Scientific paper

Geometry Predictions, Vibrational Analysis and IR Intensities of XH₃Y (X=C, Si, Ge, Y=F, Cl, Br) Calculated by Hybrid Density Functional Theory, MP2 and MP4 Methods

Abraham F. Jalbout^{a,*}, Bartosz Trzaskowski^{b,*}, Yuanzhi Xia^c, Yahong Li^{c,d}

^a Institute de Quimica, Universidad Nacional Autonomaa de Mexico, Mexico City, Mexico

^b Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA

^c Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China

^d Department of Chemistry, Suzhou University, Suzhou 215006, China

* Corresponding author: E-mail: trzask @email.arizona.edu

Received: 11-12-2006

Abstract

Hybrid density functional theory B3LYP, B1LYP, B3P86, MPW1PW91 and B3PW91 methods as well as MP2 and MP4 methods at the 6-311++G (3df,3pd) level of theory are used for the calculations of geometrical parameters, infrared vibrational frequencies and absorption intensities of XH_3Y (X=C, Si, Ge and Y=F, Cl, Br) set of molecules. All of the calculated results are compared with the most recent experimental data. The advantages of DFT methods are exhibited from the comparison and discussion. The basis set effect is also considered and the optimal theoretical methods for the discussed systems are recommended.

Keywords: Halogenated methane, halogenated silane, halogenated germane, vibrational analysis, density functional theory

1. Introduction

Great efforts have been put in recent years into stud-ving of the basic molecular properties of halogenated car-bon family systems. Many different experimental met-hods have been developed to obtain thermodynamic, magnetic, spectroscopic and other properties of these com-pounds.¹⁻⁷ In recent few decades, with the development of quantum mechanics theory and computational technology, theoretical and computational studies on the haloge-nated carbon family species became more and more popu-lar.⁸⁻¹¹ Computational methods are used not only due to the convenience and high efficiency, but also since satis-factory accuracy can be obtained from these methods. Due to this fact many properties of halogenated methane, silanes and germanes, such as geometry structure, vibra-tion spectra and thermochemical properties, are available nowadays as a result of theoretical calculations.¹²⁻²⁰ The calculations has provides us with information about mole-cular physical properties as well as reactive behaviors which do not only widen our knowledge, but also may boost more creative insights and predictions.

Although the study of this topic is very popular, the-re are still many unsolved problems in the area of theore-tical study on the properties of halogenated carbon family systems. First of all, previous computational studies have been focused mostly on one molecular system or one pro-perty of the halogenated carbon family species. Therefore comparisons of properties between different halogen-con-taining methanes, silanes, and germanes are scarce. On the other hand a comprehensive and systematic investiga-tion of the similarities and differences of halogenated car-bon family is indispensable for a better understanding of the chemistry of this class of compounds. Secondly, it is usually supposed that the higher level of theory used in computational studied corresponds to the higher accuracy of results. It is known, however, that for small organic sys-tems DFT methods, and B3LYP method in particular, can give more reliable results than higher level ab-initio met-hods.²¹⁻²⁴ Moreover, there are many density functional methods available nowadays, and the most commonly

Jalbout et al.: Geometry Predictions, Vibrational Analysis and IR Intensities ...

used B3LYP functional is not always the best choice to 1 study a certain class of molecules. Furthermore, to the 2 3 best of our knowledge, previous studies in this area main-4 ly focus on the effect of using different methods and no 5 data from the calculation with a basis set as large as 6-311++G (3df, 3pd) are available. A comparison between 6 7 the results obtained for the 6-311++G (3df, 3pd) basis set and smaller basis sets should provide more insight into the 8 9 importance of the basis set effect.

To solve all above-mentioned problems, we have 10 carried out computational studies on the geometry optimi-11 zation and frequency analysis of XH₃Y, where X=C, Si, 12 Ge and Y=F, Cl, Br. Five different DFT methods (B3LYP, 13 14 B1LYP, B3P86, MPW1PW91, B3PW91) and two high le-15 vel ab-initio methods (MP2, MP4) have been used at the 6-311++G (3df, 3pd) level of theory. From our theoretical 16 17 study and the available experimental data, as well as from 18 results of previous theoretical investigations, we collect 19 more examples to discuss the applicability of different calculation methods (DFT and high level ab-initio met-20 hods). We also provide data obtained using the large 6-21 22 311++G (3df,3pd) basis set and discuss the basis set ef-23 fect. Using all these approaches we have performed a 24 systematic calculation on the geometry structure and frequency values of nine halogenated carbon family substan-25 ces. It allows us to obtain important data to discuss the 26 difference in the properties of these analogies as well as 27 provide the reliable reference for possible future studies. 28 29

2. Computational Details

All calculations in this study have been performed 33 with the Gaussian 03 program package.²⁵ Each stationary 34 point of the nine halogenated species, CH₂F, CH₂Cl, 35 CH₂Br, SiH₂F, SiH₂Cl, SiH₂Br, GeH₂F, GeH₂Cl and Ge-36 37 H₃Br, has been fully optimized with five different DFT methods (B3LYP, B1LYP, B3P86, MPW1PW91, 38 B3PW91) and two high level ab-initio methods (MP2, 39 MP4) with 6-311++G (3df,3pd) basis set. Frequencies ha-40 41 ve been calculated at the same level of theory as geometry optimizations, and each stationary point has been confir-42 43 med to be at a local minimum by frequency analysis. Thus 44 for each system, a total of seven geometries and seven vibrational frequencies has been reported. All the reported 45 data are unscaled. 46

3. Results and Discussion

Geometrical parameters of all molecules are given in Table 1, and two bond lengths (X-Y and X-H) and two angles (H-X-Y and H-X-H) are described for each molecule. Compared with the experimental data all the calculations are consistent with the experiments, except for the obvious errors in the prediction of the CH₃Cl angle value. The calculated angle values are different from experimental values by approximately 2 degrees. Surprisingly, previous investigations on this problem suggest tat the best method to predict H–C–Cl and H–C–H angle values is to use the semi empirical method (PM3) which gives values only 0.6 degree higher than experimental results.²⁶ 1

