
ERK'2022, Portorož, 490-493 490

Classificaiton of Social Media Comments as Hate Speech –
Comparative study

Jer Pelhan1

1Faculty of Computer Science Ljubljana
E-mail: jp4861@student.uni-lj.si

Abstract
The presence of hate speech on the social media plat-
forms is becoming one of the strongest society problems.
The vast amount of content that is created every pass-
ing minute cannot be manually checked, thus we need to
empower algorithms for classification of toxicity. In this
article we test a statistical method, logistic regression as
a baseline, and three deep learning models: (LSTM) long
short-term memory, LSTM with convolutional layers, and
bidirecitonal LSTM for classification of the comment tox-
icity on Toxic Comment Classification Challenge dataset.
LSTM outperforms logistic regression, LSTM with convo-
lution and Bidirectional LSTM for 8.4, 0.9 and 2.4 per-
cent of the original score in F1, respectively. Further-
more, we present a novel pre-processing approach for
classification of offensive speech. Instead of removing all
punctuation akin to related works, we leave exclamation
marks and words written in all caps, as we detected a cor-
relation to the offensiveness of a comment on a selected
dataset. Using the best performing model, proposed pre-
processing outperforms commonly used pre-processing
approaches by 0.87 percent of the original score.

1 Introduction
With the start of the twenty-first century many social me-
dia platforms arose. Social media platforms are a medium
that enables the communication – registered user can gen-
erate content, e.g. post text, photos or videos. Currently
more than 50% of people worldwide use social media
platforms daily, that consequently means that the impact
of social media on our mental well-being is immense and
extensive. All-though, many natural language processing
algorithms are successfully employed on different spheres,
the problem of detecting hate speech is limited due to ab-
sence of public laws that classify hate speech.

Nonetheless, with all the assets, the social media plat-
forms are a handy medium for sharing negativity and hate
speech, i.e., insulting speech targeted at a specific person
or marginalized community on the basis of characteristics
of that person or group, for example, race, origin, disabil-
ity, gender identity, sexual orientation, etc. Given that
there is an average of more than 10.000 tweets made ev-
ery second, all the content cannot be manually checked.
In addition, some European countries already enforced
laws demanding for social media platforms to remove

hate speech within twenty-four hours. Hence, artificial
intelligence methodology, i.e., natural language process-
ing (NLP), is required to tackle with colossal amount of
possibly hateful content created every second.

The main problem of toxic speech on a social me-
dia web-page is the myriad of forms it comes in. There
is also clearly a lack of the definition what hate speech is
and does it result in cyberbullying, which is punishable in
many European countries. In the last decade many differ-
ent approaches or methods of hate speech detection de-
veloped. Such as methods for binary classification, and
with their advancement multi-class approaches in the last
five years. In our work, we focus on the classification
of toxicity – multi-class approaches. We propose a new
pre-processing technique, that outperforms existing pre-
processing techniques, and test it with respect to different
models.

The remainder of the articles is composed of four sec-
tions. In Section 2 we briefly describe related works on
toxic comment classification. In Section 3, we present
and analyze the Toxic Comment Classification Dataset
that is used in this study. Methods that we employ in
this comparative study are described in Section 4, where
we also describe used metrics, pre-processing pipelines,
used models, etc. Experimental results are reported in
Section 5. In Section 6, we conclude the thesis and dis-
cuss future work.

2 Related Work
Current methods that work with hate speech detection
and classification are divided into two groups: (i) deep
learning models that use and extract their own features,
and (ii) feature based machine learning models that need
extracted thoroughly cleaned text within features as input
data.

Support vector machine (SVM) is a popular machine
learning method on this field [1] that has achieved suc-
cesses with simplicity and performance of the model.
Greevy et. al [1] presented a classification method for
racist text using SVM in combination with bag of words
(BOW) as feature representation. BOW is a technique of
representing texts in vectors of fixed length. It does not
consider word order, as it is only a collection of words
that appear in the text. In [2] they show, that employ-
ing BOW classifier is not sound, as it classifies comment



491

as toxic if it includes a word that is marked as hateful in
feature space, all though it is not in the context of this
comment. Nonetheless, this results in high recall, but
also a high rate of false positives, as many comments get
marked as hate speech, only due to containing a marked
word.

Global Vectors for Word Representation (GloVe) [3]
is a word embedding method published by Stanford re-
searchers that does not explicitly model word order, but
considers the words in the representational matrix based
on their distance from the target word. The creators of
fastText [4] from Facebook tackle with word order in text
as this is important part of text classification. In this
method a text is represented by a vector that in a way
as with BOW, but it also uses vectors to represent word
ngrams and this way representing local word order.

