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Abstract

A key part of zero-defect manufacturing is automatic im-
age-based detection of defects in products and materi-
als. In this paper, we explore two distinctive state-of-
the-art approaches for defects detection: (a) fully dis-
criminative approach, and (b) generative approach. Al-
though discriminative approaches are currently achiev-
ing state-of-the-art results, their application is limited
to domains with an abundant number of faulty samples.
On the other hand, generative approaches minimize the
use of faulty samples and can learn the representation
only from defect-free samples, however, their classifica-
tion performance seems still to be limited. In this paper,
we compare the representatives of discriminative (Deci-
sionNet) and generative (GANomaly) approaches on a
selected industrial domain of injection-moulded-parts in-
spection. We show that the generative method is still out-
performed by the discriminative approach with mAP of
99.3% against 99.8%, however, the generative method is
comparable when measuring their performance on a per
physical-instance basis.

1 Introduction

In smart factories of the future, production can range from

a highly individualized, batch-size-one production to a

single mass-produced product under the conditions of high
flexibility [6]. To achieve zero-defect manufacturing in

this new paradigm, the methods of automatic quality con-

trol must be adapted as well. Lately, machine learning

and deep-learning approaches have been showing signif-

icant promises in addressing this issue.

However, general and completely automatic recog-
nition of anomalous products during the manufacturing
process is still an unsolved problem. Understanding cur-
rent operating conditions and detecting faults and failures
is an important research topic. Complex visual inspection
tasks are often done by human workers. Such manual la-
bor is a slow and cumbersome process, and it is prone to
errors. Replacing this process with an automated com-
puter vision approach requires addressing two key issues
arising from the nature of the production process: (a) high
variability of the anomaly appearance and (b) highly un-
balanced datasets with many defect-free parts but only a
few faulty ones available.
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Figure 1: (a) DecisionNet is a two-stage discriminative
deep neural network architecture [5]. (b) GANomaly is a
conditional GAN with an encoder-decoder-encoder sub-
networks architecture [1].

Works by [7, 3, 5] have addressed the high variabil-
ity of the anomaly appearance using deep-learning ap-
proaches, but their focus has been on fully supervised
learning. To correctly model anomalies, many examples
that capture different variations of the defects are required.
When only a small number of training samples are avail-
able, the classification performance decreases, as shown
by Tabernik el al. [5]. On the other hand, methods by [4,
8, 1] use Generative Adversarial Networks (GAN) [2] to
learn the core anomaly detection model from only defect-
free samples. This addresses the issue of highly unbal-
anced datasets, with only a minor number of faulty sam-
ples required to calibrate the detection process.

In this paper, we compare a discriminative approach
against a generative approach on a real-world industrial
case of anomaly detection. As a discriminative approach,
we employ a two-stage deep-learning architecture with
the segmentation network in the first stage and the deci-
sion network in the second stage [5], where both models
are learned in a fully discriminative manner using pixel-
wise labels of the defects. In this paper, we refer to this
network as DecisionNet. As a generative approach, we



utilize a generative adversarial network with an encoder-
decoder-encoder structure termed GANomaly [1]. This
architecture mitigates the problem in highly biased datasets
(many defect-free, few faulty samples) by encoding the
appearance of defect-free samples in a low-dimensional
latent vector. The latent vector can reconstruct the orig-
inal image and can thus capture the distribution of good
(i.e., normal) appearances. Any deviation from this dis-
tribution is used for the detection of anomalies. In this
paper, we demonstrate the classification performance of
both methods on the problem of anomalies in the injec-
tion moulding process of the routing discs. Although the
GANomaly model learns its core model only from defect-
free samples and uses faulty samples only for calibration
of the detection, we show that on the routing discs domain
this can lead to results comparable to the fully supervised
method.

The remainder of the paper is structured as follows.
First, we present the two evaluated methods in Section 2.
A detailed description of the problem domain is presented
in Section 3. Comparison of the two approaches is pro-
vided in Section 4 with a discussion and conclusion in
Section 5.

2 Defect-detection approaches

In this section, we briefly describe two state-of-the-art
methods for anomaly detection. First, we give a short de-
scription of the discriminative method DecisionNet [5],
and then we present generative method GANomaly [1].

2.1 DecisionNet

The approach proposed by Tabernik et al. [5] consists of
the first stage for segmentation of surface anomalies, and
the second stage for the final classification of the image
in one of two classes (defect-free or faulty). The trained
network achieved perfect results on the DAGM dataset
and state-of-the-art results with an average precision of
99.9% on KolektorSDD! dataset.

