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Abstract

It is shown that the chromatic number χ(G) = k of a uniquely colorable Cayley graph
G over a group Γ is a divisor of |Γ| = n. Each color class in a k-coloring of G is a coset
of a subgroup of order n/k of Γ. Moreover, it is proved that (k − 1)n is a sharp lower
bound for the number of edges of a uniquely k-colorable, noncomplete Cayley graph over
an abelian group of order n. Finally, we present constructions of uniquely colorable Cayley
graphs by graph products.
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1 Introduction
A proper k-coloring of an undirected graph G = (V,E) with vertex set V = V (G) and
edge set E = E(G) is a map f : V → C from V into a set C with |C| = k elements
(’colors’) such that any two adjacent vertices are assigned different colors. If not otherwise
stated a k-coloring is always understood to be a proper k-coloring. A graphG is k-colorable
if it admits a k-coloring. The chromatic number χ(G) is the smallest number k for which
G is k-colorable. An optimal coloring of G is a χ(G)-coloring of G. The color class of
the coloring f : V → C with respect to color c ∈ C consists of all vertices x ∈ V with
f(x) = c. If f is a k-coloring of G, then the color classes of f constitute a partition of
V into at most k disjoint stable sets which means that any two elements of these sets are
nonadjacent. The graph G is uniquely colorable if every optimal coloring of G induces the
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same partition into color classes. If G is uniquely colorable, then we mean by the color
classes of G the color classes of an optimal coloring of G.

Let us point out some previous work on uniquely colorable graphs. Harary et al. [11]
construct new ones from given uniquely colorable graphs. Bollobas [4] presents a lower
bound for the minimal degree δ(G) which forces G to be uniquely colorable. Hillar and
Windfeldt [13] give an algebraic characterization of uniquely k-colorable graphs, which
partly originates in ideas of Lovász [16] and Bayer [3]. They also apply commutative
algebra to develop an algorithm for recognizing unique colorability. Xu [19] establishes a
sharp lower bound for the number of edges of a uniquely k-colorable graph on n vertices:

|E| ≥ (k − 1)n −
(
k

2

)
. (1.1)

Daneshgar [7] and Daneshgar, Naserasr [8] concentrate on cliques in uniquely colorable
graphs. Special classes of uniquely colorable graphs are investigated by Akbari et al. [1],
Chao and Chen [5], Chartrand and Geller [6].

The Cayley graph G = Cay(Γ, S) over the finite (multiplicative) group Γ with shift set
(or symbol) S ⊆ Γ has vertex set V = V (G) = Γ and edge set

E = E(G) = {{x, y} : x, y ∈ Γ, xy−1 ∈ S}.

To avoid loops we demand that the unit element e ∈ Γ is not in S. To makeG undirected we
require that S is self-inverse, S−1 = S, which means that s ∈ S always implies s−1 ∈ S.
For general properties of Cayley graphs we refer to Godsil and Royle [9]. Circulant graphs
are Cayley graphs over cyclic groups. We represent the cyclic group of order n by the
additive group Zn of integers modulo n, Zn = {0, 1, . . . , n− 1}. A well-known circulant
graph is the unitary Cayley graph

Xn = Cay(Zn, Un) with Un = {x ∈ Zn : gcd(x, n) = 1}.

Here gcd(x, n) denotes the greatest common divisor of x and n and Un is the set of mul-
tiplicative units of Zn considered as a ring. In [15] we proved for n > 1 that χ(Xn) = p,
where p is a smallest prime divisor of n. Bašić and Ilić [2] remarked in passing that Xn

is uniquely p-colorable. This remark encouraged us to look closer at uniquely colorable
Cayley graphs in general.

