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Abstract. In this article we compare spinor representations in the the Spin-charge-family
theory with the possible charge distributions in spatial tessellations. Particularly, we con-
sidered alternations of opposite-charged binary triangles and the Weaire-Phelan structure,
and found out that the correspondence between anti-structural defects and representations
of fundamental fermions can be established.

Povzetek. Prispevek primerja spinorske upodobitve v teoriji Spinov-nabojev-družin z možni-
mi porazdelitvami naboja v prostorskih teselacijah. Lastnosti alternirajočih binarnih trikot-
nikov z nasprotnimi naboji v Weaire-Phelanovih strukturah z antistrukturnimi defekti
poveže z lastnostmi kvarkov in leptonov.

Keywords: Particle model, Weaire-Phelan tessellation, Spin-charge-family theory

13.1 Introduction

A fermion family derived in spin-charge-family theory [1] consists of 64 members,
that differs from each other by their color, weak charge, hyper-charge, electric
charge, handedness, and spin.

The theory starts from several assumptions, including metric, action in 13+ 1
dimensions, and the schema of symmetry breaks. Also, the theory postulates the
basic vacuum state formed by two right-handed neutrinos with opposite spins,
and the set of operators, acting on this state, that are members of Clifford algebra.

Each particular fermion state is produced by applying operators

Sab =
i

4

{
γa, γb

}
−
=
i

2
γaγb (a 6= b), (13.1)

that are infinitesimal generators of the Lorentz transformations, to the vacuum
state.

One can obtain quantum numbers of each state as a combination of eigenval-
ues kab/2 of these operators,

(kab)
2 = ηaaηbb, (13.2)
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that are ±1 or ±i since the metric ηab = diag(−1, 1, 1...1):

Sab
ab

(kab) =
kab

2

ab

(kab), S
ab

ab

[kab] =
kab

2

ab

[kab]. (13.3)

Here

ab

(kab) =
1

2

(
γa +

ηaa

ikab
γb
)
,

ab

[kab] =
1

2

(
I+

i

kab
γaγb

) (13.4)

and γa, γb are the Clifford algebra objects following the defining equation{
γa;γb

}
+
= 2ηabI (13.5)

with the metric ηab = diag(− + + + · · ·+) and unit matrix I.
We found out that these kab can be mapped to the structure close to the Weaire-

Phelan tessellation [4], assuming its cells carrying electric charge of ±1
6
e [5], [3].

We recognize it as a possible mechanism for manifestation of the 13+1-
dimensional spin-charge-family theory in the 3-dimensional space.

13.2 Charged binary triangles

We consider the small model system containing three unordered elements having
the electrical charge of either +1

6
e or −1

6
e1. Since the elements are unordered,

one can imagine this system as an equilateral triangle with elements residing
in its vertices (Fig. 13.1A). The system has three binary degrees of freedom and
possesses SU(3) symmetry of its possible states.

13.2.1 Charged binary triangle’s state space

The state space of charged binary triangles, shown on Fig. 13.1B, contains 23 = 8
states. In three-dimensional Cartesian reference frame with its axes representing
states of particular elements, it looks like a cube.

One of these eight states has the total electric charge q = 3 × (−1
6
) = −1

2
,

three states have q = −1
6

, another three states have q = +1
6

, and, again, one has
q = +1

2
. These counts are binomial coefficients for n = 3 and the charge values

coincide with eigenvalues of τ4, that is the U(1) fermion charge operator in the
spin-charge-family theory:

τ4 = −
1

3

(
S9 10 + S11 12 + S13 14

)
= −

1

6
(k9 10 + k11 12 + k13 14) . (13.6)

One can see that among four diagonals of this cube there are three diagonals
of one kind, connecting states with difference of 1

6
, and one of another kind,

1 Further we omit the e unit
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Fig. 13.1. (A) The system of three elements charged with ± 1
6
e and (B) its three-dimensional

state space containing eight possible states

connecting states with the difference of 1. This dedicated ”main” diagonal is the
τ4 axis since the projections of cube vertex on it coincide with τ4 eigenvalues.

