
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 13 (2017) 167–185

On which groups can arise as the canonical
group of a spherical latin bitrade

Kyle Bonetta-Martin ∗, Thomas A. McCourt
Department of Mathematics and Statistics, Plymouth University,

Drake Circus, Plymouth PL4 8AA, UK

Received 27 June 2016, accepted 22 December 2016, published online 23 February 2017

Abstract

We address a question of Cavenagh and Wanless asking: which finite abelian groups
arise as the canonical group of a spherical latin bitrade? We prove the existence of an
infinite family of finite abelian groups that do not arise as canonical groups of spherical
latin bitrades. Using a connection between abelian sandpile groups of digraphs underlying
directed Eulerian spherical embeddings, we go on to provide several, general, families of
finite abelian groups that do arise as canonical groups. These families include:

• any abelian group in which each component of the Smith Normal Form has compos-
ite order;

• any abelian group with Smith Normal Form Zn
p ⊕

(⊕k
i=1 Zpai

)
, where 1 ≤ k,

2 ≤ a1, a2, . . . , ak, p and n ≤ 1 + 2
∑k

i=1(ai − 1); and

• with two exceptions and two potential exceptions any abelian group of rank two.
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1 Introduction
Given two latin squares of the same order a latin trade describes the differences between
them. Early motivation [13] for their study arose from considering the differences between
the operation tables of a finite group and a latin square of the same order, that is: what
is the ‘distance’ between a group and a latin square? The study of the topological and
geometric properties of latin trades has lead to significant progress towards understanding
such differences, see for example [1, 9, 11, 19, 20], also see [7] for a survey of earlier
results.

Given a latin trade it may be the case that the constituent partial latin squares are not
‘contained’ (do not embed) in any group operation table, [9]. Hence, it is desirable to
identify those that are. Connected latin bitrades of maximum size, equivalently spherical
latin bitrades provide a family of latin bitrades for which the constituent partial latin squares
do embed. We are interested in the ‘minimal group’ that such constituent partial latin
squares embed in, and indeed what groups arise as such minimal groups.

1.1 Spherical latin bitrades

A partial latin square P is an ` ×m array, in which the cells either contain an element of
a set S of symbols or are empty, such that each row and each column contains each of the
symbols of S at most once. Without loss of generality we let S = {s1, s2, . . . , sn} and
index the rows and columns by the sets R = {r1, r2, . . . , r`} and C = {c1, c2, . . . , cm}
respectively (we may assume that each symbol in S occurs at least once in the array and
the rows of R and columns of C are all nonempty). As such a partial latin square P can be
considered to be a subset of R×C × S such that if (r1, c1, s1) and (r2, c2, s2) are distinct
triples in P , then at most one of r1 = r2, c1 = c2 and s1 = s2 holds.

A latin bitrade is an ordered pair, (W,B) say, of non-empty partial latin squares such
that for each triple (ri, cj , sk) ∈ W (respectively B) there exists unique ri′ 6= ri, cj′ 6= cj
and sk′ 6= sk such that{

(ri,′cj , sk), (ri, cj′ , sk), (ri, cj , sk′)
}
⊂ B (respectively W ).

Note that (W,B) is a latin bitrade if and only if (B,W ) is also a latin bitrade. The size of
such a latin bitrade is |W | (equivalently |B|). A latin bitrade (W,B) for which there does
not exist any latin bitrade (W ′, B′) such thatW ′ (W andB′ ( B is said to be connected.

Let (W,B) be a latin bitrade; for each row, r say, of (W,B) a permutation ρr of the
symbols in row r can be defined by ρr(s) = s′ if and only if (r, c, s) ∈W and (r, c, s′) ∈ B
for some c inC. A row r for which ρr is comprised of a single cycle is said to be separated.
Similar definitions hold for separated columns and separated symbols. A latin bitrade in
which each row, each column and each symbol is separated is called a separated latin
bitrade. Suppose that (W,B) is a latin bitrade which is not separated. Then replacing each
non-separated row x (respectively column, symbol) by new rows (respectively columns,
symbol) for each of the cycles in ρx we obtain a separated latin bitrade. See the survey
paper [7] for further details and discussion.

A connected latin bitrade (W,B) can be used to construct a face two-coloured trian-
gulation GW,B of a pseudo-surface Σ in which the vertex set is R t C t S and there is an
edge between a pair of vertices if and only if the vertices occur together in a triple of W
(equivalently a triple of B). For each triple (r, c, s) ∈ W a white triangular face with ver-
tices r, c, s is constructed and for each (r′, c′, s′) ∈ B a black triangular face with vertices
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r′, c′, s′ is constructed. As (W,B) is a bitrade the graph underlying GW,B is simple, and
as (W,B) is connected GW,B is also connected. The pseudo-surface Σ is a true surface if
the rotation at each vertex is a full rotation; this occurs if and only if (W,B) is separated
(in which case each row, column or symbol permutation corresponds to the rotation at the
corresponding vertex). If Σ is not a surface, then replacing each pinch point of multiplicity
t with t vertices, one on each of the sheets at the pinch point, corresponds to the above
construction taking a non-separated bitrade to a separated one. As the triangulation GW,B

is face two-coloured and the underlying graph is vertex three-coloured it follows, see the
proof of Theorem 10.1 in [14], that GW,B is orientable.

The genus of a separated connected latin bitrade is the genus of the surface obtained in
the above manner; in particular separated connected latin bitrades of genus zero are referred
to as spherical latin bitrades. Note that for any connected latin bitrade of size ` we have
that |R| + |C| + |S| ≤ ` + 2, with equality if and only if the bitrade is a spherical latin
bitrade, see [1]. That is, spherical latin bitrades are the connected latin bitrades of minimal
size (with respect to the sum of the number of rows, columns and symbols).