2

3

4

5

6

For the SiH₂F system the calculated X-Y distances 7 are between 1.600 and 1.611 Å, H-X-Y angles are bet-8 ween 108.5 and 118.6 degree, and the H-X-H angle ranges 9 from 110.3 to 110.5 degree, depending on the computatio-10 nal method used. In case of the SiH₂Cl system, the X-Y di-11 stances are longer, and the calculated values are between 12 2.220 and 2.238Å. On the other hand the calculated 13 H-X-Y angle of SiH₃Cl is smaller than in the previous ca-14 se (ranging from 108.5 to 108.6 degrees), while the H-X-H 15 angles are larger (110.5 to 110.6 degrees). A similar trend 16 in variations of geometrical parameters may be observed in 17 the case of the SiH₃Br system. The Si-H distances of the 18 SiH₂Y systems are only slight different, with the shortest 19 bond being present in the SiH₃Br system. The trend in Ge-20 H₃Y (Y=F, Cl, Br) class of molecules is the same as in Si-21 $H_{2}Y$. These results can be easily explained, since when the 22 radius of the halogen atoms increases, the X-Y distance in-23 creases as well. This in turn leads to a smaller repulsion bet-24 ween the X-Y bond and the lone pair of the halogen atom, 25 resulting in the smaller value of the H-X-Y angle. Once the 26 H-X-Y angle gets smaller, it's reasonable to assume that 27 the H-X-H angle would get larger. The slight change of the 28 X-H distance may be caused by the different electronegati-29 vity value of the halogen atom. If the electronegativity va-30 lue of Y is decreased, the X-Y bond is weakened, while the 31 X-H bond becomes stronger. On the other hand, for a given 32 Y, the values of the X-Y and X-H distances as well as 33 H-X-H angles are all increased in the C, Si and Ge order, 34 while the H-X-Y gets shorter. 35

The calculated frequencies and IR intensities of all 36 monohalogenated species as well as available experimen-37 tal data are given in Table 2. Table 2a shows the absolute 38 vibrational frequencies, whereas Table 2b shows scaled 39 vibrational frequencies based on an important study by 40 Scott and Radom³⁰ by which a comprehensive evaluation 41 of scale factors for harmonic vibrational frequencies was 42 performed. In that work a series of 122 molecules were 43 computed with the Hartree-Fock, Moller-Plesset, quadra-44 tic configuration interaction (QCI), and density functional 45 theory (DFT) methods. A scale factor of 0.9496 was re-46 ported, that can be helpful in the present computations. 47 The present basis set used is larger but the scale factors 48 will suffice. Therefore, we have used a scale factor of 49 0.9496 as recommended by Scott and Radom. However, 50 as Table 2b shows the experimental correlations without 51 scaling is better, this might be due to the unusual behavior 52 of the Si, Ge atoms in the calculations. By adding this sca-53 le factor into our harmonic frequencies, we are able to inc-54 lude some effects of anharmonicity and should suffice the 55 present calculations presented in this work. 56

Jalbout et al.: Geometry Predictions, Vibrational Analysis and IR Intensities ...

30

31

32

47

48

49

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.388 1.089 108.7 110.2 1.793	1.379 1.090 110.0 110.0	1.376 1.090	1.380	1 3 8 3	1 200	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.089 108.7 110.2 1.793	1.090 110.0 110.0	1.090		1.565	1.388	1.3830 ^a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108.7 110.2 1.793	110.0 110.0		1.091	1.086	1.090	1.0870^{a}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110.2 1.793	110.0	109.0	109.0	108.7	108.6	110.20^{a}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.793		109.9	110.0	110.2	110.3	108.73^{a}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 002	1.776	1.774	1.778	1.771	1.783	1.785 ^a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.083	1.085	1.085	1.086	1.083	1.087	1.090^{a}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108.3	108.6	108.6	108.6	108.6	108.4	110.75
$\begin{array}{c c} CH_{3}Br & C-Br & 1.958 \\ C-H & 1.083 \\ H-C-Br & 107.6 \\ H-C-H & 111.2 \\ \hline \\ SiH_{3}F & Si-F & 1.611 \\ Si-H & 1.476 \\ H-Si-F & 108.2 \\ H-Si-H & 110.7 \\ \hline \\ SiH_{3}Cl & Si-Cl & 2.068 \\ Si-H & 1.475 \\ H-Si-Cl & 108.5 \\ H-Si-H & 110.4 \\ \hline \\ SiH_{3}Br & Si-Br & 2.238 \\ Si-H & 1.476 \\ H-Si-H & 110.4 \\ \hline \\ SiH_{3}Br & Si-Br & 108.4 \\ H-Si-H & 110.6 \\ \hline \\ GeH_{3}F & Ge-F & 1.760 \\ Ge-H & 1.532 \\ H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline \\ GeH_{3}Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	110.6	110.4	110.4	110.4	110.3	110.5	108.16
$\begin{array}{ccccc} C-H & 1.083 \\ H-C-Br & 107.6 \\ H-C-H & 111.2 \\ \hline \\ SiH_3F & Si-F & 1.611 \\ Si-H & 1.476 \\ H-Si-F & 108.2 \\ H-Si-H & 110.7 \\ \hline \\ SiH_3Cl & Si-Cl & 2.068 \\ Si-H & 1.475 \\ H-Si-H & 110.7 \\ \hline \\ SiH_3Br & Si-Br & 2.238 \\ Si-H & 1.476 \\ H-Si-H & 110.4 \\ \hline \\ SiH_3Br & Si-Br & 2.238 \\ Si-H & 1.476 \\ H-Si-H & 110.6 \\ \hline \\ GeH_3F & Ge-F & 1.760 \\ Ge-H & 1.532 \\ H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline \\ GeH_3Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	1.958	1.938	1.935	1.940	1.929	1.943	1.9340 ^a
$\begin{array}{c ccccc} H-C-Br & 107.6 \\ H-C-H & 111.2 \\ \hline \\ SiH_3F & Si-F & 1.611 \\ Si-H & 1.476 \\ H-Si-F & 108.2 \\ H-Si-H & 110.7 \\ \hline \\ SiH_3Cl & Si-Cl & 2.068 \\ Si-H & 1.475 \\ H-Si-Cl & 108.5 \\ H-Si-H & 110.4 \\ \hline \\ SiH_3Br & Si-Br & 2.238 \\ Si-H & 1.476 \\ H-Si-Br & 108.4 \\ H-Si-H & 110.6 \\ \hline \\ GeH_3F & Ge-F & 1.760 \\ Ge-H & 1.532 \\ H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline \\ GeH_3Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	1.081	1.084	1.083	1.085	1.083	1.083	1.0823 ^a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	107.6	107.9	107.9	107.9	108.1	108.0	107.72 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111.3	111.0	111.0	111.0	110.8	110.0	111.157 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.610	1.606	1.605	1.608	1.60	1.613	1.595 ^a
$\begin{array}{c ccccc} H-Si-F & 108.2 \\ H-Si-H & 110.7 \\ \hline SiH_3Cl & Si-Cl & 2.068 \\ Si-H & 1.475 \\ H-Si-Cl & 108.5 \\ H-Si-H & 110.4 \\ \hline SiH_3Br & Si-Br & 2.238 \\ Si-H & 1.476 \\ H-Si-Br & 108.4 \\ H-Si-H & 110.6 \\ \hline GeH_3F & Ge-F & 1.760 \\ Ge-H & 1.532 \\ H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline GeH_3Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	1.474	1.477	1.478	1.479	1.470	1.471	1.476^{a}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108.2	108.2	108.2	108.2	108.3	108.3	108.269 ^a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110.7	110.7	110.7	110.7	110.6	110.6	110.64 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.068	2.088	2.054	2.058	2.053	2.058	2.051 ^a
$\begin{array}{c cccc} H-Si-Cl & 108.5 \\ H-Si-H & 110.4 \\ \hline SiH_3Br & Si-Br & 2.238 \\ Si-H & 1.476 \\ H-Si-Br & 108.4 \\ H-Si-H & 110.6 \\ \hline GeH_3F & Ge-F & 1.760 \\ Ge-H & 1.532 \\ H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline GeH_3Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	1.474	1.476	1.477	1.478	1.469	1.472	1.475 ^a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108.5	108.5	108.5	108.6	108.6	108.6	108.295 ^a
$\begin{array}{ccccc} {\rm SiH_{3}Br} & {\rm Si-Br} & 2.238 \\ {\rm Si-H} & 1.476 \\ {\rm H-Si-Br} & 108.4 \\ {\rm H-Si-H} & 110.6 \\ \\ {\rm GeH_{3}F} & {\rm Ge-F} & 1.760 \\ {\rm Ge-H} & 1.532 \\ {\rm H-Ge-F} & 105.9 \\ {\rm H-Ge-H} & 112.8 \\ \\ {\rm GeH_{3}Cl} & {\rm Ge-Cl} & 2.176 \\ {\rm Ge-H} & 1.531 \\ {\rm H-Ge-Cl} & 106.9 \\ {\rm H-Ge-H} & 111.9 \\ \end{array}$	110.5	110.4	110.4	110.4	110.4	110.3	110.62 ^a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.238	2.220	2.220	2.223	2.222	2.228	2.2123 ^b
$\begin{array}{c c} H-Si-Br & 108.4 \\ H-Si-H & 110.6 \\ \hline GeH_3F & Ge-F & 1.760 \\ Ge-H & 1.532 \\ H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline GeH_3Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	1.474	1.477	1.477	1.479	1.469	1.472	1.4743 ^b
$\begin{array}{c c} H-Si-H & 110.6 \\ \hline GeH_3F & Ge-F & 1.760 \\ Ge-H & 1.532 \\ H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline GeH_3Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	108.4	108.4	108.4	108.5	108.4	108.4	108.161 ^b
$\begin{array}{cccc} {\rm GeH_3F} & {\rm Ge-F} & 1.760 \\ & {\rm Ge-H} & 1.532 \\ & {\rm H-Ge-F} & 105.9 \\ & {\rm H-Ge-H} & 112.8 \\ \hline \\ {\rm GeH_3Cl} & {\rm Ge-Cl} & 2.176 \\ & {\rm Ge-H} & 1.531 \\ & {\rm H-Ge-Cl} & 106.9 \\ & {\rm H-Ge-H} & 111.9 \\ \hline \end{array}$	110.6	110.5	110.5	110.5	110.5	110.5	
	1.757	1.748	1.747	1.752	1.791	1.798	1.7350 ^b
$\begin{array}{c c} H-Ge-F & 105.9 \\ H-Ge-H & 112.8 \\ \hline GeH_3Cl & Ge-Cl & 2.176 \\ Ge-H & 1.531 \\ H-Ge-Cl & 106.9 \\ H-Ge-H & 111.9 \\ \hline \end{array}$	1.531	1.528	1.529	1.531	1.530	1.535	1.5220 ^b
H-Ge-H 112.8 GeH ₃ Cl Ge-Cl 2.176 Ge-H 1.531 H-Ge-Cl 106.9 H-Ge-H 111.9	106.0	105.9	106.0	106.0	105.6	105.5	105.92 ^b
GeH ₃ Cl Ge-Cl 2.176 Ge-H 1.531 H-Ge-Cl 106.9 H-Ge-H 111.9	112.7	112.7	112.7	112.7	113.1	113.1	
Ge-H 1.531 H-Ge-Cl 106.9 H-Ge-H 111.9	2.176	2.157	2.154	2.159	2.160	2.166	2.1447 ^b
H–Ge–Cl 106.9 H–Ge–H 111.9	1.530	1.527	1.528	1.530	1.530	1.534	1.5155 ^b
H–Ge–H 111.9	106.9	106.9	106.9	107.0	107.1	107.2	107.10^{b}
	111.9	111.9	111.8	111.8	111.7	111.6	111.0 ^b
GeH ₃ Br Ge–Br 2.334	2.334	2.311	2.311	2.316	2.314	2.322	2.297 ^b
Ge-H 1.531	1.530	1.527	1.528	1.530	1.530	1.536	1.527 ^b
H–Ge–Br 107.0	107.1	107.1	107.1	107.1	107.2	107.4	106.3 ^b

