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A B S T R A C T	   A R T I C L E   I N F O	

To	sustain	in	the	modern	era	of	rapid	manufacturing	development,	it	becomes	
necessary	to	generate	complex	shapes	on	materials	which	are	highly	tempera‐
ture	 and	 corrosion	 resistant,	 hard	 to	 machine,	 and	 have	 high	 strength‐to‐
weight	ratio.	Generation	of	complex	shapes	on	those	materials	using	conven‐
tional	machining	processes	ultimately	affects	surface	finish,	material	removal	
rate,	 accuracy,	 cost,	 safety	 etc.	 Non‐traditional	 machining	 (NTM)	 processes	
have	 the	 capability	 to	 machine	 those	 advanced	 engineering	 materials	 with	
satisfactory	results.	But,	selection	of	the	most	appropriate	NTM	process	for	a	
particular	machining	application	is	often	a	complicated	task.	Case‐based	rea‐
soning	 (CBR),	a	domain	of	artificial	 intelligence,	 is	a	paradigm	 for	 reasoning	
new	problems	from	the	past	experience.	In	CBR,	a	memory	model	is	assumed	
for	 representing,	 indexing	 and	 organizing	 past	 similar	 cases,	 and	 a	 process	
model	is	supposed	for	retrieving	and	modifying	the	past	cases	and	assimilat‐
ing	 the	 new	 ones.	 This	 paper	 primarily	 focuses	 on	 the	 application	 of	 CBR	
approach	for	NTM	process	selection.	Based	on	different	process	characteris‐
tics	 and	 process	 parameter	 values,	 the	 past	 similar	 cases	 are	 retrieved	 and	
reused	to	solve	a	current	NTM	process	selection	problem.	For	this,	a	software	
prototype	is	developed	and	three	real	time	examples	are	cited	to	illustrate	the	
application	potentiality	of	CBR	system.		
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1. Introduction 

With	 the	development	of	newer	materials	having	 improved	 thermal,	mechanical	 and	 chemical	
properties,	it	has	now	become	quite	difficult	to	machine	those	materials	using	conventional	ma‐
chining	processes.	These	processes,	generally	based	on	cutting	and	abrasion	mechanism,	 incur	
higher	machining	 cost	while	 generating	 complex	 shape	 features	 on	 composites,	 ceramics	 and	
other	advanced	engineering	materials.	The	achieved	surface	quality	and	dimensional	accuracy	of	
the	machined	components	are	also	not	satisfactory,	and	often	fail	to	meet	the	desired	target.	In	
these	machining	processes,	unwanted	material	from	the	parent	workpiece	is	generally	removed	
employing	mechanical	energy.	This	energy	is	supplied	by	means	of	a	cutting	tool	kept	in	contact	
with	the	workpiece,	causing	shear	deformation	along	the	shear	plane,	leading	to	chip	formation.	
New	exotic	work	materials	and	complex	geometrical	shapes	on	those	materials	have	been	put‐
ting	more	pressure	on	the	capabilities	of	the	conventional	machining	processes.	This	leads	to	the	
development	 and	 deployment	 of	 a	 new	 set	 of	machining	 processes,	 popularly	 known	 as	 non‐
traditional	machining	(NTM)	processes.	In	these	processes,	unwanted	material	is	removed	from	
the	parent	workpiece	using	various	forms	of	energy,	like	chemical,	thermal,	mechanical,	electri‐
cal	or	combination	of	those	energies.	In	an	NTM	process,	there	is	no	direct	contact	between	the	
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cutting	tool	and	the	workpiece.	In	abrasive	jet	machining	process,	excess	material	is	removed	by	
means	 of	microscopic	 chips	 and	 in	 electrochemical	machining	 process	 by	 electrolytic	 dissolu‐
tion.	 In	 laser	beam	machining	process,	 there	 is	 even	no	need	of	any	cutting	 tool.	 It	 is	also	not	
necessary	that	the	cutting	tool	should	be	harder	than	the	workpiece	material	in	an	NTM	process.	
Now‐a‐days,	 it	has	become	easier	 to	generate	complex	shapes	on	materials,	 like	steel,	 carbide,	
titanium	and	its	alloys,	ceramics,	superalloys	(Inconel	718,	hastelloy)	etc.	employing	NTM	pro‐
cesses	[1,2].	Till	date,	there	have	been	approximately	20	NTM	processes	developed	and	applied	
in	modern	manufacturing	industries.	Selection	of	the	best	suitable	NTM	process	for	a	particular	
work	material	and	shape	feature	combination	is	generally	made	by	a	domain	expert	on	the	basis	
of	various	factors,	such	as	workpiece	material,	shape	feature	to	be	generated,	material	removal	
rate,	surface	finish,	surface	damage,	corner	radii,	tolerance,	cost,	safety,	power	requirement	etc.	
Thus,	an	expert	in	this	domain	must	have	a	vast	and	in‐depth	knowledge	about	the	characteris‐
tics	and	capabilities	of	different	available	NTM	processes.	But,	in	the	present	manufacturing	sce‐
nario,	most	 of	 the	 process	 engineers	 lack	 the	 requisite	 domain	 knowledge	 and	 availability	 of	
experts	is	also	sometimes	constrained.		