In this paper we show that the chromatic number χ(G) = k of a uniquely colorable
Cayley graph G over a group Γ is a divisor of the number of elements |Γ| = n of Γ. Each
color class of G is a coset of some subgroup of order n/k of Γ. For a uniquely colorable,
noncomplete Cayley graph over an abelian group the estimate (1.1) on its number of edges
can be improved to |E| ≥ (k − 1)n. For every divisor k of n, 1 < k < n, we construct
a uniquely k-colorable circulant graph on n vertices with the minimal number of (k − 1)n
edges. In the final section, extending a result of Greenwell and Lovász [10], we present a
general method for constructing uniquely colorable graphs by graph products, which can
especially be applied to Cayley graphs.

2 Necessary conditions
A graph G = (V,E) is transitive if for any two vertices x, y ∈ V there is an automorphism
τ of G with τ(x) = y. Transitive graphs are regular. We call G weakly transitive if we
require the existence of an automorphism τ of G with τ(x) = y only for adjacent vertices
x and y.
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Lemma 2.1. Let the graphG = (V,E) be weakly transitive und uniqely k-colorable. Then
χ(G) = k is a divisor of |V | = n and every color class of G has n/k elements.

Proof. We may assume k > 1. Let C1, C2 be an arbitrary pair of color classes of G.
Since χ(G) = k there exists a pair x, y of adjacent vertices x ∈ C1 and y ∈ C2. As G
is weakly transitive we know that there is an automorphism τ of G with τ(x) = y. Every
automorphism of a uniquely colorable graph G maps each color class of G to another color
class of G. Therefore, x ∈ C1, y ∈ C2 and τ(x) = y imply τ(C1) = C2 and |C1| = |C2|.
Every color class C of G has the same number of |C| elements. As the color classes
partition the vertex set V into k disjoint sets of equal size |C|, we have |V | = n = k|C|,
which proves the lemma.

Let G = Cay(Γ, S) be a Cayley graph. Define the bijection τa : Γ → Γ for a ∈ Γ by
τa(x) = xa. We verify for x, y ∈ Γ:

x, y adjacent in G ⇔ xy−1 ∈ S ⇔ (xa)(ya)−1 ∈ S ⇔ τa(x), τa(y) adjacent in G.

For a = x−1y we have τa(x) = y. This shows that H(Γ) = {τa : a ∈ Γ} is a subgroup of
the automorphism group Aut(G) that operates transitively on the vertices of G. As Cayley
graphs are transitive, Lemma 2.1 can especially be applied to Cayley graphs.

Theorem 2.2. For a uniquely colorable Cayley graph G = Cay(Γ, S) the following state-
ments are true.

1. The chromatic number χ(G) = k divides the number |V (G)| = |Γ| = n of vertices
of G.

2. Every color class C of G is a left coset of a subgroup U(C) ⊆ Γ of order |U(C)| =
n
k .

3. For any two distinct color classes C1 and C2 of G there exists an element γ ∈ Γ
such that U(C2) = γU(C1)γ−1. If Γ is abelian, then every color class C of G has
the same subgroup U(C).

Proof. 1. This is a consequence of Lemma 2.1.
2. Suppose that C = {a1, . . . , ar}, r = n/k, is a color class of G. Define

U = U(C) = {a−1
i aj : i, j ∈ {1, . . . , r}}.

We prove that U is a subgroup of Γ.
The unit element e = a−1

i ai belongs to U . For x = a−1
i aj ∈ U we have x−1 =

a−1
j ai ∈ U . Assume that x = a−1

i aj ∈ U and y = a−1
s at ∈ U . We are going to show

xy ∈ U . The automorphism τx of G maps ai to aj , τx(ai) = aix = aj . From the unique
colorability of G we conclude τx(C) = C and analogously τy(C) = C. For arbitrary
ζ ∈ C we have

τx(ζ) = ζx = ζ1 ∈ C,
τy(ζ1) = ζ1y = ζxy = ζ2 ∈ C,

xy = ζ−1ζ2 ∈ U.

