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Abstract

There are ten configurations of two bowties that can arise in a bowtie system. The
avoidance spectrum for three of these was determined in a previous paper (Aequat. Math.
85 (2013), 347-358). In this paper the avoidance spectrum for a further five configurations
is determined.
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1 Introduction

Let X = (V,E) be the graph with vertex set V = {z,a,b,¢,d} and edge set
E = {za,xb,xc,zd,ab,cd}. Such a graph is called a bowtie and will be represented
throughout this paper by the notation a,b — x — ¢,d. The vertex z is called the centre of
the bowtie and the other vertices are called endpoints. A decomposition of the complete
graph K, into subgraphs isomorphic to X is called a bowtie system of order n and denoted
by BTS(n). An elementary counting argument shows that a necessary condition for the
existence of a BTS(n) isn = 1or9 (mod 12). In a BTS(n), if every vertex of the com-
plete graph K, occurs the same number of times as the centre of a bowtie, then the bowtie
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system is said to be balanced, otherwise the system is said to be unbalanced. A necessary
condition for the existence of a balanced BTS(n) isn =1 (mod 12).

It is easy to see that, given a BT'S(n), by regarding each of the two triangles of every
bowtie as separate entities, we have a Steiner triple system STS(n). We call this the asso-
ciated Steiner triple system of the bowtie system. Conversely, if n = 1 or 9 (mod 12), it
is also true that the triangles of every STS(n) can be amalgamated to form bowties. This
is a consequence of the fact that the block intersection graph of every Steiner triple system
is Hamiltonian, see for example [2, Section 13.6]. If n =1 (mod 12), there exists a cyclic
STS(n), see also [2, Section 7.2], and this system will have an even number of full orbits.
It is then immediate that we can amalgamate triangles from pairs of orbits to form a bal-
anced BTS(n). Hence the necessary conditions for both BTS(n) and balanced BTS(n)
given above are also sufficient.

A configuration in a bowtie system (resp. Steiner triple system) is a small collection of
bowties (resp. triangles) which may occur in the system. The study of configurations in
STS(n) is now well established and the whole of Chapter 13 of [2] is devoted to various
results about them and in particular includes formulae for the number of occurrences of
all possible configurations of four or fewer triangles. Those for configurations of one, two
or three triangles are functions of n. Such configurations are called constant because the
number of occurrences is independent of the structure of the ST'S(n). Other configura-
tions are variable. There are 16 non-isomorphic configurations of four triangles of which
5 are constant and 11 are variable. An important concept is that of avoidance; given any
particular configuration in a bowtie system (resp. Steiner triple system), to determine the
spectrum of n for which there exists a BTS(n) (resp. STS(n)) which does not contain that
configuration. Avoidance sets for all configurations of four or fewer triangles in Steiner
triple systems are known. Most, particularly those for constant configurations, are easy
to determine but that for the so-called Pasch configuration (four triangles isomorphic to
{a,b,c}, {a,y, z}, {x,b, 2}, {z,y, c}) was more challenging. Itisn =1 or 3 (mod 6),
n # 7,13 and a complete solution appears in the two papers [7] and [6].

In this paper we will be concerned with the avoidance sets of configurations of two
bowties in a BTS(n). There are ten such configurations which were determined in [3] and
are illustrated in Figure 1. In this figure each triangle of a bowtie is represented by a path
on three vertices and, in each case, one bowtie is represented by solid lines and the second
by dashed lines. The intersection of two solid lines or two dashed lines is the centre of the
bowtie and the other four points are the endpoints. The ten configurations are each labelled
C‘i for some value of 7, 1 < ¢ < 16, to reflect the fact that the bowtie configuration with that
label gives the configuration C; in the standard listing of configurations of four triangles in
Steiner triple systems as given in [5] or [2, Section 13.1]. Indeed it was by examining all
16 possible configurations of four triangles in a Steiner triple system and identifying which
could be obtained from two bowties that the ten possible configurations of two bowties
were obtained.

