ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 23 (2023) #P1.06 https://doi.org/10.26493/1855-3974.2697.43a (Also available at http://amc-journal.eu) On the Aα-spectral radius of connected graphs* Abdollah Alhevaz , Maryam Baghipur Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box: 316-3619995161, Shahrood, Iran Hilal Ahmad Ganie Department of School Education, JK Govt. Kashmir, India Kinkar Chandra Das † Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea Received 14 September 2021, accepted 23 June 2022, published online 5 October 2022 Abstract For a simple graph G, the generalized adjacency matrix Aα(G) is defined as Aα(G) = αD(G) + (1 − α)A(G), α ∈ [0, 1], where A(G) is the adjacency matrix and D(G) is the diagonal matrix of the vertex degrees. It is clear that A0(G) = A(G) and 2A 1 2 (G) = Q(G) implying that the matrix Aα(G) is a generalization of the adjacency matrix and the signless Laplacian matrix. In this paper, we obtain some new upper and lower bounds for the generalized adjacency spectral radius λ(Aα(G)), in terms of vertex degrees, average vertex 2-degrees, the order, the size, etc. The extremal graphs attaining these bounds are characterized. We will show that our bounds are better than some of the already known bounds for some classes of graphs. We derive a general upper bound for λ(Aα(G)), in terms of vertex degrees and positive real numbers bi. As application, we obtain some new upper bounds for λ(Aα(G)). Further, we obtain some relations between clique number ω(G), independence number γ(G) and the generalized adjacency eigenvalues of a graph G. Keywords: Adjacency matrix, signless Laplacian matrix, generalized adjacency matrix, spectral ra- dius, degree sequence, clique number, independence number. Math. Subj. Class. (2020): Primary: 05C50, 05C12; Secondary: 15A18. *The authors would like to thank the handling editor and two anonymous referees for their detailed constructive comments that helped improve the quality of the paper. †Corresponding author. Partially supported by the National Research Foundation of the Korean government with grant No. 2021R1F1A1050646. E-mail addresses: a.alhevaz@shahroodut.ac.ir (Abdollah Alhevaz), maryamb8989@gmail.com (Maryam Baghipur), hilahmad1119kt@gmail.com (Hilal Ahmad Ganie), kinkardas2003@gmail.com (Kinkar Chandra Das) cb This work is licensed under https://creativecommons.org/licenses/by/4.0/ ISSN 1855-3966 (tiskana izd.), ISSN 1855-3974 (elektronska izd.) ARS MATHEMATICA CONTEMPORANEA 23 (2023) #P1.06 https://doi.org/10.26493/1855-3974.2697.43a (Dostopno tudi na http://amc-journal.eu) Aα-spektralni polmer povezanih grafov* Abdollah Alhevaz , Maryam Baghipur Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box: 316-3619995161, Shahrood, Iran Hilal Ahmad Ganie Department of School Education, JK Govt. Kashmir, India Kinkar Chandra Das † Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea Prejeto 14. septembra 2021, sprejeto 23. junija 2022, objavljeno na spletu 5. oktobra 2022 Povzetek Naj bo G enostaven graf; potem je posplošena matrika sosednosti Aα(G) definirana kot Aα(G) = αD(G)+(1−α)A(G), α ∈ [0, 1], kjer je A(G) matrika sosednosti in D(G) diagonalna matrika stopenj vozlišč. Jasno je, da A0(G) = A(G) in 2A 1 2 (G) = Q(G), kar pomeni, da je matrika Aα(G) posplošitev matrike sosednosti in nepredznačene Laplaceove matrike. V tem članku izpeljemo nekaj novih zgornjih in spodnjih mej za spektralni polmer λ(Aα(G)) posplošene matrike sosednosti glede na stopnje vozlišč, povprečne 2-stopnje vo- zlišč, red, velikost, itd. Karakteriziramo ekstremne grafe, ki te meje dosegajo. Pokažemo, da so naše meje boljše od nekaterih že znanih mej za nekatere razrede grafov. Izpeljemo splošno zgornjo mejo za λ(Aα(G)) glede na stopnje vozlišč in pozitivna realna števila bi. Z uporabo teh rezultatov dobimo za λ(Aα(G)) nekaj novih zgornjih mej. Izpeljemo tudi nekaj relacij med številom klik ω(G), številom neodvisnosti γ(G) in lastnimi vrednostmi grafa G za pripadajočo posplošeno matriko sosednosti. Ključne besede: Matrika sosednosti, nepredznačena Laplaceova matrika, posplošena matrika sosed- nosti, spektralni polmer, zaporedje stopenj, število klik, število neodvisnosti. Math. Subj. Class. (2020): Primarna: 05C50, 05C12; sekundarna: 15A18. *Avtorji bi se radi zahvalili uredniku za njegovo delo in dvema recenzentoma za njune podrobne konstruktivne komentarje, ki so pomagali izboljšati kakovost članka. †Kontaktni avtor. Delno podprt s strani National Research Foundation of the Korean government z dotacijo št. 2021R1F1A1050646. E-poštni naslovi: a.alhevaz@shahroodut.ac.ir (Abdollah Alhevaz), maryamb8989@gmail.com (Maryam Baghipur), hilahmad1119kt@gmail.com (Hilal Ahmad Ganie), kinkardas2003@gmail.com (Kinkar Chandra Das) cb To delo je objavljeno pod licenco https://creativecommons.org/licenses/by/4.0/