Table 1. Optimized Structures of XH3Y (X=C, Si and Ge; Y=F, Cl and Br) at the ¹B3LYP, ²B1LYP, ³B3P86, ⁴MPW1PW91, ⁵B3PW91, ⁶MP2,

^a Taken from ref. 26. ^b Taken from ref. 27 and references therein.

39

40

41

There are six different vibtrational frequencies ac-42 43 cording to the six normal vibrations for species of the C_{3v} 44 point group as depicted in Fig. 1. The first is the symmetric X–H stretch v_1 , and the second is the Y–X–H umbrel-45 la motion v_2 . They are followed by the X–Y stretch is v_3 , 46 47 and the degenerate modes are the asymmetric X-H stretch v_4 , the H–X–H scissor motion v_5 and finally the Y–X–H 48 49 rock v_6 . All computational normal modes obtained in this 50 investigation were successfully assigned to one of the six 51 types of vibrations. As a general rule, the calculated fre-52 quency values are consistent with the experimental results, although there are small variations with different 53 54 methods used. It is difficult, however, to choose one com-55 putational method as the most suitable for calculating the 56 vibrational spectra of all compounds. The advantages of using certain methods in calculations of selected vibrational frequencies will be discussed later.

A very interesting property embedded in the mole-44 cular wavefunction is the vibrational assignment which 45 has been developed in the valence coordinates most clo-46 sely resembling normal coordinates.³¹ In this technique, 47 Bowman and co-workers use successive contractions of 48 the expansion set that keeps the hamiltonian matrices dia-49 gonally dominant. This allows the largest component of 50 the eigenvector to be sufficient to assign rovibrational sta-51 tes for many species. Such calculations can be applied to 52 assignment of lower energy vibrational transitions, photo-53 ionization spectra and improved description of Franck-54 Condon factors for simple molecules. However, it is diffi-55 cult to apply such a scheme to our systems due to the in-56

771

39

40

41

42

43

1

2

772 .

