 represent a Sallen-Key active LP 
filter. Notice that not all available elements are used in 
the resulting topology. We can see from both the ma-
trix and the netlist that four of the nine available build-
ing blocks have their terminals connected together. 
This automatically means they are excluded from the 
topology. In the netlist, we commented out the exclud-
ed elements using an asterisk (*) to save Spice some 
unnecessary computation.

Notice that the resulting circuit is coded as a sub-circuit in 
the netlist. During the evaluation process, this sub-circuit 
is encapsulated in a special test circuit providing the nec-
essary power supplies, input signals, loads, and measure-
ment points as seen in the bottom right of Figure 5. 

3 Search algorithm

Up to this point, we have explained how we encode an 
individual circuit (the genotype) and how we build a 
netlist suitable for its simulation (the phenotype). We 
are now ready for developing an evolutionary algo-
rithm that will evolve a circuit based on a specific fit-
ness specification. The algorithm is similar to the one 
that we used in [17].

Evolution is a process that allows a biological population 
to adapt to a given environment by means of change 
in the heritable characteristics of individuals [18]. The 
favorable changes mean more chance for an individual 
of surviving in a particular environment. That way, the 
population becomes better and better adapted to given 
conditions. This simple and robust procedure is often 
used as a means of global optimization [19], and we use 
it in our work as well. For the purposes of this research, 
we adapted the three basic evolutionary operators: se-
lection (survival of the fittest), crossover (reproduction, 
also called recombination), and mutation.

3.1 Selection

The first step of an evolutionary algorithm is usually 
selection of the fittest individuals that will take part in 

crossover and/or mutation operations, thus producing 
offspring. One of the standard methods of selecting 
best individuals is so-called tournament selection. The 
idea is first to chose a few individuals from the popula-
tions at random to be part of a tournament. The winner 
of a tournament (the individual with the best fitness) is 
chosen to participate in crossover or mutation. We can 
easily adjust selection pressure by changing the tour-
nament size. Weak individuals have a greater chance to 
be selected when the tournament size is smaller. 

After we have obtained two winning individuals, we 
decide between crossover and mutation as shown in 
Figure 6. The decision is made randomly, based on a 
given probability. It is not unlikely that, during crosso-
ver, we exchange two identical parts of genetic mate-
rial, which results in two offspring identical to their par-
ents. It turned out that it is beneficial to the algorithm 
if we discard such offspring and repeat the genetic op-
eration before even evaluating the circuits. 

Figure 6: Deciding between crossover and mutation.

Note that tournament selection chooses the best in-
dividual from a randomly created subset of individu-
als. Because of the random selection it might happen 
that the fittest individuals are not selected at all and 
therefore could not proceed into the next generation. 
To prevent this kind of loss, we employ additional elit-
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ist selection to ensure that a certain number of the fit-
test individuals proceed to the next generation even 
though they have not been selected during any of 
tournaments.

3.2 Crossover

The basic idea of our crossover technique is closely 
connected with the encoding type of an upper-trian-
gular matrix. Recall that each logical one on a matrix 
diagonal corresponds either to a pin of an element or 
an outer connection (see Figure 2). Each logical one on 
the right of a particular diagonal element connects the 
pin to the corresponding pin on its right (see the row 
of the elements above the matrix in Figure 2). Similarly, 
each logical one above a particular diagonal element 
connects the pin to the corresponding pin on its left. 
As soon as we delete all logical ones from both, the row 
and column intersecting the diagonal element in ques-
tion, we remove every information about how that par-
ticular pin is connected with the rest of the circuit. Our 
crossover operator exchanges information about the 
connections of any number of pins between one and 
four where the number of exchanged pins is randomly 
selected. Figure 7 shows examples where one (N = 1) 
and three (N = 3) pins are exchanged. The parent on the 
right is deliberately shown as a full upper-triangular 
matrix to better illustrate the effect of crossover. 

Figure 7: Topology matrix crossover examples ex-
changing information about one (N = 1) and three (N = 
3) pin connections.

3.3 Mutation

Mutation is a random modification of genotype of a 
selected individual. Our implementation of a muta-
tion operator randomly changes circuit connections in 
three different ways. It either removes, moves, or adds 
a logical one to a connection matrix. In case when a 
mutation operator is selected to be carried out upon 
the selected individual, one of these three mutation 
variants is performed based on an evenly distributed 
random choice.