The edge of the state cube is therefore 1√
3

, and the radius from τ4 axis to

non-axial states is r =
√
2
3

.
Consider the isometric projection of the state cube onto Cartesian coordinate

plain that is orthogonal to the τ4 axis (Fig. 13.2). Let the ordinate axis to be directed
opposite to the edge corresponding to k13 14. Then the projections of states on the

abscissas and ordinate axes, divided by projection distortion of
√
2
3

, coincide with

color charge components τ33 and τ38, respectively:

τ33 =
1

2

(
S9 10 − S11 12

)
=
1

4

(
k9 10 − k11 12

)
=

=

√
2

3
cos
(π
6
+
πn

6

)
×
√
3

2
∈
{
0;±1

2

}
,

τ38 =
1

2
√
3

(
S9 10 + S11 12 − S13 14

)
=

1

4
√
3

(
k9 10 + k11 12 − k13 14

)
=

=

√
2

3
sin
(π
6
+
πn

6

)
×
√
3

2
∈
{
± 1√

3
;± 1

2
√
3

}
.

(13.7)

13.2.2 Model with alternation of charged binary triangles

Note that a charged binary triangle cannot be electrically neutral. Nevertheless, a
pair of opposite-charged binary triangles, or, generally, any even number of them
can hold zero electric charge.
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Fig. 13.2. The isometric projection of the state cube along the τ4 axis

Consider a big system containing sufficiently large amount of opposite-
charged binary triangles, half of them consisting of three positive-charged el-
ements, and half of three negative-charged ones, arranged in alternating pattern.
The whole system is electrically neutral.

Each triangle in this system, either having charge of +1
2

or −1
2

, is surrounded
by opposite-charged environment with the same magnitude:

qenv = −τ4. (13.8)

We found out that in this system, where positive- and negative-charged
triangles have different own places due to their alternation, the additional degree
of freedom emerges for any single triangle.

For instance, the negative-charged triangle with q = τ4 = −1
2

in its own
place must be effectively neutralized by its environment and therefore must be
indistinguishable from the background. But the same triangle in the place of
positive-charged one should be treated as having effective charge of −1 that
emerges as a sum of the negative triangle charge and the negative charge of the
environment surrounding the place where the positive triangle should be:

Q = τ4 + qenv = −
1

2
+

(
−
1

2

)
= −1. (13.9)

So the state space for the charged binary triangle that participates in the
neutral alternation of such triangles, must reflect this emergent binary degree of
freedom. The state space becomes four-dimensional, splitting each original state
to the doublet with the triple magnitude 1

2
in comparison to original 1

6
(Fig. 13.3).

One of the states shifts up in charge with +1
2

while another one shifts down, with
−1
2

.
One can ensure that among these 16 states there are neutral and integer-

and fractional-charged ones with step of 1
3

so the effective charges coincide with
charges of known fundamental fermions and anti-fermions belonging to one
family.
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Fig. 13.3. Four-dimensional state hyper-rectangle space for the single charged binary trian-
gle in the environment of neutral tessellation of alternating ± 1

2
-charged binary triangles,

labeled with symbols of corresponding fermion family members

The degree of freedom emerging from implementing the tessellation instead
of isolated triangle manifests the physical sense of the isospin, or the weak charge,
connecting corresponding up and down particles.

Following the observations mentioned above, we suppose that one should
search for geometrical structure containing equilateral triangles, aiming to obtain
suitable model for the fundamental particles. It must be chiral to represent hand-
edness and also must possess some additional degrees of freedom to be able to
represent fermion families and fundamental bosons.

13.3 Calculation of electrical charge and Weaire-Phelan
tessellation

We consider a graph for calculating the electric charge Q from values kab [1],
that are the doubled eigenvalues (13.3) of Lorentz transformations infinitesimal
generators Sab (13.1) [1], [2]. The graph is constructed aiming to fetch all the
data required for the calculation from the charges of cells in the dual-charged
Weaire-Phelan tessellation [5].