Usually,	a	domain	expert	acquires	knowledge	from	the	past	experience	as	well	as	from	other	
reliable	sources.	Taking	this	concept	as	a	plinth,	when	an	expert	attempts	to	select	an	NTM	pro‐
cess	 for	a	given	machining	application,	he/she	 just	recalls	 the	similar	past	situations	and	their	
solutions.	Thus,	based	on	the	similar	past	problems	and	their	solutions,	new	NTM	process	selec‐
tion	cases	are	solved.	This	entire	cognitive	process	of	a	domain	expert’s	thinking	has	given	birth	
to	a	new	branch	of	artificial	 intelligence	(AI)	 technique,	known	as	case‐based	reasoning	(CBR)	
approach.	This	CBR	approach	is	applied	here	for	NTM	process	selection.	In	this	paper,	in	order	to	
choose	the	most	suitable	NTM	process	for	a	specific	machining	application,	an	exhaustive	case‐
base	containing	the	machining	characteristics	of	various	available	NTM	processes	and	their	per‐
tinent	process	parameters	is	first	created.	These	machining	characteristics	and	process	parame‐
ter	data	are	later	used	to	select	the	feasible	NTM	processes	according	to	the	end	requirements.	
The	selection	procedure	is	based	on	retrieval	of	the	best	matched	case	from	the	case‐base	using	
the	nearest	neighbourhood	technique,	while	calculating	the	similarity	score	between	two	cases.	
The	best	matched	case,	which	is	retrieved	from	the	case‐base	according	to	the	values	of	different	
process	characteristics	as	set	by	the	process	engineer/end	user,	has	the	similarity	score	greater	
than	the	other	cases.	To	automate	and	simplify	the	application	of	CBR	approach	in	NTM	process	
selection,	 a	 software	prototype	having	 a	 graphical	 user	 interface	 (GUI)	 is	 designed	 and	devel‐
oped	in	Visual	Basic	6.0.	The	developed	system	simultaneously	considers	both	the	user	require‐
ments	(product	characteristics)	and	technical	requirements	(process	characteristics)	for	a	given	
NTM	process	selection	problem.		

2. Literature review 

Using	two	multi‐attribute	decision	making	(MADM)	tools,	 i.e.	analytic	hierarchy	process	(AHP)	
and	 technique	 for	 order	 preference	 by	 similarity	 to	 ideal	 solution	 (TOPSIS),	 Yurdakul	 and	
Cçogun	 [3]	 attempted	 to	 simplify	 the	NTM	process	 selection	procedure	 for	 the	manufacturing	
personnel.	A	list	of	feasible	NTM	processes	satisfying	the	users’	requirements	was	first	generat‐
ed	and	those	processes	were	then	ranked	based	on	their	suitability	to	meet	the	desired	machin‐
ing	 operation.	 An	 expert	 system	was	 developed	 by	 Chakraborty	 and	Dey	 [4]	 for	 selecting	 the	
best	NTM	process	under	 constrained	material	 and	machining	 conditions.	 It	would	 rely	 on	 the	
priority	values	of	different	criteria	and	sub‐criteria	for	a	specific	NTM	process	selection	problem,	
and	the	NTM	process	with	the	highest	acceptability	index	was	finally	identified.	Chakraborty	and	
Dey	[5]	developed	a	quality	 function	deployment	(QFD)‐based	expert	system	for	NTM	process	
selection.	An	overall	score	 for	each	of	 the	NTM	processes	was	estimated	using	the	weights	ex‐
tracted	from	the	house	of	quality	matrix	for	various	process	characteristics.	The	overall	scores	of	
some	of	the	NTM	processes	simultaneously	satisfying	certain	critical	criteria	requirements	were	
again	compared	and	the	NTM	process	having	the	maximum	score	was	finally	selected	as	the	op‐
timal	choice.	A	web‐based	knowledge	base	system	was	proposed	by	Edison	Chandraseelan	et	al.	
[6]	for	identifying	the	most	suitable	NTM	process	to	meet	some	input	parametric	requirements,	
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like	type	of	the	work	material,	shape	application,	process	economy,	and	other	process	capabili‐
ties,	 like	surface	finish,	corner	radii,	width	of	cut,	tolerance	etc.	Sadhu	and	Chakraborty	[7]	ap‐
plied	an	input	minimized	Charnes,	Cooper	and	Rhodes	(CCR)	model	of	data	envelopment	analy‐
sis	for	NTM	process	selection.	Employing	weighted‐overall	efficiency	ranking	method	of	MADM	
theory,	the	efficient	NTM	processes	were	ultimately	ranked	in	descending	order	of	their	priori‐
ties.	Temuçin	et	al.	[8]	designed	a	fuzzy	decision	support	model	for	NTM	process	selection	while	
assessing	the	potentials	of	some	distinct	NTM	processes.	Chatterjee	and	Chakraborty	[9]	proved	
the	application	potentiality	of	evaluation	of	mixed	data	(EVAMIX)	method	for	solving	NTM	pro‐
cess	 selection	 problems	 using	 three	 demonstrative	 examples.	 Roy	 et	 al.	 [10]	 integrated	 fuzzy	
AHP	and	QFD	techniques	for	selection	of	NTM	processes	based	on	some	predefined	customers’	
perspectives.	 Temuçin	 et	 al.	 [11]	 solved	 the	NTM	 process	 selection	 problem	 under	 fuzzy	 and	
crisp	 environment,	 and	 proposed	 a	 decision	 support	model	 to	 guide	 the	 process	 engineers	 to	
explore	the	potentials	of	some	distinct	NTM	processes.	The	applicability	of	the	proposed	model	
was	also	validated.	Khandekar	and	Chakraborty	[12]	applied	 fuzzy	axiomatic	design	principles	
for	selection	of	NTM	processes.	Madić	et	al.	[13]	demonstrated	the	applicability,	suitability	and	
computational	 procedure	 of	 operational	 competitiveness	 ratings	 analysis	 (OCRA)	 method	 for	
solving	NTM	process	selection	problems.	

