

Geological CO₂ affects microbial respiration rates in Stavešinci mofette soils

Geološki CO₂ vpliva na mikrobno dihanje v tleh na območju mofete Stavešinci

Irena Maček^{1*}, Urška Videmšek¹, Damijana Kastelec¹, David Stopar²,

Dominik VODNIK¹

¹University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101,

SI-1000 Ljubljana, Slovenia, *Corresponding author: irena.macek@bf.uni-lj.si.

²University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology,

Večna pot 111, SI-1000 Ljubljana, Slovenia.

Abstract: Substrate-induced respiration (SIR) was used to estimate microbial respiration and microbial biomass in soils from Stavešinci natural CO_2 spring (mofette) exposed to different geological CO_2 concentrations. SIR measurements clearly demonstrated higher microbial respiration and microbial biomass in control sites compared to high soil CO_2 sites. Sampling in two different locations and in three different years also confirmed long-term stability of this pattern, which was found for both locations and in different sampling periods.

Keywords: substrate-induced respiration, SIR, microbial respiration, microbial biomass, soil respiration, natural CO₂ springs, mofette

Introduction

Soil CO₂ concentrations are about 50-times higher than ambient atmospheric CO₂ concentration and often fluctuate due to soil compaction, waterlogging and/or vegetation (BOUMA & BRYLA 2000, PFANZ & al. 2004). Natural CO₂ springs (mofettes) are extreme ecosystems with soil CO₂ concentrations that can reach values above 80 % (v/v) CO₂ in the upper 10-20 cm of soil at the most extreme sites (VODNIK & al. 2006). Most of the research at natural CO₂ springs in the past was focused on aboveground responses of vegetation (RASCHI & al. 1997, BADIANI & al. 1999, VODNIK & al. 2002, PFANZ & al. 2004, PFANZ & al. 2007). Much less work was done on the below ground responses of plants (MAČEK & al. 2005) or soil microorganisms (MAČEK 2004, MAČEK & al. 2008, VIDEMŠEK & al. 2009). Apart from the Stavešinci mofette, most of the reports on soil microbes come from the Haquanoa spring in New Zealand where arbuscular mycorrhizal (AM) fungi (RILLIG & al. 2000) and mineralization (Ross & al. 2000,

Ross & al. 2002, Ross & al. 2003) were studied. In most of these studies, however, mofettes were used as long-term natural model systems for studying effects of elevated atmospheric CO_2 on ecosystems. Thus sampling was done according to the atmospheric CO_2 concentrations, which are much more dependent on weather conditions and do not always reflect soil CO_2 concentrations and their direct effects on soil microflora. Soil CO_2 concentrations were taken into consideration in the studies of soil microorganisms first at the Slovenian mofette Stavešinci (MAČEK 2004, MAČEK & al. 2008, VIDEMŠEK & al. 2009).

Soil microbial biomass can be estimated by adding an easily available substrate (e.g. glucose) to the soil (substrate-induced respiration – SIR) (JENKINSON & LADD 1981). ANDERSON & DOMSCH (1978) suggested that the initial maximal respiration rate induced by glucose was proportional to the size of the original soil microbial biomass. The method does not give an absolute value of the biomass, however, the results can be used for relative comparisons. The same authors also report on highly significant correlation between fumigation-incubation technique and SIR for estimation of the microbial biomass. At 22 °C, 1 ml CO₂ h⁻¹ equals 40 mg microbial C (ANDERSON & DOMSCH 1978). In addition, Ross & al. (2000) report on positive correlation between SIR and atmospheric CO₂ concentration up to 700 ppm at the New Zealand CO₂ springs, however, no attempt was made to calculate microbial biomass C from the resultant CO₂ values.

In this study substrate-induced respiration was used to estimate microbial biomass of soils exposed to different geological CO_2 concentrations in Stavešinci mofette ecosystem. Soil samples were taken in three different CO_2 regimes, defined as high, medium and low (control) geological CO_2 and in three different years 2003, 2004 and 2007.