In [8] Cavenagh and Lisoněk prove the following result.

Theorem 1.1 (Cavenagh & Lisoněk, [8]). Spherical latin bitrades are equivalent to spher-
ical Eulerian triangulations whose underlying graphs are simple.

Note that an Eulerian graph that has an embedding in the sphere is necessarily vertex
three-colourable [16]. It is not hard to generalise Theorem 1.1 to surfaces of higher genus,
however as face two-coloured triangulations of surfaces of higher genus may not be vertex
three-colourable, an additional condition is required.

Corollary 1.2. Separated connected latin bitrades of genus g are equivalent to vertex
three-colourable Eulerian triangulations of genus g whose underlying graphs are simple.

1.2 Embeddings of latin bitrades into abelian groups

Two partial latin squares are said to be isotopic if they are equal up to a relabelling of their
sets of rows, columns and symbols. A partial latin square P , with row set R, column set
C and symbol set S, is said to embed in an abelian group Γ if there exist injective maps
φ1 : R → Γ, φ2 : C → Γ and φ3 : S → Γ such that φ1(r) + φ2(c) = φ3(s) for
all (r, c, s) ∈ P . In other words P is isotopic to a partial latin square contained in the
operation table of Γ. See Figure 1 for an example.

By defining φ|R = φ1, φ|C = φ2, and φ|S = −φ3 it follows, see [1], that P embeds in
an abelian group Γ if and only if there exists a function φ : RtC tS → Γ that is injective
when restricted to each of R, C and S and is such that φ(r) + φ(c) + φ(s) = 0 for all
(r, c, s) ∈ P . The map φ is called an embedding of P . An abelian group Γ is said to be a
minimal abelian representation of a partial latin square P if P embeds in Γ and the image
of φ generates Γ for all embeddings φ of P in Γ.

Two partial latin squares are said to be conjugate if they are equal up to permutations of
the roles of rows, columns and symbols. Two partial latin squares, say P and Q, for which
a partial latin square isotopic to P is conjugate to a partial latin square isotopic to Q are
said to be in the same main class. Note that if a partial latin square P has an embedding
in an abelian group Γ, every partial latin square in the same main class as P also has an
embedding in Γ.
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a b c
c a

a b

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Figure 1: The partial latin square above left embeds into Z4 as illustrated by the bold faced
entries in the operation table of Z4, above right.

As we are interested in embeddings (into abelian groups) of partial latin squares (and
given that if a partial latin square P embeds in an abelian group Γ, so does any partial latin
square isotopic to P ) from here on we will assume that the row, column and symbol sets of
a partial latin square are pairwise disjoint.

In [10] Cavenagh and Drápal asked the following questions “Can the individual partial
latin squares of a connected separated latin bitrade be embedded into the operation table of
an abelian group? If this is not true in general is it true for spherical latin bitrades?”. The
case of spherical latin bitrades was solved by Cavenagh and Wanless in [9] and indepen-
dently by Drápal, Hämäläinen and Kala in [11]. Cavenagh and Wanless [9] also showed
that separated connected latin bitrades of higher genus exist for which the constituent par-
tial latin squares do not embed in any group. Hence our focus on spherical latin bitrades.

Let P be a partial latin square with row set R, column set C and symbol set S. Let
V = R ∪ C ∪ S and define an abelian group AP with generating set V subject to the
relations {r+ c+ s = 0 : (r, c, s) ∈ P}. Note that, if P and Q are two partial latin squares
in the same main class, then AP

∼= AQ. Also, note that two partial latin squares, P and Q,
from different main classes may also satisfy AP

∼= AQ (see Figure 2 in [19]).
The group AP has the ‘universal’ property that any minimal abelian representation of

P is a quotient ofAP , [12], also see [1]. MoreoverAP is of the form Z⊕Z⊕CP , again see
[1]. Drápal et al [11] and Cavenagh and Wanless [9] proved that CW is finite when (W,B)
is a spherical latin bitrade. So in this case CW is the torsion subgroup of AW . Cavenagh
and Wanless conjectured that CW ∼= CB (and hence AW

∼= AB), [9], also see [6, 18]. This
is indeed the case.

Theorem 1.3 (Blackburn & McCourt [1]). Let (W,B) be a spherical latin bitrade, then
AW
∼= AB

∼= Z⊕ Z⊕ C, where C is finite.

The group C in Theorem 1.3 is referred to as the canonical group of the spherical latin
bitrade (see [15, 19]).

In [9] Cavenagh and Wanless asked the following question.

Question 1. Which abelian groups arise as the canonical group of a spherical latin bitrade?1

It is this question that we address in this paper. For any cyclic group Zn the existence
of spherical latin bitrades whose canonical group is isomorphic to Zn was established by
Cavenagh and Wanless in [9]. They also noted that no spherical latin bitrade exists whose
canonical group is isomorphic to Z2 ⊕ Z2.

1Cavenagh and Wanless actually asked this for the finite torsion subgroup of AW as Theorem 1.3 was not
established at the time.
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Figure 2: The vertex r1 and nearby faces in GW,B .

Given a face 2-coloured triangulation of the sphere in which the underlying graph is
not necessarily simple and leaving the definitions of AW and AB unchanged it is still the
case that AW

∼= AB
∼= Z⊕ Z⊕ C where C is finite [1]. In [19] the second author showed

that given any finite abelian group Γ there exists a face 2-coloured triangulation of the
sphere whose canonical group is isomorphic to Γ. However, unless Γ is a cyclic group the
triangulations constructed have underlying graphs that are not simple.