Nowadays,	 CBR	 as	 a	 part	 of	 cognitive	 science,	 has	 been	 emerged	 out	 as	 an	 interesting	 re‐
search	topic.	Amen	and	Vomacka	[14]	employed	CBR	approach	as	a	tool	for	selection	of	material	
and	heat	treatment	process	from	an	exhaustive	database	to	simplify	the	task	of	a	designer.	Khe‐
mani	et	al.	[15]	applied	CBR	approach	in	fused	cast	refractory	manufacturing	industry.	Fang	and	
Wong	[16]	applied	a	hybrid	CBR	approach	in	agent‐based	negotiation	for	effective	supply	chain	
management.	Armaghan	and	Renaud	[17]	adopted	CBR	approach	to	prove	the	complementary	
nature	of	multi‐criteria	decisions	and	CBR	approach.	Although	the	past	researchers	applied	nu‐
merous	MADM	methods	and	developed	different	distinct	decision	aids	for	selection	of	NTM	pro‐
cesses	for	varying	machining	applications,	but	till	date,	no	attempt	has	been	put	forward	on	se‐
lection	of	NTM	processes	using	CBR	approach.	This	paper	thus	proposes	development	of	a	deci‐
sion	making	model	based	on	CBR	approach	for	selecting	the	best	suited	NTM	process	for	a	given	
machining	application.	It	 is	observed	that	CBR	is	 the	correct	and	simplest	approach	in	this	do‐
main	where	availability	of	experts	is	sometimes	constrained.	In	CBR	approach,	a	set	of	feasible	
NTM	processes	is	first	retrieved	from	the	case‐base	satisfying	the	work	material	and	shape	fea‐
ture	 combination.	 Based	 on	 the	 user	 and	 technical	 requirements,	 it	 then	 identifies	 the	 best	
matched	NTM	process	from	the	stored	similar	cases.	The	past	cases	are	just	reused	here	for	NTM	
process	selection	for	providing	the	optimal	solution.	

3. CBR approach  

Intelligence,	being	a	part	of	 cognitive	science,	 can	be	defined	as	 the	process	 involving	 rational	
and	abstract	thinking.	It	is	often	goal	oriented	and	purposeful.	It	consists	of	knowledge	and	feats,	
both	conscious	and	unconscious,	which	are	acquired	through	continuous	study	and	experience.	
The	AI	is	actually	the	intelligence	in	machines.	Intelligent	system	is	the	basement	of	knowledge	
engineering.	It	involves	several	tasks,	like	knowledge	acquisition,	creation	of	a	knowledge	base,	
knowledge	 representation	 and	 use	 of	 the	 acquired	 knowledge.	 The	 represented	 knowledge	 is	
basically	used	for	reasoning	or	inference.	In	AI,	knowledge	is	represented	using	symbols	along	
with	heuristics	or	rules	of	thumb.	While	using	these	heuristics,	one	should	not	have	to	rethink	
when	a	similar	problem	is	encountered.	The	expert	system	can	be	defined	as	an	intelligent	com‐
puter	program	that	uses	knowledge	and	inference	procedures	to	solve	problems	that	are	diffi‐
cult	enough	requiring	significant	human	expertise	for	their	solution.	Basically	in	expert	system,	
knowledge	is	represented	using	‘if‐then’	rules.		