There are four equations which connect the number of occurrences of the various con-
figurations of two bowties and these were proved in [3]. Denoting the number of occur-
rences of the configuration C; by c¢;, the equations are the following.

der +cg + 11+ 15 =n(n—1)(n —5)/24. (1.1)
c11 + c12 + 2¢14 + 3c15 + 4e1g = n(n — 1)/3 (1.2)
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Figure 1: Configurations of two bowties.
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cg + cg9 + 2010 +c11 +Cig +C1qa = TL(TL - 1)(71 - 7)/12 (13)
deg 4 cg + 2¢9 + c12 =n(n—1)(n — 7)(n —9)/72. (1.4)

If the bowtie system is balanced, there is a further equation.
cr =n(n—1)(n—13)/288. (1.5)

All configurations are variable except that C'; is constant in balanced bowtie systems.
Avoidance sets for the three most compact configurations, C4, C15 and C14 have al-
ready been determined in [3]. The following theorem was proved.

Theorem 1.1. For eachn =1 (mod 12) there exists both a balanced and an unbalanced
BTS(n) simultaneously avoiding Cha,Chs and Cig. For each n = (qu 12), n #
chere exists a (necessarily unbalanced) BTS(n) simultaneously avoiding C14, C15 and
Cie.

Thus not only can each of these three configurations be avoided for all values of n for
which both balanced BT'S(n) and unbalanced BTS(n) exist except for n = 9, they can all
be avoided simultaneously. There are precisely 12 non-isomorphic BTS(9)s which were
enumerated in [4]. All avoid C’lﬁ, none avoid C’l 5 and just one avoids (:‘14. The details are
in [3].

In this paper, we consider five further configurations. In particular we show that BTS(n)
avoiding three of the least compact configurations Cs, C7 and Cg do not exist if n > 13.
Our main results are that for each of the configurations 011 and 012, and for all admissible
values of n, there exists a BT'S(n) avoiding that configuration, with the single exception of
C’u when n = 13. The situation for the two configurations C’g and CA'm remains unresolved.

2 Avoiding Cs3, C7 and Cy

We begin with C7. The number of bowties in a BTS(n) is n(n — 1)/12. Hence if n. > 13,
there will be two bowties with a common centre. So the only possible systems which may
avoid C7 are balanced BTS(13)s, and indeed all such systems do avoid C7, and BTS(9)s.
Checking the data of the 12 non-isomorphic BTS(9)s from [3] shows that six of these do
avoid C7 and the other six do not. We state this formally as a theorem.

Theorem 2.1. The only bowtie systems to avoid C+ are six of the twelve non-isomorphic
BTS(9)s and all balanced BTS(13)s.

Next we consider C’g and begin with some observations. First, if a,b —x —c,disa
bowtie in a BTS(n) which has no Cs configurations, then there are at most two bowties
whose centre is a. This is because any such bowtie must intersect the bowtie a,b—x — ¢, d
in a further point which can only be c or d. Similarly, there are at most two bowties whose
centre is b, c or d.

Secondly, in any BTS(n), a point 2 can be the centre of at most (n — 1)/4 bowties.
Thus if the BTS(n) has no Cg configurations and  is the centre of less then (n — 1)/4
bowties, then it is an endpoint of at least one other bowtie and so, by the above, there are
at most two bowties whose centre is z. As a consequence, in a BT'S(n) which has no Cs
configurations, each point z is the centre of 0, 1, 2 or (n — 1)/4 bowties. Furthermore, if a
point is the centre of (n — 1)/4 bowties, then all remaining points are the centre of at most
two bowties. We can now prove the following theorem.
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Theorem 2.2. A BTS(n) avoiding Cs can only exist if n < 13.

Proof. Subtracting equation 1.2 from equation 1.1 and re-arranging terms gives
cs =n(n—1)(n—13)/24 — dc7 + c12 + 2¢14 + 2¢15 + 4.

Hence c¢s > n(n —1)(n — 13)/24 — 4cs.

Now let a, be the number of bowties in a BTS(n) whose centre is . Then ¢; =
Y osev (“’) where V' denotes the set of n points in the design. Suppose that n > 13 and
that the BTS(n) has no Cs configurations. Let m be the maximum number of bowties
centred on any point in the BTS(n). Then from the argument above either m = 2 or
m = (n — 1)/4 and all but one point is the centre of at most two bowties.
In either case

=3 <“2> < ((" 21)/4) t(n—1)= (n—1)(n+27)/32.
zeV

Hence
cg >n(n—1)(n—13)/24 — (n —1)(n +27)/8 = (n — 1)(n? — 16n — 81)/24.