In the Spin-Charge-Family theory, as well as in the Standard Model, the
electric charge of a particle is calculated as a sum of the third projection of its
SU(2)I weak charge τ13 and the hypercharge Y:

Q = τ13 + Y. (13.10)

Since the weak charge operator is defined as

~τ1 =
1

2

(
S58 − S67, S57 + S68, S56 − S78

)
, (13.11)
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and each Sab has two eigenvalues, namely 1
2
kab, where kab = ±1, the weak

charge is expressed through kab in the following way:

τ13 =
1

4
k56 −

1

4
k78. (13.12)

Therefore it can be of one of three different values:

k56 k78 τ13

-1 -1 0
1 1 0

-1 1 −1/2

1 -1 1/2

In turn, the hypercharge is the sum of SU(2)II charge τ23 and U(1) ”fermion
charge” τ4:

Y = τ23 + τ4, (13.13)

where
~τ2 =

1

2

(
S58 + S67, S57 − S68, S56 + S78

)
(13.14)

and
τ4 = −

1

3

(
S9 10 + S11 12 + S13 14

)
. (13.15)

After transition to the eigenvalues,

τ23 =
1

4
k56 +

1

4
k78, (13.16)

τ4 = −
1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14. (13.17)

So
Y =

1

4
k56 +

1

4
k78 −

1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14, (13.18)

and, finally,

Q =
1

4
k56 −

1

4
k78 +

1

4
k56 +

1

4
k78 −

1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14. (13.19)

One can build the following graph illustrating how the electrical charge is
calculated, where the arcs show the data dependence between nodes:

Q

{{ $$
τ13

��

	

��

Y

zz %%
τ23

{{ ��

τ4

	
zz

	
��

	
%%

1
4
k5 6

1
4
k7 8

1
6
k9 10

1
6
k11 12

1
6
k13 14
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The value of k78 is included in equation (13.19) twice, with opposite signs, so
it has no influence on the total charge Q, and the equation can be simplified:

Q =
1

2
k56 −

1

6
k9 10 −

1

6
k11 12 −

1

6
k13 14. (13.20)

The corresponding simplified calculation graph is the following:
Q

��   
1
2
k5 6 τ4

yy �� %%
−1
6
k9 10 −1

6
k11 12 −1

6
k13 14

In this form, the graph is equivalent to the charge calculation in our 4-bit
model presented in [3]:

Q =

2∑
i=0

ci

3
− q2, (13.21)

with the following correspondence:

1

2
k56 = −(q2 −

1

2
)

1

6
k9 10 = −

1

3
(c0 −

1

2
)

1

6
k11 12 = −

1

3
(c1 −

1

2
)

1

6
k13 14 = −

1

3
(c2 −

1

2
).

(13.22)

The ci ∈ {0; 1} are three bits of the color code and q2 ∈ {0; 1} is the most
significant bit of the electrical charge code in the ones’ complement convention.

After splitting the node 1
2
k5 6 into three nodes 1

6
k
(1)
5 6 , 1

6
k
(2)
5 6 , and 1

6
k
(3)
5 6 , the

graph becomes equivalent to our 6-bit model [3]:
Q

�� ''1
2
k5 6

|| �� ""

τ4

yy �� %%
1
6
k
(1)
5 6

1
6
k
(2)
5 6

1
6
k
(3)
5 6 −1

6
k9 10 −1

6
k11 12 −1

6
k13 14

,

Q =

2∑
i=0

bci +

2∑
i=0

bT3i , (13.23)

where symbols bci are produced from ci by scaling and shifting down:

bci =
ci

3
−
1

6
, i ∈ {0; 1; 2};bci ∈

{
−
1

6
;
1

6

}
. (13.24)
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The symbols bT3i are produced from q2 by splitting it into three parts, scaling and
shifting up:

bT3i =
1

6
−
q2

3
, i ∈ {0; 1; 2} , bT3i ∈

{
−
1

6
;
1

6

}
(13.25)

Note that we do not mean an increase in the number of degrees of freedom
as a consequence of splitting nodes, at least while considering members of one
fermion family, since all the three subnodes are assumed keeping the same values
that are equal to value of splitted node..

Both these graphs have the following advantage in relation to the original
one: they allow interpretation of particle’s electrical charge as a simple sum of values
of all the nodes2 due to its tree-form and arcs meaning addition only. The last one
also has an advantage of equal magnitude of nodes3.