1

2

Table 2a. Vibrational frequencies (cm⁻¹) of various species shown in Table 1 (X, Y are ligands from the table and modes shown in Figure 1) ,where I is the intensities (in parentheses, KM/mol) and the values in EXP are the experimental values (where VS=Very Strong, S=Strong, M=Medium, W=Weak, VW=Very Weak), computed at the ¹B3LYP, ²B1LYP, ³B3P86, ⁴MPW1PW91, ⁵B3PW91, ⁶MP2, ⁷MP4/6-311++G (*3df, 3pd*) level

XH ₃	Y	v ₁	I ₁	v ₂	I ₂	v ₃	I ₃	ν ₄	I ₄	v ₅	I ₅	$\nu_6 I_6$
1-						CH ₃ F						
I	3032.706	33.639	1493.811	5.088	1047.734	110.244	3111.68	28.576	1485.097	0.911	1192.920	1.026
² I	3044.911	33.474	1503.724	5.016	1053.839	111.754	3124.841	29.307	1494.857	1.032	1200.444	1.192
³ I	3040.286	35.129	1488.878	5.737	1078.917	109.806	3127.575	27.397	1480.935	0.665	1194.225	0.838
⁴ I	3051.952	34.021	1495.452	5.632	1088.562	110.936	3139.167	28.228	1488.823	0.725	1200.858	0.895
⁵ I	3034.949	35.323	1487.639	5.534	1073.793	110.253	3121.566	28.536	1480.214	0.748	1193.286	0.835
Í	3087.626	32.204	1526.495	4.844	1084.246	105.480	3193.168	22.311	1510.283	1.357	1213.531	1.324
7 T	3140,294	0.000	1495,132	0.000	1060.481	0.0000	3042.339	0.000	1510.556	0.000	1200.321	0.000
EXPIa	2964	VS	1464	S	1048.6	S	3005.8	S	1466.5	M	1182.4	
-	200.	15	1101	5	101010		1	5	110010		110211	
T	3070 33	22 780	1384 861	11 105	717 452	25 909	3073 504	22 873	1483 535	6 134	1030 959	2 4 1 3
21 21	3082	22.760	1304.001	11.175	720.007	25.909	3085.068	22.075	1403.063	6.061	1037.636	2.415
т 3т	2080 45	23.200	1201 506	0 007	746 176	20.902	2081.847	23.307	1476 528	6.861	1022 260	2.307
і Іт	3080.43	22.430	1301.300	0.007	740.170	24.110	3081.847	22.104	1470.326	0.001	1032.300	2.750
1 57	3092.04	23.196	1388.759	8.860	754.434	24.518	3093.002	23.282	1483.276	6.679	1038.550	2.681
1	3075.28	23.134	1380.888	9.035	744.185	24.138	3076.592	23.032	14/5.680	6.620	1031.851	2.743
1	3108.1	22.010	1416.413	11.258	//8.977	22.586	3108.840	22.004	1510.858	5.571	1059.318	2.358
'I	3071.089	0.000	1405.264	0.000	756.982	0.000	3174.764	0.000	1499.922	0.00	1048.810	0.000
^{EXP} I ^a	2879.28	М	1354.9	S	732.1	S	3039.31	S	1452.1	М	1017.3	М
						CH ₃ B	r					
I	3192.553	1.264	1331.354	18.483	591.795	12.174	3087.012	15.618	1476.512	5.940	963.025	3.704
² I	3205.113	1.315	1340.431	19.646	594.552	12.837	3099.315	16.149	1486.243	5.852	968.851	3.620
ľ	3203.389	0.859	1329.709	14.710	619.852	10.791	3092.580	14.847	1469.810	6.631	966.334	4.145
τ	3214,590	1.054	1337,538	15.076	627.434	10.965	3104.095	16.120	1476.296	6.520	971.902	4.143
51	3197 989	6 684	1329 283	15 183	617 251	10.826	3087 830	15 824	1469 212	6 369	965 883	4 109
л бт	3235 335	0.701	1367.053	16 750	651 982	83	3116 225	15 749	1503 635	5 289	991.62	3 907
т 7т	2077 104	0.701	1254 974	0.000	629 495	0.000	2180.677	0.000	1402.876	0.000	078 612	0.000
і ЕХРта	2072	0.000 M	1205.0	0.000	611.1	0.000	2056.25	0.000	1492.870	0.000 M	978.015	0.000
I	2972	M	1305.9	2	611.1	3	3056.35	3	1442.7	M	954.7	
IT	2267 007	126 620	008 272	104 775	052 017	SIH ₃ H	1 2262 420	22.222	072 750	95 760	720 057	50 705
1 21	2207.097	122,000	996.272	104.723	0.12.017	76.550	2202.430	32.232 21.559	973.739	03.700	728.037	51.400
1	2258.100	133.890	991.307	181.401	848.105	10.152	2251.946	31.338	967.474	83.383	723.057	51.402
1	2263.168	126.275	983.627	1/8.356	858.770	69.776	2255.505	30.374	959.401	/8.084	/19.543	50.811
1	2265.130	126.764	985.406	178.596	861.734	70.466	2258.402	30.457	961.022	78.321	721.196	51.567
ľ	2252.988	127.602	981.240	175.730	853.381	71.041	2245.660	31.074	957.176	77.559	718.038	50.466
I	2335.498	140.791	996.323	95.223	860.767	80.121	2332.776	34.513	996.496	95.214	739.474	57.270
⁷ I	2303.199	0.000	979.119	0.000	850.669	0.0000	2308.866	0.000	1002.660	0.000	729.681	0.000
^{EXP} I ^a	2206	_	990	S	872	М	2196	Μ	956	Μ	728.1	-
						SiH ₃ C	1					
I	2248.240	53.682	959.559	56.738	533.361	69.655	2259.531	96.168	952.550	251.673	657.685	22.826
² I	2259.045	54.838	966.278	58.513	534.863	71.207	2269.248	97.889	959.379	257.626	662.338	23.520
³ I	2251.632	52.078	950.754	52.306	546.902	68.631	2264.017	89.129	943.423	238.490	654.623	22.446
۱	2253.710	52.210	952.440	52.182	550.618	69.020	2265.107	90.492	945.408	237.920	656.555	22.804
51	2240.587	52.788	948,728	51.823	545,128	68,186	2252.787	91.257	941.936	236.074	653,750	22,343
5 T	2321 753	58 447	986 898	64 669	561 387	74 668	2330 588	101 285	978 777	286.458	675 741	26 117
71	2221.735	0.000	063 880	0.000	555 / 50	0.000	2300.300	0.000	970.922	0.000	666 319	0.000
I EXP _T a	2292.149	0.000	040	0.000	551	0.000 S	2302.334	0.000 S	970.810	0.000 S	664.0	0.000 M
1	2201	-	949	_	551	5 	2195	3	934.4	3	004.0	IVI
ΙŢ	22/2 121	60 507	03/ 8/0	302 549	412 072	SIH ₃ B	r 2256 275	85 214	057 868	52 200	620 208	11 267
1 2т	2242.121	60.007	204.047 041 516	200 200	+12.9/2	+1.007	2230.213	03.214	951.000	52.290	622 520	14.207
1	2253.500	00.829	941.310	309.309	414.344	42.019	2200.082	ð/.1/4	904.40/	55.95/	032.330	14.62/
1	2248.585	58.506	925.677	285.551	426.408	41.170	2263.905	78.220	948.855	48.191	625.876	14.128
1*	2251.594	58.192	927.508	284.767	429.298	41.412	2266.042	78.566	950.109	48.035	627.288	14.165
ľ	2236.190	59.154	924.521	283.036	425.261	40.902	2251.003	80.742	946.807	47.602	625.460	13.941
۶I	2320.444	65.329	959.709	340.908	439.605	44.851	2332.252	89.058	982.719	59.105	645.396	17.028
7т	2290.032	0.000	966 547	0.000	434 576	0.000	2304 147	0.000	966 547	0.000	635 936	0.000
1	2270.052	0.000	200.217	0.000	151.570	0.000	2501.117	0.000	200.217	0.000	055.750	0.000