In Section 2 we prove the existence of several, general, infinite families of abelian
groups that arise as canonical groups of spherical latin bitrades. Before doing so, we first
prove that there exist infinitely many abelian groups that do not arise as the canonical group
of any spherical latin bitrade.

Theorem 1.4. There does not exist a spherical latin bitrade whose canonical group is
isomorphic to Zk

2 for any k ≥ 2.

Proof. In the following we will make repeated use of the fact that for u, v, w, x, y, z ∈ Zk
2 ,

if u+ w = y, v + w = z and v + x = y, then u+ x = z.
Let k ≥ 2 and suppose that (W,B) is a spherical latin bitrade whose canonical group

is isomorphic to Zk
2 . So, by Theorem 1.3, both W and B embed in Zk

2 .
Recall that we may assume that the row, column and symbol sets of W (and of B) are

pairwise disjoint; denote them, respectively, by R = {r1, r2, . . . , r`}, C = {c1, c2, . . . ,
cm} and S = {s1, s2, . . . , sn}. Let GW,B be the related triangulation and G be the under-
lying graph of this triangulation. As GW,B has a proper face 2-colouring, G is Eulerian,
and, as (W,B) is a latin bitrade, the minimum degree ofG is at least four. Moreover, GW,B

is a triangulation of the sphere, so, by Euler’s formula, G contains at least six vertices of
degree four.

As spherical latin bitrades in the same main class all have isomorphic canonical groups,
without loss of generality, we may assume that the degree of r1 is four, and (r1, c1, s1),
(r1, c2, s2) ∈ B and (r1, c1, s2), (r1, c2, s1) ∈ W where c1 6= c2 and s1 6= s2. Hence,
as (W,B) is a latin bitrade, there exist x1, x2, x3, x4 ∈ R \ {r1} such that (x1, c2, s1),
(x3, c1, s2) ∈ B and (x2, c1, s1), (x4, c2, s2) ∈ W (see Figure 2 for an illustration of the
corresponding faces).

AsW embeds in Zk
2 , x2 = x4 and, asB embeds in Zk

2 , x1 = x3. Suppose that x1 = x2.
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Let
W ′ = {(r1, c1, s2), (r1, c2, s1), (x1, c1, s1), (x1, c2, s2)}

and
B′ = {(r1, c1, s1), (r1, c2, s2), (x1, c1, s2), (x1, c2, s1)}.

Then (W ′, B′) is a spherical latin bitrade such that W ′ ⊆ W and B′ ⊆ B. As (W,B) is
connected, it must be the case that W ′ = W and B′ = B. However, the canonical group
of (W ′, B′) is Z2, a contradiction. So x1 6= x2; in which case G contains a subgraph H =
(V,E) where V = {r1, x1, x2, c1, s1, s2} and E = {r1c1, r1s1, r1s2, x1c1, x1s1, x1s2,
x2c1, x2s1, x2s2}. However, H is isomorphic to K3,3; which contradicts GW,B being a
spherical embedding.

2 Existence results
2.1 Directed Eulerian spherical embeddings

LetD be a, not necessarily simple, digraph of order n with vertex set V (D) = {v1, v2, . . . ,
vn}. The adjacency matrixA = [aij ] ofD is the n×nmatrix where entry aij is the number
of arcs from vertex vi to vertex vj . The asymmetric Laplacian of D is the n × n matrix
L(D) = B − A where B is the diagonal matrix in which entry bii is the out-degree of
vertex vi. The digraph D is said to be Eulerian if, for each v ∈ V (D), the out-degree at v
equals the in-degree at v. Hence, in an Eulerian digraph we will simply refer to the degree
of a vertex v, i.e. deg v.

Let D be a connected Eulerian digraph of order n with vertex set V (D) = {v1, v2, . . . ,
vn}. Fix an i, where 1 ≤ i ≤ n and define L′(D, i) to be the matrix obtained by
removing row and column i from L(D). As D is connected and Eulerian, the group
Zn−1/L′(D, i)Zn−1 is invariant of the choice of i, see [17, Lemma 4.12]. Hence, the
abelian sandpile group of the connected Eulerian digraph D can be defined to be the
group S(D) = Zn−1/Zn−1L′(D,n); moreover S(D) ∼= Zn−1/Zn−1L′(D, i), for any
1 ≤ i ≤ n.

Consider an embedding D of a connected Eulerian digraph D in an orientable surface
S. If each face of the embedding corresponds to a directed cycle in D, equivalently the
rotation at each vertex alternates between incoming and outgoing arcs, then the embedding
is said to be a directed Eulerian embedding, see [2, 3]. If the embedding is in the sphere
we call it a directed Eulerian spherical embedding.

Suppose that G is a face two-coloured triangulation of the sphere. By [16], the under-
lying digraph of G has a vertex three-colouring with colour classes R, C and S. Tutte [21]
described a construction, from G, of directed Eulerian spherical embeddings DI(G) = DI

with vertex set I , where I ∈ {R,C, S}. We give a description of the construction from
[19].