With development of Neural Networks, Reccurent Neu-
ral Networks (RNN), especially Long short-term mem-
ory (LSTM) [5, 6] became popular NLP in general, but
also within the task of classifying hate speech in texts.
Chakrabarty et. al [7] state that the best reported score
on classification of abuse on Twitter is achieved using
LSTM. In [8] they show that neural networks in com-
bination with RNN, achieve good performances. As neu-
ral networks can in general detect interesting connections
between features, that can be extracted using RNN such
as LSTM.

3 Dataset
For the comparative study of methods for classification
of social media comments we chose the Toxic Comments
Classification Challenge (TCCC) dataset published on Kag-
gle by Google and Jigsaw. The dataset is composed of
159.571 human annotated comments collected from Wiki-
pedia used for training, and 63.978 annotated comments
for testing the algorithm. All the comments were labeled
by the type of toxicity: (i) toxic, (ii) severe toxic, (iii)
obsene, (iv) threat, (v) insults and (vi) identity hate. Sin-
gle comment of the dataset can be associated with mul-
tiple labels, thus the task on this dataset is multi-label
classifciation problem. Three most represented classes of
comments are toxic, obscene and insults. The dataset is
featured of a very unbalanced distribution with only just
above 12% of comments labelled as at least one or multi-
ple categories of toxicity.

With correlation matrix we observed correlations be-
tween classes of TCCC dataset. Interestingly, ’toxic’ and
’severe toxic’ classes are correlated with a small correla-
tion factor of 0.31. We further analyzed this correlation
and came to conclusion that ’severe toxic’ class is a sub-
set of the ’toxic’ class and the correlation factor is small
only because the ’severe toxic’ is represented in minor-
ity in comparison with ’toxic’ class. A strong correlation
exists between ’toxic and ’obscene’, but the strongest cor-
relation is between ’obscene’ and ’insult’ class.

We thoroughly analyzed different features as com-
ment length, number of punctuation, word length, num-
ber of repetitions of characters in words, as useful fea-
tures can be removed due to not paying enough attention

to the dataset. Both median and mean of clean comment
lengths are larger for circa 100 characters in comparison
with hateful comments. Intuitively, hateful comments are
more likely to have higher percentage of capitalized char-
acters. This also holds for average percentage of TCCC
dataset capitalizations, but the median percentages are
very similar. Upper-cased words are correlated with num-
ber of exclamation marks used in the comment. Clean
comment holds less than one exclamation mark in aver-
age, but hateful comment in average holds almost three
exclamation marks. We do not explore any other strong
correlations with other punctuation, or other features.

4 Methods
4.1 Dataset Pre-processing
Comments in the datasets for classification of hate speech
contain special words and characters, e.g punctuation, cap-
italization, new line symbols, stop words, emoticons, links
and even IP addresses. All of that introduces sometimes
unnecessary additional dimensionality into feature space
which affects the performance of the model. Pre-processing
is a set of techniques that change text data in a way of
making it more feature intense without any information
losses. This step enables better classification, as it strongly
reduces dimensionality of text space. It is important not
only which pre-processing techniques we choose, but also
the order in which we apply them. In [9] they extensively
test pre-processing methods and their order. They point
out that it has a strong impact on the end performance of
not only traditional machine learning models, e.g. linear
regression, SVM, but also deep learning models.

Figure 1: Dataset preprocessing. We introduce novelties in sec-
ond and third step.

First step in our pre-processing of the dataset is re-
moval of URLs, hashtag symbols and any other HTML
elements as seen in Figure 1. In the dataset that we use,
we also remove IP addresses as they are only adding noise
to the text. In the second step we joined the removal of
punctuation, and stop words. In contrary with [9], we
do not remove all punctuation, but we leave the excla-
mation marks. Furthermore, we only strip capitalization



492

of words, that are not consisted of all capitalized char-
acters. We leave the completely uppercased words in
the dataset. Both described steps exploit the fact that
Mikolov et.al. [10] employ no complex data normaliza-
tion or pre-processing in the training process of fastText
on large text corpora from Wikipedia and Web Crawl
which we use as a word embedding. As the last step we
employ lemmatization, i.e., changing all the words of a
text to the uninflected forms, so all different forms of a
word can be analysed as a single item.

4.2 Metrics
The official metric of the challenge [11] is mean column-
wise ROC/AUC, i.e. the mean area under a receiver oper-
ating characteristic curve by all the classes. ROC curve is
a plot that presents the performance of a binary classifi-
cation model at all classification thresholds. The curve is
calculated from the true positive rate or sensitivity against
the false positive rate or (1 - specificity). In addition, we
decide to use F1 score, as F1 score penalizes models that
just predict everything as a negative class. Since F1 score
is harmonic mean of recall and precision, we also con-
sider both.

Furthermore, we will use macro-averaged F1-scores,
i.e., arithmetic mean of individual F-score of single class.
We use macro, as we want all classes to be treated equally.
Described averaging system is applied also for precision
and recall.