XH ₃ Y	Y	v_1	I_1	v_2	I_2	V ₃	I_3	ν_4	I_4	v_5	I_5	$\nu_6 I_6$
						GeH,	F					
^{1}I	2154.843	25.680	865.958	65.778	667.185	104.507	2166.739	122.048	865.958	65.778	628.143	36.201
^{2}I	2164.580	32.297	876.224	65.426	673.228	106.758	2173.078	124.352	871.051	66.041	630.701	37.398
³ I	2168.948	37.025	865.537	58.925	683.570	105.565	2182.164	105.478	870.726	58.160	627.839	36.340
^{4}I	2177.874	30.321	868.845	60.893	686.758	107.461	2193.203	111.945	873.606	61.618	629.572	37.267
⁵ I	2163.700	29.240	868.948	59.265	678.775	104.768	2174.969	118.148	863.965	59.813	626.978	36.258
⁶ I	2235.889	22.971	892.957	75.686	738.329	154.334	2232.867	131.666	892.957	75.686	635.794	40.505
^{7}I	2193.716	0.000	875.666	0.000	728.836	0.000	2199.086	0.000	877.538	0.000	623.501	0.000
EXPI ^b	2120.6	S	859.0	VS	689.1	S	2131.7	S	874.0	S	624.6	Μ
						GeH,(CI					
${}^{1}\mathbf{I}$	2150.816	47.597	843.756	164.019	406.513	54.466	2164.156	98.140	871.551	46.105	591.816	15.681
^{2}I	2157.763	51.052	851.401	168.007	407.99	55.547	2167.861	100.009	878.860	47.453	596.876	16.316
³ I	2166.886	49.089	843.021	152.159	420.072	54.589	2185.186	92.325	870.053	42.671	595.831	15.701
^{4}I	2173.003	50.688	847.562	154.920	423.685	55.482	2189.300	93.663	873.485	43.310	598.601	16.467
⁵ I	2160.173	47.590	842.237	153.936	417.765	54.383	2175.691	94.380	870.031	42.894	594.969	15.819
⁶ I	2231.680	57.714	873.858	199.143	608.571	20.791	2232.132	106.184	896.933	54.880	433.193	60.802
^{7}I	2196.527	0.000	858.485	0.000	598.571	0.000	2199.906	0.000	881.248	0.000	428.853	0.000
^{EXP} I ^b	2119.9	S	847.5	VS	421.7	S	2128.9	S	874.1	S	602.2	
						GeH ₃ H	Br					
^{1}I	2148.268	53.753	829.336	213.569	294.152	27.101	2163.497	90.527	871.769	43.215	569.974	10.049
^{2}I	2153.914	59.216	837.249	219.436	295.125	27.614	2167.140	88.735	875.750	44.400	574.380	10.539
³ I	2163.073	54.254	829.638	199.376	305.906	27.027	2185.006	83.239	870.208	39.299	570.518	10.331
⁴ I	2173.380	52.990	832.306	202.993	307.277	27.614	2187.211	85.561	873.141	40.078	570.015	10.381
⁵ I	2155.804	56.421	828.326	200.721	303.623	27.054	2169.929	84.383	868.348	39.451	569.100	10.343
⁶ I	2225.913	62.544	861.330	251.476	314.744	30.247	2227.435	98.264	896.378	51.291	588.031	14.163
^{7}I	2188.916	0.000	846.592	0.000	310.434	0.000	2191.258	0.000	881.017	0.000	578.270	0.000
EXPI b	2115.2	-	832.7	-	307.7	-	2126.7	-	870.9	_	578.2	_

^a Taken from ref. 28. ^b Taken from ref. 29.

28

29

30

31

32

33

34

35

36

37

38

56

creased level of complexity associated with such calculations. We do believe that by using high level ab initio methods with an extended basis set experimentally reliable calculations can be obtained.

The results suggest that it is difficult to choose the most reliable method for all studied systems. Several trends in results are, however, clear. In the geometry optimization, both DFT methods, MP2 and MP4 methods can

Fig. 1. Vibrational modes of the XH₃Y molecules that belong to the C_{3v} point group.

get very accurate results (except for the CH₃Cl angles). 30 Since MP2 and MP4 calculations are much more time 31 consuming and have no obvious advantages for geometry 32 optimization, we believe that DFT calculations are more 33 favorable for geometry optimizations of these systems. 34 For frequency analysis, in some cases the MP4 approach 35 can give more accurate results than DFT methods (see for 36 example v_4 of CH₃F, or v_1 of CH₃Br). In most cases DFT 37 calculations are, however, also accurate and give better re-38 sults than MP2 and MP4 calculations. For almost all fre-39 quency calculations MP2 results are the least accurate. 40 Our calculations reveal that in many cases the accuracy of 41 DFT methods is very high, with the average error of only 42 30 cm⁻¹. This is, however, not true for the v_1 vibration, 43 where we usually obtain larger variations (of more than 50 44 cm^{-1}). 45

Considering the applicability of different DFT met-46 hods, one can see that some of the functionals tend to be 47 superior to the commonly used B3LYP method. Taking 48 the frequency analysis of SiH₃F as an example, the experi-49 mental value of v_1 is 2206 cm⁻¹, and the result of 50 MPW1PW91 calculation is 2252.988 cm⁻¹ while the re-51 sult of B3LYP calculation is 2267.097 cm⁻¹. Similarly, 52 B1LYP predicts v_2 better than B3LYP, and MPW1PW91 53 predicts v_3 better than B3LYP. Unfortunately it is impos-54 sible to find a single DFT method which will accurately 55 predict all of the six vibrational frequencies. The differen-56

Jalbout et al.: Geometry Predictions, Vibrational Analysis and IR Intensities ...

28

1

2

~

774

1

2

Table 2b. Scaled vibrational frequencies (cm⁻¹) by a factor of 0.9496 (which are represented as the v^{SC} values) for various species shown in Table 1 (X, Y are ligands from the table and modes shown in Figure 1), where I is the intensities (in parentheses, KM/mol) and the values in EXP are the experimental values computed at the¹B3LYP, ²B1LYP, ³B3P86, ⁴MPW1PW91, ⁵B3PW91, ⁶MP2, ⁷MP4/6-311++G (*3df, 3pd*) level.