Next, we show C = a1U , the left coset of U represented by a1. For every ai ∈ C we have
ai = a1(a−1

1 ai) ∈ a1U , which implies C ⊆ a1U . Suppose

z ∈ a1U, z = a1a
−1
i aj = a1x, x = a−1

i aj for some i, j ∈ {1, . . . , r}.
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As above we see τx(C) = C. Therefore, z = a1x = τx(a1) ∈ C, C = a1U .
3. Let C1 = aU1 and C2 = bU2 be different color classes of G, U1 = U(C1),

U2 = U(C2). For the automorphism τd of G with d = a−1b we have τd(a) = b. The
unique colorability of G implies τd(C1) = C2, hence

C2 = C1d, bU2 = aU1a
−1b

and therefore
U2 = ζU1ζ

−1 with ζ = b−1a.

If Γ is abelian, we conclude U2 = U1.

Corollary 2.3. IfG = Cay(Zn, S) is a uniquely colorable circulant graph, then χ(G) = k
is a divisor of n. The color classes of G are the residue classes modulo k in Zn. If S is
extended by elements s′ ∈ Zn, s′ 6≡ 0 modulo k, to a self-inverse set S′, then G′ =
Cay(Zn, S

′) is also a uniquely colorable graph with χ(G′) = k.

Proof. According to Theorem 2.2, the color classes of G are the cosets of a subgroup
U ⊆ Zn, |U | = n/k. The (additive) cyclic group Zn has exactly one subgroup of order
n/k that is 〈k〉 = {0, k, . . . , (n/k − 1)k}, the cyclic subgroup generated by k. The cosets
of 〈k〉 are the residue classes modulo k in Zn. The graph G′ = Cay(Zn, S

′) is constructed
from G by adding edges between different color classes. So the graph remains uniquely
colorable with the same chromatic number.

Problem 2.4. Is there a uniquely colorable Cayley graph over a nonabelian group such that
different color classes are left cosets of different subgroups?

Theorem 2.5. Let G = Cay(Γ, S) be a uniquely colorable Cayley graph over the abelian
group Γ, |Γ| = n, χ(G) = k < n. Then we have:
The subgraph ofG induced by any two color classes ofG is uniquely colorable and regular
of degree l ≥ 2. Moreover, |E(G)| ≥ (k − 1)n. This bound is sharp.

Proof. The subgraph induced by any color classes ofGmust be uniquely colorable because
otherwise G would not have this property. Consider arbitrary different color classes C and
D of G. According to Theorem 2.2(3) they are cosets C = aU , D = bU of the same
subgroup U = {u1, . . . , ur} ⊆ Γ, r = n/k. Without loss of generality let au1 be a vertex
of maximum degree l in the subgraph G1 = G(C ∪ D) induced by C ∪ D in G. The
neighbors of au1 in G1 must lie in bU . Let these be bui1 , . . . , buil . For u ∈ U we apply
the automorphism τu of G defined by τu(x) = xu to au1 and its neighbors in G1 and
conclude:

au1u ∈ aU is adjacent to bui1u, . . . , builu ∈ bU for every u ∈ U.

As au1u runs through all elements of aU for u ∈ U , we see that all vertices in aU must
have the same degree l in G1. The same holds for the vertices of bU since the r vertices of
bU have rl edges in G1 and the maximum degree of G1 is l.

It is easy to see (cf. Theorem 1 in [11]) that the subgraph G1 = G(C ∪D) induced by
any two color classes C,D of G must be connected. This implies

l
n

k
= |E(G1)| ≥ |V (G1)| − 1 = 2

n

k
− 1
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so that

l ≥ 2− k

n
> 1.

As l is an integer we have l ≥ 2. This implies for |S|, the degree of regularity of G,
|S| ≥ 2(k − 1). Finally, we estimate the number of edges of G:

|E(G)| = 1

2
|S|n ≥ (k − 1)n.

Examples in the next section (see Corollary 3.4) will show that this bound is sharp.

3 Uniquely colorable Cayley graphs with few edges
For the next theorem recall that the clique number ω(G) of a graph G is the largest number
of vertices in a complete subgraph of G. The clique number ω(G) of the complementary
graph G of G is also known as the independence number or stability number of G.