The right hand side of this expression is strictly positive for n > 21, and the result follows.
O

In order to complete the avoidance spectrum for the configuration Cs, we have the
following result.

Theorem 2.3. All BTS(9)s avoid Q’g but no balanced BTS(13) avoids Cs. There exist
unbalanced BTS(13)s which avoid Cs.

Proof. Checking the data of the 12 non-isomorphic BTS(9)s from [3] shows that all avoid
Cs. The fact that no balanced BTS(13) avoids Cs follows from an exhaustive com-
puter search of all 1,411,422 non-isomorphic systems identified in [4]. Two unbalanced
BTS(13)s on the point set {0,1,2,...,12} which avoid Cg are given below. In the first
case the associated STS(13) is cyclic and in the second case it is non-cyclic.

(1) 0,4—1-25; 0,7-2-3,6; 2,9—4—3,T,
0,6-8-1,3; 4,5-8-9,12; 1,7—9—5,6;
0,9-10—6,7; 2,8—10—3,5; 0,5— 11— 1,10;
2,12—11—4,6; 3,9—11-7,8 0,3—12—4,10;
1,6 — 12— 5,7.
(2) 1,4-0-2,7; 6,8—0-—9,10; 0,12—3—1,8;
2,6—3—4,7T; 2,0-4-58; 1,2—5—3,10;
1,7-9—5,6; 2,8—10—6,7; 0,5— 11 —1,6; O
2,12—11—4,10; 3,9—-11-7,8 1,10—12—5,T;

)

4,6 —12 —8,9.

Finally in this section we consider Cs. We have a parallel result to Theorem 2.2 for the
configuration Cy.
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Theorem 2.4. A BTS(n) avoiding Cs can only exist if n < 13.

Proof. Assume that n > 13, so that from Theorem 2.2, cg > 0. From equation 1.3,
cg < n(n—1)(n—7)/12 and cg + cg + c12 < n(n — 1)(n — 7)/12. So by addition
¢s + 2¢9 + c12 < n(n —1)(n — 7)/6. From equation 1.4,

des=nn—1)(n—="T7)(n—9)/72 — (cs + 2¢c9 + c12).

Therefore 4c5 > n(n — 1)(n — 7)(n — 21)/72. Throughout this proof all inequalities are
strict and since n > 13, i.e. n > 21, we have that c3 > 0. ]

Again, to complete the avoidance spectrum for the configuration C, we have the fol-
lowing result.

Theorem 2.5. The avoidance spectrum of the configuration Cs is the set {9,13}.

Proof. The configuration C has ten points so all BTS(9)s avoid Cs. A balanced BTS(13)
on the set Z;3 which avoid Cj is the set of bowties (i + 1), (i +4) —i — (i +2), (i + 7),
0 < 4 < 12, with arithmetic modulo 13. An unbalanced BT'S(13) can be obtained by
replacing the bowties 1,4 — 0 — 2,7 and 7,10 — 6 — 8, 0 with the bowties 1,4 — 0 — 6,8
and 6,10 —7—0,2. O

3 Avoiding Cy1 and C;

The method we use to construct bowtie systems which avoid the configurations C1y and
C‘u is similar to how we proved Theorem 1.1 on avoiding 6'14, 6’15 and 6’16 and uses stan-
dard techniques involving group divisible designs. It is however more intricate. We note
that all GDDs used in this paper exist (see [1, Section IV 4.1]). An essential component of
the construction is the following BTS(9) which is System (a)(I) in [4] and avoids both Ci
and Clg.

=

1,2-0-3,6; 4,8—0—57 3,5—
6,7-8—2,5 56—1-3,8 3,7—

&

We begin by proving the following result.
Theorem 3.1. For eachn = 1,9 (mod 24), there exists a BTS(n) avoiding C15.