3.4 Parameter vector optimization

Apart from the circuit topology, the circuit parameters 
have to be optimized during the evolution as well. We 
use the PSADE global optimization algorithm [2] to 
perform this task. PSADE is a hybrid method combin-
ing simulated annealing and differential evolution. The 
method was proven successful on a class of circuit opti-
mization problems, so we use it to alter and additional-
ly optimize the evolving circuit numerical parameters. 
Parameter optimization is however computationally 
expensive and optimizing each and every circuit in the 
generation would make the process unwieldy. It turned 
out that applying parameter optimization every 10th 
generation on three randomly chosen circuits (from 
the 10 best ones in the current population) is quite 
beneficial to the evolutionary process. 

3.5 Circuit evaluation

One of the most important aspect of every evolution-
ary process (and indeed any optimization) is evaluation 
of the performance (a.k.a. fitness) of the members of 
the population. There are few general guidelines as 
how to do this and a designer mainly has to rely on 
his or her experience. The goal of our research was to 
synthetize a passive analog high-pass filter, with –3 dB 
starting pass band frequency of 8 kHz and the deep-
est possible damping in stop-band but not higher than 
–40 dB. We selected four main performance criteria: 
ripple, damping, fpass, and gain as illustrated in Figure 
8. Filter optimization penalty functions are usually 
designed with a fixed frequency domain structure [3] 
(i.e., the frequency ranges defining the ripple, dump-
ing, and gain measurements are fixed during the op-
timization). When evaluating the frequency response, 
the real damping (or slope) is measured correctly only 
when fpass  is matched to wanted frequency (Figure 8 
top). Some evaluated filters might have a proper shape 
overall, but at wrong frequency. This does not neces-
sary mean that damping is wrong but rather that fpass 
is off. 
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Frequency-fixed fitness detection works well for pa-
rameter optimization with a fixed topology. In our evo-
lution procedure topology changes, but parameters 
are fixed until the PSADE triggers. With filters, mainly 
the topology (the order and type) defines the shape of 
frequency response, and parameters define bands [20]. 
This is why we allow fpass to be off during the evolution, 
but measure other properties correctly (Figure 8 bot-
tom). Doing so, we do not a-priori discriminate circuits, 
whose fpass  is off, but have other qualities. 

Figure 8: Frequency-Fixed versus Frequency-Flexible 
fitness function.

We calculate the overall fitness of the circuit using the 
following cost function: 

 0.5 , 0.5 

0, 0.5 

ripple dB ripple dB
r
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  (1)

 40  , 40 

0, 40 

dB damping damping dB
d

damping dB
− <

=  ≥
 (2)

 
10 10 log 8 log  off passf kHz f= −    (3)

 0 g dB gain= −     (4)

 
1 2 3 off 4
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where r is ripple larger than 0.5 dB in the pass band, 
damping is d, smaller than -40 dB in stop band, foff is 
a difference between fpass and 8 kHz and g is the gain 
objective. After a number of initial experiments we em-
pirically set the weights to be w1 = 1, w2 = 20, w3 = 7, and 

w4 = 10. In addition, we weight every individual result-
ing in an unsuccessful measurement or simulation with 
factor of 103 * Nnosucess, and we weight every individual 
with a  forbidden short-circuit detected already in bi-
nary topology matrix with 2 * 104 * NSC, where NSC is a 
number of detected short-circuits and Nnosucess is a num-
ber of unsuccessful measurements and analyses. 

All measurements were made using the PyOPUS Py-
thon library for circuit optimization, which enables si-
multaneous circuit evaluation on multiple processing 
cores [21].  Simulations were executed using HSpice. 

3.6 The evolutionary algorithm

Figure 9 summarizes the complete evolutionary algo-
rithm used in our research. As the first step, we create 
an initial random population of topology matrices and 
parameter vectors. This is done simply by creating to-
pology matrices with evenly distributed logical ones 
through the whole matrix. Before entering the main 
optimization loop, we evaluate the initial population 
and sort the individuals according to their fitness. After 
performing the genetic operations of selection, crosso-
ver and mutation, we evaluate the newly generated in-
dividuals. If at least one of them fits the design criteria, 
we stop the procedure. Otherwise, if the generation 
number is divisible by ten, we randomly select three of 
the best ten individuals and run the PSADE optimiza-
tion algorithm on their parameter vectors. 