Theorem 3.1. Let U be a subgroup of the (additive) abelian group Γ, |U | = |Γ|/k, k > 1
a divisor of |Γ|. Moreover, let {r1, . . . , rk} be a system of distinct representatives of the
cosets of U in Γ. Define

S = {ri − rj : i, j ∈ {1, . . . , k}, i 6= j} and G = Cay(Γ, S).

Then we have:

1. χ(G) = ω(G) = k.

2. χ(G) = ω(G) = |Γ|
k .

3. The cosets of U in Γ are the color classes of an optimal coloring of G.

Proof. From the definition of the representatives r1, . . . , rk we deduce S∩U = ∅. Suppose
that x, y belong to the same coset ri + U , 1 ≤ i ≤ k. Then we can find elements
u1, u2 ∈ U such that x = ri + u1 and y = ri + u2. Now x − y = u1 − u2 ∈ U implies
x − y 6∈ S, which means that x and y are not adjacent in G. The cosets of U partition the
vertex set Γ of G into k stable sets, i.e. sets of pairwise nonadjacent vertices. So we have

ω(G) ≤ χ(G) ≤ k.

On the other hand r1, . . . , rk induce a clique of size k in G. This proves claims 1 and 3.
Let U = {u1, . . . , ut}, t = |Γ|/k. The sets

Kj = {ri + uj : i = 1, . . . , k}, 1 ≤ j ≤ t,

induce cliques of size k inG, and therefore stable sets of size k inG. To show that these sets
are pairwise disjoint, we assume x ∈ Kj1∩Kj2 for j1 6= j2. We can find i1, i2 ∈ {1, . . . , k}
such that

x = ri1 + uj1 = ri2 + uj2 .

Hence,
ri1 − ri2 = uj2 − uj1 ∈ U.
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From S ∩ U = ∅ we deduce i1 = i2, which implies j1 = j2 contrary to our assumption.
The sets Kj , 1 ≤ j ≤ t, constitute a partition of the vertex set Γ of G into t = |Γ|/k stable
sets of G. Therefore, we have

ω(G) ≤ χ(G) ≤ |Γ|
k
.

Finally, claim 2 follows from the fact that every coset of U induces a clique of size t =
|Γ|/k in G.

Theorem 3.1 gives a first impression of what symbol sets may potentially yield uniquely
colorable Cayley graphs. The next example, however, shows that the symbol set structure
mentioned there is not sufficient in general for unique colorability.

Example 3.2. We consider the integers modulo 12, Γ = Z12 = {0, 1, . . . , 11}. Let U =
〈4〉 = {0, 4, 8} be the cyclic subgroup of Z12 generated by 4. Then we have k = |Γ|/|U | =
4 and {r1, r2, r3, r4} = {0, 1, 6, 7} as a system of distinct representatives for the cosets of
U . We define

S = {ri − rj : i, j ∈ {1, . . . , 4}, i 6= j} = {1, 5, 6, 7, 11} and G = Cay(Γ, S).

According to Theorem 3.1 the cosets of U in Γ,

{0, 4, 8}, {1, 5, 9}, {2, 6, 10}, {3, 7, 11},

are the color classes of an optimal coloring of G. But there is another partition of Z12 into
four stable sets of G:

{0, 2, 4}, {1, 3, 5}, {6, 8, 10}, {7, 9, 11}.

Therefore, G is not uniquely colorable.

A more careful choice of the system of representatives will improve the situation.

Theorem 3.3. Let k be a divisor of n, 1 < k < n,

Sk,n = {1, 2, . . . , k− 1} ∪ {n− 1, n− 2, . . . , n− (k− 1)}, and Gk,n = Cay(Zn, Sk,n).

Then the circulant graph Gk,n is uniquely colorable with

χ(Gk,n) = ω(Gk,n) = k and χ(Gk,n) = ω(Gk,n) =
n

k
. (3.1)

The residue classes modulo k in Zn are the maximal stable sets of Gk,n and the color
classes of an optimal coloring of Gk,n.