4.3 Models
Hyperparameter tuning. We employed grid search for
all the methods, to obtain as optimal hyperparatemers
and consequently achieve better results. The term hyper-
parameter appends to all non trainable parameters of a
model, that usually have big impact on the performance
of the model. Grid is exhaustive search that only attempts
to find the values that are optimal.

Logistic Regression As a baseline we train Logis-
tic Regression, a statictical model that is applicable for
binary classification. At the end we use liblinear as the
solver function and set the inverse of regularization strength
to 4 with dual formulation in combination with 1- and 2-
grams. With features being extracted as term frequency–
inverse document frequency (TF-IDF) that are commonly
used features for text classification. We use multiple lo-
gistic regression classifiers, one for each class.

LSTM Recurrent neural networks (RNN) like Long
Short-Term Memory (LSTM) can use internal memory
to process considerably large sequences of inputs, thus
it interprets a document as a sequence of words. Mod-
els using LSTM have a major and important novelty in
comparison to traditional RNN of having ability to learn
long-term dependencies between the inputs. The embed-
ding layer transforms words to dense vectors, that are
then feed to the LSTM. We use fastText [4] as embedding
layer. Then we apply globalMaxPooling1D layer that
down-samples representation by taking maximum value
over time. After, a combination of dropout and dense
layers is applied, ending with dense layer with 6 outputs,
i.e., one for each category. We performed grid search for

hyper-parameters and set batch size to 32, dropout param-
eter to 0.2, with Relu activation, binary cross-entropy for
loss function for 6 epochs trained using Adam optimizer
with default learning rate of 0.01.

LSTM-CNN Long Short-Term Memory with Convo-
lutional Neural Networks is becoming popular for classi-
fication tasks as they are good at detecting specific com-
binations of features which RNN as LSTM can extract.
After the LSTM layer we employ convolution. Hyper-
parameter tuning set batch size to 64, dropout parameter
to 0.1, with relu activation, binary crossentropy for loss
function for 8 epochs trained using Adam optimizer with
standard parameters. For convolutional layer grid search
found 64 as the number of convolutional filters, i.e. the
third dimension of the output space with kernel size or
length of the convolution window of 3 as optimal.

Bidirectional LSTM LSTM that only preserves past
information, in usage of Bidirectional LSTM, the inputs
are feed in two ways, one forward one backwards, pre-
serving information not only from past but also from fu-
ture. This model is composed in the same maneer as
LSTM described above. The hyper-parameter tuning found
the best performance of the model with batch size of 64
for 9 epochs, dropout rate of 0.1, relu activation function
and sigmoid on last dense layer, binary cross-entropy as
loss function and Adam optimizer with default learning
rate, but with a decay of 0.0003.

Probabilistic classification. All the methods return
a probability of a comment being a member of a certain
class. Thus, we need to threshold the values to obtain end
classifications. To find optimal threshold, we empower
the precision recall curve, to find optimal threshold for
both, i.e. for F1 score. We perform this for every category
of the prediction, for each classifier separately.

5 Results
Table 1 summarizes the performance for all the tested
methods on Toxic Comment Classification dataset. All
though, on first sight we achieve low F1, recall and pre-
cision we need to take into account that we are classify-
ing every comment into six very similar conjunctive cat-
egories on a very difficult dataset.

We decided to test the effect of pre-processing the
dataset on the overall performance of the methods. We
thus performed an experiment to evaluate methods with
no pre-progressing, the pre-processing described in [9]
and our suggested method. The results are presented in
the first, second and third column of Table 1, respectively.

Linear regression is the method with the biggest per-
formance increase is seen from no pre-processing to stan-
dard pre-processing proposed in [9]. The performance
increase measured in AUC, F1, recall and precision is
3.7%, 8.7%, 15.3% and 2.45%, respectively. The in-
crease of performance is large as linear regression is fea-
ture based machine learning model. Machine learning
models in contrary to deep learning models need extracted
cleaned text within feature space as input data.

Convolutional neural networks are more commonly
used in image processing tasks, but we show that they can



493

No pre-processing Standard pre-processing [9] Proposed pre-processing
Model AUC F1 Re Pr AUC F1 Re Pr AUC F1 Re Pr

Log. Regr 92.18 58.25 56.05 60.63 95.62 63.35 64.63 62.12 95.51 62.61 63.23 62.00
LSTM 97.22 68.30 72.77 64.36 97.39 68.66 72.88 64.92 97.60 68.70 72.26 65.48
LSTM-CNN 97.04 66.04 70.84 61.87 97.05 68.08 72.20 64.41 96.82 67.26 71.98 63.13
BiLSTM 96.32 65.18 69.34 61.50 97.19 67.05 70.74 63.74 97.19 68.16 70.66 63.99

Table 1: Comparison of AUC ROC, F1-measure, recall and precision with respect to three different pre-processing techniques.
Method based on LSTM outperforms all other methods. Best results of each method with respect to pre-processing are bolded.

be outperform Bi-directional LSTM network with stan-
dard pre-processing [9] for 1.5%, 2% and 1% at F1, recall
and precision, respectively.