The	CBR	approach	is	a	part	of	AI	technique	that	utilizes	information	stored	in	the	knowledge	
base,	 when	 similar	 past	 problems	 are	 encountered	 again.	 It	 provides	 solution	 to	 the	 present	
problem	that	is	almost	similar	to	the	past.	In	CBR	approach,	a	problem	is	represented	as	an	input	
in	the	present	situation.	It	just	retrieves	the	most	similar	case	to	the	new	one	from	its	case‐base 
while calculating the similarity score over the defined parameters.	It	first	searches	the	case	history	
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and	chooses	 that	case	having	the	closest	similarity	 to	 the	current	problem.	 In	CBR	system,	 the	
case‐base	 is	well	 structured	 and	 documented.	 The	 case	 representation	may	 be	 flat,	 where	 all	
cases	 are	 represented	 at	 the	 same	 level,	 or	 it	 can	 be	 hierarchical,	 expressing	 relationship	 be‐
tween	cases	and	sub‐cases.		

There	are	four	major	steps	that	constitute	a	CBR	system,	i.e.	retrieve,	reuse,	revise	and	retain.	
Thus,	it	is	also	called	as	4‐R	cycle	or	CBR	cycle,	as	shown	in	Fig.	1.	When	a	problem	occurs	in	the	
current	situation,	similar	past	situations	are	retrieved	from	the	case‐base.	Reusing	the	past	cas‐
es,	a	predictable	solution	to	the	current	problem	is	thus	provided.	If	there	is	a	need	of	any	revi‐
sion,	 the	retrieved	data	are	revised	and	retained	as	a	new	case	 in	 the	case‐base	 for	 future	use	
[18‐21].		

	
Fig.	1	A	CBR	cycle	or	4‐R	cycle	

Retrieving	 the	most	similar	case	along	with	 the	solution	 is	based	on	some	 logical	expressions.	
The	 similarity	between	 two	 cases	 is	 usually	measured	with	 respect	 to	 each	parameter.	 It	 also	
depends	on	the	type	of	parameter	(beneficial	or	non‐beneficial)	being	used.	The	followings	are	
the	most	common	methods	for	calculating	similarity	between	two	cases:		

aሻ Numeric:	

Sim	(a,b) ൌ	|a	–	b|/Range	 (1)

where	Range	is	the	difference	between	the	upper	and	lower	boundaries	of	a	set.	

bሻ Symbolic:	

Sim(a,b)		=	1		if	a	=	b

																	=	0		if	a	≠	b	
(2)

cሻ Multi‐valued:	

	Simሺܽ, ܾሻ ൌ
݀ݎܽܥ ሺܽሻ ∩ ݀ݎܽܥ ሺܾሻ
݀ݎܽܥ ሺܽሻ ∪ ݀ݎܽܥ ሺܾሻ

	 (3)
	

where	Card	is	the	cardinality	(size)	of	a	set.	
	

dሻ Taxonomy:		

	Simሺܽ, ܾሻ ൌ
݄ ሺcommon node ሺܽ, ܾሻሻ

minሺ݄ሺܽሻ, ݄ሺܾሻሻ
	 (4)

	

where	h	is	the	height	(number	of	levels)	of	the	specified	taxonomy	tree.	

The	procedural	steps	of	a	CBR	approach	are	presented	as	below:	

a)	 A	solution	is	first	defined	using	several	parameters.	One	of	the	parameters	should	be	cho‐
sen	carefully	so	that	it	would	remain	unique	throughout	the	documentation	procedure,	e.g.	
case	number.	

b)	 A	huge	set	of	known	solutions	 is	put	 into	the	case‐base	of	CBR	system.	An	existing	data‐
base	can	also	be	used	for	this	purpose.	

c)	 The	CBR	system	generally	reads	the	database	and	organizes	a	copy	of	its	own.	
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d)	The	user	generally	formulates	a	query	according	to	the	end	requirements.	All	the	available	
variables	are	first	displayed.	The	user	has	the	option	to	choose	all	or	few	variables	based	
on	the	problem	statement.	The	query	includes	those	variables	as	set	by	the	user.	The	user	
also	has	the	option	to	allocate	different	priority	weights	to	the	considered	variables.	

e)	 As	a	result	of	 the	user‐defined	query,	CBR	system	may	display	a	number	of	cases	or	 the	
best	matched	case.	It	may	also	be	possible	that	none	of	the	cases	would	match	the	query	
exactly.	