Materials and methods

Site description and sampling

The study was conducted in Stavešinci mofette, NE Slovenia (see Vodnik & al. 2006, Vodnik & al. 2009, for detailed site description). Briefly, the site is a flat post-agricultural area where very pure, cold CO2, without traces of sulphurous compounds, methane or carbon monoxide, is released into atmosphere through several vents. Atmospheric CO₂ concentrations largely depend on weather and wind conditions due to the topography of the site, and range from 0.036 % to 1 % (v/v)at 0.5 m aboveground (VODNIK & al. 2006). On the other side, soil CO₂ concentrations and CO₂ effluxes are more stable variables for measuring exposure to geological CO2. Soil samples were taken from two separate locations (Location 1 and Location 2) ca. 40 m apart. Each sampling location covered an area of about 100 m² with soil CO₂ concentrations ranging from high to low (ambient/control) CO2 concentrations as measured by a portable gas analyzer (GA2000, Geotech, Germany) (VODNIK & al. 2006) and/or soil CO2 flux measurements (LI-6400-09 Soil CO₂ flux chamber, LICOR, Lincoln, USA) (VODNIK & al. 2009). A good correlation between both methods has been confirmed before (VODNIK & al. 2009). Upper 10 cm of soil was sampled in Location 1 in March 2003 (n = 4-5 sampling points) and in April 2004 (n = 6-8 sampling points) in high CO₂ $(73.6\% \pm 2.7 \text{ v/v})$, medium $(9.3\% \pm 0.6 \text{ v/v})$ and low CO₂ (0.4 $\% \pm 0.03$ v/v) exposure. Location 2 soil was sampled in July 2007 (n = 4 sampling points) for high CO₂ (228.0 \pm 50.4 μ mol m⁻² s⁻¹), medium (42.4 \pm 11.3 µmol m⁻² s⁻¹) and low CO₂ flux $(21.1 \pm 7.3 \,\mu\text{mol m}^{-2} \,\text{s}^{-1})$, see also VIDEMŠEK & al. 2009. Soil chemical properties for Location 1 are described by MAČEK 2004, MAČEK & al. 2005 and for Location 2 by VIDEMŠEK & al. 2009. In brief, the values for Location 1; pH 5.4 (control), 3.8 (high CO_2); organic matter 3.2 % (control), 3.8 % (high CO₂); total N 0.26 % (control), 0.32 (high CO₂); available P₂O₅ 48 mg kg⁻¹ (control), 265 mg kg⁻¹ (high CO₂) and for Location 2; pH 5.7 (control), 4.9 (high CO₂); organic matter 3.3 % (control), 3.9 % (high CO₂); total N 0.32 % (control), 0.36 (high CO₂); available $P_2O_5 22 \text{ mg kg}^{-1}$ (control), 44 mg kg⁻¹ (high CO₂). Fresh samples were transported and stored at 4 °C and all the measurements were performed within two days after sampling. Before measurements soil was thoroughly mixed and all visible plant particles were removed.

Soil water content

Soil water content was determined by drying soil samples over night at 110 °C and weighing.

Table 1: Sample water content. Avg \pm SE are shown (n = 4-6). Tabela 1: Vsebnost vode v vzorcih. Prikazano je povprečje \pm SN (n = 4-6).

	Soil water content (mass %)		
Sampling period	High CO ₂	Medium CO ₂	Low CO ₂
March 2003	23.0 ± 3.1	22.3 ± 0.3	20.7 ± 0.7
April 2004	27.6 ± 0.3	no data	26.9 ± 0.6
June 2007	9.8 ± 1.2	9.8 ± 1.2	11.6 ± 2.0

Substrate-induced respiration (SIR)