Proof. Take a 3-GDD of type 4%, where t = 3s or 35 4 1 and s > 1. Denote the points of
the i*" group, 1 < i < t, by (4,1), (i,2), (4,3) and (i, 4). Inflate each point to two points,
i.e. a point (%, j) becomes two points (4, j) and (¢, j'). Add a single new point co. On each
inflated group of 8 points augmented with the co point place a copy of the BTS(9) above,
identifying the points as follows.

c0=0, (i,1)=1, (3,1
i _

On each of the original blocks of the GDD, say {(i1, j1), (i2, j2), (i3, 43)}, where i; #
io # i3 # i1, place the two bowties (ia,j2), (i3, j3) — (i1,41) — (42, 45), (is,7%) and
(i2,J2), (i3, 75) — (i1, 41) — (i2, J5), (i3, 73). The bowties in the resulting BT'S(8t + 1) can
be thought of as being of two types; (i) those resulting from a BT'S(9) which we will call
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BTS bowties and (i3) those resulting from the blocks of the GDD which we will call GDD
bowties. We need to consider pairs of bowties which arise from all possibilities. There are
five cases to consider.

(1) Two GDD bowties which come from the same block of the GDD. By the construc-
tion these form a configuration C1g.

(2) Two GDD bowties which come from different blocks of the GDD. There are four
possible scenarios.

(a) If the two bowties are disjoint then they form a configuration Cs.

(b) If the centres of the two bowties are the same, then they have no further points
in common and we have a configuration C';.

(c) If the centre of one of the bowties is an endpoint of the other bowtie, then again
they have no further points in common and we have a configuration Cg.

(d) If the two bowties have an endpoint in common, then they also have a further
endpoint in common and they form a configuration C1.

(3) Two BTS bowties which come from the same BTS(9). The configuration they form
is completely determined by the structure of the BTS(9) and so avoids C'o (and
Ci1).

(4) Two BT'S bowties which come from different BT'S(9)s. If the two bowties are dis-
joint then they form a configuration C3. Otherwise they can only intersect in the
point co which will be the centre of both bowties and we have a configuration C7.

(5) A BTS bowtie and a GDD bowtie. If the two bowties are disjoint then they form a
configuration Cs. If they have just one point in common then they also avoid Cio.
Otherwise they have two points in common and these points will both be endpoints
of the GDD bowtie. Further, the two points will be (¢, j) and (7, ;') for some i, j
suchthat 1 < ¢ < tand 1 < 5 < 4. If either of these points is the centre of the
BTS bowtie, then the other point is an endpoint and we have a configuration Cir.
Otherwise both points are endpoints of the BTS bowtie and, because of the way in
which the points of the BT'S(9) were assigned to the points oo, (¢, j) and (i, j'), they
are in different triangles. Hence we have a configuration Cio. O

We now prove a parallel result for the configuration Cis.
Theorem 3.2. Foreachn = 1,9 (mod 24), there exists a BTS(n) avoiding C1.

Proof. This follows the same steps as the previous theorem. However the way in which
each inflated group of 8 points augmented with the oo point is identified with the points of
the BTS(9) is different. In this case it is as follows.

0=0, (i,1)=1, (i,1)=2, (i,2)=3, (5,2) =06,
(i,3) =4, (5,3)=8, (i,4) =5, (i,4)=T.

The construction of the GDD bowties is the same. Also, in the analysis of pairs of bowties,
the first four cases are the same. So we only need to consider case (5) of a BTS bowtie and
a GDD bowtie. Again, if the two bowties are disjoint then they form a configuration Cj.
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If they have just one point in common then they also avoid C11. Otherwise they have two
points in common and they are (4, j) and (i, ;') as before. Because of the way in which the
points of the BT'S(9) were assigned to the points oo, (i, ) and (¢, j), no BTS bowtie has
its centre at a point (7, j) (resp. (¢,7')) and an endpoint at the point (4, j') (resp. (4, 5)). So
both points are endpoints of the BT'S bowtie. If they are in the same triangle then we have
a configuration Cio. If they are in different triangles then we have a configuration Ci. O

We next consider the cases n = 13,21 (mod 24). In order to deal with bowtie systems
in these residue classes avoiding C' 2, the following further BT'S(13) is used.

1,4-0-9,10; 2,7-0-6,8; 3,12—0—5,11;
1,5-2-3,6; 1,8—3-5,10; 2,10—8—4,5;
7,9-1-10,11; 1,12—6-7,10; 2,4—9—5,6;
4,7-3-9,11; 2,12—11—4,6; 4,10—12—8,9;
5,12 —7—8,11.