Let {I, I1, I2} = {R,C, S}. Consider a vertex vi ∈ I . Then vi has even degree,
say d, the rotation at i is (u1, v1, u2, v2, . . . , ud/2, vd/2), where, without loss of generality,
uj ∈ I1 and vj ∈ I2 for all 1 ≤ j ≤ d/2 and the edge ej between uj and vj in the rotation
is contained in a black face. Then in DI there are d/2 outgoing arcs from vertex vi, say aj ,
1 ≤ j ≤ d/2, one for each black face, and the terminal vertex for arc aj is the vertex in I
contained in the white face containing edge ej . Clearly, DI inherits a spherical embedding
from G in which the arc rotation at each vertex alternates between incoming and outgoing
arcs, so DI has a directed Eulerian spherical embedding. As the sphere is connected the
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graph underlying DI is connected. Note that given any of DR, DC or DS the original face
two-coloured triangulation can be obtained by reversing the above construction:

Lemma 2.1 (Tutte, [21]). Given a directed Eulerian spherical embedding D, there exists
a face 2-coloured spherical triangulation G with a vertex 3-colouring given by the vertex
sets R, C and S, such that for some I ∈ {R,C, S}, DI(G) ∼= D.

Tutte’s Trinity Theorem [21] states that |S(DR)| = |S(DC)| = |S(DS)|. For a spher-
ical latin bitrade (W,B) with corresponding face two-coloured triangulation G, this result
was strengthened implicitly in [1] and explicitly in [19] to S(DR) ∼= S(DC) ∼= S(DS) ∼=
AW
∼= AB .

Given an arbitrary directed Eulerian spherical embedding applying the above construc-
tion in reverse yields a face two-coloured triangulation. However, the underlying graph is
not necessarily simple. In order to make use of the above equivalences (between sandpile
groups and canonical groups of spherical latin squares) we make use of the following result.

Proposition 2.2 (McCourt, [19]). Suppose that D is a directed Eulerian spherical embed-
ding with underlying digraph D. Further suppose that D is connected, has no loops, no
cut vertices and its underling graph has no 2-edge-cuts. Then there exists a spherical latin
bitrade whose canonical group is isomorphic to S(D).

Hence, in order to construct a spherical latin bitrade with canonical group Γ it suffices
to find a directed Eulerian spherical embedding satisfying the connectivity conditions of
Proposition 2.2 whose abelian sandpile group is isomorphic to Γ.

2.2 Arbitrary rank

In this section we will construct families of canonical groups that have arbitrary rank. We
will make repeated use of the following, elementary lemma.

Lemma 2.3. Let 2 ≤ p, a and 0 ≤ x, y, `. Further let r = p(x + 1) + a − x − 1,
s = p(y + 1) + a− y − 1 and ti,j ∈ Z, for 1 ≤ i ≤ m and 1 ≤ j ≤ `. Then the matrix

L =



p −p+ 1 0 · · · 0 0 · · · 0 −1 0 · · · 0
−p r −p · · · −p 0 · · · 0 x+ 1− a 0 · · · 0
0 −p+ 1

pIx
0 · · · 0 −1 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...
0 −p+ 1 0 · · · 0 −1 0 · · · 0
0 −1 0 · · · 0

pIy
−p+ 1 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...
0 −1 0 · · · 0 −p+ 1 0 · · · 0
0 y + 1− a 0 · · · 0 −p . . . −p s t1,1 · · · t1,`
0 −1 0 · · · 0 0 . . . 0 −p+ 1 t2,1 · · · t2,`
0 0 0 · · · 0 0 · · · 0 0 t3,1 · · · t3,`
...

...
... · · ·

...
... · · ·

...
...

... · · ·
...

0 0 0 · · · 0 0 · · · 0 0 tm,1 · · · tm,`
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reduces (under row and column operations invertible over Z) to

1 0 0 · · · 0 0 0 · · · 0
0 ap 0 · · · 0 0 0 · · · 0
0 0

pIx+y

0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0
0 0 0 · · · 0 p t1,1 · · · t1,`
0 0 0 · · · 0 −p t2,1 · · · t2,`
0 0 0 · · · 0 0 t3,1 · · · t3,`
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 tm,1 · · · tm,`


.

Proof. For 1 ≤ i ≤ x and 1 ≤ j ≤ y add Row 2 + i and Row 2 + x+ j to Row x+ y + 3
of L. Subsequently, for 1 ≤ i ≤ x, add Column 2 + i to Column 2 and, for 1 ≤ j ≤ y,
Column 2 + x+ j to Column 3 + x+ y. Next add Column 2 to Column 1.

Now add Column 1 to Column 3 + x+ y and p− 1 copies of Column 1 to Column 2.
Row 1 can now be used to clear all non-zeros from Column 1. Once this is completed it is
easy to see that the remaining non-zeros in Column 2 can also be cleared.

The proof of Lemma 2.4 is essentially a special case of the proof of Theorem 2.6,
however, to aid the reader, we detail this simpler case before proving the general result.

Lemma 2.4. Let 1 ≤ k and let 2 ≤ m, a1, a2, . . . , ak. Then there exists a spherical latin
bitrade whose canonical group is isomorphic to

⊕k
i=1 Zmai

.

Proof. We begin by defining a digraph Dm;a1,a2,...,ak
with vertex set {α0, α1, α2, . . . , αk,

γ1, γ2, . . . , γk} and

• for each 1 ≤ i ≤ k:

◦ m− 1 arcs from αi to γi and m− 1 arcs from γi to αi;
◦ ai − 1 arcs from αi−1 to γi and ai − 1 arcs from γi to αi−1;
◦ an arc from αi to αi−1;

• for each 1 ≤ i ≤ k − 1: an arc from γi to γi+1; and
• an additional arc from α0 to γ1 and an additional arc from γk to αk.