Respiration rates were estimated by incubating 30 g of soil in 130-ml bottles sealed with rubber seals at room temperature (22 °C), for the 2003 and 2004 measurements, and at 28 °C in July 2007. All samples had equal dry weight. In order to avoid geological CO₂ background all samples were pre-areated to equalize CO₂ concentrations to ambient concentrations. For SIR measurements the samples were amended with 25 mg glucose g-1 dry soil and thoroughly mixed. Basal respiration was taken as the respiration rate of soils not amended with glucose and was subtracted from the SIR value. The concentrations of CO₂ in the headspace of the bottles were measured by gas chromatography, using a Becker Packard model 417 (Delft, Netherlands) gas chromatograph (GC), with thermal conductivity detector temperature 100 °C, 1.8-m column (2 mm inside diameter) packed with Prapak QS 180 cm column at 50 °C, injector temperature 100 °C, caring gas (He) flow 20 ml min⁻¹ and Hewlett Packard 3392A integrator. Samples (2.5 ml) of headspace gas were taken with a gas-tight syringe and injected into the gas chromatograph. Since the pH of the aqueous phase was < 6.5, the effective gas headspace of the bottles was assumed to be the volume not occupied by soil or liquid (LIN & BROOKES 1999).

The amount of produced CO_2 in the measuring bottle was calculated as:

 $M_{CO2} = (C_g^* (V_g + V_v^* \alpha)) / m$

 M_{CO2} = total CO₂ (ml g⁻¹ soil), C_g = measured CO₂ concentration in the gas phase (%), V_g = volume of the gas phase (130 ml), V_v = volume of the liquid phase in the soil (ml), α = Bunsen coefficient for CO₂ = 0.758, m = dry weight of soil in the bottle.

For measurements performed at 22 °C microbial biomass was calculated according to ANDERSON & DOMSCH (1978) where 1 ml CO_2 h⁻¹ equals 40 mg microbial C.

Data analysis

Data of the microbial respiration at different CO_2 levels were analysed for each year/location separately. Because of the longitudinal nature of the data (each sample was measured consequently several times during a time interval and

the intervals between the measurements differ for different samples) the linear mixed models with restricted maximum likelihood method were used for the estimation of the parameters. Time and CO_2 exposure group (high, medium, low) and their interaction were included in the model as fixed effects and soil sample with its time dependence were included in the model as random effect. The compound symmetry structure of the within samples random effect covariance was used in the model (PINHERIRO & BATES, 2000). The calculations were done with the statistical package R (R DEVELOPMENT CORE TEAM, 2009).

Results and discussion

Microbial soil biomass is dependent on quantity and quality of soil organic matter (ZAK & al. 1993, CHENG 1999), which in turn depends on plant production. Both, plant roots and above ground vegetation are directly affected by high soil CO₂ concentrations (KALIGARIČ 2001, VOD-NIK & al. 2002, MAČEK & al. 2005, PFANZ & al. 2004, PFANZ & al. 2007). It has been shown that in the high CO₂ exposed mofette plants content of N is lower and C/N ratio in plant tissues is higher, compared to control (PFANZ & al. 2004). In addition, lower concentrations of several other elements (P, K, S, and Zn) have been reported for high geological CO₂ exposed plants (PFANZ & al. 2004). All this should have an effect on microbial biomass and respiration.

As given in Fig. 1 glucose addition stimulated CO_2 release from all soil samples, indicating that soil microorganisms were activated by the addition of the respiratory substrate. The respiration data show linear (p < 0.0001) increase of the CO₂ concentration. Different slopes of linear model lines indicate changes in microbial activities (Fig. 1). In 2003, SIR was significantly lower in high CO₂ soils, compared to control soils (p = 0.0118). A similar trend was found in 2004, however there was no significant difference between high and low CO₂ soils. Similar to findings from the previous two years also microbial respiration measured in 2007 in samples from the second mofette (Location 2) showed the lowest values in high CO_2 soils, followed by medium and low (control) soils. In this year, significant difference was found between

- Fig. 1: Substrate induced microbial respiration (SIR), measurements of CO₂ production in soil samples from natural CO₂ springs in Stavešinci. Time course of microbial activity (respiration) after substrate addition measured on each sample (thin lines), linear model lines (thick lines); for low (full-lines), medium (dashlines) and high (dot-lines) CO₂ concentrations.
- Slika 1: S substratom inducirano mikrobno dihanje (SIR), meritve produkcije CO₂ v talnih vzorcih s področja naravnih izvirov CO₂ v Stavešincih. Časovna odvisnost mikrobne aktivnosti (dihanja) po dodatku substrata na posameznem vzorcu (tanke črte), premice linearnih modelov (debelejše črte); prikazano za majhne (polna linija), srednje (črtkana linija) in velike (pikčasta linija) koncentracije CO₂.