Proof. The integers r1 = 0, r2 = 1, . . . , rk = k − 1 constitute a system of distinct
representatives for the cosets of the subgroup U = 〈k〉 generated by k in Zn. Modulo n we
have:

Sk,n = {ri − rj : i, j ∈ {1, 2, . . . , k}, i 6= j}.

Now Theorem 3.1 implies (3.1) and the fact that the cosets of U , i.e. the residue classes
modulo k in Zn, are the color classes of an optimal coloring of Gk,n. Let M be a stable
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set with a maximal number of vertices in Gk,n. We have |M | = n/k by (3.1). For every
x ∈ M the consecutive integers x + 1, . . . , x + k − 1 (modulo n) are adjacent to x and
therefore not in M . This implies that M is the residue class x+ 〈k〉 in Zn.

Let F be an optimal coloring of Gn,k, i.e. a coloring of the vertices of Gk,n with k
colors. Every color class of F must be a maximal stable set of Gn,k with n/k elements.
We have just shown that these sets are the cosets of U = 〈k〉 in Zn. Therefore, Gk,n is
uniquely colorable.

The graph Gk,n = Cay(Zn, Sk,n) is regular of degree |Sk,n| = 2(k− 1). This implies
|E(Gk,n)| = (k − 1)n. Hence we immediately obtain:

Corollary 3.4. For every divisor k of n, 1 < k < n, the graph Gk,n defined in Theorem
3.3 is a uniquely k-colorable, circulant graph with n vertices and the minimal number of
|E(Gk,n)| = (k − 1)n edges.

Example 3.5. Let Xn = Cay(Zn, Un) be the unitary Cayley graph on n vertices, Un =
{x ∈ Zn : gcd(x, n) = 1}. Suppose that p is the smallest prime divisor of n, 1 < p < n.
According to Theorem 3.3 we define

Sp,n = {1, 2, . . . , p− 1} ∪ {n− 1, n− 2, . . . , n− (p− 1)} and Gp,n = Cay(Zn, Sp,n).

Then Gp,n is uniquely colorable and χ(Gp,n) = χ(Xn) = p. The unitary Cayley graph
Xn results from Gp,n by adding additional edges between different color classes of Gp,n.
So Xn and Gp,n are both uniquely colorable with the same color classes.

Problem 3.6. Is necessarily χ(G) = ω(G) for every circulant uniquely colorable Cayley
graph?

4 Constructing uniquely colorable graphs by graph products
The direct product X × Y of graphs X and Y has as its vertex set the cartesian product
V (X) × V (Y ). Vertices (x1, y1), (x2, y2) of X × Y are adjacent if x1 is adjacent to x2

in X and y1 is adjacent to y2 in Y . If X = Cay(Γ1, S1) and Y = Cay(Γ2, S2) are Cayley
graphs, then X×Y is a Cayley graph Cay(Γ, S) over the direct product Γ = Γ1×Γ2 with
shift set S = S1 × S2. A product X × Y of connected graphs is connected if both factors
have at least two vertices and at least one factor is not bipartite (see [14]). Every proper
n-coloring f : V (X) → Zn of X induces a proper n-coloring F : V (X) × V (Y ) → Zn

of X × Y by F (x, y) = f(x) for every x ∈ V (X), y ∈ V (y). As the same is true for Y
instead of X , we immediately see

χ(X × Y ) ≤ min{χ(X), χ(Y )}.

A famous conjecture of Hedetniemi ([12], [17]) states that always equality occurs. We
denote by 2K2 the graph consisting of two disjoint edges. A graph X is 2K2-free if it has
no induced subgraph 2K2. D. Turzik [18] showed that Hedetniemi’s conjecture is true if
one of the factors is 2K2-free.