This system avoids the configuration C12 and has the property that one point, namely 0,
is at the centre of three bowties and never appears as an endpoint. We can now prove the
following result.

Theorem 3.3. For eachn = 13,21 (mod 24), there exists a BTS(n) avoiding Chs.

Proof. Take a 3-GDD of type 4'6', where t = 3s or 35 + 1 and s > 1. Proceed as
in Theorem 3.1 where in addition the points of the long group are denoted by (¢ + 1, j),
1 < j < 6. On this inflated group of 12 points augmented with the co point place a copy
of the BTS(13) above, identifying the points as follows.

oo =0,

(t+1,1)=1, (t+1,1)=10, (t+1,2)=4, (t+1,2")=09,
(t+1,3)=2, (t+1,3)=6, (t+1,4)=7  (t+1,4)=8,
(t+1,5)=3, (t+1,5)=5 (t+1,6)=12, (t+1,6)=11.

The proof now follows that of Theorem 3.1 . This proves the result for all stated values of
n except n = 21. A solution for this value is the following.

18,10 — 3 — 14, 19;

15,9 -3 —11,17;
19,10 — 5 — 14, 18;
18,9 — 4 — 11, 19;
20,10 — 8 — 14, 16;
16,9 — 6 — 11, 20;
17,10 — 7 — 14, 15;
0,7-3—1,5;

6,8 —1—4,T;

2,13 — 14 — 9, 10;
0,12 — 10 — 2, 11;
2,19 — 20 — 15, 16;
1,2-0-9,13;

17,9 — 5 — 11, 15;
16,12 — 3 — 13, 20;
19,9 — 8 — 11, 18;
15,12 — 4 — 13,17;
20,9 — 7 — 11, 16;
18,12 — 6 — 13, 19;
2,3-6-5,T;

0,6 —4—2,5;
12,14 — 1 — 10, 13;
0,19 — 15— 1,17,
18,20 — 1 — 16, 19;
8,5 —0— 20,17.

20,12 — 5 — 13, 16;
16,10 — 4 — 14, 20;
17,12 — 8 — 13, 15;
15,10 — 6 — 14, 17;
19,12 — 7 — 13, 18;

2,7—8—3,4;
2,9 —12 — 11,13;
0,14 — 11 —1,9;

2,15 — 18 — 17, 19;
0,18 — 16 — 2,17;
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Turning our attention to avoiding C11, we have shown by an exhaustive computer
search that there is no BT'S(13) that avoids this configuration. So for the residue classes
13 and 21 (mod 24) we use the modified constructions given in Theorems 3.4 and 3.5.
For balanced BT'S(13)s the minimum number of C configurations is 10 for both associ-
ated cyclic and non-cyclic STS(13)s. For unbalanced systems with the associated cyclic
STS(13), we find that the minimum is 5, but for unbalanced systems with the associated
non-cyclic STS(13), we find that the minimum is 4 and an example is given below.

0,12—3-1,8 26-3—-4,7; 3,5-10—6,T;
2,4—9-3,11; 2,7—0—5,11; 0,10 —9—8,12;
0,8—6-4,12; 1,7—-9-5.6; 0,4—1—10,12;
2,5-1—6,11; 2,11—12—5,7;, 2,8 —10—4,11;
4,5 -8 —17,11.

)

Theorem 3.4. For each n = 21 (mod 24), there exists a BTS(n) avoiding C11.

Proof. Take a 3-GDD of type 3t, where t = 45+ 3 and s > 0. Denote the points of the i*?
group, 1 < ¢ <, by (i,1),(4,2) and (i, 3). As before inflate each point to two points, i.e.
a point (4, j) becomes two points (¢, j) and (4, j'). Add three new points cog, 001 and cos.
On each inflated group of 6 points augmented with the three co points first place a copy of
the BTS(9) at the beginning of this Section, identifying the points as follows.

OOOZO, 001217 002:2,
(1,1) =3, (,,1)=6, (i,2) =4, (1,2)=8,
(4,3) =5, (i,3)=7

The triangle {oog, 001,002} now occurs 4s + 3 times. Remove the bowties
001,002 — 00g — (4, 1), (4,1")
for all 4 such that 2 < 4 < 45 + 3 and replace them by the bowties
(2i,1),(2i,1") — o0 — (20 +1,1), (26 + 1,1"), 1 <i<2s+1.