To get these advantages in the original graph, we transform it the following
way, getting rid of two loops and the subtracting arc. To do so, we assume that
there are two different subnodes behind 1

4
k5 6 and two others behind 1

4
k7 8, always

keeping equal values in the first case, and opposite values in the second one.
After transformation the graph becomes the following:

Q

xx ��
τ13

�� ��

Y

yy &&
τ23

zz ��

τ4

xx �� &&
1
4
k
(1)
5 6

− 1
4
k
(1)
7 8

1
4
k
(2)
7 8

1
4
k
(2)
5 6

− 1
6
k9 10 − 1

6
k11 12 − 1

6
k13 14

Then we double the factors in all the nodes for k5 6 and k7 8, introducing
compensating nodes that divide the corresponding values back. That makes these
nodes ready to split on three sub-nodes with the factor of 1

6
. Arguments in favor

of division in half for nodes k5 6 and k7 8 are different and given below and are
discussed in detail in [5].

2 or integration of charge density in continuous models
3 The choice of positive or negative eigenvalues is made while choosing the initial vacuum

state corresponding to the right neutrino, and it can be changed to eliminate minus signs.
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At the last step, we split each node k5 6, k7 8 to three sub-nodes. Then we es-
tablish correspondence between these nodes and cells in the dual-charged Weaire-
Phelan tessellation:

Q

vv ��
τ13

× 1
2

ww
× 1
2

��

Y //

��

τ23

× 1
2

''
× 1
2

��
1
2
k
(1)
5 6

��

−1
2
k
(1)
7 8

��

τ4

��

1
2
k
(2)
7 8

��

1
2
k
(2)
5 6

��16k
(2,1)
5 6

1
6
k
(2,2)
5 6

1
6
k
(2,3)
5 6


Σq1

Σq7

−1
6
k
(2,1)
7 8

−1
6
k
(2,2)
7 8

−1
6
k
(2,3)
7 8


Σq2

Σq8

−1
6
k9 10

−1
6
k11 12

−1
6
k13 14


Σq3

Σq9

16k
(2,1)
7 8

1
6
k
(2,2)
7 8

1
6
k
(2,3)
7 8


Σq4

Σq10

16k
(2,1)
5 6

1
6
k
(2,2)
5 6

1
6
k
(2,3)
5 6


Σq5

Σq11

ccc sesese or bebebe ss s. . . cc c bebebe or sesese ccc
ss s bebebe or sesese ccc . . . sss sesese or bebebe ss s

The last two rows contain the corresponding triangles of charged cells, re-
siding in sequential ζ-planes in the tessellation. These triangles are listed in the
Table 13.1 (it is borrowed from [5]). The first row contains cells triangles in planes
from 1 to 5 and represents down fermions; in turn, the charge-inversed and mirror-
reflected triangles in planes from 7 to 11 represent corresponding up particles.

Note that cells in planes 1 and 5, 7 and 11, that are the data sources for the
k5 6 nodes, do not have any degrees of freedom and carry the negative charge for
down particles and positive for up particles. Since all six cells are equal in charge
and they must represent the qenv = ±12 , i.e. charge of the environment for cells in
planes 3 or 9, their charge value is divided in half.
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ζ,× 1√
3

kind, charge shape size shape description

0 D− be − Axial D−

1 T−
ccc √14 Large T− triangle counterclockwise

2 D+

sesese √32 D+ triangle υ-down

3 T+
ss s √6 Small T+triangle (ξ-right)

4 D− bebebe √32 D− triangle υ-up

5 T− ccc √14 Large T− triangle clockwise

6 D+ se − Axial D+

7 T+
ss s √14 Large T+ triangle clockwise

8 D−

bebebe √32 D− triangle υ-down

9 T−
ccc √

6 Small T− triangle (ξ-left)

10 D+ sesese √32 D+ triangle υ-up

11 T+ ss s √14 Large T+ triangle counterclockwise

12 D− be − Axial D−

Table 13.1. Shapes of cell center placements in twelve different planes

The cells in planes 2 and 4, 8 and 10 provide the data for the k7 8 nodes and
each couple of triplets has just one degree of freedom, that represent the exchange
between triangles in the coupled plane. The exchanged electrical charge of 1

2

moves from one side of the plane 3 or 9 to another, representing the change of
handedness and adjustment of weak charge and hyper-charge.