The digraph Dm;a1,a2,...,ak
has a directed Eulerian spherical embedding and satisfies the

connectivity conditions of Proposition 2.2, as can be seen from Figure 3 (in this figure
t arcs from u to v alternating with t arcs from v to u are represented by a bidirectional
edge labelled t). Hence, there exists a spherical latin bitrade whose canonical group is
isomorphic to S(Dm;a1,a2,...,ak

).
Suppose that we order the vertices ofDm;a1,a2,...,ak

by αk, γk, αk−1, γk−1, . . . , α2, γ2,
α1, γ1, α0, and construct the associated asymmetric Laplacian. Then, removing the row and
column corresponding to α0 yields the reduced asymmetric Laplacian L′(Dm;a1,a2,...,ak

).

Let k ≥ 1 and m, a1, a2, . . . , ak+1 ≥ 2. Note that L′(Dm;a1 ) =

[
m −m+ 1
−m m+ a1 − 1

]
reduces to

[
1 0
0 ma1

]
; so S(Dm;a1

) ∼= Zma1
.

Assume that S(Dm;a1,a2,...,ak
) is isomorphic to

⊕k
i=1 Zmai

. Setting ai − 1 = a′i for
1 ≤ i ≤ k, the reduced asymmetric Laplacian L′k = L′(Dm;a1,a2,...,ak

) is shown below.
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α0

α1 α2 α3 αk−2 αk−1 αk

γ1 γ2 γ3 γk−2 γk−1 γk

m − 1

m − 1 m − 1

m − 1

m − 1 m − 1

a2 − 1 a3 − 1 ak−1 − 1 ak − 1
a1 − 1

Figure 3: A directed Eulerian spherical embedding of Dm;a1,a2,...,ak
.

L′k =



m −m+ 1 −1 0 0 0 · · · 0 0
−m m+ a′k −a′k 0 0 0 · · · 0 0

0 −a′k m+ a′k −m+ 1 −1 0 · · · 0 0
0 −1 −m+ 1 m+ a′k−1 −a′k−1 0 · · · 0 0
0 0 0 −a′k−1 m+ a′k−1 −m+ 1 · · · 0 0
0 0 0 −1 −m+ 1 m+ a′k−2 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · m+ a′2 −m+ 1
0 0 0 0 0 0 · · · −m+ 1 m+ a′1


Now, consider the digraph Dm;a1,a2,...,ak+1

. Applying Lemma 2.3, with p = m and
x = y = 0, to rows αk+1, γk+1, αk, γk we have that L′k+1 = L′(Dm;a1,a2,...,ak+1

) reduces
to 

1 0 0 · · · 0
0 mak+1 0 · · · 0
0 0...

... L′k
0 0

 .

It follows that S(Dm;a1,a2,...,ak+1
) is isomorphic to

⊕k+1
i=1 Zmai

.

It is now easy to establish the existence of spherical latin bitrades whose canonical
groups can be expressed as the direct sum of components of composite order.

Theorem 2.5. Suppose that Γ is a group isomorphic to a direct sum of cyclic groups of
composite order; i.e. Γ is isomorphic to ⊕k

i=1Zni , where each ni is composite. Then there
exists a spherical latin bitrade whose canonical group is isomorphic to Γ.

Proof. Let n1, n2, . . . , nk be composite integers and consider Γ ∼= ⊕k
i=1Zni

. Recall that if
gcd(nu, nv) = 1, u 6= v, then ⊕k

i=1Zni
∼= Zn1

⊕ · · · ⊕ Znu−1
⊕ Znu+1

⊕ · · · ⊕ Znv−1
⊕

Znv+1
⊕ · · · ⊕ Znk

⊕ Znunv
. Thus we may assume that gcd{n1, n2, . . . , nk} 6= 1. Hence

there exists a prime, p say, such that p divides gcd{n1, n2, . . . , nk}. Note that, as ni is
composite for all 1 ≤ i ≤ k, p 6= ni. By setting m = p and applying Lemma 2.4 the result
follows.

The next result addresses the existence of spherical latin bitrades for which the Smith
Normal Form of their canonical groups contains components of prime order.
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Theorem 2.6. Let p be a prime and let 2 ≤ a1, a2, . . . , ak. Further let n ≤ 1 +
2
∑k

i=1(ai − 1). Then there exists a spherical latin bitrade whose canonical group is
isomorphic to

Zn
p ⊕

(
k⊕

i=1

Zpai

)
.

Proof. If n = 0, then this is Lemma 2.4. So for the remainder of the proof assume that
n ≥ 1. As n ≤ 1+2

∑k
i=1(ai−1) there exists a k′, 0 ≤ k′ < k, and t, 0 ≤ t ≤ 2(ak′+1−1)

such that

n = 1 + 2

k′∑
i=1

(ai − 1) + t.

First construct the graph Dp;a1,a2,...,ak
(from the proof of Lemma 2.4). Next, add the

following vertices,

• for each 1 ≤ i ≤ k′: add vertices δi,j and εi,j for all 1 ≤ j ≤ ai − 1;
• for each 1 ≤ j ≤ dt/2e: add vertices δk′+1,j ;
• for each 1 ≤ j ≤ bt/2c: add vertices εk′+1,j ; and
• the vertex ε1,0.

Now add arcs to and replace arcs from Dp;a1,a2,...,ak
as illustrated in Figures 4 and 5.

Note that Dn
p;a1,a2,...,ak

has a directed spherical embedding, and that it satisfies the
connectivity conditions of Proposition 2.2. Therefore, there exists a spherical latin bitrade
whose canonical group is isomorphic to S(Dn

p;a1,a2,...,ak
).