Year	Parameter		95 % Confidence intervals		
			Estimates	Lower limit	Upper limit
2007	Intercept	Н	-0.2115	-0.4532	0.0303
		М	-0.3576	-1.0006	0.2854
		L	-0.0690	-0.6954	0.5574
	Slope	Н	0.0106	0.0068	0.0143
		М	0.0169	0.0078	0.0260
		L	0.0197	0.0108	0.0287
2004	Intercept	Н	-0.0094	-0.0732	0.0545
		L	0.0107	-0.1475	0.1689
	Slope	Н	0.0068	0.0054	0.0082
		L	0.0085	0.0051	0.0118
2003	Intercept	Н	-0.0271	-0.0880	0.0338
		М	-0.0283	-0.2035	0.1470
		L	0.0791	-0.0965	0.2547
	Slope	Н	0.0050	0.0032	0.0068
		М	0.0069	0.0021	0.0116
		L	0.0090	0.0041	0.0138

Table 2: The estimated parameters of the linear mixed models with the 95 % confidence limits. Tabela 2: Ocene parmetrov linearnih mešanih modelov s 95 % intervali zaupanja.

high soil CO₂ and control (p = 0.0009) and also between high and medium soil CO₂ (p = 0.0210), but there was no difference between medium soil CO₂ and control. The estimated parameters of the linear mixed models with the 95 % confidence limits are presented in Tab. 2. Calculated microbial biomass is given in Tab. 3 (only for years 2003 and 2004). There is a clear increase in microbial biomass in both years with decreased geological CO₂ concentrations in the soil.

The effect of elevated atmospheric CO_2 on soil microbial respiration was reported before for the mofette areas in New Zealand (Ross & al. 2000), however, to the best of our knowledge no study reports on the effect of the extreme soil geological CO_2 enrichment on microbial biomass. VIDEMŠEK & al. (2009) have shown a shift in microbial community structure of CO₂-fixing bacteria in grassland soils from the Stavešinci mofette, depending on the soil CO₂ exposure. It has also been shown in the same mofette area that almost a complete turnover (β diversity) in community composition of symbiotic arbuscular mycorrizal fungi occurs, depending on soil abiotic factors (soil CO₂ exposure and hypoxia) (MAČEK & al. 2008).

For the Stavešinci mofette, SIR measurements and microbial biomass C estimation, clearly demonstrate higher microbial respiration and microbial biomass in control sites with low soil CO_2 concentration compared to high CO_2 samples (Fig. 1, Tab. 3). Differences between the years could be partially explained with the soil water content (Tab. 1). It is possible that due to higher

Table 3:	Calculated microbial biomass.
Tabela 3:	Ocenjena mikrobna biomasa.

	* Microbial biomass (μg g ⁻¹ dry soil)		
Year	2003	2004	
High CO ₂	115	162	
Medium CO ₂	159	no data	
Low CO ₂	231	205	

* Measured 2 h following glucose addition.

water content in 2004 the respiratory substrate glucose, introduced into the sample in a solid form, could not distribute evenly (formation of clumps during mixing of soil) and thus was not available to all the potential users. In the study on the evaluation of the SIR method by LIN & BROOKES (1999) glucose was added both in solid or liquid form, however, similar patterns of CO₂ evolution were found for both protocols. In addition, it was concluded in the same study, that no correction for CO₂ dissolved in the soil solution was needed for the soils below pH 6.5, which is also the case for Stavešinci soil. Higher absolute values of the microbial respiration measured in 2007 are probably due to higher incubation temperatures during the SIR experiment. Nevertheless, the same pattern in microbial respiration response to geological CO₂ as in the previous two years was observed. It is interesting to note that in 2007 samples originated from the second mofette (Location 2), which is about 40 m distant from the Location 1 (sampling in 2003 and 2004) with different soil properties and less extreme CO2 regime (see the Methods section). The values for microbial biomass for the years 2003 and 2004 (Tab. 3) are in the range of those found for other grasslands (HABEKOST & al. 2008).