Lemma 4.1. Let the graph X be 2K2-free and let c : V (X) × V (Y ) → Zn be a proper
n-coloring of X × Y . For y ∈ V (Y ) define the map cy : V (X)→ Zn by

cy(x) = c(x, y) for every x ∈ V (X).

If every cy , y ∈ V (Y ), is an improper coloring of X , then χ(Y ) ≤ n.
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Proof. The map cy is an improper coloring of X means that there are adjacent vertices
x1, x2 of X such that cy(x1) = cy(x2). Let ϕ(y) be the least value cy(x1) such that
there are adjacent vertices x1, x2 of X with cy(x1) = cy(x2). We show that ϕ is a proper
n-coloring of Y .

Let y1, y2 be adjacent vertices of Y . Assume ϕ(y1) = ϕ(y2). Then we find two pairs
x1, x2 and x3, x4 of adjacent vertices in X such that

cy1
(x1) = cy1

(x2) = ϕ(y1) = ϕ(y2) = cy2
(x3) = cy2

(x4),

c(x1, y1) = c(x2, y1) = c(x3, y2) = c(x4, y2). (4.1)

As x1, . . . , x4 do not induce a subgraph 2K2 in X , either {x1, x2} ∩ {x3, x4} = D 6= ∅
or D = ∅ and there is an edge between {x1, x2} and {x3, x4}. Suppose e.g. D = ∅ and
x1, x3 are adjacent. Then (x1, y1) and (x3, y2) are adjacent vertices of X × Y . But now
c(x1, y1) = c(x3, y2) in (4.1) contradicts the fact that c is a proper coloring of X × Y .
Similarly, the other cases lead to a contradiction.

The following theorem extends a result of Greenwell and Lovász [10].

Theorem 4.2. Let the graph X be uniquely n-colorable and 2K2-free. If Y is a connected
graph with chromatic number χ(Y ) > n, then X × Y is uniquely n-colorable.

Proof. We know χ(X × Y ) = m ≤ χ(X) = n. Let c : V (X) × V (Y ) → Zm be an
arbitrary proper m-coloring of X × Y . For y ∈ Y define cy : V (X)→ Zm by

cy(x) = c(x, y) for every x ∈ V (X).

If cy is an improper m-coloring of X for every y ∈ Y , then Lemma 2.1 implies χ(Y ) ≤
m ≤ n contradicting χ(Y ) > n. We conclude that there is a vertex y of Y such that cy
is a proper m-coloring of X . Moreover, m ≤ n = χ(X) implies m = n. Let u be any
neighbor of y in Y . Assume that there is a vertex x1 in X such that cu(x1) 6= cy(x1). As
cy is a proper n-coloring of the uniquely n-colorable graph X , all n colors except cy(x1)
appear in the range of cy at the neighbors of x1. In particular, we find a neighbor x2 of
x1 with cy(x2) = cu(x1), c(x2, y) = c(x1, u). But this is impossible, because (x2, y) is
adjacent to (x1, u) in X × Y and c is a proper coloring of this graph. Therefore, we have

cu(x) = cy(x) for every x ∈ V (X).

We may repeat the above argument for every neighbor of u. Continuing this way we reach
every vertex in the connected graph Y and achieve the following result:

c(x, y1) = c(x, y2) for every y1, y2 ∈ V (Y ) and every x ∈ V (X).

This implies that the color classes C1, . . . , Cn of the arbitrary n-coloring c of X × Y are
given by the uniquely determined color classes D1, . . . , Dn of X ,

Ci = Di × Y, for i = 1, . . . , n.

This means that X × Y is uniquely n-colorable.

In the following subsections we present some graph candidates for the application of
Theorem 4.2.
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4.1 Complete multipartite graphs

We call a graphX a completem-partite graph if its vertex set V (X) can be partitioned into
m nonempty, disjoint subsets (’color classes’) such that each vertex is adjacent to every
vertex which is not in his own class. Obviously, these graphs are uniquely m-colorable
and 2K2-free. If a complete m-partite graph is regular, then all color classes must have the
same size k. Such a graph can be represented as a Cayley graph over Zm × Zk.