XH ₃	Y	ν_1	v ₁ ^{SC}	v ₂	v_2^{SC}	v ₃	v ₃ ^{SC}	ν_4	v4 ₁ ^{SC}	V ₅	v ₅ ^{SC}	$\nu_6 \nu_6^{SC}$
						CH3I	7					
¹ I	3032.706	2879.857	1493.811	1418.522	1047.734	994.928	3111.68	2954.851	1485.097	1410.248	1192.920	1132.796
^{2}I	3044.911	2891.447	1503.724	1427.936	1053.839	1000.725	3124.841	2967.349	1494.857	1419.516	1200.444	1139.941
³ I	3040.286	2887.055	1488.878	1413.838	1078.917	1024.539	3127.575	2969.945	1480.935	1406.295	1194.225	1134.036
⁴ I	3051.952	2898.133	1495.452	1420.081	1088.562	1033.698	3139.167	2980.952	1488.823	1413.786	1200.858	1140.334
⁵ I	3034.949	2881.987	1487.639	1412.661	1073.793	1019.673	3121.566	2964.239	1480.214	1405.611	1193.286	1133.144
5I	3087.626	2932.009	1526.495	1449.559	1084.246	1029.600	3193.168	3032.232	1510.283	1434.164	1213.531	1152.369
7 T	3140.294	2982.023	1495.132	1419.777	1060.481	1007.032	3042.339	2889.005	1510.556	1434.423	1200.321	1139.824
EXPIa	2964		1464		1048.6		3005.8		1466.5		1182.4	
						CH.C	<u>ן</u>					
I	3070.33	2915.585	1384.861	1315.064	717.452	681.292	3073.504	2918.599	1483.535	1408.765	1030.959	978,999
2 1	3082	2926 667	1394 292	1324 020	720.097	683 804	3085.068	2929 581	1493.063	1417 813	1037 636	985 339
31	3080.45	2025 105	1381 586	1311 05/	746 176	708 560	3081 847	2026 522	1476 528	1/02 111	1032 360	080 320
т 4т	3000.45	2925.195	1388 750	1318 766	754 434	716 411	3003.007	2920.322	1470.520	1402.111	1032.500	086 207
т 5т	2075 20	2730.201	1200./39	1211 201	711 105	706 670	2076 502	2737.113	1403.270	1400.019	1021 051	900.207
т бт	3U/3.28	2920.283	1360.888	1245.026	144.183	720 717	2109.040	2921.332	14/3.080	1401.500	1050.210	7/9.840
1 7т	3108.1	2931.431	1410.413	1343.026	118.911	139./1/	2174764	2952.154	1310.838	1404.711	1039.318	1003.928
1 EXP-2	30/1.089	2910.306	1405.264	1554.459	/30.982	/18.830	51/4./64	3014./36	1499.922	1424.526	1048.810	995.950
-^-Iª	2879.28		1354.9		732.1		3039.31		1452.1		1017.3	
						CH ₃ B	r					
<u>'</u> [3192.553	3031.648	1331.354	1264.254	591.795	561.969	3087.012	2931.427	1476.512	1402.096	963.025	914.489
<u>'</u> I	3205.113	3043.575	1340.431	1272.873	594.552	564.587	3099.315	2943.110	1486.243	1411.336	968.851	920.021
³ I	3203.389	3041.938	1329.709	1262.692	619.852	588.611	3092.580	2936.714	1469.810	1395.732	966.334	917.631
Ι	3214.590	3052.575	1337.538	1270.126	627.434	595.811	3104.095	2947.649	1476.296	1401.891	971.902	922.918
Ĩ	3197.989	3036.810	1329.283	1262.287	617.251	586.142	3087.830	2932.203	1469.212	1395.164	965.883	917.202
Í	3235.335	3072.274	1367.053	1298.154	651.982	619.122	3116.225	2959.167	1503.635	1427.852	991.62	941.642
7 I	3077.104	2922.018	1354.874	1286.588	628.485	596.809	3189.677	3028.917	1492.876	1417.635	978.613	929.291
^{EXP} I ^a	2972		1305.9		611.1		3056.35		1442.7		954.7	
						SiH ₂ l	F					
I	2267.097	2152.835	998.272	947.959	852.817	809.835	2262.430	2148.404	973.759	924.682	728.057	691.363
^{2}I	2258.106	2144.297	991.367	941.402	848.105	805.361	2251.946	2138.448	967.474	918.713	723.057	686.615
3I	2263.168	2149.104	983.627	934.052	858.770	815.488	2255.505	2141.828	959.401	911.047	719.543	683.278
⁴ Ι	2265.130	2150.967	985.406	935.742	861.734	818.303	2258.402	2144.579	961.022	912.586	721.196	684.848
5T	2252 988	2139 437	981 240	931 786	853 381	810 371	2245 660	2132 479	957 176	908 934	718 038	681 849
51	2335 498	22137.137	996 323	946 108	860 767	817 384	2332 776	2215 204	996 496	946 273	739 474	702 205
7T	2303 199	2187 118	979 119	929 771	850 669	807 795	2308 866	2192 499	1002 660	952 126	729 681	692.205
EXP _T a	2303.177	2107.110	000	121.111	877	001.175	2106	2172.777	056	<i>JJL</i> .120	729.001	072.705
1	2200		990		872	0.11 (2190		950		720.1	
lτ	2248 240	2124 020	050 550	011 107	522 261	506 480	J 2250 521	2145 651	052 550	004 541	657 695	621 529
1 21	2240.240	2134.929	959.559	911.19/	531 042	507.004	2237.331	2143.031	952.550	011 004	667 270	678 054
1 Зт	2239.043	2143.189	900.278	917.378	546.000	510 229	2209.248	2134.878	939.319	911.020	002.338	020.930
1 Іт	2231.032	2138.150	930./34	902.830	J40.902	519.558	2204.017	2149.911	945.425	093.8/4	034.023	021.030
1	2253./10	2140.123	952.440	904.457	550.618	522.867	2205.107	2150.946	945.408	891.159	030.333	023.465
-1 57	2240.587	2127.661	948.728	900.912	545.128	517.654	2252.787	2139.247	941.936	894.462	033.750	620.801
'l 7-	2321.753	2204.737	986.898	937.158	561.387	533.093	2330.588	2213.126	978.722	929.394	6/5.741	641.684
'I	2292.149	2176.625	963.880	915.300	555.459	527.464	2302.334	2186.296	970.810	921.881	666.318	632.736
EXPIa	2201		949		551		2195		954.4		664.0	
						SiH ₃ B	r					
I	2242.121	2129.118	934.849	887.733	412.972	392.158	2256.275	2142.559	957.868	909.591	629.298	597.581
² I	2253.500	2139.924	941.516	894.064	414.344	393.461	2266.682	2152.441	964.467	915.858	632.530	600.650
³ I	2248.585	2135.256	925.677	879.023	426.408	404.917	2263.905	2149.804	948.855	901.033	625.876	594.332
⁴ I	2251.594	2138.114	927.508	880.762	429.298	407.661	2266.042	2151.833	950.109	902.224	627.288	595.673
⁵ I	2236.190	2123.486	924.521	877.925	425.261	403.828	2251.003	2137.552	946.807	899.088	625.460	593.937
⁵ I	2320.444	2203.494	959.709	911.340	439.605	417.449	2332.252	2214.706	982.719	933.190	645.396	612.868
7 T	2290.032	2174.614	966.547	917.833	434.576	412.673	2304.147	2188.018	966.547	917.833	635.936	603.885
1												