Figure 9: The evolutionary search procedure.

4 Results

In this section, we show the results of two separate 
runs of our evolutionary algorithm using identical al-
gorithm parameters but with different fitness func-
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tions. We included six resistors and six capacitors in the 
element library to be used by the algorithm. The initial 
parameters were randomly chosen for every circuit in 
the initial population ranging from 1 kΩ to 10 MΩ for 
the resistors and 1 pF to 10 µF for the capacitors. The 
same values were also used as the constraints for the 
PSADE parameter optimization. The population size in 
both runs was set to 400 individuals. The parameters 
are summarized in Table 1.

Table 1: Evolution parameters.

Population size 400
Tournament size 3
Elite size 8
Crossover probability 0.8
Mutation Probability 0.2

In the first run, we wanted to evolve a high-pass filter 
with at least –40 dB damping in the stop-band, at least 
one decade below fpass. The evolution produced a solu-
tion after only 430 generations, which took about an 
hour using a cluster of 10 Core i5 Linux machines. We 
can observe the resulting circuit in Figure 10 (1) and its 
frequency response on Figure 11 (1). The resulting RC 
filter is comprised of three capacitors and four resistors. 
Its frequency response shows a low (almost zero) ripple 
in pass band, 0 dB gain and –40 dB/decade slope. There 
is a return point from –50 dB towards –40 dB at 0.9 kHz. 

In the second case, we required steeper damping of –60 
dB. In this case, the evolution reached the maximum 
limit of 2000 generations, which took approximately 
five hours on the same hardware. The resulting circuit 
(the circuit in Figure 10 (2) with the values in brackets) 
met most criteria except for fpass, which settled at 1 kHz 
instead of 8 kHz. The reason for this failure, however, 
was not the evolutionary algorithm itself but rather 
the internal limit on the maximum number of itera-
tions of the PSADE parameter optimization algorithm, 
which was set to 105. This internal limit was set in order 
to keep each parameter optimization run reasonably 
short during the topology evolution. After we have run 
the additional PSADE optimization on the final topol-
ogy, the starting frequency of the pass-band moved 
to the desired value (cf. the plots of the second run 
in Figure 11). It took PSADE additional 5·106 iterations 
to fine-tune the circuit parameters. The final circuit is 
comprised of five capacitors and four resistors, which 
form an RC filter with a similar frequency response as 
in the first case, except with better damping (Figure 
10 (2) and Figure 11 (2) – “fine-tuned”). Similarly to the 
first case, there is a return point from -61 dB towards 
-55 dB, which slightly violates the damping criterion. 

This problem could be solved simply by increasing the 
weight factor assigned to damping in the cost function. 

Figure 10: Automatically evolved filter topologies and 
their numerical parameters when requiring dumping 
of –40 dB (1) and –60 dB (2). With second circuit, param-
eters given in brackets are the raw algorithm solution 
and fine-tuned ones are given above.

Note that both topologies shown in Figure 10 are the 
raw output of the algorithm. An analog human design-
er will still see some obvious (topological) redundan-
cies like, for example, the serially connected resistors R3 
and R4 in the second filter.

4.1 A Comparison to other existing approaches

In this subsection, we compare our approach to other 
known analog circuit topology representations for 
evolutionary algorithms found in the literature. A brief 
glance at Table 2 reveals that our matrix representation 
technique surpasses the competitive approaches in 
several categories. 

Representations used by Koza [12] and Lohn [13] suffer 
quite seriously from bloat that manifests itself in many 
redundant circuit branches, which makes it difficult to 
control the evolution. We have eliminated this problem 
because a connection matrix cannot change its size 
during the evolution. Furthermore, we limit a number 
and the types of allowed components by specifying a 
pre-defined component library to be used by the algo-
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rithm. The only redundancies that emerge in our case 
are some parallel/serial repetitions of same-type com-
ponents.

With Koza [12], Lohn [13], and Gan [15], the basic build-
ing blocks are limited to two-pole components. Al-
though the methods allow the usage of transistors, one 
of their three terminals should always be fixed before-
hand to one of the outer connections. However, with 
our matrix representation it is possible to use building 

blocks having an arbitrary number of terminals, which 
vastly increases the circuit search space.
 