For ease of notation, let

di =

 ai − 1 for 1 ≤ i ≤ k′
dt/2e for i = k′ + 1
0 otherwise

and ei =

 ai − 1 for 1 ≤ i ≤ k′
bt/2c for i = k′ + 1
0 otherwise

.

Suppose that we order the vertices of Dn
p;a1,a2,...,ak

by

(αk, γk, δk,dk
, . . . , δk,1, εk,ek , . . . , εk,1), . . . , (α2, γ2, δ2,d2

, . . . , δ2,1, ε2,e2 , . . . , ε2,1),

(α1, γ1, δ2,d1 , . . . , δ1,1, ε1,e1 , . . . , ε1,1, ε1,0), α0

and construct the associated asymmetric Laplacian. Then, removing the row and column
corresponding to α0 yields the reduced asymmetric Laplacian L′(Dn

p;a1,a2,...,ak
).

Let k ≥ 1 and p, a1, a2, . . . , ak+1 ≥ 2 and let 1 ≤ n ≤ 1 + 2
∑k+1

i=1 (ai − 1). Then,
letting x = d1, y = e1 and r = p(x+ 1) + a1 − x− 1,

L′
(
Dmin{n,1+2(a1−1)}

p;a1

)
=



p −p+ 1 0 · · · 0 0 . . . 0 0
−p r −p . . . −p 0 . . . 0 0
0 −p+ 1

pId1

0 · · · 0 0
...

...
...

. . .
...

...
0 −p+ 1 0 · · · 0 0
0 −1 0 · · · 0

pIe1
0

...
...

...
. . .

... 0

0 −1 0 . . . 0
...

0 −1 0 . . . 0 0 · · · 0 p


.
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Let a = a1 − 1.
For k′ > 0:

α0

α1

α0 α1

γ1

ε1,0 γ1

δ1,1

δ1,a

ε1,1

ε1,a

a

p − 1

p − 1

p − 1

p − 1

p − 1

p − 1 p − 1

For k′ = 0, if t = 2`:

α0

α1

α0 α1

γ1

ε1,0 γ1

δ1,1

ε1,`
a

p − 1

p − 1

p − 1

p − 1 p − 1

a − `

For k′ = 0, if t = 2`+ 1:

α0

α1

α0

α1

γ1

ε1,0 γ1

δ1,1

δ1,`+1

ε1,`a

p − 1

p − 1

p − 1

p − 1

p − 1
p − 1

a − ` − 1

Figure 4: Constructing Dn
m;a1,a2,...,ak

for arcs incident with α0.
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For 1 < i ≤ k′:

αi−1 αi

αi−1 αi

γi−1 γi

γi−1 γi

δi,1

δi,ai−1

εi,1

εi,ai−1

ai − 1
p − 1 p − 1

p − 1

p − 1

p − 1

p − 1

p − 1 p − 1

Let a = ak′+1 − 1, then, if t = 2`:

αk′ αk′+1

αk′ αk′+1

γk′ γk′+1

γk′ γk′+1

δk′+1,1

εk′+1,`
a

p − 1 p − 1

p − 1

p − 1

p − 1 p − 1

a − `

Again let a = ak′+1 − 1, then, if t = 2`+ 1:

αk′ αk′+1

αk′

αk′+1

γk′ γk′+1

γk′ γk′+1

δk′+1,1

δk′+1,`+1

εk′+1,`a
p − 1 p − 1

p − 1

p − 1

p − 1

p − 1
p − 1

a − ` − 1

Figure 5: Constructing Dn
m;a1,a2,...,ak

for arcs not incident with α0.
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Which reduces, under a similar argument to that used to prove Lemma 2.3, to
1 0 0 · · · 0
0 pa1 0 · · · 0
0 0

pId1+e1+1...
...

0 0

 .

Hence, S(D
min{n,1+2(a1−1)}
p;a1 ) ∼= Zmin{n,1+2(a1−1)}

p ⊕ Zpa1 .

Assume that S
(
D

min{n,1+2
∑k

i=1(ai−1)}
p;a1,a2,...,ak

)
∼= Zmin{n,1+2

∑k
i=1(ai−1)}

p ⊕
(⊕k

i=1 Zpai

)
.

Denote L′
(
D

min{n,1+2
∑k

i=1(ai−1)}
p;a1,a2,...,ak

)
by L′k = [`ij ]. Let x = dk+1, y = ek+1, p(x+ 1) +

ak+1 = dk+1 − 1 and s = p(y + 1) + ak+1 − y − 1. Then the asymmetric Laplacian
L′
(
Dn

p;a1,a2,...,ak+1

)
is



p −p+ 1 0 · · · 0 0 · · · 0 −1 0 · · · 0
−p r −p · · · −p 0 · · · 0 x+ 1− ak+1 0 · · · 0
0 −p+ 1

pIx
0 · · · 0 −1 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...
0 −p+ 1 0 · · · 0 −1 0 · · · 0
0 −1 0 · · · 0

pIy
−p+ 1 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...
0 −1 0 · · · 0 −p+ 1 0 · · · 0
0 y + 1− ak+1 0 · · · 0 −p . . . −p s `1,2 · · · `1,2k+n

0 −1 0 · · · 0 0 . . . 0 −p+ 1 `2,2 · · · `2,2k+n

0 0 0 · · · 0 0 · · · 0 0 `3,2 · · · `3,2k+n

...
...

... · · ·
...

... · · ·
...