Conclusions

According to the results of this study we conclude that high concentrations of geological soil CO_2 decrease substrate induced microbial respiration and microbial biomass. This pattern

of microbial activity was stable and was not affected by different soil properties, different sampling periods, temperature of incubation, or soil water content.

Povzetek

Mikrobno dihanje in biomaso v talnih vzorcih lahko merimo z dodatkom lahko razgradljivega substrata npr. glukoze (s substratom inducirana respiracija - SIR). Respiratorni CO2 merimo s plinsko kromatografijo. V naši raziskavi smo to metodo uporabili za oceno mikrobnega dihanja in mikrobne biomase v vzorcih z območja naravnih izvirov CO2 (mofet) v Stavešincih (SV Slovenija), izpostavljenih različnim koncentracijam geološkega CO₂. Meritve kažejo na manjše dihanje in mikrobno biomaso v vzorcih, izpostavljenih veliki koncentraciji CO2, v primerjavi s kontrolo. Z vzorčenjem na dveh različnih lokacijah znotraj območja vrelcev v Stavešincih in obenem v treh različnih letih (2003, 2004 in 2007) pa smo pokazali tudi dolgoročno stabilnost opaženega vzorca mikrobnega odziva, ki se je pojavil na obeh lokacijah in v vseh treh letih vzorčenja.

Acknowledgements

The authors would like to thank to dr. Tjaša Danevčič and Simona Leskovec for technical assistance. The research was funded by the Slovenian Research Agency. The authors gratefully acknowledge all the given support.

References

- ANDERSON J. P. E. & DOMSCH K. H. 1978: A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry 10: 215–221.
- BADIANI A., RASCHI A., PAOLACCI A. R., MIGLIETTA F. 1999: Plant responses to elevated CO₂: a prospective from natural CO₂ springs. In: Agrawal S.B., Agrawal M. (eds.): Environmental pollution and plant responses. CRC Press LLC, Boca Raton, pp. 45–81.
- BOUMA T. J., BRYLA D. R. 2000: On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO₂ concentrations. Plant & Soil 227: 215–221.
- CHENG W. 1999: Rhizosphere processes under elevated CO₂. In: Luo Y., Mooney H.A. (eds.). Carbon dioxide and environmental stress. Academic Press, San Diego: pp. 245–264.