Corollary 4.3. Let Xi be a complete mi-partite graph for i = 1, . . . , r, r ≥ 2, and
2 ≤ m1 ≤ m2 . . . ≤ mr. Then X = X1 × X2 × . . . × Xr has chromatic number
χ(X) = m1. The graph X is uniquely m1-colorable if and only if m1 < m2.

Proof. We have χ(X) ≤ min{m1, . . . ,mr} = m1. If we take one vertex from each
color class of Xi we get a clique Qi of size mi in Xi. Assume that Qi has vertex set
{1, 2, . . . ,mi}. Then the tuples (a, a, . . . , a) with the r-fold entry a ∈ {1, 2, . . . ,m1}
define a clique of size m1 in X . Thus we see χ(X) = m1.

If m1 < m2 we set Y = X2 × . . .×Xr. This graph is connected with χ(Y ) = m2 >
m1 = χ(X1). Therefore, we may apply Theorem 4.2 to the product X1 × Y and conclude
that it is uniquely m1-colorable.

If m1 = m2 = m, let f1 be an m-coloring of X1 and f2 be an m-coloring of X2. The
colorings of X induced by f1 and by f2 are distinct optimal colorings of X .

4.2 Complementary graphs of compass graphs

1

2

3

4

5

6

7

810

11

12

13

14

15

16

17
0

9
Figure 1

The compass graph CS(k, P ) is regular of degree 3 and has n = 6k vertices, k ≥ 2.
The vertices 0, 1, . . . , n − 1 are arranged in this order along a hamiltonian cycle. Every
vertex x divisible by 3 forms a triangle with the adjacent vertices x± 1 mod n. By P we
denote a partition of Zm = {0, 1, . . . ,m− 1}, m = 2k, in 2-element subsets which do not
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consist of two consecutive integers modulo m. For every {a, b} ∈ P we connect the ver-
tices 3a and 3b by an edge. Figure 1 displays CS(3, P ) with P = {{0, 3}, {1, 4}, {2, 5}}.

Obviously, every compass graph CS(k, P ) does not contain an induced cycle C4 of
length 4. This means for the complementary graph CS(k, P ) that it does not contain an in-
duced 2K2. The maximal cliques of CS(k, P ) are given by its triangles, which in CS(k, P )
define the maximal stable sets. To achieve an optimal coloring of CS(k, P ) we must take
the sets of vertices {x, x− 1, x + 1 mod n}, x ≡ 0 mod 3, as color classes. The graph
CS(k, P ) is uniquely 2k-colorable. These graphs are candidates for the graph X in Theo-
rem 4.2.

It seems to be difficult to decide generally which compass graphs are Cayley graphs.
The graph in Figure 1 is the only Cayley compass graph with 18 vertices. Similarly, we
found that there is a unique Cayley compass graph with 12, 24, 42, 48 or 54 vertices. But
there is definitely no such graph with 30 or 36 vertices. Again, we found a compass graph
with 60 vertices, which is a Cayley graph over the alternating group A5. But we do not
know if it is unique.

Infinite sequences of 2K2-free, uniquely colorable Cayley graphs can be constructed
by the following operations. The k-fold join, join(k,G), of a graph G consists of k disjoint
copies G1, . . . , Gk of G. For every i < j every vertex of Gi is connected by an edge to
every vertex of Gj . Let the n× n-matrix A be an adjacency matrix of G and Jk the k× k-
matrix with all entries equal to 1. The Kronecker product Jk×A is the (kn)× (kn)-matrix
which results from Jk by replacing every entry by A. The k-fold clone, clone(k,G), is the
graph with adjacency matrix Jk × A. We leave the proof of the following statement as an
exercise for the reader.

Proposition 4.4. If the Cayley graphG is 2K2-free and uniquely colorable then join(k,G)
and clone(k,G) are 2K2-free, uniquely colorable Cayley graphs for every integer k ≥ 2.
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