The overall best method is based on LSTM with fast-
Text embedding. It outperforms all other methods at all
three stages of pre-processing with respect to all used
measures. LSTM method performs best with proposed
pre-processing outperforming the LSTM with standard
processing by 0.6% and 0.9% in F1-score and precision,
respectively. Recall however decreases. This interprets
as classifying less clean comments as any class of toxic
and classifying more toxic comments into clean category.
Even though the recall drops, F1 raises, resulting in better
overall performance. At the classification of hate speech
it is important to have high recall and also precision, thus
F1 score is most viable.

6 Conclusion
We presented a novel method for text pre-processing for
the task of classification of hate speech on comments taken
from Wikipedia site. The novelty of our method is re-
moving all the punctuation except exclamation marks,
as we found in the dataset analysis that they are more
commonly present in toxic comments. Furthermore we
detected a correlation between number of upper-cased
words and end class. The presented method was tested
in comparison with no pre-processing and pre-processing
proposed in [9]. Based on detailed experiments, we have
identified improvements of the overall performance of
the methods based on LSTM and BiLSTM. The preci-
sion, mean AUC and F1 are higher with proposed pre-
processing, but the recall drops, resulting in less falsely
clean comments labeled as toxic but also more toxic com-
ments labeled as clean.

For the toxic comments classification to be success-
ful it should report as little comments that are not toxic
in reality, but it should also not overlook the toxic com-
ments. At the end it is up to different use cases, e.g. in
some scenario it would be completely inappropriate to
have toxic comments, thus the method should be trained
to achieve high recall. But in most cases, a person has to
look through all these comments that are reported to be
toxic. At the end it would be most appropriate to have
at leas two thresholds. The first one being a partition
between clean and probably toxic and second one mark-
ing toxic comments. Then, probably toxic comments are
manually checked.

In the future, we would like to investigate manual
creation of features that are concatenated with the in-

put to the model. Instead of not removing exclamation
marks, and words that are written upper-cased, we could
count the occurrences and add them as additional fea-
tures. That could be helpful as we would still remove
the noise from text, but also use important features that
should not be castaway. Furthermore, we would like to
investigate training two classifiers, a binary one for pre-
dicting if comment is toxic, and multi-class one for clas-
sifying the toxicity – referring to the imbalance problem
of the dataset. This will be the topic of our future work.

References
1. Greevy, E. & Smeaton, A. Classifying racist texts using

a support vector machine. The 27th ACM SIGIR Confer-
ence 2004, Sheffield, UK. (Jan. 2004).

2. Kwok, I. & Wang, Y. Locate the Hate: Detecting Tweets
against Blacks in AAAI (2013).

3. Pennington, J., Socher, R. & Manning, C. D. Glove: Global
vectors for word representation in Proceedings of the 2014
conference on empirical methods in natural language pro-
cessing (EMNLP) (2014), 1532–1543.

4. Joulin, A., Grave, E., Bojanowski, P. & Mikolov, T. Bag
of Tricks for Efficient Text Classification 2016. arXiv: 1607.
01759 [cs.CL].

5. Sigurbergsson, G. I. & Derczynski, L. 2019. arXiv: 1908.
04531 [cs.CL].

6. Wulczyn, E., Thain, N. & Dixon, L. Ex Machina: Per-
sonal Attacks Seen at Scale. CoRR abs/1610.08914. arXiv:
1610.08914 (2016).

7. Chakrabarty, T., Gupta, K. & Muresan, S. Pay “Attention”
to your Context when Classifying Abusive Language. Pro-
ceedings of the Third Workshop on Abusive Language
Online (2019).

8. Van Aken, B., Risch, J., Krestel, R. & Löser, A. Chal-
lenges for Toxic Comment Classification: An In-Depth
Error Analysis. CoRR abs/1809.07572. arXiv: 1809 .
07572 (2018).

9. Naseem, U., Razzak, I. & Eklund, P. A survey of pre-
processing techniques to improve short-text quality: a case
study on hate speech detection on twitter. Multimedia Tools
and Applications 80, 1–28 (Nov. 2021).

10. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C. &
Joulin, A. Advances in Pre-Training Distributed Word Rep-
resentations 2017. arXiv: 1712.09405 [cs.CL].

11. Toxic comment classification challenge https://www.
kaggle . com / c / jigsaw - toxic - comment -
classification-challenge/.