We call these BTS* bowties. The construction of the GDD bowties is as in the previous
three theorems.

We need to prove that a bowtie system constructed in this way avoids configuration
Ci1. The proof for the five cases involving just BTS bowties and GDD bowties is as
in Theorem 3.2. So any putative configuration C1, must contain a BTS* bowtie. We
show that this is impossible. A configuration C11 consists of two bowties isomorphic to
¢,y —x —b,zand a,z —y — d, e. The centre of every BT'S™ bowtie is cog; however this
point never occurs as the endpoint of any bowtie. So y # cog. Now suppose that x = cog
and that ¢,y — = — b, z is a BTS* bowtie. Then without loss of generality y = (2¢,1) and
z = (2i + 1,1) for some i such that 1 < ¢ < 2s + 1, say i = ¢. Therefore the bowtie
a,z —y — d,eis a GDD bowtie and either d or e = (2¢ + 1,1’) = b which means that we
do not have a configuration C’ll. O

We note that, by using a 3-GDD of type 3! where ¢ = 45+ 1, s > 1, the above theorem
can also be used to provide an alternative proof of the existence of a BT'S(n) avoiding C1;
for the residue class 9 (mod 24).
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A BTS(21) avoiding C1; from the above theorem is given below. This will be needed
in the proof of the final theorem. It has the crucial property that one point, again namely 0,
is at the centre of five bowties and never appears as an endpoint.

1,2-0—3,6; 4,8—0—5,T; 10,14 — 0 — 11, 13;
16,20 — 0 —17,19; 9,12 — 0 — 15, 18;

3,5-4—1,T; 9,11—10—1,13; 15,17 — 16 — 1,19;
6,7—8—2,5; 12,13 — 14 —2,11; 18,19 — 20 — 2, 17;
5,6—1—3,8; 11,12 —1-9,14; 17,18 — 1 — 15, 20;
3,7—2— 4,6 9,13 -2-10,12; 15,19 — 2 — 16, 18;
9,153 12,18, 10,17 —3 —14,19; 11,16 — 3 — 13,20;

9,18 — 6 — 12, 15;

10,16 — 4 — 14, 20;
10,20 — 8 — 14, 16;
11,17 — 5 — 13, 19;
11,19 — 7 — 13,17;

10,19 — 6 — 14, 17;
11,15 — 4 — 13, 18;
11,18 — 8 — 13, 15;

9,16 — 5 — 12, 20;
9,20 — 7 — 12, 16;

11,20 — 6 — 13, 16;
9,17 — 4 — 12,19;
9,19 — 8 — 12,17;
10,15 — 5 — 14, 18;
10,18 — 7 — 14, 15.

Theorem 3.5. For each n = 13 (mod 24), except for n = 13, there exists a BTS(n)
avoiding C1.

Proof. Take a 3-GDD of type 410", where t = 35 + 2, s > 1. Proceed as in Theorem 3.2
where the points of the long group are denoted by (¢t + 1,7), 1 < j < 10. On this
inflated group of 20 points augmented with the co point place a copy of the BTS(21)
above, identifying the points as follows.

=0,
(t+1 1) 1, @+1,1)=2 (t+1,2)=3, (t+1,2") =6,
(t+1,3) = 4, (t+1,3)=8, (t+1,4) =35, (t+1,4)="17,
(t+1,5)=10, (t+1,5)=14, (t+1,6)=11, (¢t+1,6") =13,
t+1,7=16, (t+1,7)=20, (t+1,8)=17, (t+1,8)=19,
t+1,9 =9, (t+1,9)=12, (¢t+1,10)=15 (¢+1,10") =18.
The proof now follows that of Theorem 3.2. This proves the result for all stated values of
n except n = 37. A solution for this value is given in Table 1 below. ]

Finally, we again note that, by using a 3-GDD of type 410" where t = 3s, s > 1,
the above theorem can also be used to provide an alternative proof of the existence of a
BTS(n) avoiding C1; for the residue class 21 (mod 24).
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Table 1: A BTS(37) avoiding C1;.