This architecture can be seen in Fig. la. The seg-
mentation part of the network is composed of 11 convo-
lutional layers with batch normalization and ReLU acti-
vation functions and three max-pooling layers. The fi-
nal segmentation map is achieved by reducing the previ-
ous layer of the network with 1x1 convolutional layer.
The classification score is computed in the second stage.
The decision network concatenates the last two layers of
the segmentation network and puts them through max-
pooling and convolutional layers. The final score is com-
puted from the global maximum and average pooling lay-
ers which are computed from the segmentation map and
previous layer of the decision network. The 66 output
neurons are finally combined with linear weights into the
final output neuron.

2.2 GANomaly

To address the problem of highly imbalanced datasets, we
have used a weakly-supervised approach with a state-of-
the-art generative adversarial network for anomaly detec-
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(a) Acquisition process
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Figure 2: (a) The experimental setup for the dataset im-
age acquisition process. (b) The camera view of the in-
jection moulded routing disc with the rotated bounding
box in cyan color and final region of interest for defect
detection in the dashed green bounding box. (c) Example
of a bad sample and (d) the accompanying ground truth
mask of faulty parts.

tion [1]. GANomaly is a fully convolutional generative
adversarial network with an encoder-decoder-encoder sub-
networks in the generator part. This enables the model to
map the input image to a lower-dimensional latent space,
which is used to reconstruct the generated output image.
Minimizing the reconstruction error metric in the image
space and the latent space during the training helps the
model to learn the data distribution for the normal sam-
ples. This model is learned only on defect-free samples,
without any pixel-wise labels. This leads to a larger dis-
tance metric from the learned data distribution at infer-
ence time, which is indicative of an outlier from the nor-
mal distribution and thus produces a larger anomaly score.
The abstraction of the GANomaly architecture can be
seen in Fig. 1b.

The hypothesis for the model is that when an abnor-
mal image is processed at the inference time, the decod-
ing part of the generator is not able to reconstruct the ab-
normalities. This stems from the fact that the network
was trained by observing only normal (defect-free) sam-
ples and its parametrization is not suitable for generating
abnormal ones [1]. A large reconstruction error is there-
fore a good indication of a faulty region.

3 Routing disc dataset

In this section, we present the domain for quality inspec-
tion, in particular, the inspection of injection moulded
routing disc (see Fig. 2). Injection moulding is a widely
used manufacturing process for producing parts with the



Table 1: In the first part we are showing the results achieved on the partial images of the whole instances, and in the
second part of the table are the aggregated results. TP, TN, FP and FN values are reported at a threshold value where

the best F-measure is achieved.

Partial-view images

Physical instances

Method mAP TP TN FP FN F-measure TP TN FP FN
DecisionNet 0.998 801 13,428 2 4 0.9963 29 111 1 0
GANomaly 0993 746 13,433 7 41 0.9695 29 111 1 0

process of injecting molten material into a specially de-
signed mould. Since the parts to be injection moulded
must be meticulously designed to facilitate the complex-
ity of the moulding process, a lot of different types of
defects can occur?.

The data acquisition process of the parts was carried
out with the Basler acal600-60gm monochrome camera,
a C-mount lens with the focal length of 25 mm, and a
high-powered green LED dome illumination as depicted
in Fig. 2a. During the acquisition process, the pieces were
fixed on a dedicated bed to prevent unwanted movement.

The dataset consists of 112 good samples and 29 bad
samples, each captured in a high-resolution image (1602 x
1202 pixels), which was additionally post-processed to
create the final dataset (see Fig. 2b). Each bad sample
was annotated with a detailed pixel-wise annotation mask
(see Fig. 2d). First, we selected a part of the image with
an oriented bounding-box which was incrementally ro-
tated with a step of 3 degrees around the center of the
object (depicted with the red arrow in the Fig. 2b). At
each step, a smaller area of the image was cut out to pro-
vide the final squared area of the part depicted with the
dashed green square.

This procedure gave us an intermediate dataset with
13440 partial views of the 112 good samples and 3480
partial views of the 29 bad samples. Image size for the
DecisionNet experiment was set to 256 x 256 pixels. For
the GANomaly experiment, the images were reduced to
the resolution of 64 x 64 pixels to make the training times
feasible.

Once the samples where cut into parts, only the bad
parts with the cutout of the mask containing at least 5% of
the total surface area of each partial view were retained.
This way we omitted the parts of the bad samples which
were sound. The final dataset was comprised of 13440
partial views of the 112 good samples and 803 partial
views of the 29 bad samples. A couple of sample images
are depicted in Fig. 3.