Since the cells in planes 2 and 4, 8 and 10 appear to have finite size, they par-
tially overlap in projection to zeta axis, providing only half of charge is exchanged.

The three cells in plane 3, and three cells in plane 9 provide data for k9 10,
k11 12, and k13 14. Each of them keeps its degree of freedom, so there are eight
combinations for small triangle in these planes, corresponding to eight down- and
eight up particles or antiparticles.They are listed in Tables 13.2 and 13.3.

Note that in our approach the corresponding down and up particles with
the same color have in this representation the opposite projections to the τ38 axis.
It is so because they are mirror reflections of each other due to the P operation
between them (C operation is not applied because we list all 8 combinations of
charge for both cases, q3 and q9, in the same order). The spin-charge-family theory,
in contrast, provides equal τ38 values in this case [2].

13.3.1 On k numbers without influence on total electric charge

The value of k7 8 has no contribution to the total electric charge. As we have shown
above, it can be considered as existing of mutually compensating cells of opposite
charges. Also we note that the expression (13.19) can be expanded by including
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additional terms, arbitrary in magnitude, that cancel each other. Since they have
no influence on the electrical charge, they can’t be determined from the charge
analyse. We suppose that the expression of the electrical charge can also contain
the last real eigenvalue, k1 2:

Q = ak
(1)
12 −ak

(2)
12 +

1

4
k56−

1

4
k78+

1

4
k56+

1

4
k78−

1

6
k9 10−

1

6
k11 12−

1

6
k13 14, (13.26)

where a is a factor that can be equal to 1/6. It allows to associate k(1)12 , k(2)12 with
the ”axial” D cells at ζ = 0 and 6/

√
3 for down fermions, and 6/

√
3 and 12/

√
3 for

up ones.
In the spin-charge theory the value of k03 is dependent on values of other kab

since the equation
k03 = −ik12k56k78k9 10k11 12k13 14 (13.27)

is fulfilled for each fermion combination in [1], [2]. In our opinion, it is connected
with the fact that the seven binary values of kab generate only 26 = 64 com-
binations. For one family there are only six independent degrees of freedom
represented by kab, so since there are seven of them, one (in our case, k03) should
be expressed through six others.

Thus, there is no degree of freedom connected with k03 and there is no
corresponding cell in the Weaire-Phelan structure, so the value of spin always can
be computed based on other data 13.27.

Totally, we have the following correspondence between values of kab in the
Spin-Charge-Family theory and charges associated with cells of dual-charged
Weaire-Phelan model:

k1 2 = 3q−3 − 3q+3

k5 6 = Σq−2 + Σq+2

k7 8 = Σq−1 − Σq+1

k9 10 = 6q
ijk

k11 12 = 6q
jki

k13 14 = 6q
kij

k0 3 = −ik12k56k78k9 10k11 12k13 14

(13.28)

It is provided in relative form, for both up and down particles. The lower index
counting the ζ-plane number relative to the plane of the small T -triangle (that is 3
for down or 9 for up fermions), and the upper index counts x,y,z coordinates of
three individual cells in the triangle; the Σ sign means sum of these three cells.

13.4 Conclusion

We presented here our approach to the particle and vacuum modelling. It is, being
applied to one fermion family, reproduces the same quantum numbers as those
obtained in the spin-charge-family theory. The advantage of spatial tessellation
model, on our opinion, is the lower dimension count, so it can fit in the usual



i
i

“proc18” — 2018/12/10 — 11:44 — page 298 — #314 i
i

i
i

i
i

298 E.G. Dmitrieff

spacetime and be more demonstrative. Also it provides native CPS symmetry
and emergent weak charge. We suppose that one can find out the appropriate 3-
or 4-dimensional spatial model that would, keeping the shown advantages, also
represent and explain fermion families and also fundamental bosons, basing on
8-bit code model [3].
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