16,34 — 0 — 17, 35;
10,28 — 0 — 11, 29;
2,20 — 0 — 7, 25;
7,18 — 6 — 36, 1;
6,19 — 25— 1,18;
7,5 —2— 23,25
32,13 — 21 — 31, 14;
12,10 — 6 — 28, 30;
29,10 — 19 — 28, 11;
6,5 — 3 — 23, 24;
30,8 — 22 — 26, 12;
13,12 — 1 — 30, 31;
29,9 — 20 — 27, 11;
15,10 — 5 — 28, 33;
32,8 — 24 — 26, 14;
6,4 — 2 — 22, 24;
29,8 — 21 — 26, 11;
13,10 — 7 — 28, 31;
36,17 — 34 — 35, 18;
19,16 — 2 — 34, 21;
28,32 — 22 — 14, 34;
8,13 — 5 — 31, 16;
5,34 — 26 — 16, 13;
24,16 — 9 — 34, 33;
29,30 — 25 — 12, 34;
4,5 —1—23,17;
1,35 — 22 — 17, 5;
20,17 — 12 — 35, 32;
27,28 — 21 — 10, 35;
11,13 — 6 — 31, 17;
6,35 — 29 — 17,13;
25,17 — 8 — 35, 33;
26,28 — 20 — 10, 36;
12,15 — 3 — 33,18;
3,36 — 30 — 18, 15;
22,18 — 9 — 36, 31;
29,32 — 23 — 14, 36;

18,36 — 0 — 1, 19;
12,30 — 0 — 13, 31;
3,21 — 0 — 4, 22;
25,36 — 24 — 18, 19;
9,8 — 1— 26,2T;
25,5 — 20 — 23,7;
15,11 — 4 — 29, 33;
30,10 — 24 — 28,12;
15,13 — 2 — 31, 33;
24,5 — 21 — 23,6;
14,9 — 7 —27,32;
31,12 — 19 — 30, 13;
7,43 — 22,25
33,10 — 23 — 28, 15;
15,14 — 1 — 32, 33;
24,4 — 20 — 22,6;
12,9 — 5 — 27, 30;
31,10 — 25 — 28, 13;
2,3 —1— 21, 16;
1,34 — 20 — 16,3
22,16 — 10 — 34, 32;
26,31 — 23 — 13, 34;
9,15 — 6 — 33, 16;
6,34 — 27 — 16, 15;
25,16 — 11 — 34, 30;
22,23 — 19 — 5, 35;
12,14 — 2 — 32,17;
2,35 — 30 — 17, 14;
21,17 — 9 — 35, 28;
29,31 — 24 — 13, 35;
8,15 — 7 —33,17;
7,35 — 26 — 17, 15;
20,18 — 8 — 36, 28;
30,33 — 21 — 15, 36
9,13 — 4 — 31,18;
4,36 — 27 — 18,13,
23,18 — 11 — 36, 32;

8,26 — 0 — 9, 27;
14,32 — 0 — 15, 33;
5,23 — 0 — 6, 24;
24,1 — 7 — 19, 36;
27,8 — 19 — 26, 9;
14,13 — 3 — 31, 32;
33,11 — 22 — 29, 15;
11,10 — 1 — 28, 29;
33,13 — 20 — 31, 15;
12,8 — 4 — 26, 30;
32,9 — 25 — 27, 14;
11,9 — 2 — 27,29,
25,4 — 21 — 22, 7;
14,8 — 6 — 26, 32;
33,14 — 19 — 32, 15;
11,8 — 3 — 26, 29;
30,9 — 23 — 27,12;
18,17 — 16 — 35, 36;
20,21 — 19 — 3,34;
10,14 — 4 — 32, 16;
4,34 — 28 — 16, 14;
23,16 — 8 — 34, 31;
27,33 — 24 — 15, 34;
11,12 — 7 — 30, 16;
7,34 — 29 — 16, 12;
19,17 — 4 — 35, 23;
30,32 — 20 — 14, 35;
9,10 — 3 — 28,17;
3,35 — 27 — 17, 10;
24,17 — 11 — 35,31;
26,33 — 25 — 15, 35;
8,10 — 2 — 28,18;
2,36 — 26 — 18, 10;
21,18 — 12 — 36, 33;
27,31 — 22 — 13, 36;
11,14 — 5 — 32, 18;
5,36 — 29 — 18, 14.
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