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Abstract. Electromagnetic and gravitational central-field problems are studied with rela-
tivistic quantum mechanics on curved space-time backgrounds. Corrections to the transition
current are identified. Analogies of the gravitational and electromagnetic spectra suggest
the definition of a gravitational fine-structure constant. The electromagnetic and gravita-
tional coupling constants enter the Einstein–Hilbert–Maxwell Lagrangian. We postulate
that the variational principle holds with regard to a global dilation transformation of the
space-time coordinates. The variation suggests is consistent with a functional relationship
of the form αQED ∝ (αG)

1/2, where αQED is the electrodynamic fine-structure constant, and
αG its gravitational analogue.

Povzetek. Avtorji obravnavajo Diracov delec v elektromagnem in gravitacijskem cen-
tralno simetričnem polju. Poiščejo popravke za emisijo fotona v prisotnosti gravitacijskega
polja. Po analogiji s spektrom elektrona v centralnosimetričnem potencialu definirajo tudi
konstanto gravitacijske fine strukture. Predpostavijo, da velja variacijsko načelo za trans-
formacijo koordinat prostor-časa z globalno dilatacijo. Predlagana variacija je skladna s
funkcijsko zvezo oblike αQED ∝ (αG)

1/2, kjer je αQED konstanta elektrodinamične fine
strukture, ki ima gravitacijski analog αG.

8.1 Introduction

If we are ever to gain a better understanding of the relationship of gravitational
interactions and electrodynamics in the quantum world, then a very practical
approach is to try to solve a number of important example problems in grav-
itational theory, whose solution is known in electromagnetic theory, to try to
generalize the approach to the gravitational analogue, and to compare. In order
to proceed, it is not necessarily required to quantize space-time itself [1]. Indeed,
the formulation of quantum mechanics on curved-space backgrounds in itself
constitutes an interesting problem [2–6]. A priori, one might think that the simple
substitution ∂/∂xi → ∇i is the Schrödinger equation might suffice. Here, ∂/∂xi is
the ith partial derivative with respect to the ith spatial coordinate, whereas∇i is
the ith covariant derivative. However, this naive approach is destined to fail; the
gravitational theory of Einstein and Hilbert inherently is a relativistic theory, and
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the only way to describe quantum particles on curved space-times is to start from
a fully relativistic wave function. The Dirac equation

(iγµ∂µ −m)ψ(x) = 0 (8.1)

generalizes as follows to a curved space-time background [2–6],

(iγµ(x)(∂µ − Γµ) −m)ψ(x) = 0 . (8.2)

The Dirac algebra [7–9] needs to be generalized to the local metric gµν(x),

{γµ(x), γν(x)} = 2 gµν(x) , σµν(x) =
i
2
[γµ(x), γν(x)] . (8.3)

The spin connection matrix Γµ is given as

Γµ = −
i
4
gρα(x)

(
∂bν

β(x)

∂xµ
aαβ(x) − Γ

α
νµ

)
σρν(x) , (8.4)

where repeated indices are summed. Finally, the a and b coefficients belong to the
square root of the metric,

γρ(x) = bρ
α(x)γα , γα(x) = aαρ(x)γ

ρ, (8.5)

where the γα are the flat-space Dirac matrices, which are preferentially used in
the Dirac representation [9–11,1,12]. The Christoffel symbols are Γανρ ≡ Γανρ(x).

8.2 Central–Field Problem

8.2.1 Foldy–Wouthuysen Method

The Foldy–Wouthuysen method [13,14] is a standard tool for the extraction of the
physical, nonrelativistic degrees of freedom, from a fully relativistic Dirac theory.
The general paradigm is as follows: The positive and negative energy solutions of
a (generalized) Dirac equation are intertwined in the fully relativistic formalism.
One has to separate the upper and lower spinors in the bispinor solution, and in
order to do so, one eliminates the “off-diagonal couplings” of the upper and lower
spinor components order by order in some perturbative parameters, possibly,
using iterated (unitary) transformations.

For the plain free Dirac Hamiltonian, a standard method exists to all orders
in perturbation theory, while for more difficult problems, one manifestly has to
resort to a perturbative formalism [13,14]. A suitable expansion parameter in a
general case is the particle’s momentum operator. Let us consider a space-time
metric of the form

gµν = diag
(
w2(r),−v2(r),−v2(r),−v2(r)

)
. (8.6)
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8 Gravitational Interactions and Fine-Structure Constant 117

Fig. 8.1. The flat-space photon emission vertex (left figure) is promoted to a curved-space
vertex (right figure) in general relativity. The curved background leads to higher-order
corrections to the transition current, which are summarized, for the Schwarzschild metric,
in Eq. (8.12).