Favouring	CBR	 technique	as	 the	most	efficient	 tool	 for	NTM	process	 selection	 is	 a	 challenging	
task,	 as	 several	 other	 approaches	 have	 already	 been	 available	 for	 the	 same	 purpose.	 It	 is	 ob‐
served	from	the	available	literature	that	none	of	the	MADM	methods,	like	AHP,	EVAMIX,	TOPSIS	
etc.	 can	provide	complete	solution	when	 the	domain	 is	 ill‐structured	and	murky.	The	working	
principle	of	CBR	is	based	on	some	available	specific	experiences	instead	of	abstracted	rules.	It	is	
considered	as	a	useful	tool	if	the	utilization	of	prior	experience	is	more	vital	than	to	produce	a	
thoroughly	optimized	 solution	 according	 to	 the	 specifications.	The	CBR	approach	has	no	opti‐
mizing	potentiality,	but	it	can	be	used	for	searching,	not	for	calculations.	Its	efficiency	is	deter‐
mined	by	fast	retrieval	of	the	most	similar	cases	from	the	case‐base.	The	principle	of	CBR	also	
states	that	it	can	find	the	similarities	between	cases	but	not	reasons.	So,	it	is	unable	to	judge	how	
important	the	encountered	departures	are	that	can	be	determined	only	by	an	experienced	user.	

A	comparison	between	the	existing	search	techniques	and	the	adopted	CBR	approach	is	elu‐
cidated	in	Table	1.	

Table	1	Comparison	between	different	search	techniques	and	CBR	approach	

Method	 Flexibility	
Operational	
approach	

Computational	
time	

Programming	
complexity	

Decision	
maker’s		
involvement	

Type	of	data	

Genetic	
algorithm	

Medium		
(lack	of	learn‐
ing	ability)	

Population	based	
probabilistic	search	
and	optimization	
technique	

High	(based	on	the	
desired	accuracy	
and	termination	
criterion)	

High	 High	
Numerical	
	

Artificial	
neural	
network	

High	
Mimics	the	working	
principle	of	biological	
neurons	

High	 Medium	 Medium	 Numerical	

Simulated	
annealing	

Medium	

Cooling	process	of	
molten	metal	is	
modeled	artificially	to	
construct	an	
optimization	algorithm

Medium	(based	on	
the	desired	accura‐
cy	and	termination	
criterion)	

High	 High	
Numerical	
	

Expert	
system	

Medium	

Exact	matching	of	
input	and	stored	data	
producing	several	
‘if‐then’	rules	for	
inference	