- HABEKOST M., EISENHAUER N., SCHEU S., STEINBEISS S., WEIGELT A., GLEIXNER G. 2008: Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biology & Biochemistry 40: 2588–2595.
- JENKINSON D. S., LADD J. N. 1981: Microbial biomass in soil: measurement and turnover. In: Paul E. A., Ladd J.N. (eds.). Soil Biochemistry, vol. 5. Marcel Dekker, New York and Basel, pp. 415–471.
- KALIGARIČ M. 2001: Vegetation patterns and responses to elevated CO₂ from natural CO₂ springs at Strmec (Radenci, Slovenia). Acta Biologica Slovenica 44: 31–38.
- LIN Q. & BROOKES P. C. 1999: An evaluation of the substrate-induced respiration method. Soil Biology & Biochemistry **31**: 1969–1983.
- MAČEK I. 2004: Root response of selected agriculturally important species to naturally elevated CO₂ concentration. Doctoral Dissertation. Biotechnical Faculty, University of Ljubljana, Ljubljana.
- MAČEK I., PFANZ H., FRANCETIČ V., BATIČ F., VODNIK D. 2005: Root respiration response to high CO₂ concentrations in plants from natural CO₂ springs. Environmental and Experimental Botany 54: 90–99.
- MAČEK I., DUMBRELL A.J., HELGASON T., NELSON M., FITTER A. H., VODNIK D. 2008: Extreme abiotic environmental factors are determining arbuscular mycorrhizal fungal community structure at natural CO₂ springs. In: COST Action 870 – From production to application of arbuscular mycorrhizal fungi in agricultural systems: a multidisciplinary approach: Working groups 2 and 4 meeting, 17–19 September 2008. Aristotle University of Thessaloniki, Thessaloniki: pp. 71.
- PFANZ H., VODNIK D., WITTMANN C., ASCHAN G., RASCHI A. 2004: Plants and geothermal CO₂ exhalations. Survival and adaptation to a high CO₂ environment. In: Esser K., Lüttge U., Kadereit J.W., Beyschlag W. (eds.). *Progress in Botany* 65. Springer-Verlag, Berlin Heidelberg, pp. 499–538.
- PFANZ H., VODNIK D., WITTMANN C., ASCHAN G., BATIČ F., TURK B., MAČEK I. 2007. Photosynthetic performance (CO₂-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (*Phleum pratense* L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environmental and Experimental Botany 61: 41–48.
- PINHERIRO J. C., BATES D. M. 2000: Mixed-Effects models in S and S-PLUS, statistics and computing, Springer, New York, 528 pp.
- RASCHI A., MIGLIETTA F., TOGNETTI R., VAN GARDINGEN P.R. 1997: Plant responses to elevated CO₂. Evidence from natural CO₂ springs. Cambridge University Press, Cambridge.
- R DEVELOPMENT CORE TEAM 2009: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- RILLIG M. C., HERNANDEZ G. Y., NEWTON C. D. 2000: Arbuscular mycorrhizae respond to elevated atmospheric CO₂ after long-term exposure: evidence from a CO₂ spring in New Zealand supports the resource balance model. Ecology Letters 3: 475–478.
- Ross D. J., TATE K. R., NEWTON P. C. D., WILDE R. H., CLARK H. 2000: Carbon and nitrogen pools and mineralization in a grassland gley soil under elevated carbon dioxide at a natural CO₂ spring. Global Change Biology 6: 779–790.
- Ross D. J, TATE K. R., NEWTON P. C. D., CLARK H. 2002: Decomposability of C3 and C4 grass litter sampled under different concentrations of atmospheric carbon dioxide at a natural CO₂ spring. Plant and Soil **240**: 275–286.
- Ross D. J., TATE K. R., NEWTON P. C. D., CLARK H. 2003: Carbon mineralization in an organic soil, with and without added grass litter, from a high-CO₂ environment at a carbon dioxide spring. Soil Biology & Biochemistry 35: 1705–1709.
- VIDEMŠEK U., HAGN A., SUHADOLC M., RADL V., KNICKER H., SCHLOTER M., VODNIK D. 2009: Abundance and diversity of CO₂-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microbial Ecology 58: 1–9.
- VODNIK D., PFANZ H., MAČEK I., KASTELEC D., LOJEN S., BATIČ F. 2002: Photosynthetic performance of cockspur (*Echinochloa crus-galli* (L.) Beauv.) at sites of naturally elevated CO₂. Photosynthetica 40: 575–579.

- VODNIK D., KASTELEC D., PFANZ H., MAČEK I., TURK B. 2006: Small-scale spatial variation in soil CO₂ concentration in a natural carbon dioxide spring and some related plant responses. Geoderma 133: 309–319.
- VODNIK D., VIDEMŠEK U., PINTAR M., MAČEK I., PFANZ H. 2009. The characteristics of soil CO₂ fluxes at a site with natural CO₂ enrichment. Geoderma **150**: 32–37.
- ZAK D. R., PREGITYER K. S., CURTIS P. S., TEERI J. A., FOGEL R., RANDLETT D. L. 1993: Elevated atmospheric CO₂ and feedback between carbon and nitrogen cycles. Plant and Soil **151**: 105–117.