The Schwarzschild metric in isotropic coordinates (see Sec. 43 of Chap. 3 of
Ref. [15]), involves the Schwarzschild radius rs,

w =
(
1−

rs

4r

) (
1+

rs

4r

)−1
=
4r− rs
4r+ rs

≈ 1− rs

2r
,

v =
(
1+

rs

4r

)2
≈ 1+ rs

2r
,

w

v
=
16 r2 (4r− rs)

(4r+ rs)3
≈ 1− rs

r
. (8.7)

The Schwarzschild radius reads as rs = 2GM, where G is Newton’s gravitational
constant, and M is the mass of the planet (or “black hole”). The Hamiltonian
or time translation operator is necessarily “noncovariant” in the sense that the
time coordinate needs to be singled out. If we insist on using the time translation
with respect to the time coordinate dt in the metric ds2 = w2(r)dt2 − v2(r)d~r2

and bring the Hamiltonian into Hermitian form [see Ref. [16] and Eqs. (9)–(13) of
Ref. [10]], then we obtain

HDS =
1

2

{
~α · ~p,

(
1−

rs

r

)}
+ βm

(
1−

rs

2r

)
, (8.8)

where αi = γ0 γi is the Dirac α matrix (we here use the Dirac representation).
The Foldy–Wouthuysen transformed Dirac–Schwarzschild Hamiltonian is finally
obtained as [10]

HFW = β

(
m+

~p 2

2m
−

~p 4

8m3

)
− β

mrs

2 r
(8.9)

+ β

(
−
3rs

8m

{
~p 2,

1

r

}
+
3πrs

4m
δ(3)(~r) +

3rs

8m

~Σ · ~L
r3

)
.

The parity-violating terms obtained in Refs. [17,16] are spurious.



i
i

“proc14” — 2014/12/8 — 18:22 — page 118 — #132 i
i

i
i

i
i

118 U.D. Jentschura, J.H. Noble and I. Nándori

8.2.2 Transition Current

As we couple the Dirac–Schwarzschild Hamiltonian (8.8) to an electromagnetic
field (see Fig. 8.1), it is clear that the transition current in the interaction Hamilto-
nian is Hint = −~j · ~A. takes the form

ji =
1

2

{
1−

rs

r
, αi exp(i~k · r)

}
. (8.10)

We now employ the multipole expansion

αi exp(i~k · r) ≈ αi + αi (i~k ·~r) − 1

2
αi(~k · r)2 (8.11)

A unitary transformation with the same generators are used for the Dirac–Schwarzschild
Hamiltonian then yields the result [10],

jiFW =
pi

m
−
pi ~p 2

2m
−

i
2m

(
~k× ~σ

)i
+
1

2

{
pi

m
, (i~k ·~r)

}

−
1

4

{
(~k ·~r)2, p

i

m

}
+

1

2m

(
~k ·~r

)
(~k× ~σ)i

−
3

4

{
pi

m
,
rs

r

}
+
rs

2r

(~σ×~r)i

mr2
−
1

2

{(
i~k ·~r

)
,

{
pi

m
,
rs

r

}}

+
3irs
4r

(~k× ~σ)i

m
+
1

4

{
rs

r
(i~k ·~r), p

i

m

}
. (8.12)

This result contains a gravitational kinetic correction, and gravitational corrections
to the magnetic coupling, in addition to the known multipole and retardation
corrections [14,18].

8.2.3 Spectrum

The bound-state spectrum resulting from the Hamiltonian (8.8) has recently been
evaluated as [12],

En`j = −
α2Gmec

2

2n2
+ α4Gmec

2

(
15

8n4
(8.13)

−
(7j+ 5) δ`,j+1/2

(j+ 1) (2j+ 1)n3
−

(7j+ 2) δ`,j−1/2

j (2j+ 1)n3

)
=−

α2Gmec
2

2n2
+
α4Gmec

2

n3

(
15

8n
−

14κ + 3

2 |κ| (2κ + 1)

)
,

where ` is the orbital angular momentum, j is the total angular momentum of the
bound particle, and κ is the (integer) Dirac angular quantum number,

κ = 2(`− j) (j+ 1/2) = (−1)j+`+1/2
(
j+

1

2

)
. (8.14)
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For a bound electron-proton system, the coupling constant entering the gravita-
tional spectrum given in Eq. (8.13) reads as

αG =
Gmemp

~ c
= 3.21637(39)× 10−42 . (8.15)

The coupling αG is much larger than for particles bound to macroscopic objects.
By contrast, the electrodynamic coupling parameter

αQED =
e2

4π~ε0c
≈ 1

137.036
(8.16)

is just the fine-structure constant.