Medium	 Medium	 High	
Both	numerical	
and	textual	

CBR	 High	

Notion	of	similarity	
between	
present	and	prior	
stored	cases	

Low	 Low	 Medium	
Both	numerical	
and	textual	

4. CBR‐based approach for NTM processes selection  

Although	 CBR	 approach	 has	 already	 been	 successfully	 applied	 in	 various	 fields	 of	mechanical	
engineering,	 such	as	material	 selection,	design	 selection,	parts	 selection	 for	automobile	 indus‐
tries	etc.,	no	attempt	has	still	been	made	for	its	application	in	the	domain	of	NTM	process	selec‐
tion.	The	CBR	approach	has	the	potential	 to	provide	complete	 information	about	a	case	where	
minimum	information	is	available	to	the	user.	It	yields	the	best	results	when	the	user	provides	
detailed	query	information.		
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While	 selecting	 the	most	 suitable	 NTM	 process	 for	 a	 particular	machining	 application,	 the	
process	 engineer	 has	 to	 consider	 several	machining	 characteristics	 of	 the	 available	NTM	pro‐
cesses.	 In	the	developed	CBR	approach‐based	decision	making	model,	nine	NTM	processes,	 i.e.	
abrasive	jet	machining	(AJM),	abrasive	water	jet	machining	(AWJM),	electric	discharge	machin‐
ing	(EDM),	 laser	beam	machining	(LBM),	ultrasonic	machining	(USM),	electrochemical	machin‐
ing	(ECM),	electrochemical	discharge	machining	(ECDM),	plasma	arc	machining	(PAM)	and	wire	
electric	discharge	machining	(WEDM)	are	taken	into	consideration.	As	the	process	characteris‐
tics,	type	of	the	workpiece	material,	shape	feature	to	be	generated,	material	removal	rate	(MRR)	
(in	mg/min),	surface	roughness	(SR)	(in	µm),	surface	damage	(SD)	(in	µm),	tolerance	(Tol)	(in	
mm),	overcut	(OC)	(in	mm),	corner	radii	(CR)	(in	mm),	taper	(TP)	(in	mm/mm),	cost	(C)	(in	rela‐
tive	(R)	priority	scale),	power	(P)	(in	kW)	and	safety	(S)	(in	R	scale)	are	considered.	For	cost,	the	
R	scale	is	set	as	1	‐	lowest,	2	‐	very	low,	3	‐	low,	4	‐	medium,	5	‐	high,	6	‐	very	high	and	7	‐	highest.	
On	the	other	hand,	 for	safety,	 the	R	scale	 is	set	as	1	‐	highly	safe,	2	‐	safe	and	3	‐	attention	re‐
quired.	 As	work	materials,	 a)	 aluminium,	 b)	 aluminium	 alloys,	 c)	 ceramics,	 d)	 composites,	 e)	
glass,	f)	steel,	g)	superalloys	and	h)	titanium	are	considered	in	this	model.	The	above‐mentioned	
NTM	processes	can	generate	a)	hole	(precision)	(0.03	mm	≤	D	<	0.13	mm),	b)	hole	(standard)	
(L/D	≤	20),	 c)	 hole	 (standard)	 (L/D	>	20),	 d)	 through	 cut	 (shallow)	 (t/w	≤	2),	 e)	 through	 cut	
(deep)	(t/w	>	2),	 f)	 through	cavity	(standard)	(t/w	>	10),	g)	 through	cavity	(precision)	(t/w	≤	
10),	h)	pocket	(shallow)	(t	≤	1	mm),	i)	pocket	(deep)	(t	>	1mm)	and	j)	surface	of	revolution	fea‐
ture	on	the	work	material	(where	L	is	the	length	of	the	hole,	D	is	the	diameter	of	the	hole,	t	is	the	
thickness	and	w	 is	 the	width	of	 the	machined	 feature).	The	relevant	machining	characteristics	
data	 for	 different	 NTM	 processes	 are	 accumulated	 from	 experimentations,	 machining	 data	
handbooks	 and	 other	 reliable	 resources	 to	 create	 the	 corresponding	 case‐base.	 The	 collected	
data	are	then	organized	in	a	structured	manner	in	MS	Access.	The	step‐wise	operational	proce‐
dures	of	 the	developed	CBR	system	 for	 selecting	 the	best	 suited	NTM	process	 for	 a	particular	
machining	application	are	depicted	as	follows:	

Step	1:	When	the	developed	CBR	system	starts	to	run,	the	first	screen,	as	shown	in	Fig.	2,	appears	
to	the	end	user	where	the	type	of	the	work	material	to	be	machined	and	type	of	the	shape	fea‐
ture	to	be	generated	can	be	chosen	from	the	given	options	as	the	primary	inputs	to	the	system.	

Step	2:	 After	 clicking	 ‘OK’	 button,	 a	 list	 of	 feasible	NTM	process(es)	 capable	 of	 generating	 the	
desired	shape	on	the	specified	work	material	is	displayed.	For	this,	Eqn.	(2)	is	utilized	for	filter‐
ing	and	retrieving	the	data.	

Step	3:	When	the	user	presses	 ‘Next’	button,	another	screen,	as	shown	in	Fig.	3,	 is	displayed	to	
identify	the	most	suitable	NTM	process	from	the	list	of	feasible	processes	while	satisfying	the	set	
machining	requirements.	

Step	4:	 In	 this	screen,	 the	end	user	has	 to	choose	 the	desired	process	characteristics	based	on	
which	the	final	NTM	process	selection	is	made.	

Step	5:	When	‘Enter	range’	functional	key	is	clicked,	the	required	number	of	empty	cells	are	au‐
tomatically	generated	where	the	input	ranges	for	the	selected	NTM	process	characteristics	can	
be	provided.	

Step	6:	After	inputting	the	desired	ranges	of	values,	pressing	of	‘Best	NTM	process’	button	identi‐
fies	the	most	suitable	NTM	process	for	the	specified	machining	application	while	satisfying	the	
set	criteria	values.	For	retrieving	the	best	NTM	process	in	this	step,	Eqn.	(1)	is	employed.	

Step	7:	The	actual	retrieved	values	of	all	the	technical	characteristics	for	the	best	matched	NTM	
process	are	also	displayed.	