The approach proposed by Kruiskamp [10] is limited 
to combine 24 predefined topologies which is hardly 
practical for real-life problems. With our represen-
tation, there is no limit on the type and size of the 
evolved topology other than the one imposed by the 
size of a connection matrix and a pre-defined compo-
nent library. 

Koza [12], Lohn [13] and Györök [14] do not suggest 
any routine for short-circuit checks directly on the cir-
cuit representation level. Our approach incorporates 
efficient checking of a connection matrix. Configura-
tions resulting in a short-circuited topology are exclud-
ed from further unnecessary and potentially expensive 
computations. 

The approach by Kruiskamp [10] requires quite some 
information about the desired circuit topology struc-
ture to be input by the practitioner in advance. Many 
other methods, on the other hand, demand very little 
or even no such information. This way, the evolution 
is able to come up with a completely new topology 
for a certain task. Our method is flexible in this aspect 
because it allows a practitioner to enter an arbitrary 
amount of prior knowledge about the circuit by con-
structing an appropriate component library. By adding 
different sub-circuits to the library, or injecting known 
topologies into the initial generation of the evolution-
ary search, he or she can freely control the amount of 
entered knowledge.

Implementation of genetic programming can be quite 
an arduous task, involving genetic tree definition, tree-
to-netlist conversion, and other complex mechanisms. 

Figure 11: Frequency responses of automatically 
evolved both topology and parameters for two high-
pass filters. For the second run, additional parameter 
fine-tuning was carried out.

Table 2: A comparison to other existing circuit topology representation techniques.

Bloat- 
safe?

Final 
topology 
size

Number of 
sub-circuit 
terminals

Search 
space size

Built-in  
topology 
check

Prior-
knowl-
edge 
required

Imple-
menta-
tion com-
plexity

Repro-
duction 
mechanisms 
complexity

Kruiskamp [10] yes limited arbitrary limited yes high low low
Koza [12] no unlimited two enormous no low high high
Lohn [13] no unlimited two enormous no low high low

Györök [14] yes limited arbitrary control-
lable

no low low /

Gan [15] yes limited two control-
lable

yes low low low

This work yes controllable arbitrary control-
lable

yes control-
lable

low low
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It is also very important that our matrix representation 
can be implemented quite easily. Furthermore, unlike 
different genetic trees reproduction operators, our re-
production mechanisms are straightforward to imple-
ment and work natively with the upper-triangular con-
nection matrix. Györök [14], as seen in Table 2, does 
not propose any reproduction mechanism other than 
a Monte Carlo method. 

5 Conclusions

We developed an analog circuit representation tech-
nique for automated topology synthesis in the form of 
an upper-triangular binary matrix. The representation 
prevents bloat during the evolution so that the circuit 
cannot grow over the limits. Nevertheless, the imple-
mentation still enables a search over quite a large solu-
tion space whose size can be controlled by the element/
sub-circuit library. We observed the redundancy phe-
nomenon in the matrix-to-netlist conversion, which is 
important for maintaining the genetic diversity of a pop-
ulation of circuits but is problematic from the netlist gen-
eration point of view. We proposed a procedure of gen-
erating a fully-redundant matrix that lends itself easily 
to generation of a SPICE netlist. Based on the proposed 
topology representation, we developed the crossover 
and mutation genetic operators and an evolutionary al-
gorithm suitable for evolving an arbitrary circuit based 
on a high-level statement about its required properties. 
We demonstrated the suitability of the approach with 
an evolution of a passive high-pass filter. We believe that 
the results of this research can easily be extended to syn-
thetizing more complex passive and even active circuits, 
which will be a focus of our future research.

6 References

1. L. W. Nagel and D. O. Pederson, “SPICE (Simulation 
Program with Integrated Circuit Emphasis),” 1973.

2. J. Olenšek, T. Tuma, J. Puhan and Á. Bűrmen, “A 
New Asynchronous Parallel Global Optimization 
Method Based on Simulated Annealing and Dif-
ferential Evolution,” Applied Soft Computing, vol. 
11, pp. 1481-1489, 2011.

3. J. Puhan, T. Tuma and I. Fajfar, “Optimisation meth-
ods in SPICE: a comparison,” in Proceedings of Eu-
ropean Conference on Circuit Theory and Design 
(ECCTD), 1999.