8.3 Global Dilation Transformation

8.3.1 Lagrangian

The analogy of the leading (Schrödinger) term in Eq. (8.13) for the nonrelativistic
contribution to the bound-state energy (under the replacement αG → αQED) may
encourage us to look for connections of gravitational and electromagnetic interac-
tions on a more global scale, possibly, using scaling transformations [19]. Indeed,
the first attempts to unify electromagnetism with gravity are almost 100 years
old [20,21]. Let us apply a scaling transformation to the boson and fermion fields,

Aµ → λAµ , Aµ → λAµ , ψ→ λψ , (8.17)

combined with a transformation of the coordinates,

xµ → λ−1/2 xµ , xµ → λ−1/2 xµ , (8.18)

and of the metric
gµν → λgµν , gµν → λ−1 gµν , (8.19)

Under this transformation, the space-time intervals, the integration measure, the
Ricci tensor Rµν and the curvature scalar R, transform as follows,

ds2 = gµν dxµ dxν = gµν dxµ dxν → ds2 , (8.20a)

d4x = d4x→ d4x
λ2

, det g = det gµν → λ4 det g , (8.20b)

Rµν → λRµν , R = gµν Rµν → R . (8.20c)

The Einstein–Maxwell Lagrangian, with a coupling to the fermion terms, is given
as

S =

∫
d4x

√
−detg

{
R

16πG
−
1

4
Fµν Fµν

+ψ(x) [iγµ (∇µ − eAµ) −m] ψ(x)
}
. (8.21)



i
i

“proc14” — 2014/12/8 — 18:22 — page 120 — #134 i
i

i
i

i
i

120 U.D. Jentschura, J.H. Noble and I. Nándori

It transforms into

S ′ =

∫
d4x
λ2

√
−λ4 detg

{
R

16πG
−
λ2

4
Fµν Fµν

+λ2 ψ(x)
[
i λ−1/2 γµ

(
λ1/2∇µ − e λAµ

)
−m

]
ψ(x)

}
, (8.22)

which can be rearranged into

S ′′ =
S ′

λ2
=

∫
d4x

√
−detg

{
R

16πGλ2
−
1

4
Fµν Fµν

+ψ(x)
[
iγµ

(
∇µ − e λ1/2Aµ

)
−m

]
ψ(x)

}
. (8.23)

The Lagrangian S ′′ is the same S, but with scaled coupling constants,

G→ λ2G , e2 → λ e2 . (8.24)

This scaling suggests a deeper connection of the coupling constants of electro-
magnetic and gravitational interactions, which is explored in further detail in
Ref. [19].

8.3.2 Coupling Constants

If we assume that the scaling (8.24) holds globally, with the current Universe
“picking” a value of λ, then this scaling might suggest a relationship of the type

α2QED ∝ e4 ∝ λ2 ∝ G . (8.25)

Indeed, as discussed in Ref. [19], a relationship of the type αQED ∝
√
G is otherwise

suggested by string theory; the rough analogy being that gravitational interactions
in string theory correspond to “closed” strings while electromagnetic interactions
correspond to “open” strings. The product of two “open” string amplitudes is pro-
portional to e2 ∝ g20 ∝ αQED, while the “closed”-string amplitude is proportional
to κ ∝ gc ∝

√
G. According to Eq. (3.7.17) of Ref. [22], the proportionality

g2o ∝ gc ⇔ α2QED ∝
√
G (8.26)

therefore is suggested by string theory. A simple analytic form of the proportion-
ality factor in the relationship α2QED ∝

√
G has recently been given in Eq. (8) of

Ref. [1].

8.4 Conclusions

We have performed an analysis of the gravitationally coupled Dirac equation in
the curved space-time surrounding a central gravitating object, which is described
by the (static) Schwarzschild metric. The Foldy–Wouthuysen method leads to grav-
itational zitterbewegung terms and the gravitational spin-orbit coupling, which
is also known as the Fokker precession term. In a curved space-time, the photon
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emission vertex receives additional corrections due to the curved background,
which can be given, within the multipole expansion and for a conceptually simple
background metric (e.g., the Schwarzschild metric), in closed analytic form (at least
for the first terms of the multipole and retardation expansion). The gravitational
bound states display a certain analogy for the gravitational as compared to the
electromagnetic (Schrödinger) central-field problem. Based on this analogy, one
may explore possible connections of the gravitational and electromagnetic cou-
pling constants, based on scaling arguments. Such a scaling transformation gives
additional support for the relationship α2QED ∝

√
G, which has been suggested by

string theory [22].
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