Step	8:	When	‘Best	NTM	process’	button	is	clicked,	the	technical	details	(tentative	settings	of	the	
associated	process	parameters)	of	the	best	matched	NTM	process	are	also	available,	as	shown	in	
Fig.	4.	
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Although	in	step	5,	there	is	an	option	for	entering	ranges	of	process	characteristic	values,	but	if	
the	 developed	 CBR	 system	 does	 not	 find	 any	 data	within	 those	 ranges	 from	 the	 case‐base,	 it	
would	retrieve	the	possible	data	nearest	to	the	query	set.	For	a	particular	NTM	process	selection	
problem,	MRR	is	the	sole	beneficial	attribute	where	its	value	is	always	required	to	be	maximized.	
On	the	other	hand,	SR,	SD,	Tol,	TP,	OC,	CR,	C,	P	and	S	are	non‐beneficial	attributes	requiring	their	
minimum	values.	The	best	matched	case	should	have	the	highest	similarity	score,	which	is	calcu‐
lated	 with	 respect	 to	 each	 of	 the	 process	 characteristics.	 After	 summing	 up	 these	 similarity	
scores	for	the	set	process	characteristics	for	each	case,	the	NTM	process	having	the	highest	simi‐
larity	score	is	chosen	as	the	most	suitable	option.	

5. Illustrative examples 

5.1 Example 1: Standard hole on composite material  

In	this	example,	standard	holes	are	to	be	generated	on	a	composite	material.	After	providing	the	
inputs	of	composite	as	the	work	material	and	hole	(standard)	as	the	shape	feature	options	in	the	
primary	 selection	window	of	Fig.	 2,	 a	 set	of	 feasible	NTM	processes	 consisting	of	AJM,	AWJM,	
ECDM,	ECM,	EDM,	LBM	and	USM	is	displayed,	when	‘OK’	button	is	clicked.	All	the	processes	can	
generate	standard	holes	on	composite	materials.	In	the	next	window	of	Fig.	3,	MRR,	SR,	Tol,	OC,	
CR	and	C	are	opted	as	the	most	important	process	characteristics	based	on	which	the	final	NTM	
process	selection	is	to	be	made.	In	this	example,	the	desired	input	ranges	for	those	process	char‐
acteristics	are	set	as	MRR	100‐1000	mg/min,	SR	2‐12	µm,	Tol	0‐0.5	mm,	OC	0‐0.05	mm,	CR	0‐0.5	
mm	and	C	1‐4	(in	R	scale).	Now,	when	‘Best	NTM	process’	functional	button	is	clicked,	LBM	pro‐
cess	is	identified	as	the	best	matched	case,	capable	of	meeting	the	set	process	characteristic	val‐
ues.	It	is	interesting	to	observe	that	apart	from	the	set	process	characteristics,	values	of	the	oth‐
er	process	characteristics	are	also	available	for	the	best	matched	NTM	process.	In	this	example,	
the	selected	LBM	process	can	achieve	values	of	MRR	as	286.08	mg/min,	SR	as	2.63	µm,	SD	as	
102	µm,	Tol	as	0.02	mm,	OC	as	0.001	mm,	CR	as	0.5	mm,	TP	as	0.05	mm/mm,	C	as	1	(in	R	scale),	
P	as	0.23	kW	and	S	as	3	(in	R	scale).		

In	Fig.	4,	the	process	engineer	can	also	have	an	idea	about	the	settings	of	different	machining	
parameters	of	LBM	process.	These	are	the	tentative	process	parametric	settings	and	for	achiev‐
ing	the	maximum	machining	performance,	fine‐tuning	of	these	settings	is	often	necessary.	A	real	
time	photograph	of	LBM	process	is	also	available	in	Fig.	4.	
	

	
Fig.	2	Primary	selection	window	for	Example	1	
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Fig.	3	Best	NTM	process	for	Example	1	

 

Fig.	4	Details	of	LBM	process		

5.2 Example 2: Standard through cavity on ceramics 

	Here,	the	process	engineer	wants	to	generate	a	standard	through	cavity	on	a	ceramic	work	ma‐
terial.	 In	 the	primary	 selection	window,	 as	 shown	 in	Fig.	 5,	 the	developed	CBR	approach	 first	
extracts	five	NTM	processes,	i.e.	AJM,	AWJM,	EDM,	USM	and	WEDM	as	the	feasible	options	satis‐
fying	the	said	work	material	and	shape	feature	combination	requirement.		

In	Fig.	6,	MRR,	SR,	Tol,	OC,	CR,	C	and	S	are	chosen	as	the	most	important	process	characteris‐
tics	based	on	which	the	final	NTM	process	needs	to	be	selected.	Based	on	the	ranges	of	values	for	
these	process	characteristics,	USM	process	is	identified	as	the	best	matched	case	for	this	machin‐
ing	 application.	 For	 USM	 process,	 the	 attainable	 process	 characteristics	 are	 MRR	 as	 131.96	
mg/min,	SR	as	0.66	µm,	SD	as	25	µm,	Tol	as	0.014	mm,	OC	as	0.15	mm,	CR	as	0.08	mm,	TP	as	
0.005	mm/mm,	C	as	5	(in	R	scale),	P	as	0.4	kW	and	S	as	1	(in	R	scale).	
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Fig.	5	Primary	selection	window	for	Example	2	

In	Fig.	7,	the	tentative	parametric	settings	and	the	technical	specifications	of	USM	process	along	
with	its	actual	photograph	are	displayed	to	guide	the	process	engineer	to	achieve	the	best	ma‐
chining	performance.		