4. U. M. Garcia-Palomares, F. J. Gonzalez-Castaño 
and J. C. Burguillo-Rial, “A Combined Global & Lo-
cal Search (CGLS) Approach to Global Optimiza-
tion,” Journal of Global Optimization, vol. 34, pp. 
409-426, 2006.

5. H. Schmidt and G. Thierauf, “A combined heuristic 
optimization technique,” Advances in Engineering 
Software, vol. 36, pp. 11-19, 2005.

6. S. Ebrahim Sorkhabi and L. Zhang, “Automated 
topology synthesis of analog and RF integrated 
circuits: A survey,” INTEGRATION, the VLSI journal, 
vol. 56, pp. 128-138, 2017.

7. M. G. R. Degrauwe, O. Nys, E. Dijkstra, J. Rijme-
nants, S. Bitz, B. L. A. G. Goffart, E. A. Vittoz, S. Cser-
veny, C. Meixenberger, G. van der Stappen and 
H. J. Oguey, “IDAC: an interactive design tool for 
analog CMOS circuits,” IEEE Journal of Solid-State 
Circuits, vol. 22, pp. 1106-1116, Dec 1987.

8. R. Harjani, R. A. Rutenbar and L. R. Carley, “OASYS: 
a framework for analog circuit synthesis,” IEEE 
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 8, pp. 1247-1266, 
Dec 1989.

9. H. Y. Koh, C. H. Sequin and P. R. Gray, “OPASYN: a 
compiler for CMOS operational amplifiers,” IEEE 
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 9, pp. 113-125, 
Feb 1990.

10. W. Kruiskamp and D. Leenaerts, “Darwin: Ana-
logue circuit synthesis based on genetic algo-
rithms,” International Journal of Circuit Theory and 
Applications, vol. 23, pp. 285-296, 1995.

11. J. R. Koza, Genetic Programming: On the Program-
ming of Computers by Means of Natural Selec-
tion, Cambridge, MA: MIT Press, 1992.

12. J. R. Koza, I. F. H. Bennett, D. Andre, M. A. Keane 
and F. Dunlap, “Automated Synthesis of Analog 
Electrical Circuits by Means of Genetic Program-
ming,” Trans. Evol. Comp, vol. 1, pp. 109-128, Jul 
1997.

13. J. D. Lohn and S. P. Colombano, “A circuit represen-
tation technique for automated circuit design,” 
IEEE Transactions on Evolutionary Computation, 
vol. 3, pp. 205-219, Sep 1999.

14. G. Györök, “Crossbar network for automatic ana-
log circuit synthesis,” in 2014 IEEE 12th Internation-
al Symposium on Applied Machine Intelligence and 
Informatics (SAMI), 2014.

15. Z. Gan, Z. Yang, T. Shang, T. Yu and M. Jiang, “Au-
tomated synthesis of passive analog filters using 
graph representation,” Expert Systems with Appli-
cations, vol. 37, no. 3, pp. 1887-1898, 2010.

16. K. Baumgardner and G. Elseth, Principles of Mod-
ern Genetics, West Publishing Company, 1995.

17. Ž. Rojec, Á. Bűrmen and I. Fajfar, «An evolution-
driven analog circuit topology synthesis,» in 2016 
IEEE Symposium Series on Computational Intelli-
gence (SSCI), 2016.

18. C. Darwin, The Origin of Species, P. F. Collier & Son, 
1909.

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40



40

19. D. E. Goldberg and J. H. Holland, “Genetic Algo-
rithms and Machine Learning,” Machine Learning, 
vol. 3, pp. 95-99, Oct 1988.

20. R. Schaumann, H. Xiao and V. V. Mac, Design of 
Analog Filters 2nd Edition, New York, NY, USA: Ox-
ford University Press, Inc., 2009.

21. A. Bűrmen, J. Puhan, J. Olenšek, G. Cijan and T. 
Tuma, “PyOPUS - Simulation, Optimization, and 
Design,” EDA Laboratory, Faculty of Electrical En-
gineering, University of Ljubljana, 2016.

Arrived: 10. 11. 2017
Accepted: 06. 03. 2018

Ž. Rojec et al; Informacije Midem, Vol. 48, No. 1(2018), 29 – 40