...
... · · ·

...
0 0 0 · · · 0 0 · · · 0 0 `2k+n,2 · · · `2k+n,2k+n



.

Applying Lemma 2.3 to rows αk+1, γk+1, δk+1,x, . . . , δk+1,1, εk+1,y, . . . , εk+1,1, αk,
γk of Lk+1(Dn

p;a1,a2,...,ak+1
) reduces it to

1 0 0 · · · 0 0 · · · 0
0 pak+1 0 · · · 0 0 · · · 0
0 0

pIx+y

0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 0

L′k...
...

...
. . .

...
0 0 0 · · · 0


.

Therefore S(Dn
p;a1,a2,...,ak+1

) ∼= Zn
p ⊕

(⊕k+1
i=1 Zpai

)
.

2.3 Canonical groups of rank two

In this section we will restrict our attention to canonical groups of rank two. We show that,
with two exceptions and a further two possible exceptions, any finite abelian group of rank
two is isomorphic to the canonical group of some spherical latin bitrade.
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We will make use of the following elementary lemma.

Lemma 2.7. Let 2 ≤ d, 1 ≤ x, 2 ≤ y and ti,j ∈ Z for 1 ≤ i ≤ x and 1 ≤ j ≤ y. Further
let M = [mij ] be the d− 1 by d matrix where

mij =

 2 if i = j
−1 if j = i+ 1 or j = i− 1
0 otherwise

.

Then the d+ x− 2 by d+ y − 2 matrix

M

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0
0 · · · 0 t1,1 t1,2 t1,3 · · · t1,y
...

. . .
...

...
...

...
. . .

...
0 · · · 0 tx,1 tx,2 tx,3 · · · tx,y


reduces (under operations invertible over Z) to

Id−2
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 · · · 0 d 1− d 0 · · · 0
0 · · · 0 t1,1 t1,2 t1,3 · · · t1,y
...

. . .
...

...
...

...
. . .

...
0 · · · 0 tx,1 tx,2 tx,3 · · · tx,y


.

Proof. When d = 2, the result is trivial. Assume that the statement holds for d = k, and
consider L(k + 1). Then L(k + 1) reduces to

Ik−2
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

0 · · · 0 k 1− k 0 0 · · · 0
0 · · · 0 −1 2 −1 0 · · · 0
0 · · · 0 0 t1,1 t1,2 t1,3 · · · t1,y
...

. . .
...

...
...

...
. . .

...
0 · · · 0 0 tx,1 tx,2 tx,3 · · · tx,y


Adding k − 1 copies of Row k to Row k − 1 followed by adding one copy of the updated
Row k − 1 to Row k yields a 1 in entry (k − 1, k− 1) and this is now the only non-zero in
Column k − 1. The result follows.

Lemma 2.8. Suppose that 1 ≤ a, b, c. Then there exists a spherical latin bitrade whose
canonical group is isomorphic to Zab+bc+ac+1 ⊕ Zab+bc+ac+1.
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αa

αa−1

α1

βb

βb−1

β1

γc

γc−1

γ1

δ

a

bc

Figure 6: A directed Eulerian spherical embedding of Da,b,c.

Proof. Without loss of generality we may assume that 1 ≤ a ≤ b ≤ c. Define Da,b,c to be
the digraph of order a + b + c + 1 with vertex set {α1, α2, . . . , αa, β1, β2, . . . , βb, γ1, γ2,
. . . , γc, δ} and

• for 1 ≤ i ≤ a− 1 an arc from αi to αi+1 and an arc from αi+1 to αi;
• for 1 ≤ i ≤ b− 1 an arc from βi to βi+1 and an arc from βi+1 to βi;
• for 1 ≤ i ≤ c− 1 an arc from γi to γi+1 and an arc from γi+1 to γi;
• for each ι ∈ {α, β, γ} an arc from δ to ι1 and from ι1 to δ; and
• a arcs from βb to γc and from γc to βb; b arcs from αa to γc and from γc to αa; and
c arcs from αa to βb and from βb to αa.

Note that Da,b,c has a directed Eulerian spherical embedding, see Figure 6, and that Da,b,c

satisfies the connectivity conditions of Proposition 2.2. Hence, there exists a spherical latin
bitrade whose canonical group is isomorphic to S(Da,b,c).

Suppose that we order the vertices of Da,b,c by

γ1, γ2, . . . , γc−2, γc−1, γc, β1, β2, . . . , βb−2, βb−1, βb, α1, α2, . . . , αa−2, αa−1, αa, δ.

Let L′(Da,b,c) be the reduced asymmetric Laplacian for Da,b,c obtained by removing the
row and column corresponding to δ.

When a = b = c = 1, L′(D1,1,1) =

 3 −1 −1
−1 3 −1
−1 −1 3

, which reduces to

1 0 0
0 4 0
0 0 4

.

Suppose that 2 ≤ a, b, c. Consider L′(Da,b,c), via three applications of Lemma 2.8 and
setting a+ b+ c+ 1 = t, this reduces to
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Ic−2
0 0 0 · · · 0 0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 0 0 · · · 0 0 0

0 · · · 0 c 1− c 0 · · · 0 0 0 0 · · · 0 0 0
0 · · · 0 −1 t− c 0 · · · 0 0 −a 0 · · · 0 0 −b
0 · · · 0 0 0

Ib−2
0 0 0 · · · 0 0 0

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 · · · 0 0 0 0 0 0 · · · 0 0 0
0 · · · 0 0 0 0 · · · 0 b 1− b 0 · · · 0 0 0
0 · · · 0 0 −a 0 · · · 0 −1 t− b 0 · · · 0 0 −c
0 · · · 0 0 0 0 · · · 0 0 0

Ia−2
0 0

...
. . .