	

 
Fig.	6	Best	NTM	process	for	Example	2	
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Fig.	7	Details	of	USM	process		

5.3 Example 3: Shallow through cutting on steel 

In	this	example,	a	shallow	through	cutting	operation	needs	to	be	performed	on	a	standard	steel	
plate.	 For	 this	work	material	 and	 shape	 feature	 combination,	 the	 CBR	 system	 first	 recognizes	
AJM,	 AWJM,	 ECM,	 EDM,	 LBM	 and	 PAM	 as	 the	 six	 feasible	 NTM	 processes,	 as	 shown	 in	 Fig.	 8.	
Then,	in	Fig.	9,	seven	process	characteristics,	i.e.	MRR,	SR,	SD,	Tol,	OC,	CR	and	C	are	identified	by	
the	process	engineer	 for	the	final	selection	of	 the	most	suited	NTM	process	 for	the	considered	
machining	application.	In	this	window,	the	ranges	of	values	of	the	set	process	characteristics	are	
also	provided.		
	

 
Fig.	8	Primary	selection	window	for	Example	3	
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Fig.	9	Best	NTM	process	for	Example	3	

 
Fig.	10	Details	of	AJM	process		

The	developed	CBR	system	identifies	AJM	as	the	most	appropriate	NTM	process	for	generating	a	
shallow	through	cut	on	steel	material.	In	Fig.	9,	values	of	various	process	characteristics	of	AJM	
process	are	provided	as	MRR	‐	99.76	mg/min,	SR	‐	1.9	µm,	SD	‐	2.5	µm,	Tol	‐	0.03	mm,	OC	‐	0.001	
mm,	CR	‐	0.1	mm,	TP	‐	0.005	mm/mm,	C	‐	4	(in	R	scale),	P	‐	0.22	kW	and	S	‐	2	(in	R	scale).	In	Fig.	
10,	this	CBR	system	also	guides	the	process	engineer	in	setting	the	most	desired	values	of	vari‐
ous	AJM	process	parameters	for	achieving	the	optimal	machining	performance.	But,	depending	
on	the	end	requirements	and	availability	of	the	machining	setup,	those	AJM	process	parameters	
need	to	be	accurately	adjusted.		

In CBR approach, all the cases, along with the relevant parameters, are well-structured in the case-
base. They are collected from real time experiments, machining handbooks and expert’s opinions. 
Hence, when a case is retrieved by CBR system, it is likely to be closely matched with the expert’s 
opinion. Moreover, CBR is a technique that can provide the closest solution to the input problem. In 
all these three examples, the final results provided by CBR system are well validated by the experts 
who have a vast capability of understanding and years of experience.  
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In CBR approach, as the selection procedure is entirely based on similarity score calculation over 
several process characteristics for an efficient case retrieval, there is almost negligible probability that 
two cases have exactly the same similarity score. Moreover, in the developed CBR approach-based 
software prototype, the data type for the similarity score is considered as 'double'. Thus, two NTM 
processes may be apparently same from the logical as well as application point of view, but they are 
always slightly different based on the calculated similarity scores over several process characteristics 
by CBR system. 

6. Conclusion 
In this paper, based on CBR approach, a decision making model is developed for selecting the 
most appropriate NTM process for a given work material and shape feature combination. The 
functional mechanism of CBR approach is based on retrieving and reusing the past similar cases 
from the case-base. In the case-base, numerous cases are stored from the real time experimental 
data which are later utilized to extract the case nearest to the given query set. It is observed that 
the CBR system can provide a reasonable solution to a given machining problem where there is a 
lack of expert knowledge. The developed model can be a pathway towards new research in the 
direction of NTM process selection. Its potentiality and solution accuracy are validated using 
three real time demonstrative examples. It can also guide a process engineer in setting various 
NTM process parameters for a specific machining operation, although fine-tuning of those par-
ametric settings may sometimes be required. Its accuracy can further be increased while devel-
oping a hybrid CBR system, incorporating more cases in the case-base or providing more options 
with respect to work material and shape feature choices. A validation of the results derived us-
ing the CBR approach against the existing search mechanisms, like genetic algorithm, simulated 
annealing, artificial neural network etc. may be the future scope of this research paper. 
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