4 Evaluation

4.1 Evaluation setup

In this section, we present the evaluation of the two re-
viewed approaches. The training data was prepared as
described in the previous section. During the evaluation
process 3-fold cross-validation was performed, where all
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the partial views from a particular physical instance were
either in the training set or in the test set.

DecisionNet training is performed for 100 epochs,
where on every even step of the learning process the net-
work is shown a faulty sample and a defect-free one on
every odd step. In each epoch, the network sees all the
faulty images and only a subset of the defect-free ones.
During the training of the segmentation sub-network, the
fine annotated ground truth mask is provided to guide
the training process. Both sub-networks used the cross-
entropy loss as in [5].

GANomaly training uses the same training objective
as in [1]. The total loss of the model is defined as a
weighted sum of the partial losses, Adversarial, Contex-
tual, and Latent, with the model parameters set as in [1]:
Xadv = 1, Aeon = 50, Aene = 1, and |z| = 100. Dur-
ing the training process, the method uses only defect-free
samples. To compute the final anomaly detection score
the feature scaling is applied, which is based upon the
entire train set including the faulty samples.

4.2 Evaluation results

To evaluate the two different approaches several different
classification metrics were measured: (a) mean average
precision (mAP), (b) a number of true positive (TP), true
negative (TN), false positive (FP) and false negative (FN)
samples, and F-measure. In our case, a positive sample
represents an image with a present defect, and a negative
sample is an image of a defect-free part. The number of
TP, TN, FP, and FN samples is reported at a threshold
value where the best F-measure is achieved.

Finally, we evaluated the performance of the two com-
peting models according to the classification of complete
physical instances. An instance, in this case, is an im-
age of the whole physical piece before it was cut up to
smaller squared images as described in Section 3. We
pronounced an instance a positive one if at least one par-
tial view was positive, and demanded that all of the partial
views of an instance are negative if it is to be a negative
instance.

The results are reported in Table 1. In a direct com-
parison of the discriminative and the generative approach,
the DecisionNet achieved mAP of 99.8% where on the
other hand GANomaly achieved a slightly lower mAP of
99.3%. A closer look at the FN values reveals that Deci-
sionNet outperformed GANomaly by 4 to 41 miss-classi-
fications. However, once we aggregate the results of the
partial views into physical-instance-based metrics, both
methods perform comparably well with only a single FP
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Figure 3: Examples of correct defect detections for DecisionNet (left) and GANomaly (right) shown in the upper two
rows, while false negatives and false positives are shown in the lower two rows.

instance. Both methods make a single mistake, though
each on a different real-world sample.

Figure 3 depicts several examples of detections for
both methods. It also demonstrates the fundamental dif-
ference between both approaches. Next to the input im-
age and the ground truth, we depict the segmentation mask
produced by the DecisionNet, which serves as a base for
the final classification. For GANomaly, we instead depict
the reconstructed image and the difference map between
the original and reconstructed image, which is, in this
case, used to bring the final decision. Since the top exam-
ples are not reconstructed well, this indicates the presence
of an anomaly in the image.

5 Conclusion

In this paper, we have compared two state-of-the-art meth-
ods for anomaly detection on a novel dataset from a real-
world industrial domain of injection moulding part. We
compared a fully supervised approach, the DecisionNet
[5], that uses a supervised discriminative approach to di-
rectly learn the appearance of the anomaly, against the
generative approach, the GANomaly [1], that uses the
generative adversarial network to learn the appearance
of defect-free samples. We showed that the discrimi-
native approach out-performed the generative one when
measuring on individual partial-view images. However,
the GANomaly model performed comparably well when
measuring on physical instances. As GANomaly achieves
this result by learning the main model only from defect-
free samples, this shows a potential for practical use of
generative deep-learning models in industrial problems
where the acquisition of faulty samples is limited. More-
over, our preliminary analysis also showed that a more in-
telligent merging of detections from multiple overlapping
partial-view images has the potential to further reduce the
number of false positive samples.

Our future work will focus on reducing false positive
rate using a more advanced fusion of partial results, as
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well as on exploring different GAN architectures, such as
bi-directional GANSs [8], and their relevance to the prob-
lem of anomaly detection. Furthermore, we will consider
addressing the limitation of the image size in existing
state-of-the-art GAN-based anomaly detection methods,
which has proven to be severely limiting the resolution of
the training samples.
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