...
...

...
...

. . .
...

...
...

...
...

0 · · · 0 0 0 0 · · · 0 0 0 0 0
0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 a 1− a
0 · · · 0 0 −b 0 · · · 0 0 −c 0 · · · 0 −1 t− a



.

Computing the Smith Normal form of
c 1− c 0 0 0 0
−1 t− c 0 −a 0 −b
0 0 b 1− b 0 0
0 −a −1 t− b 0 −c
0 0 0 0 a 1− a
0 −b 0 −c −1 t− a


we have that S(Da,b,c) ∼= Zab+bc+ac+1 ⊕ Zab+bc+ac+1.

The cases where 1 = a < b ≤ c and 1 = a = b < c follow similarly.

Theorem 2.9. For n,m ≥ 2, with two exceptions and a further two possible exceptions,
there exists a spherical latin bitrade whose canonical group is isomorphic to Zn ⊕ Zm.

The exceptions are as follows. There does not exist a spherical latin bitrade with canon-
ical group isomorphic to Z2⊕Z2 or Z3⊕Z3. There may or may not exist a spherical latin
bitrade with canonical group isomorphic to Z5 ⊕ Z5 or Zr ⊕ Zr for some r greater than
1011.

Finally, if we assume the Generalised Riemann Hypothesis, then there exists a spherical
latin bitrade with canonical group isomorphic to Zr ⊕ Zr.

Proof. If n and m are coprime, then Zn ⊕ Zm
∼= Znm and the result follows from [9] (it

also follows from Lemma 2.4 with k = 1). So assume that n and m are not coprime; that
is, we are in the rank 2 case.

Suppose that n 6= m. If n and m are both composite, then the result follows from
Theorem 2.5. So suppose that n is prime and m is composite. Then as n and m are not
coprime m = kn for some k > 1 and the result follows from Theorem 2.6.

So, suppose that n = m. If there exist a, b, c ≥ 1 such that ab+ ac+ bc+ 1 = n, then
by Lemma 2.8 there exits a spherical latin bitrade whose canonical group is isomorphic to
Zn ⊕ Zn. In [4] Borwein and Choi proved that there are at most nineteen integers that are
not of the form ab + ac + bc + 1 where a, b, c ≥ 1. The first eighteen are: 2, 3, 5, 7, 11,
19, 23, 31, 43, 59, 71, 79, 103, 131, 191, 211, 331 and 463. The nineteenth is greater than
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α1 αm−1
αmm

Figure 7: Directed Eulerian spherical embedding of a digraph with abelian sandpile group
isomorphic to Z6m+5 ⊕ Z6m+5, when m ∈ {1, 3, 9, 11, 21, 31}.

m

mm

Figure 8: Directed Eulerian spherical embedding of a digraph with abelian sandpile group
isomorphic to Z3m+1 ⊕ Z3m+1, when m ∈ {2, 6, 10, 14, 26, 34, 70, 110, 154}.

1011 and is not an exception if the Generalised Riemann Hypothesis is assumed. For n ∈
{7, 11, 19, 23, 31, 43, 59, 71, 79, 103, 131, 191, 211, 331, 463} directed Eulerian spherical
embeddings whose underlying digraphs satisfy the connectivity conditions of Proposition
2.2 and with abelian sandpile groups isomorphic to Zn ⊕Zn are given in Figures 7 and 8.2

Cavenagh and Wanless noted in [9] that there does not exist a spherical latin bitrade
with canonical group isomorphic to Z2 ⊕ Z2 (also see Theorem 1.4).

By [15, Theorems 5 and 6], the minimum order of the canonical group of a spherical
Eulerian triangulation of order n is (n − 2)/2. The computer program plantri [5] can
be used to generate all spherical Eulerian triangulations of order up to 20. None of these
triangulations have Z3⊕Z3 as their canonical group; hence this group is also an exception.3

2.4 Questions

We conclude with three questions for future consideration. The first two address the re-
maining cases to be considered in order to resolve Question 1.

Question 2. Let p 6= 2 be a prime, n ≥ 3 if p > 5 and n ≥ 2 if p = 5; does there exist a
spherical latin bitrade with canonical group is isomorphic to Zn

p?

Question 3. Let p be a prime and let 2 ≤ a1, a2, . . . , ak. If n > 1 + 2
∑k

i=1(ai− 1), does

2The families of indicated in Figures 7 and 8 generalise to give abelian sandpile groups isomorphic to
Z6m+5 ⊕ Z6m+5, for all m ≥ 1 and Z3m+1 ⊕ Z3m+1, for all m ≥ 1, respectively. However, we do not
require these more general results to prove Theorem 2.9.

3This proof that Z3 ⊕ Z3 is an exception is due to an anonymous referee.
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there exist a spherical latin bitrade with canonical group is isomorphic to

Zn
p ⊕

(
k⊕

i=1

Zpai

)
?

Our final question arises naturally in response to the non-existence result Theorem 1.4.
For a separated, connected latin bitrade (A,B) of genus greater than zero, the group AW

is isomorphic to Z⊕ Z⊕ C, but the minimal abelian representation (if one exists) is now a
quotient of C, [1, Theorem 6]. Hence, we ask the following.

Question 4. Does there exist a family of separated, connected latin bitrades for which the
minimum abelian representation of one (or both) of the partial latin squares is isomorphic
to Zk

2 for arbitrary k? If so does such a family exist for a fixed genus?
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