XH ₃ Y	Y	ν_1	v_1^{SC}	v ₂	v_2^{SC}	V ₃	v_3^{SC}	ν_4	$v4_1^{SC}$	V ₅	v ₅ ^{SC}	$v_6 v_6^{SC}$
						GeH	F					
^{1}I	2154.843	2046.239	865.958	822.314	667.185	633.559	2166.739	2057.535	865.958	822.314	628.143	596.485
^{2}I	2164.580	2055.485	876.224	832.062	673.228	639.297	2173.078	2063.555	871.051	827.150	630.701	598.914
³ I	2168.948	2059.633	865.537	821.914	683.570	649.118	2182.164	2072.183	870.726	826.841	627.839	596.196
^{4}I	2177.874	2068.109	868.845	825.055	686.758	652.145	2193.203	2082.666	873.606	829.576	629.572	597.842
⁵ I	2163.700	2054.650	868.948	825.153	678.775	644.565	2174.969	2065.351	863.965	820.421	626.978	595.378
⁶ I	2235.889	2123.200	892.957	847.952	738.329	701.117	2232.867	2120.331	892.957	847.952	635.794	603.750
^{7}I	2193.716	2083.153	875.666	831.532	728.836	692.103	2199.086	2088.252	877.538	833.310	623.501	592.077
EXPIb	2120.6		859.0		689.1		2131.7		874.0		624.6	
						GeH ₃	Cl					
^{1}I	2150.816	2042.415	843.756	801.231	406.513	386.025	2164.156	2055.083	871.551	827.625	591.816	561.988
^{2}I	2157.763	2049.012	851.401	808.490	407.99	387.427	2167.861	2058.601	878.860	834.565	596.876	566.793
³ I	2166.886	2057.675	843.021	800.533	420.072	398.900	2185.186	2075.053	870.053	826.202	595.831	565.801
^{4}I	2173.003	2063.484	847.562	804.845	423.685	402.331	2189.300	2078.959	873.485	829.461	598.601	568.432
⁵ I	2160.173	2051.300	842.237	799.788	417.765	396.710	2175.691	2066.036	870.031	826.181	594.969	564.983
⁶ I	2231.680	2119.203	873.858	829.816	608.571	577.899	2232.132	2119.633	896.933	851.728	433.193	411.360
^{7}I	2196.527	2085.822	858.485	815.217	598.571	568.403	2199.906	2089.031	881.248	836.833	428.853	407.239
EXPIb	2119.9		847.5		421.7		2128.9		874.1		602.2	
						GeH ₃	Br					
^{1}I	2148.268	2039.995	829.336	787.537	294.152	279.327	2163.497	2054.457	871.769	827.832	569.974	541.247
^{2}I	2153.914	2045.357	837.249	795.052	295.125	280.251	2167.140	2057.916	875.750	831.612	574.380	545.431
³ I	2163.073	2054.054	829.638	787.824	305.906	290.488	2185.006	2074.882	870.208	826.350	570.518	541.764
⁴ I	2173.380	2063.842	832.306	790.358	307.277	291.790	2187.211	2076.976	873.141	829.135	570.015	541.286
⁵ I	2155.804	2047.151	828.326	786.578	303.623	288.320	2169.929	2060.565	868.348	824.583	569.100	540.417
⁶ I	2225.913	2113.727	861.330	817.919	314.744	298.881	2227.435	2115.172	896.378	851.201	588.031	558.394
^{7}I	2188.916	2078.595	846.592	803.924	310.434	294.788	2191.258	2080.819	881.017	836.614	578.270	549.125
EXPIb	2115.2		832.7		307.7		2126.7		870.9		578.2	

^a Taken from ref. 28. ^b Taken from ref. 29.

ces between the results for different DFT methods are, on the other hand, not very large and, compared with experi-mental values, rather small. Thus, we believe that any of the five tested DFT methods is a reliable tool to perform vibrational analysis of monohalogenated species. The IR intensities are predicted accurately, although for some systems there is not a single method reproducing ideally all the experimental data.

The last question concerns the necessity of using a large, 6-311++G(3df,3pd) basis set. Table 3 shows the re-lative error in frequency assignments using different com-putational approaches and basis sets for the CH₂Cl system. Clearly, the larger basis set improves the results ob-tained at the B3LYP level of theory. The results for the lar-

Table 2 An values (Au - a

gest basis set are also more accurate then in the case of more sophisticated ab-initio methods using smaller basis sets. Thus we believe that DFT calculations can provide us with more reliable results than high level ab-initio methods for the frequency analysis of small organic molecules, and a large basis set of 6-311++G (3df,3pd) is crucial for the improvement of accuracy.

4. Conclusions

From theoretical studies we provide the geometrical structures, vibrational frequencies as well as IR intensities of monohalogenated carbon family species using five

a the frequency englysis of CIL Cl at different levels of theory

В		B3LYP	B3LYP	B3LYP	MP4	CISD	QCISD	CCSD
		6-311++(3df,3pd)	6-31G*	6-311+G(3df,2p)	6-311G*	6-31G*	6-311G**	6-311G*
	$\overline{\Delta v_1}$	191	216 ^a	191 ^a	193 ^a	288 ^a	218 ^a	209 a
	Δv_2	30	59 ^a	26 ^a	80 ^a	120 ^a	83 ^a	89 ^a
	Δv_3	-14.7	-11.1 ^a	-17.1 ^a	30 ^a	58 ^a	41 ^a	38 ^a
	Δv_4	34	156 ^a	125 ^a	137 ^a	229 ^a	156 ^a	149 ^a
	Δv_5^{-1}	31	49 ^a	34 ^a	51 ^a	102 ^a	44 ^a	58 ^a
	Δv_6°	14	28 ^a	12 ^a	44 ^a	74 ^a	43 ^a	51 ^a
	a.T.	akan from raf 26						

^a Taken from ref. 26.

Jalbout et al.: Geometry Predictions, Vibrational Analysis and IR Intensities ...

DFT methods (B3LYP, B1LYP, B3P86, MPW1PW91, 1 2 B3PW91) and two high level of *ab-initio* methods (MP2, MP4) at 6-311++G (3df,3pd) level of theory. DFT met-3 4 hods are shown to be as accurate as MP2 and MP4 methods in geometry optimization. The advantages of DFT 5 methods over MP2 and MP4 approaches in frequency 6 analysis are presented. In comparison with the available 7 data, we conclude that for the frequency analysis of a 8 small organic systems there is no need to use high level 9 ab-initio methods, since DFT methods with large basis set 10 of 6-311++G (3df,3pd) can provide more reliable results. 11

Other attempts to estimate the anharmonicity have 12 been attempted. Recently, a Car-Parrinello simulation of a 13 Mannich base, (4,5-dimethyl-2(N,N-dimethylaminemet-14 15 hyl)phenol) was performed. This system has been shown to be troublesome due to the internal hydrogen bonding 16 17 network³². Mavri and co-workers proposed a package that 18 uses ab initio or DFT calculated points and fits them to 19 calculate accurate expectation values, and IR spectra³³. The advantage to such a technique is that it accounts for 20 anharmonicity effects. Future prospects in this work inc-21 lude the use of such models to study the systems descri-22 23 bed herein.

24 While we have only considered fundamental modes there is some knowledge available on the overtones and 25 hot transitions for certain species³⁴ from a theoretical 26 perspective. Experimentally, there is very little knowledge 27 known about the hot transitions and overtones in molecu-28 les of this type. However, other investigations have shown 29 that hot transitions and overtones can be adequately ac-30 31 counted for (in correlation to experiments) by using DFT methods and gaussian basis sets³⁵. To the best of our 32 knowledge limited information on these data points are 33 available for the compounds investigated herein. 34

The results from all tested DFT methods are all similar. At this point it is difficult to choose a method, which would be the most accurate in all cases. A benchmark study of various density functionals to evaluate the performance of more density functional techniques for the frequency analysis of the discussed systems is in process.

5. Acknowledgments

Special thanks are extended to DGSCA as well as UNAM for valuable resources.

6. References

- R. H. Martin, F. W. Lampe and R. W. Taft, *J. Am. Chem. Soc.* 1966, 88, 1353–1357.
- 53 2. J. R. Lacher, R. E. Scruby and J. D. Park, *J. Am. Chem. Soc.*54 1950, 72, 333–336.
- 3. J. E. Boggs and H. C. Agnew, J. Phys. Chem. 1959, 63, 1127–1128.

4. W. M. Litchman and D. M. Grant, J. Am. Chem. Soc. 1968, 90, 1400–1407.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

- 5. R. D. Vold, J. Am. Chem. Soc. 1935, 57, 1192–1195.
- 6. E. Gelles and K. S. Pitzer, J. Am. Chem. Soc. 1953, 75, 5259–5267.
- 7. C. R. Zobel and A. B. F. Duncan, J. Am. Chem. Soc. 1955, 77, 2611–2615.
- 8. H. Adachi, J. Electron. Spectrosc. Relat. Phenom. 1979, 16, 277–284.
- 9. N. Mercau, R. Aroca, E. A. Robinson, J. Aron, J. Bunnell and T. J. Ford, *J. Comput. Chem.* **1984**, *5*, 427–440.
- 10. W. Schneider and W. Thiel, J. Chem. Phys. 1987, 86, 923–936.
- 11. W. Schneider and W. Thiel, Chem. Phys. 1992, 159, 49-66.
- M. P. Fernández-Liencres, M. F. Gümez, J. J. L. González and N. Rajamanickam, J. Mol. Struct. 1997, 407, 101–116.
- 13. D. Papoušek, Z. Papoušková and D. P. Chong, J. Phys. Chem. **1995**, 99, 15387–15395.
- 14. M. T. Swihart and R. W. Carr, J. Phys. Chem. A **1997**, 101, 7434–7445.
- 15. L. Wang and J. Zhang, J. Phys. Chem. A 2004, 108, 10346–10353.
- L. F. Pacios, O. Gálvez and P. C. Gümez, J. Phys. Chem. A 2000, 104, 7617–7624.
- 17. D. Papoušek, Z. Papoušková and D. P. Chong, *J. Mol. Struct.* (*Theochem*) **1996**, *363*, 115–124.
- G. Klatt, A. Willets and N. C. Handy, *Chem. Phys. Lett.* 1996, 249, 272–278.
- A. M. Kuznetsov, E. D. German, A. N. Masliy and G. V. Korshin, J. Electroanal. Chem. 2004, 573, 315–325.
- 20. P. Marshall, G. N. Srinivas and M. Schwartz, *J. Phys. Chem. A* **2005**, *109*, 6371–6379.
- 21. A. F. Jalbout and A. M. El-Nahas, *J. Mol. Struct. (Theochem)* **2004**, *671*, 125–132.
- 22. A. F. Jalbout, Chem. Phys. Lett. 2001, 340, 571-580.
- 23. B. S. Jursic, Int. J. Quantum. Chem. 1996, 57, 213-217.
- 24. O. Kwon and Y. Kwon, J. Mol. Struct. (Theochem) 1999, 460, 213–220.
- 25. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. 39 B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. 40 A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. 41 M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennuc-42 ci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Na-43 katsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-44 gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, 45 M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. 46 Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-47 mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. 48 Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salva-49 dor, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. 50 Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Ra-51 buck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, 52 A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. 53 Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. 54 J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakka-55 ra, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. 56

41

42

43

44

45

46

47

48

49

50

26. 1 27. 1 27. 1	 W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. Russell D. Johnson III (Ed.): NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 12, Aug 2005. K. J. Donald, M. C. Böhm and H. J. Lindner, <i>J. Mol. Struct.</i> (<i>Theochem</i>) 2005, 713, 215–226. 	 30. A. P. Scott, L. Radom, J Phys Chem 1996, 100, 16502– 16513. 31. V. Rodriguez-Garcia, K. Yagi, K. Hirao, S. Iwata, S. Hirata, J. Chem. Phys., 2006, 125, 104109–104118. 32. J. Stare, J. Mavri, Comp. Phys. Comm., 2002, 143, 222–240. 33. A. Jezierska, J. J. Panek, A. Koll, J. Mavri, J. Chem. Phys., 2007, 126, 205101–205109.
28.	 I. Shimanouchi, in: Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, Washington, 1972, pp. 1–160. Γ. Shimanouchi, J. Phys. Chem. Ref. Data 1972, 6, 993–1102. 	 S. Schmatz, J. Chem. Phys., 2005, 122, 234306/1– 234306/20 K. Balazic, J. Stare, J. Mavri, J. Chem. Inf. Mod., 2007, 47, 832–839.
	Povzetek	
	Z metodami gostotnostnega funkcionala B3LYP, B1LYP, B uporabo baznega seta 6-311++G (3df,3pd) smo izračunali go njihove intenzitete za molekule XH ₃ Y (X=C, Si, Ge in Y=F, literature. Prednosti DFT metod so razvidne iz primerjav izra streznejše metode in bazne sete.	3P86, MPW1PW91 in B3PW91 kot tudi z MP2 in MP4 z cometrijske parametre, valovna števila infrardečih nihanj in Cl, Br). Izračune smo primerjali z opaženimi vrednostmi iz ačunanih in opaženih vrednosti. V članku predlagamo naju-